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Abstract: This paper introduces an innovative approach to the synchronized demand-capacity balance with special 
focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management （ATFM） 
framework. Further with previous study， the uncertainty in capacity is considered as a non-negligible issue regarding 
multiple reasons， like the impact of weather， the strike of air traffic controllers （ATCOs）， the military use of airspace 
and the spatiotemporal distribution of nonscheduled flights， etc. These recessive factors affect the outcome of traffic 
flow optimization. In this research， the focus is placed on the impact of sector capacity uncertainty on demand and 
capacity balancing （DCB） optimization and ATFM， and multiple options， such as delay assignment and rerouting， 
are intended for regulating the traffic flow. A scenario optimization method for sector capacity in the presence of 
uncertainties is used to find the approximately optimal solution. The results show that the proposed approach can 
achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems， solving 
large-scale instances （24 h on seven capacity scenarios， with 6 255 flights and 8 949 trajectories） in 5—15 min. To 
the best of our knowledge， our experiment is the first to tackle large-scale instances of stochastic ATFM problems 
within the collaborative ATFM framework.
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0 Introduction 

Air traffic delay has a significant impact on pas‑
sengers’ experience and may incur costs to airlines， 
causing massive disruptions to the air transportation 
network［1-3］. The International Air Transport Asso‑
ciation （IATA） expects the overall traveler number 
to reach 4.0 billion by 2024， exceeding the pre-CO‑
VID-19 levels （103% of the 2019 total）. However， 
flight delays are reported widely in airports around 
the world， attracting widespread attention from the 
public. Many organizations express a concern that 
the situations get worse to the extent that they have 
convened numerous workshops and organized di‑

verse seminars to constantly update the technology 
and operational concept［4-5］.

The core problem under the background arises 
from a long-standing imbalance between the de‑
mand and airspace capacity resources. Air traffic 
flow management （ATFM） is such a concept con‑
ducted to manage the flow of traffic in a manner that 
minimizes delays and maximizes the utilization of 
the entire airspace［6-8］. By tactically modifying the 
departure times and trajectories of flights， capacity-

demand imbalance can be addressed［9-12］， which oc‑
curs either when the capacity is reduced， or when 
the demand is high［13-15］.
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Many countries are developing their ATFM 
programs and systems， such as the Ground Delay 
Programs （GDPs） and Airspace Flow Programs 
（AFPs） led by the Federal Aviation Administration 
（FAA，2009）. Eurocontrol has been proactively ad‑
vancing the User Driven Prioritization Process 
（UDPP）［16］ initiatives to provide increased flexibili‑
ty for airspace users （AUs） to make their opera‑
tions more cost-effective. Following such programs 
and initiatives， the industry gradually develops AT‑
FM systems to guild the national traffic flow in a 
macroscopic view.

The development of the system was not 
achieved overnight. In 1986， about 12% of the 
flights in Europe were delayed by more than 15 min. 
By 1989， 25% of all flights were delayed by this 
amount at least. Hence， air traffic flow management 
units （ATFMU） were established in various states 
to regulate traffic flows and to match demand with 
capacity. Afterwards， the authorities realized that 
the control of flow on a regional basis would not 
solve the problems in a sense. The airspace was in‑
creasingly restricted， leading to more frequent de‑
lays［17］.

It began to emerge that the only solution was 
to carry out flow management centrally， making the 
best possible use of all national airspace capacities 
available. Therefore， the European Organization ac‑
cordingly set up the Central Flow Management Unit 
（CFMU）. This organization oversees all instrument 
flight rule （IFR） flights， while the en-route airspace 
is further subdivided into approximately 70 area con‑
trol centers （ACCs）. Each ACC’s airspace is seg‑
mented into different sectors managed by one or 
more air traffic controllers （ATCOs）. Eurocontrol’s 
Network Manager Operations Centre （NMOC）， 
evolved from CFMU， has played an irreplaceable 
role in the further implementation of ATFM.

Other countries also attempted to develop na‑
tional ATFM systems. Among them， China com‑
pleted the establishment of National Air Traffic 
Flow Management Center （NTFS） after years of 
exploitation. By integrating NTFS with ATC， air‑
lines， and airports in a uniformed collaborative plat‑

form， all national traffic flows can be fully optimized 
using a coherence algorithm. Japan launched Air 
Traffic Flow Management Center （ATFMC） in 
1994 and extended it to Air Traffic Management 
Center （ATMC） accordingly in 2005. In Australia， 
provided by Airservices Australia， ATFM is based 
on the Ground Delay Program （GDP） deployed on 
various airports such as Sydney， Melbourne， Perth 
and Brisbane.

However， the above-mentioned initiatives and 
systems for flow management and for airspace sec‑
torization may be not well coordinated or synchro‑
nized. Xu et al.［18］ introduced a novel approach to 
the synchronized balance between demand and ca‑
pacity in a proposed way of collaborative ATFM. 
The traffic regulation initiatives and a dynamic open‑
ing scheme were incorporated into a centralized opti‑
mization model for airspace configuration manage‑
ment. Nevertheless， regrettably some uncertainty 
factors were not considered through traffic flow opti‑
mization， and the deterministic model was proved 
not to be applicable in multiple scenarios which are 
incompatible with the reality. To improve the perfor‑
mance and robustness of the systems， uncertainty 
factors need to be taken into account in future work. 
Plus， stochastic programming has made significant 
progress in ATFM optimization during the de‑
cades［19-24］， prompting us to think how to make our 
research go extra miles.

To better illustrate the benefits of this paper， 
we have summarized previous representative studies 
in stochastic ATFM problems in Table 1. From the 
prospective of methods， chance-constraint optimiza‑
tion， scenario optimization， and two-stage stochas‑
tic optimization are considered as typical methods. 
Most of the research demonstrates these methods 
through small sample experiments. Almost all of the 
research solely considers delay assignments （ground 
delay or airborne delay）， and few simultaneously fo‑
cuses on assigning delays and trajectory options. 
With the upcoming future operation concept （4D tra‑
jectory and free route airspace）， conducting large-

scale experiments to demonstrate demand and capac‑
ity balancing under capacity uncertainty is significant 
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for ATM future operation.
In this paper， the main contributions and inno‑

vations are as follow：

（1） The previous study is further improved by 
taking the uncertainty of airspace capacities into ac‑
count under a proposed collaborative ATFM frame‑
work for the synchronized balance between demand 
and capacity， which makes our research more com ‑

plete.
Multiple strategies including delay assignment 

and rerouting are suggested for regulating the traffic 
flow. Compared to related studies （Table 1）， syn‑
chronously adopting two strategies combined a sce‑
nario-based optimization method for enroute capaci‑
ty with uncertainty in airspace is unprecedented， 
which indicates the importance of this study.

