
Vol. 41 No. 6Transactions of Nanjing University of Aeronautics and AstronauticsDec. 2024

Aggregation‑Value‑Based Active Sampling Method for 
Multi‑sensor Freeform Surface Measurement and 

Reconstruction

CHEN Gengxiang1，2， LI Yingguang1*， MEHDI‑SOUZANI Charyar2， LIU Xu3

1. College of Mechanical and Electrical Engineering， Nanjing University of Aeronautics and Astronautics， Nanjing 210016， 
P. R. China；2. Université Paris‑Saclay， Gif‑Sur‑Yvette 91190， France；3. School of Mechanical and Power Engineering， 

Nanjing Tech University， Nanjing 211816， P. R. China

（Received 25 October 2024； revised 25 November 2024； accepted 2 December 2024）

Abstract:  Freeform surface measurement is a key basic technology for product quality control and reverse engineering 
in aerospace field. Surface measurement technology based on multi-sensor fusion such as laser scanner and contact 
probe can combine the complementary characteristics of different sensors， and has been widely concerned in industry 
and academia. The number and distribution of measurement points will significantly affect the efficiency of multi-
sensor fusion and the accuracy of surface reconstruction. An aggregation‑value‑based active sampling method for multi-
sensor freeform surface measurement and reconstruction is proposed. Based on game theory iteration， probe 
measurement points are generated actively， and the importance of each measurement point on freeform surface to 
multi-sensor fusion is clearly defined as Shapley value of the measurement point. Thus， the problem of obtaining the 
optimal measurement point set is transformed into the problem of maximizing the aggregation value of the sample set. 
Simulation and real measurement results verify that the proposed method can significantly reduce the required probe 
sample size while ensuring the measurement accuracy of multi-sensor fusion.
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0 Introduction 

Geometry digitising of freeform surfaces is es‑
sential for ensuring quality control and facilitating re‑
verse engineering in critical fields such as aero‑
space， automatics， optics， etc［1-3］. The advanced de‑
velopment of information technology and sensory 
advancements has significantly enhanced the accura‑
cy and real-time capabilities of geometry digitisa‑
tion， thereby playing a crucial role in digital twins 
and Industry 4.0. With the increasing demand for 
high precision and efficiency surface measurement in 
modern manufacturing industries， the integration of 
measurement data from multiple sensors， including 
laser scanners and touch probes， becomes increas‑

ingly important ［4-5］. For example， touch probes with 
coordinate measuring machines （CMM） have high 
accuracy but are time-consuming and constrained by 
environmental factors. In contrast， laser scanners 
and other non-contact measurement technologies， 
although less precise， can generate high-resolution 
point clouds efficiently. Multi-sensor measurement 
can leverage complementary characteristics of differ‑
ent sensors， thus not only reducing the measure‑
ment costs but also improving the quality of final 
measurement results［6-7］.

For multi-sensor measurement， the integration 
of touch probe points aims to compensate for low ac‑
curacy of laser scanner points［8］. Therefore， the 
number and distribution of touch probe sampling 
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points on the surface significantly influence the effi‑
ciency of the multi-sensor measurement and the ac‑
curacy of the surface reconstruction［9］. The one-shot 
sampling can provide the pre-defined measurements 
points， namely coresets， based on the distribution， 
surface characteristics， or surface reconstruction cri‑
teria［10-11］， where active sampling can generate subse‑
quent measurement points iteratively based on the 
given query criteria， like the uncertainty， informa‑
tiveness， or surface reconstruction accuracy.

From the perspective of sampling strategies， 
the current sampling methods for surface measure‑
ment can be divided into representative sampling 
and adaptive sampling. Representative sampling in‑
volves selecting a core set that represents the distri‑
bution of overall data or the feature space， with 
common techniques including random sampling， 
uniform sampling， Hammersley random sampling， 
and Latin hypercube sampling［12］. Adaptive sam ‑
pling focuses on placing more points in areas of in‑
terest guided by task-related information. A typical 
example of adaptive sampling is curvature-based 
sampling for surface reconstruction， where higher 
density samples are assigned to the region with high‑
er curvature［13-14］. The measurement points can also 
be designed based on the mesh structure of the sur‑
face， namely mesh-based sampling［15］. Some other 
researchers also developed adaptive sampling meth‑
ods considering both the arc length and curvature［16］. 
However， the classical sampling methods men‑
tioned above typically offer offline sampling strate‑
gies for surface measurements， and the sampling 
points cannot be modified or optimized based on the 
measurement results.