（2） The previous demand and capacity balanc‑
ing （DCB） model and collaborative DCB （C-DCB） 
model are finally updated to stochastic programming 
models， unified DCB （U-DCB） and unified collab‑
orative DCB （UC-DCB）， which is consistent with 
the concept of trajectory option set （TOS） in Col‑
laborative Trajectory Options Program （CTOP）. 
The study highlights future development of ATFM 
and ATM.

（3） Large-scale instances （24 h on seven ca‑
pacity scenarios， with 6 255 flights and 8 949 trajec‑
tories） can be realized through dynamic multi-stage 
DCB in 5—15 min. The decision-making process 
can be conducted based on the real departure time， 
instead of the scheduled one. Before this study， 
such large-scale experiments are rare. Overall， this 
research provides guidance for “precise” flow man‑
agement in the future operation concept.

Table 1　Literature reviews and our main contribution

Items

Author

Method

Focus

Strategy

Constraint

Experiment

Our main 
contribution

Problem solving and innovation
Abdelghani et 

al.[20]

Chance‑con‑
straint to approxi‑
mate the optimal 
solution with a 
predetermined 

probabilistic confi‑
dence

Airport capacity 
uncertainty

Airborne holding 
and ground hold‑

ing

Airport and sec‑
tor capacity con‑
straint and other 

ATFM constraint

4 airports +10 
sectors

Our method focusses on assigning delays and trajectory options aiming at future operation concept, and a large ‑
scale experiment is conducted to demonstrate the method

Fadil et al.[25]

Chance‑con‑
straint /scenario 
approach optimi‑

zation method

Sector capacity 
uncertainty

Airborne holding 
and ground hold‑

ing

Airport and sec‑
tor capacity con‑

straints and other 
ATFM constraint

4 capacity scenar‑
io+10 sectors

Starita et al.[22]

Two stage sto‑
chastic optimiza‑
tion method/ a 

scalable decompo‑
sition approach

Sector capacity 
uncertainty/de‑

mand capacity un‑
certainty

Assigning delay 
and rerouting

Sector capacity 
constraint and tra‑
jectory constraint

15 ACCs+more 
than 1 000 flights

Chen et al.[23]

Chance‑con‑
strained optimiza‑

tion method/a 
polynomial ap‑
proximation‑

based approach

Sector capacity 
uncertainty

Ground holding 
and airborne hold‑

ing

Airport and sec‑
tor capacity con‑
straint and other 

ATFM constraint

Small sizes exam ‑
ples/20 sectors 
and large‑scale 

experiment 3 054 
flights

Balakrishnan et 
al.[19]

Two‑stage sto‑
chastic optimiza‑

tion method/
Mixed integer lin‑
ear programming 

(MILP)

Airport and sec‑
tor capacity uncer‑

tainty

Ground holding 
and airborne hold‑
ing and reroutes

Airport and air‑
space sector ca‑

pacity constraint 
and other ATFM 

constraints
Large scale exper‑

iment (17 500 
flights/day, 370 
airports and 375 

airspace sectors+
25 scenarios)

This work

MILP

Sector capacity 
uncertainty/DCB

Ground holding 
and reroutes with 
delay minimiza‑
tion and green 

emission objective
Sector capacity 

constraint and tra‑
jectory constraint 

and  other AT‑
FM constraints

15 ACCs+224 
operation sector+
164 basic sector+

6 255 flights+
8 939 trajectories
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1 Motivation 

In previous work［18，26-28］， we proposed an 
approach combining multiple initiatives to an inte‑
grated DCB model， improving the efficiency of 
delay assignment. In follow-up work， it was demon‑
strated that incorporating rerouted strategy especial‑
ly considering the identified hotspot areas could real‑
ize observable delay reduction in our experiment pro‑

cess. On this basis， an innovative approach for syn‑
chronized demand-capacity balancing was intro‑
duced through air traffic flow management. Howev‑
er， according to the workflow presented in Fig. 1， 
because many factors may have an impact on perfor‑
mance indicator， it is not feasible to directly calcu‑
late without considering recessive factors， or rather 
to say， uncertainty on the capacity side cannot be 
ignored.

Stochastic programming and robust optimiza‑
tion are the main techniques to address such issues.  
Much attentions have arisen in ATFM field where 
continuous efforts are made to explore these tech‑
niques to solve the uncertainty in ATFM optimiza‑
tion model from both demand and capacity sides［1］. 
The most difference between two optimization 
methods is how to deal with the uncertainty factors 
in the optimization process. For features of stochas‑
tic optimization， uncertainty is evaluated by assum ‑
ing that the probability distribution can be acquired. 
In other words， accurate estimates can be per‑
formed based on its historical values. Nevertheless， 
optimizing strategy in robust optimization turns into 

finding the best solution in the worst-case scenario， 
which can result in a highly conservative solution. In 
this regard， both strategies make no difference to 
which has more advantages than the other. The 
most distinction between the two methods is depen‑
dent on optimization objectives. In this paper， sto‑
chastic optimization is adopted to solve the uncer‑
tainty on the capacity side. Our innovation beyond 
the previous relative research is solving large-scale 
stochastic ATFM problems in a more synchronous 
collaborative decision-making （CDM） framework， 
with delay assignment and alternative trajectories 
strategy into consideration simultaneously. To best 
of our knowledge， such exploration may be more ap‑

Fig.1　An overview of the architecture and workflow for the proposed model framework
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propriate for the real-world situation in the industry， 
which is beneficial to the future application to practi‑
cal operation in ATM systems.

2 Problem Formulation 

This section focuses on problem description 
and introduces an innovative model. As previously 
stated， the overall architecture is composed of a set 
of functional components， and the corresponding 
workflow diagram is presented in Fig.1. In CDM 
process， many stakeholders may participate in deci‑
sion-making processes. Stakeholders， including 
AUs， ANSPs， network management （NM）， func‑
tional airspace blocks （FABs）， national security 
areas （NSAs）， are all involved in practical collabo‑
ration which derives from multi-participation. How‑
ever， to better demonstrate the performance and 
benefits， the main stakeholders involved in this re‑
search are limited to the scope of ANSPs， AUs and 
network managers.

The European Network Operations Plan 
2023—2027［29］ presents the main operational re‑
quirements arising from the implementation of Net‑
work Strategic Projects. The free route airspace 
（FRA） will be gradually implemented by the net‑
work management board in the near future， cross-

border operation will predominate in future ATM 
progress. Specially， our theoretical model can also 
contribute to future operation concept.

2. 1 Problem description　

ATFM problems are usually considered to be 
optimization problems related to resource con‑
straints. Many studies adopt various strategies to 
achieve the same goal， minimizing the system de‑
lay. Common strategies encompass speed adjust‑
ment， rerouting， flight cancellation， flight overtak‑
ing， continued flights， etc. Current methods have 
been developed through a series of problems such as 
single airport holding， multi-airport holding， 
ground holding， ground delay， dynamic ground 
holding policy， and airborne holding. The actual op‑
eration of airlines here can be concisely illustrated 
by giving an example. Specifically， before a day of 
flight operation， an aircraft is scheduled to fly 

through specific routes to the destination airport. 
However， when it is ready to take off， some sectors 
are overload due to the imbalance between demand 
and capacity. If the aircraft continues flying on its 
original trajectory， the flight time will undoubtedly 
increase and the whole system will become ineffi‑
cient because of congestion. Moreover， air traffic 
controllers in some sectors need to handle quite a 
number of flights. One particular phenomenon is 
that hotspots are sectors where demand for flights 
exceeds capacity. If we can detect such hotspots in 
advance and take actions to keep aircraft temporarily 
on the ground， the centralized systems will benefit 
from more reasonable arrangement.

To be more specific， during trajectory plan‑
ning， pilots obtain initial trajectory data from air traf‑
fic flow management units based on flights de‑
mands， aircraft performance data， and weather da‑
ta. The initial trajectory may not be the final trajec‑
tory owing to adjustments in the tactical stage by 
ATFM （network manager in Europe）. The DCB 
optimizer prefers to modify the trajectory data based 
on the time-varying hotspots across the whole air‑
space. Thus， new trajectories are generated to pro‑
vide to pilots or airspace users. Such hotspots are 
overload sectors. After this， pilots can choose more 
economical and environmentally friendly trajectories 
to save fuel and the whole air traffic management 
system will benefit from reduced delays. Network 
managers get sector capacity information from the 
perspective of airspace planning. ANSPs provide ini‑
tial configurations to network managers， and as op‑
erational situations change， some sectors will be 
closed and parts of sectors will be merged to an inte‑
grated sector. This paper hence focuses on the im ‑
pact of sector capacity uncertainty on DCB optimiza‑
tion and ATFM.

Two strategies are considered in this paper， de‑
lay assignment and trajectory sections， which are 
utilized in a collaborative ATFM framework. Col‑
laborative techniques require the participation of 
multiple stakeholders， processing multidimensional 
information including weather data， aircraft perfor‑
mance data， and flight demand to generate initial 
trajectories. The DCB model is proposed in this re‑
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search for data calculation and result optimization， 
which are finally fed back to the initial planning pro‑
cess.

2. 2 Collaborative ATFM framework under ca‑
pacity uncertainty　

The workflow is depicted in Fig.1. The meth‑
odology is dedicated to generating two strategies： 
Delay assignment and alternative trajectory options. 
The collaborative process consists of five parts as 
follows：

（1） Initial scheduling of user-preferred trajecto‑
ry.

（2） Initial scheduling of airspace configuration.
（3） Detection of time-varying hotspot airspac‑

es.
（4） Submission of alternative trajectory op‑

tions.
（5） Integrated optimization model for synchro‑

nized DCB.
As the main topic is to solve the uncertainty 

factors from the perspective of sector capacity， the 
transformation of sector capacity to different capaci‑
ty scenarios is considered. It is worth noting that tra‑
jectory selections involve revising the initial trajecto‑

ry planning， so as to achieve more economical and 
environmentally friendly trajectories. Beyond this， 
this paper conducts seven scenarios in the instances 
in contrast to only one certainty scenario in the previ‑
ous work. These scenarios are merely a demonstra‑
tion and expected to have wider practical applica‑
tions in future research.
2. 2. 1 Delay assignment　

Delay assignment （DAS） strategy goes back a 
long way. At the very beginning， it is part of 
Ground Delay Programs （GDPs） in the United 
States. With the development of GDPs， nowadays 
DAS is run exclusively in Unified Delay Program 
（UDP） mode. Besides， DAS as an optimization 
strategy can be implemented at pre-tactile and tacti‑
cal levels［30］. A typically tool namely ratio by sched‑
ule （RBS） adopts the strategy to deal with slot man‑
agement in Europe， which minimizes system-level 
delays by explicitly assigning delays to specific 
flights. The required delay can be transformed into 
ground delay prior departure. In some studies， air‑
borne delay and ground delay can both be used， but 
in this case， only ground delay is considered， which 
means to determine the airborne flight time. Fig.2 
illustrates the DAS strategy.

2. 2. 2 Alternative trajectory options　

Another strategy utilized in this study is placed 
on alternative trajectory options. Compared to 
DAS， alternative trajectory options provide another 
view to minimize the system delay， offering more 
choices to airspace users. Facing the hotspot areas， 
pilots get relevant information in advance to avoid 
the congestion routes before departure. The section 
process is illustrated in Figs.3， 4. In Fig.3， pilots 
can choose the red route based on the initial trajecto‑
ry normally planned by the demand. However， with 
some sectors overload， the red route may not be the 
best choice as many traversed sectors change to se‑
vere overload from slight overload， as shown in 

Fig.4. In this case， pilots may choose the green 
route to quickly adapt to the actual operational situa‑

Fig.2　DAS strategy schematic diagram

Fig.3　Schematic diagram of assigning delay and alternative 
trajectory option
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tion. If hotspot avoidance information is obtained， 
pilots can avoid such hotspot areas in advance， and 
AUs can flexibly reschedule their trajectories to 
save more fuel.

2. 3 Constraints　

There are different types of constraints in this 
study， mainly derived from the capacity side and the 
demand side. Typical constraints are also introduced 
in the proposed model such as trajectory constraint 
and location of flights constraint. Beyond this， vari‑
ables should satisfy the binary constraint.