Intelligent sampling， or active sampling， aims 
to select samples iteratively from the most beneficial 
spots on the surface being measured［17-18］. This ap‑
proach helps ensure that the reconstructed surface is 
as accurate as possible， achieving the desired level 
of precision with the fewest samples necessary. The 
iterative selecting criteria can be defined by reducing 
the uncertainty［19］， reducing the maximum sample 
deviation［20］， etc. In the machine learning field， 
learning a model through actively adding new sam ‑
ples can be defined as active learning problem， 
which have been well investigated and applied in 
many engineering scenarios［21-22］. However， for sur‑
face measurement problems， the performance of ex‑
isting iterative selecting criteria heavily relies on the 
stability of the surface reconstruction algorithm used 
in evaluating the uncertainty or deviation. There‑
fore， how to develop a more general and robust iter‑
ative selecting criteria to realize active sampling still 
deserves further investigation.

In this research， we propose an aggregation 
value （AV） based active sampling method to itera‑
tively determine the distribution of touch probe 
points for multi-sensor measurement. The AV sam‑
pling is a method recently developed based on com ‑
binational game theory［9，23］， which uses the aggrega‑
tion value as a general criterion for evaluating a data‑
set’s value and has been applied to various engineer‑
ing problems characterised by data scarcity. We uti‑
lize the AV sampling to guide the iterative genera‑
tion of touch probe points for multi-sensor measure‑
ment. The general procedure of the proposed meth‑
od is depicted in Fig.1. For a given freeform sur‑

Fig.1 Aggregation-value-based active sampling method for multi-sensor freeform surfaces measurement and reconstruction
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face， the Gaussian curvature is calculated to create a 
value function v ( x )， which informs the AV sam ‑
pling and determines the optimal placement of touch 
probe points. These sampled touch probe points and 
the laser scanner data are then processed through da‑
ta fusion algorithms， including residual approxima‑
tion， weighted fusion， or implicit surface fusion， to 
accurately reconstruct the surface. Finally， the re‑
constructed surface undergoes a performance assess‑
ment to verify the accuracy and effectiveness. We 
can iteratively add new touch probe points based on 
the AV sampling until the measurement and recon‑
struction results meet the requirements. Section 1 in‑
troduces the proposed method in detail， Section 2 re‑
ports the experimental verification of the proposed 
method， and some conclusion are drawn in Sec‑
tion 3.

1 Method 

1. 1 Problem definition　

Multi-sensor measurement in this research 
aims to reconstruct a CAD model of a freeform sur‑
face based on the measurement data from both a 
touch probe and a laser scanner. The high-accuracy 
touch probe data， denoted as D h， consists of n 
points， D h = { p1

h，p2
h，…，pn

h }， where each point is 
represented as p i

h =( xi
h，y i

h，zi
h )，i = 1，2，…，n. 

Meanwhile， the lower-accuracy laser scanner data 
D l， consists of m points， namely D l =
{ p1

l，p2
l，…，pm

l }， where each point is given as p i
l = 

( xi
l，y i

l，zi
l )，i = 1，2，…，m.

The challenge of the active sampling problem 
in this context can be defined as how to determine 
the next touch probe point， pn + 1

h . The multi-sensor 
data fusion refers to establishing a mathematical rep‑
resentation of the target freeform surface using both 
D h and D l. The following sections will introduce the 
aggregation‑value‑based active sampling strategy 
and the subsequent multi-sensor data fusion method 
for surface reconstruction.

1. 2 Aggregation‑value‑based active sampling　

From the perspective of combinational game 
theory， reconstructing a surface with multiple points 

can be treated as a cooperative game involving mul‑
tiple players， where each point can be defined as a 
player［9］. The objective of this game is to reduce the 
surface reconstruction error. As a result， sampling a 
touch probe point means finding the most valuable 

“player” in this game. When an initial touch probe 
point dataset is obtained， active sampling refers to 
finding the potential next point that can bring added 
benefits to the existing dataset. This section will in‑
troduce aggregation‑value‑based active sampling， 
explaining how to define the value of a dataset and 
how to calculate the added value of a given point.