(1) Sector capacity constraint　
The capacity constraint guarantees that de‑

mand does not exceed its capacity. By limiting the 
number of aircraft within the specific sector， re‑
sources utilization can be more efficient.

(2) Operation constraint　
With respect to estimate time of arrival 

（ETA）， prescript range of calculated time of arrival 
（CTA） at each control point for each flight is speci‑
fied. Meanwhile， timeline continuity is insured by 

appropriate equation. In the end， a decision-making 
factor is used to ensure the airborne flight time re‑
mains unchanged from the initial time scheduled.

2. 4 Capacity uncertainty　

The sector capacity depends on the weather 
conditions such as the visibility， cloud ceiling and 
the location of thunderstorms， which are classified 
into uncertainty factors［31］.

Many studies have discussed the issues of un‑
certainty， some focus on dynamic multi-stage［19］， 
and a few present a new method［23］. In particular， 
some studies solely consider airport uncertainty［32］， 
whereas some literatures place emphasis on sector 
uncertainty［25］， and a number of works consider 
more uncertainty from both sides on demand and ca‑
pacity［33‑34］. But some papers conduct case study on‑
ly from one side［35］. Groundbreaking work［36］ and 
early pioneering work［37］ involve methods and re‑
routing strategy. Recent limited research concen‑
trates on performance analysis combined strategy［38］.

Moreover， in recent years， separation manage‑
ment［39］， trajectory prediction［40］， and conflict man‑
agement［41］， have been incorporated into ATFM， 
and new techniques， like reinforcement learning［42］， 
are applied to accelerate solution time［43］. Distribut‑
ed management is renewed and updated to central 
authority-controlled pattern in ATFM problems［44］. 
Review papers in this field can also be found［45］.

Above analysis reveals the sources of uncertain‑
ty. The probability of each scenario is mainly depen‑
dent on weather forecasting. To be specific， we 
have retracted the data from Ventusky （Weather 
Forecast Maps） to acquire the weather conditions of 
our experimental day （on 5 February 2017） in 
French airspace. We also carried out some surveys 
and measurements on that day， finding the weather 
changed to low visibility with rain starting from 
12 pm. That is the reason why 70% of the scenario 
trees changed to “bad weather”， and 30% to “good 
weather” since there was a 30% probability of no 
rain from 12 pm according to weather forecasting. 
Additionally， postmortem analysis was conducted， 
indicating the accuracy of the scenario information. 
However， in actual operation， weather forecasting 

Fig.4　Time-varying projected hotspot volumes identified 
across the airspace network
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may not be accurate. Most of weather forecasting 
shows meteorological change by the probability. 
Therefore， our scenario trees can show such proba‑
bility of each scenario based on the information ac‑
quired in advance. The scenario tree information is 
displayed in detail in Fig.5， where S1—S7 repre‑
sent scenarios 1—7.

The distribution probabilities are 0.4 and 0.6 
for scenarios 2 and 3. Scenario 2 is divided into sce‑
narios 4 and 5 with the probabilities of 0.7 and 0.3. 
Scenario 3 is divided into scenarios 6 and 7 with the 
probabilities of 0.6 and 0.4. The process occurs after 
6 pm. Notably， optimization was performed three 
times. In the beginning， the DCB optimizer per‑
formed before departure of all the flights， which 
could be regarded as the pre-tactical stage. Optimiza‑
tion was still carried on when some flights took off 
at 12 pm. At 6 pm， the DCB was performed again 
to optimize the remaining flights.

2. 5 Time‑window　

In our model， different time window can be set 
to specify the maximal delay time that can be as‑
signed to each flight. This parameter affects the 
problem dimension in the simulation. We set time 
window as 360 min and 120 min with our two mod‑
els in follow-up large-scale experiments.

2. 6 Nomenclature　

The nomenclatures in this study are concluded 
as follows.
f ∈ F   Set of flights
j ∈ J    Set of elementary sectors
k ∈ K  Set of trajectory options

t ∈ T    Set of time moments
τ ∈ ϒ    Set of time periods
l ∈ L    Set of operating sectors
ξ ∈ Ξ    Set of different scenarios
s ∈ S    Set of multi‑stage
Kf    Subset of trajectory options submitted by flight f
J k

f     Subset of elementary sectors flight f (or trajec‑
tory k) traverses

T k,j
f     Subset of time feasible for flight f (or trajectory 

k) entering elementary sector j
ϒ ( τ )    Subset of time moments subject to time period

τ
Lτ    Subset of operating sectors opened in time period

τ
Lj    Subset of operating sectors constructed by el‑

ementary sector j
J k,τ

f,t     The first elementary sector for flight f (or trajec‑
tory k) that functions in operating sector l in time 
period τ

J k
f ( i )    The ith elementary sector for flight f (or tra‑

jectory k)
- -----
T k,j

f     Upper bound of feasible time window T k,j
f

-
T k,j

f     Lower bound of feasible time window T k,j
f

-
T k,j

f     Lower bound of feasible time window T k,j
f

r k,j
f     Estimated arrival time of flight f (or trajectory 

k) entering elementary sector j
t̂ k,jj '

f     Scheduled flight time of segment jj' for flight f 
(or the kth trajectory)

cτ
l     Capacity of operating sector l during time period τ

d k
f     Extra fuel consumption for the kth trajectory of 

flight f
ek

f     Extra route charges for the kth trajectory of flight f
α    Unit cost of performing ground delay
γ    Unit cost of fuel consumption

3 Stochastic Optimization Model

This section presents the variant models U-

DCB and UC-DCB， which are based on the previ‑
ous baseline model DCB. U-DCB is a model for 
multi-scenarios demand and capacity balancing 
while UC-DCB is a variant model considering an ad‑
ditional strategy of rerouting. The two variant mod‑
els are illustrated in detail below， as shown in Table 
2， which summarizes the main features （or initia‑

Fig.5　Example of a scenario tree with seven scenarios
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tive） activated in each model.

3. 1 Model U‑DCB　

Model DCB aims at balancing demand under 
various capacity scenarios through assigning ground 
delay to flights. A set of fixed airspace opening 
schemes are considered， which are planned in early 
stages based on the historical traffic flow. In this 
study， by considering future trajectory-based opera‑
tions， CTAs are imposed along the trajectory with 
each control point. To assign the CTAs， a set of de‑
cision variables are identified as follows.

Compared with the model presented in 
Refs.［18，28］， only ground holding is considered， 
not airborne holding in this paper.

Firstly， we set a decision variable x in the mod‑
el， as follow

xj,ξ,s
f,t =

ì

í

î

ïïïï

ïïïï

1
If flight f enters elementary sector j by 
time t within stage s under scenarios ( ξ )

0 Otherwise
The objective function Eq.（1） of model DCB 

is to minimize the total delay of the system. The 
CTA is imposed to each flight at control point using 
constraint Eq.（2）.
min

 
∑
ξ ∈ Ξ

P ( ξ )

Scenario

× ∑
s ∈ Sξ

∑
f ∈ F

∑
j = Jf

∑
t ∈ T j

f

( t - r j
f ) ( xj,s

f,t - xj,s
f,t - 1 )

（1）
s.t.    xj,ξ,s

f,T j
f - 1 = 0,xj,ξ,s

f,T j
f
= 1

∀f ∈ F,∀j ∈ Jf,∀ξ ∈ Ξ,∀s ∈ Sξ （2）
xj,ξ,s

f,t - xj,ξ,s
f,t - 1 ≥ 0

∀f ∈ F,∀j ∈ Jf,∀t ∈ T j
f,∀ξ ∈ Ξ,∀s ∈ Sξ （3）

xj',ξ,s
f,t + t̂ jj'

f
- xj,ξ,s

f,t = 0
∀f ∈ F,∀t ∈ T j

f,j = Jf ( i ),∀s ∈ Sξ,
j' = Jf ( i + 1 ):∀i ∈ [ 1,nf ) （4）

∑
ξ ∈ Ξ

P ( ξ ) × ∑
s ∈ Sξ

∑
f ∈ F

∑
j = J τ

f,l

∑
t ∈ T j

f ⋂ ϒ ( τ )

xj,ξ,s
f,t - xj,ξ,s

f,t - 1 ≤ cξ,s
l ( τ )

∀l ∈ Lτ,∀τ ∈ ϒ,∀s ∈ Sξ,∀ξ ∈ Ξ （5）
xj,ξ,s

f,t ∈ { 0,1 }    ∀f ∈ F,∀j ∈ Jf,∀t ∈ T j
f,∀s ∈ Sξ（6）

Constraint （3） guarantees the timeline continu‑
ity of the decision variables （recall the “by” time 
concept）， similar to the previous work［18］. As the U-

DCB model only considers ground delay， constraint 
（4） ensures that the airborne （segment） flight time 
remains unchanged from the initial time scheduled.

Constraint （5） enforces the capacity constraint. 
Notably， constraint （5） differs to our previous work 
in which multiple scenarios are integrated into the 
deterministic capacity constraint model. To better 
eliminate the impact of inconsistency between the 
capacity entity （operating sector） and the control 
point （elementary sector）， a commonly used rule is 
adopted， that is， only the first entry （control point） 
into an operating sector is counted for each flight （or 
trajectory）.

Finally， all decision variables should be subject 
to the binary constraint （6）.

3. 2 Model UC‑DCB　

Model UC-DCB is based on the U-DCB model 
and evolved from the C-DCB model introduced pre‑
viously［18，28，46-48］. It incorporates more contribution 
from AUs’ side （alternation trajectory options）. 
AUs can submit a number of alternative trajectories 
for the affected flights in the initially planned trajec‑
tories. UC-DCB model is an enhanced model which 
can copy with more complex scenarios. As stated 
before， our research mainly contributes to extending 
our model to multiple scenarios under capacity un‑
certainty. The centralized optimization model seeks 
an optimal distribution of trajectory selections and 
delay assignments across all the flights.

Besides the decision variable xk，j，ξ
f，t ， an extra de‑

cision variable k is further determined to represent 
trajectory options

zk,ξ
f,s =

ì

í

î

ïïïï

ïïïï

1
If the kth trajectory of flight f ' is choosen
within stage s under scenarios ( ξ )

0 Otherwise
In this sense， all the control points and associ‑

ated CTAs are bonded with the kth trajectory， in‑
stead of the flight. Simultaneously， the decision 
variable xk，j

f，t  is introduced to assign the delay to spe‑
cific fights as

Table 2　Initiatives of the two model variants considered 
in this study

Model
U‑DCB

UC‑DCB

Delay
√
√

Alternative trajectory option
—

√
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xk,j,ξ
f,t,s =

ì

í

î

ïïïï

ïïïï

1
If the kth trajectory of flight f ' enters elementary 
sector j by time t within stage s under scenarios ( ξ )

0 Otherwise

The above two sets of decision variables are 
linked together， and the delay （if any） will be im‑
posed on each particular flight instead of the select‑
ed trajectories.

min
    
∑
ξ ∈ Ξ

P ( ξ )×

Scenario

é

ë

ê
ê
êê
ê
ê
                           
∑
s ∈ Sξ

∑
f ∈ F

∑
k ∈ Kf

∑
j = Jf

∑
t ∈ T k,j

f

α ( t - r k,j
f ) ( xk,j,s

f,t - xk,j,s
f,t - 1 )

Delay

+ ù

û

ú
úú
ú
ú
ú

             
∑
s ∈ Sξ

∑
f ∈ F

∑
k ∈ Kf

( γd k
f + ek

f ) zk,s
f

Alternative  trajectory

（7）

In this paper， the fuel consumption d k
f  and 

route charges ek
f  are considered as the trajectory re‑

lated costs. The objective function Eq.（7） is to mini‑
mize the total delay costs and the extra costs in‑
curred from diverting the flights to their alternative 
trajectories under different capacity scenarios.

s.t.  ∑
k ∈ Kf

zk,ξ
f,s  = 1      ∀f ∈ F,∀ξ ∈ Ξ,∀s ∈ Sξ （8）

xk,j,ξ,s
f,T k,j

f
- 1 = 0,xk,j,ξ,s

f,T k,j
f

= zk,ξ
f,s

∀f ∈ F,∀k ∈ Kf,∀j ∈ J k
f , ∀ξ ∈ Ξ,∀s ∈ Sξ （9）

xk,j,ξ
f,t,s - xk,j,ξ

f,t - 1,s ≥ 0
∀f ∈ F,∀k ∈ Kf,∀j ∈ J k

f ,∀t ∈ T k,j
f ,∀ξ ∈ Ξ,∀s ∈ Sξ

（10）
xk,j ',ξ

f,t + t̂ k,jj '
f ,s - xk,j,ξ

f,t,s = 0
∀f ∈ F,∀k ∈ Kf,∀j ∈ J k

f ,∀t ∈ T k,j
f ,∀ξ ∈ Ξ,

∀s ∈ Sξ,j '= Jf ( i + 1 ):∀i ∈ )[1,nf （11）

∑
ξ ∈ Ξ

P ( ξ )×

∑
s ∈ Sξ

∑
f ∈ F

∑
k ∈ Kf

∑
j = J k,τ

f,l

∑
t ∈ T k,j

f ∩ ϒ ( τ )

xk,j,ξ
f,t,s - xk,j,ξ

f,t - 1,s ≤ cξ,s
l ( τ )