The function that quantitatively measures the 
value of a sample x in a given learning task can be 
defined as the value function v ( x ). For general ma‑
chine learning tasks， the value function v ( x ) can be 
evaluated using Shapley theory. According to the 
analysis in Ref.［9］， the value function can also be 
defined based on domain knowledge， as long as it 
can offer information that is positively correlated 
with the task［24］. The curvature is the widely used 
prior knowledge for traditional measurement sam ‑
pling methods. Besides， the previous research in 
surface reconstruction also revealed that the points 
with higher curvature are more valuable for different 
reconstruction algorithms［15，25］. Therefore， the value 
function in this research can be directly defined as 
the Gaussian curvature of the surface， which can be 
solved from either the CAD model or the laser scan‑
ner data.

Although value function v ( x ) （Gaussian curva‑
ture function） can represent the value of each point 
for the surface reconstruction， sampling multiple 
high-value points cannot correspondingly bring mul‑
tiple values because similar or close high-value 
points contain redundant information for surface re‑
construction. In response to this problem， the con‑
cept aggregation value is proposed to represent the 
actual value of a datasets by considering the neigh‑
bouring influence.

The value aggregation function （VAF） of a 
sample x * is defined as adding a kernel function to 
the value function as

v '( x,x * ) = v ( x ) k ( x,x * ) （1）
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where k ( x，x * ) is the kernel function for aggregating 
the neighbouring values. The radial basis function 
（RBF） is adopted in this research because of its sim ‑
plicity. The RBF is defined as

k ( x,x * ) = exp ( - ( )x - x *
2

σ ) （2）

where σ is the kernel width and can determine the 
neighbouring influence range. Note that， other ker‑
nel functions， like Laplace kernel function， or in‑
verse multiquadric kernel， can also be applied to the 
definition of VAF. Ref.［9］ has investigated the val‑
ue aggreation performance of different value func‑
tions.

Figs.2（a—c） show how the different band‑
width parameters of the RBF kernel function influ‑
ence the value aggregation ranges of VAF. As 
shown in Fig.2（a）， it is clear that the VAF 
v '( x，x * ) will converge to v ( x * ) when the band‑
width σ approaches zero. By comparison， when the 

bandwidth σ becomes too large， the VAFs for all 
samples converge to the value function v ( x ) itself 
（as shown in Fig.2（c））， i. e.， the values at each 
point are no longer distinguishable.

The value function and VAF are illustrated in 
Fig.3， where the orange curve represents the value 
function v ( x ). The VAFs are designed to represent 
the values of neighbouring points rather than the 
point itself. Since the VAF of each sample is de‑
fined on the entire feature space， the VAFs of differ‑
ent samples may overlap， which can represent the 
redundant information explicitly. The two samples 
in Fig.3（a） are far from each other， so there is only 
a little overlap of VAFs. In contrast， the two sam ‑
ples close to each other in Fig.3（b） have greater 
overlaps of their VAFs， namely more redundant in‑
formation.

Therefore， the actual value of a dataset can be 
simply defined as the area of the “union” VAFs， 
like the union in Boolean geometry operations. For 
a dataset S = { x 1，x2，…，xn }， the “union” of VAFs 
can be defined as
v '( x,S ) =

v ( x ) max { k ( x,x1 ),k ( x,x2 ),…,k ( x,xn ) } （3）
Then the actual value， defined as aggregation 

value， can be defined as the integral of VAFs 
shown as

Fig.3　Value aggregation function examples

Fig.2 Influence of kernel function in value aggregation
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v agg ( S ) =∫ p ( )x v '( )x,S dx （4）

The estimation of aggregation values under fi‑
nite number of samples is

v̂ agg( S ) = 1
n ∑

x ∈ S

 v '( x,S ) （5）

By this definition， the optimal iterative sam ‑
pling problem can be defined as finding the new sam ‑
ple  xn + 1 that can maximize the increment of aggre‑
gation value of the entire sample set. The optimiza‑
tion target can be represented as

xn + 1 = arg max
x

{ v̂ agg( S ∪ xn + 1 ) - v̂ agg( S ) } （6）

The above problem is a classical sub-modulari‑
ty optimization problem. The greedy algorithm can 
provide an approximation to optimal results［22］. 
Therefore， the AV sampling can provide new touch 
probe points iteratively until the multi-sensor data 
fusion results satisfy the measurement and recon‑
struction requirements.