∀l ∈ Lτ,∀τ ∈ ϒ,∀ξ ∈ Ξ,∀s ∈ Sξ （12）
xk,j,ξ

f,t,s ∈ { }0,1
∀f ∈ F,∀k ∈ Kf,∀j ∈ Jf,∀t ∈ T j

f,∀ξ ∈ Ξ,∀s ∈ Sξ

（13）
zk,ξ

f,s ∈ { }0,1        ∀f ∈ F,∀k ∈ Kf,∀ξ ∈ Ξ,∀s ∈ Sξ

（14）
To ensure that only one trajectory is chosen for 

each flight from the set of its submitted trajectory 
options （Kf）， we present constraint （8） and revise 
the previous constraint （2） that extends the upper 
bound to the decision variable zk，ξ

f . This suggests 
that we revise the feasible time window， and we 
present it in constraint （9）. Constraint （10） remains 
the same as constraint （3） to represent the concept 
of time continuity. Similarly， constraint （11） is 
close to constraint （4） to keep the airborne flight 
time unchanged in the model. Constraint （12） realiz‑

es the demand all along exceeds the capacity under 
multiple capacity scenarios， with alternative trajec‑
tory options in consideration. Constraints （13） and 
（14） are binary constraints， which ensure the deci‑
sion variable is binary.

4 Case Study 

Numerical computations have been performed 
with respect to the two models. Eurocontrol’s De‑
mand Data Repository version 2 （DDR2） is used to 
demonstrate our study. Results have been compared 
between the two model variants through a three-

stage optimization process （one day ago， at 12 pm 
and 6 pm） to illustrate how traffic flow optimization 
and airspace configuration scheduling are harmo‑
nized under capacity uncertainty.

4. 1 Experimental setup　

Consistent with our previous work， the experi‑
mental scenario is focused on the French airspace 
with 24 hours’ traffic， which includes 6 255 planned 
flights， 15 ACCs， 1 511 configurations， 164 ele‑
mentary sectors and 431 operating sectors. The air‑
space environment dataset is retrieved from the Eu‑
rocontrol DDR2 database in a typical day in Febru‑
ary， 2017. An in-house trajectory planning tool is 
employed to generate trajectory data after calculat‑
ing information related to the initial flight demand， 
meteorology， and hotspot avoidance. The unit time 
is set up to 1 min during computation. The maxi‑
mum of grounding holding is set up to 60 min.

In the U-DCB model， the sector opening 
scheme has been already planned （according to the 
DDR2）， and the number of concerned operating 
sectors is only 224 in total. For the UC-DCB mod‑
el， the same airspace setting is utilized as in the 
DCB model， along with the modified strategy. With 
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86 time-varying hotspot areas identified， there are 
1 305 lateral and 1 379 vertical alternative trajecto‑
ries generated.

Other assumptions and parameters setting in 
the experiments are as follows： （1） The unit cost of 
delay α covers all time relevant delay costs and is 
constant （i. e.， 5 €/min）， which is also the same 
for different flights； （2） the unit cost of fuel con‑
sumption γ is 0.5 €/kg； （3） the route charges are 
calculated based on the previous data； （4） AUs are 

willing to share the detailed costs of their alternative 
trajectories； （5） the unit cost for the ANSP to open 
an operating sector δ for 60 min is 100 € ； （6） the 
capacity overload is set to 10% on the extreme situa‑
tion.

The time window is an important parameter to 
control the maximal delay that can be assigned to 
each flight in the U-DCB model and the UC-DCB 
model. It affects notably the problem dimensions， 
as presented in Tables 3， 4.

In our experiment， GAMS v27.3 software is 
used as the modelling tool and cplex optimizer as 
the solver. The experiment is performed on a plat‑
form of the 11th Gen Intel（R） Core （TM） i5-

1130G7 @ 1.10 GHz 1.80 GHz CPU computer 
with 16 GB of RAM and the Windows system. The 
schematic diagram of simulation is described in 
Fig.6.

The experiment involves seven scenarios， with 
each scenario corresponding to various capacity val‑
ues. A process diagram is displayed in Fig.7 to illus‑

Table 3　Problem dimensions and computational times for U‑DCB

Parameter
Variables
Equations
Non‑zeros

Presolved variables
Presolved equations
MIP solution time/s

Final LP solution time/s
Presolve time/s

Time window/min

Stage 1
12 392 347
22 459 267
47 518 810

103 105
159 193
198.20
19.28
11.03

360

Stage 2
16 226 289
29 417 378
62 197 655

134 897
208 674
277.98
33.95
19.42

Stage 3‑1
6 993 841

12 669 179
26 747 825

61 150
95 215
117.48
10.70
6.25

Stage 3‑2
7 380 457

13 391 971
28 253 683

61 369
95 328
105.33
11.58
7.63

Table 4　Problem dimensions and computational times for UC‑DCB

Parameter
Variables
Equations
Non‑zeros

Presolved variables
Presolved equations
MIP solution time/s

Final LP solution time/s
Presolve time/s

Time window/min

Stage 1
6 423 766

11 689 487
24 715 157

197 174
5 469 395

60.91
8.03
4.44

120

Stage 2
12 847 531
23 378 972
49 429 943

234 163
358 171
154.30
30.09
16.78

Stage 3‑1
12 847 531
23 378 967
49 428 909

234 163
358 149
244.59
32.38
17.27

Stage 3‑2
12 847 531
23 378 973
49 430 313

234 163
358 140
423.14
27.78
16.75

Fig.6　Large-scale experiment for a typical day on the 
French airspace (schematic diagram from Variflight)
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trate the design for capacity change. The values in 
small French airspace map represent the capacity 
value in each scenario.

The models’ presolve time and solution time 
and other setting for U-DCB and UC-DCB are orga‑

nized in Tables 3， 4. It can be observed that most of 
the computing effort has been spent to find an opti‑
mal solution. Tables 5， 6 exhibit the complete pro‑
cess of different optimization stages.

For U-DCB， the solution time reaches 22 s 
and 46 s compared to the initial stage of 53 s and the 
second stage of 111 s. With continuous optimization 
process， variables， equations and non-zeros reduce 
while the time window remains as 360 min. Genera‑
tion time significantly reduces from 2 min to 0.03 s 
with the less variable at the follow-up stage. For the 
UC-DCB simulation， tendency nearly remains the 
same as U-DCB with less variable and equations at 
the follow-up stage， and the solution time and the 
generation time tend to be less compared to the up‑
per stage.

4. 2 Comparison of model results　

The results of main indicators are presented in 
Tables 5， 6. For the U-DCB model， ground hold‑
ing is only a strategy to balance between capacity 
and demand， which in a sense， requires a huge num ‑
ber of delays. This is mainly because we enforce 

constraints in all operating sectors， which is not in 
line with the real case. For the change of scenario 1 
to scenario 2 and scenario 3， the capacity goes up to 
108.7% and down to 90.6%， respectively， and to‑
tal delayed flights and total delays respond to such 
change， with total delays from 185 263 min to 

Fig.7　Flow diagram of change of capacity scenarios

Table 5　Overall result comparisons for the U‑DCB model of seven scenarios

Parameter
Total delays/min

Delayed flights
Initial trajectory

Capacity provision
Opened sectors

Pre‑demand(upper stage)
Post‑demand

Capacity load/%

Scenario 1
185 263

1 353
6 255

45 708
1 098
—

34 233
74.90

Scenario 2
59 103

651

49 687
1 098

34 233
22 412
45.10

Scenario 3
111 435

1 029

41 402
1 098

34 233
22 412
54.13

Scenario 4
5 775
230

45 433
1 098

22 412
9 660
21.26

Scenario 5
14 607

344

39 185
1 098

22 412
9 660
24.65

Scenario 6
28 344

473

37 173
1 098

22 412
10 194
27.42

Scenario 7
14 612

323

44 547
1 098

22 412
10 194
22.88

Table 6　Overall result comparisons for the UC‑DCB model of seven scenarios

Parameter
Total delays/min

Delayed flights
Initial trajectory

Capacity provision
Opened sectors
Post‑demand‑o1
Post‑demand‑o2
Post‑demand‑o3
Capacity load/%

Scenario 1
3 287
410

6 255
45 708
1 098

30 047
1 696
2 195
65.74

Scenario 2
2 157
288

49 687
1 098

34 112
1 107
1 715
68.65

Scenario 3
10 836

820

41 402
1 098

29 581
2 156
2 089
71.45

Scenario 4
5 350
536

45 433
1 098

30 660
1 451
1 885
67.48

Scenario 5
22 301
1 300

49 687
1 098

29 148
2 574
2 008
58.66

Scenario 6
68 518
2 137

37 173
1 098

28 652
2 966
2 079
77.08

Scenario 7
14 080

800

44 547
1 098

29 932
2 015
1 979
67.19
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59 103 min from scenario 1 to scenario 2. Same as 
our intuition， the capacity increase releases much 
more resources which play a vital role in delay as‑
signments strategy. For stage 1， because it executes 
DCB from the beginning of the selected day， more 
flights are planned to receive the assigned slots. For 
stage 2， the focus is placed on scenario 2 and scenar‑
io 3， with some flights already taking off， especially 
the morning flights. Compared with stage 3， total 
delays and delayed flights are further reduced to 
5 775 min and 230 flights on scenario 4， 14 607 min 
and 344 flights on scenario 5， 28 344 min and 
473 flights on scenario 6 as well as 14 612 min and 
323 flights on scenario 6. The reason is similar to 
the first comparison， however departure of flights 
tends to be more in this stage. The results echo our 
intuition that the potentially optimization space be‑
comes less since much more flights have departed 
with multi-stage optimization process moving for‑
ward. For different capacity scenarios， more delays 
must be enforced if capacity is reduced. The results 
have proven that our model is beneficial. In our 
study， the baseline DCB model is evolved to U-

DCB model to achieve a “precise” optimization pro‑
cess through various stages.

Notably， the opened sectors remain the same 
as the sector reduction strategy is not considered in 
our model. The capacity load reduces from stage 1 
to stage 3.

The UC-DCB experiment is different from the 
U-DCB. Although the capacity provision is nearly 
the same as that of U-DCB （except for scenario 5）， 
the results of post-demand are diverse compared to 
U-DCB model. More flights choose o2（the alterna‑
tive route 2） or o3 （the alternative route 3）route 
from stage 1 to stage 3，while less flights choose o1 
route（the original route）. Meanwhile， total delays 
and total delayed flights increase， which is inconsis‑
tent with the U-DCB process. The most possible 
reason is that， in the UC-DCB experiment， our 
model considers not only the assigning delay strate‑
gy， but also trajectory options with the objective of 
minimizing the systems delays and consumption 

costs. In this way ， flights should determine the low‑
est cost way to choose a trajectory. Therefore， the 
UC-DCB leads to more delays on the ground on the 
follow-up stage because there are already more 
flights in the route， making subsequent flights more 
difficult to choose a proper route. The second rea‑
son may be the capacity. For scenario 6 and scenario 
7， capacity is reduced， which may lead to scarcity 
of resources.

4. 3 Demand and capacity situations　

With the above analysis， we further present 
specific analysis of demand and capacity situations 
in Figs.8—10.

In Fig. 8， imbalance of demand and capacity is 
remarkably improved when executing the DCB mod‑
el or C-DCB model. Before optimization of our mod‑
el， the initial situation is that demand on some sec‑
tors exceeds its capacity. After the DCB implemen‑
tation， a more balance on the demand and capacity 
can be achieved. The part where demand exceeds 
the capacity is optimized through the ground delay 
program. Simultaneously， demand and capacity 
reach balancing after C-DCB optimization， which is 

Fig.8　Demand and capacity situations (for each operating 
sector across the day) with respect to the initial case 
(i.e., pre-regulation) and the second models after exe‑
cution (i.e., post-regulation)
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mentioned in our previous work. In Fig.9， by updat‑
ing DCB to U-DCB， the better demand and capaci‑
ty balancing at all stages can be realized. Demand re‑
duces with departure of more flights already and de‑
mand and capacity balancing is successfully accom ‑
plished on each scenario though different scenarios 
match diverse capacities. Moreover， demand and ca‑
pacity balancing is also accomplished when conduct‑
ing another trajectory options strategy with dynamic 
optimization method of probabilistic scenario trees. 
The large-scale experiment shows the proposed 

method can be applied to national-scale air traffic 
flow management.

Finally， we present the improvement of capaci‑
ty load for U-DCB model with seven scenarios from 
stage 1 to stage 3 in Fig.11， which explains capacity 
load distribution for 1 098 sectors. Notably， not on‑
ly the average capacity load decreases， but also 
most of the sectors （75%） in stage 3 have their ca‑
pacity loads less than 30%. This number for stage 2 
is greater than 30%. On the other side， most of sec‑
tors in the U-DCB model at stage 3 appear a capaci‑

Fig.10　Demand and capacity situations (for each operating 
sector across the day) with respect to the UC-DCB 
and the seven scenarios results after execution

Fig.9　Demand and capacity situations (for each operating 
sector across the day) with respect to the U-DCB and 
the seven scenarios results after execution

669



Vol. 41 Transactions of Nanjing University of Aeronautics and Astronautics

ty load less than 10% （with a limited 0% cases）， 
which is fairly low， and sometimes is an unexpected 
from the aspect of safety.

4. 4 Comparative experiment　

For further improvement， a comparative exper‑
iment is conducted in this section. In a prior study， 
scenario tree was used to define the uncertainty in 
sector capacity. For comparison， a probability distri‑
bution function is used to address the uncertainty in 
capacity. With the simulation of a probability distri‑
bution， a chance-constrained method of optimiza‑
tion is used to set the equation in a certainty proba‑
bility. To be more specific， the probability of air‑
space capacity is simulated， the mean value is set to 
zero， and the standard deviation is set to 0.033. The 
overview of probability distribution of capacity is 
shown in Fig.12. In this case， the capacity con‑
straint is established and a certain probability should 
be satisfied for the capacity constraint. The compara‑
tive results are shown in Table 7.

In this comparative experiment， it is unexpect‑
ed to find out that if probability distribution function 
is used to solve UC-DCB model， the total delays 
and delayed flights will increase. To balance de‑
mand with capacity， it is necessary to delay more 
flights on the ground. The use of scenario tree to cal‑
culate simple multiple scenarios would lead to a bet‑
ter solution even in case of a large-scale ATFM 
problem. However， scenario tree method has an ob‑
vious disadvantage in total solution time. In our 
comparative experiment， it takes 17 min to find the 
optimal solution if scenario tree is used to solve UC-

DCB. In comparison， it takes only 13 s when proba‑
bility distribution function is used. The results illus‑
trate the need to conduct future study for improve‑
ment.

5 Conclusions 

We demonstrate a dynamic multi-stage ap‑
proach of probabilistic scenario trees with a collabor‑
ative ATFM strategy， by mainly considering the un‑
certainty in capacity. The enhanced model can copy 

Fig.11　Final capacity load (i.e., demand and capacity ratio) 
in seven scenarios

Table 7　Comparative results

Parameter

Total delay/
min

Delayed 
flights
Initial 

trajectory
Capacity

Total 
solution time

Scenario tree to 
solve UC‑DCB

3 287

410

6 255

45 708

17 min

Probability distribution 
function to solve UC‑DCB

3 412

423

45 708

13 s

Fig.12　Curve of simulated capacity distribution
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with more complex scenarios， which is more appro‑
priate to real-world situations. The traffic regulation 
initiatives are incorporated into our centralized opti‑
mization model with the specific strategy （assigning 
ground holding and alternative trajectory options）. 
Comparing the results from our previous work， de‑
layed flights and total delays reduce significantly 
with baseline DCB model， realizing demand and ca‑
pacity balancing on each scenario， which shows the 
improvement to our previous work. More meaning‑
fully， our experiment is the first to tackle large-scale 
instances of stochastic ATFM problems within a 
collaborative ATFM framework.

The main contributions of this research include 
not only making the previous work more complete. 
More importantly， the DCB model and the C-DCB 
model are finally updated to stochastic programming 
model U-DCB and UC-DCB， which is consistent to 
the concept of trajectory option set （TOS） in Col‑
laborative Trajectory Options Program （CTOP）. 
The paper underlines future development of ATFM 
and ATM， and provides guidance for “precise” 
flow management in the future operation concept.

However， more improvement may be needed 
in the future. The aim of this research is to better 
balance the demand and capacity in a more harmo‑
nized way. Additionally， the scenario structure will 
definitely become more complex if more scenarios 
are considered. This problem can be addressed in a 
follow-up work. Moreover， more experiments can 
be conducted in the future to make our study more 
complete. It is expected that scenario probabilities 
may be determined more realistically， and different 
kinds of uncertainty sources along with sector capac‑
ity can be taken into account using the scenario opti‑
mization approach. Flight demand is also an uncer‑
tain element in ATFM and can be considered in fu‑
ture research.
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容量不确定性下空中交通流量管理的需求与容量平衡

陈运翔 1， 许 炎 2， 赵嶷飞 1，3
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3.中国民航大学空中交通管理学院，天津  300300，中国）

摘要：引入了一种创新方法，实现了协同空中交通流量管理框架下扇区容量不确定性的需求与容量平衡。受极

端天气、空军活动、管制员工作负荷等不可忽视的隐性因素影响，空域容量具有不确定性，进而影响流量管理优

化结果。本文重点研究了扇区容量不确定性对需求与容量平衡优化，以及对空中交通流量管理优化的影响。在

协同流量管理框架下实施多种策略，如延误指派和改航绕飞等管理交通流。进而提出了一种场景优化方法解决

扇区容量的不确定性。结果显示，所提方法可以实现更好的需求与容量的平衡，并在空中交通流量管理问题中

得到近似最优解，解决大规模的流量优化实例（24 h 下的 7 个容量场景，6 255 个航班以及 8 949 条航迹）只需要

5~15 min。本文实验计算是已知的首次在协同流量管理框架下解决大规模随机性空中交通流量管理问题的有

效实例。

关键词：空中交通流量管理；需求与容量平衡；航班延误；扇区容量不确定性；地面等待；场景决策树
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