1. 3 Multi‑sensor data fusion　

For each iteration， after obtaining laser scanner 
points D l and touch probe points D h， data fusion 
techniques can leverage these two groups of points 
to reconstruct the surface more accurately. The ex‑
isting classical multi-sensor fusion techniques in‑
clude residual approximation （RA）， weighted fu‑
sion， and implicit fusion［25］. The RA aims to estab‑
lish a residual function between the two datasets to 
compensate for the low accuracy points. Weighted 
fusion adjusts the surface by assigning different 
weights to different datasets based on the uncertain‑
ty levels of sensors. The recently proposed implicit 
fusion method redefines the multi-sensor fusion 
problem as a transfer learning problem， using low 
accuracy points to train an implicit neural network， 
which is then fine-tuned with high accuracy 
points［26］. In this research， the RA is adopted to fuse 
the two datasets because of its simplicity and gener‑
alisability.

The first step for RA is establishing the predic‑
tion model of the low-accuracy dataset with a learn‑
ing model， such as neural networks （NN） or Gauss‑
ian process （GP） regressors［27］. For example， given 
a data set D  = { X，y }， the GP model will provide 

predictions for a new sample x *  with both mean val‑
ue and the corresponding covariance， and the pre‑
dicted results can be represented as

f ( )x * |X,y  ~N ( )μ *,Σ *

μ * = K T
* K-1 y, Σ * = K ** - K T

* K-1K * （7）
where μ * and Σ * are the predicted mean value and 
covariance， respectively； K * = κ ( X，x * )， K ** =
κ ( x *，x * ) and K= κ ( X，X ) are covariance matri‑
ces， κ is a predefined kernel function. In the subse‑
quent text， we will denote the predicted mean of the 
GP model trained using dataset D as GP（D） for 
simplicity.

For laser scanner points D l， the corresponding 
surface can be represented as a z-direction GP pre‑
diction function on the ( x，y ) coordinates as

f l( x, y ) = GP (D l ) （8）
Since touch probe points are more accurate 

than laser scanner points， there will be systematic 
errors between touch probe points and the laser 
scanner prediction model f l( x，y ). The residual of 
each touch probe point p i

h can be represented as
ri = zi

h - f l( xi
h,y i

h ) （9）
Then， the systematic error function between 

the two datasets can be represented by training a re‑
sidual GP model on the n residual values as

r ( x,y ) = GP ( [ r1,r2,⋯,ri ] ) （10）
Thus， the final reconstructed surface can be ob‑

tained by combining the prediction surface from the 
low-accuracy dataset with the residual model as

f ( x,y ) = f l( x,y ) + r ( x,y ) （11）
The RA fusion method can leverage high-accu‑

racy touch probe points and high-resolution laser 
scanner points to obtain a more accurate reconstruct‑
ed surface. In addition， the data-fusion process can 
be iteratively repeated after active sampling new 
touch probe points until the results satisfy the mea‑
surement and reconstruction requirements.

2 Experiments 

This section will validate the proposed 
aggregation‑value‑based active sampling method for 
multi-sensor freeform surface measurement through 
a toy case study and actual measurements.
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2. 1 Toy case study　

The MATLAB Peaks surface is chosen as the 
toy case study to assess the effectiveness of both ac‑
tive sampling and data fusion procedures. The for‑
mula of MATLAB Peaks surface is

z = 6 ( )1 - x
16

2

⋅ exp ( )-( )x
16

2

- ( )y
16 + 1

2

-

20 ( )x
5 × 16 - ( )x

16

3

- ( )y
16

5

⋅

exp ( )-( )x
16

2

- ( )y
16

2

-

2
3 exp ( )-( )x

16 + 1
2

- ( )y
16

2

    x,y ∈[-40,40 ]

（12）
As shown in Fig.4， the Gaussian curvature 

function， evaluated through the python library 
Pyntcloud， is used as the value function for AV 
sampling. The potential sampling space consists of 
900 points uniformly sampled from the Peaks sur‑
face. To evaluate the performance of point sam ‑
pling， we first compare the surface reconstruction 
results from points sampled by the AV method to 
those obtained through random sampling. The re‑
maining points in the sample space are selected as 
test points to calculate the mean absolute error 
（MAE） of the reconstructed surfaces.

Fig.5 shows the comparison of reconstructed 
MAE with different sample sizes from 20 to 180. 
AV sampling achieves a significantly smaller MAE 
compared to random sampling， particularly with a 
smaller number of samples. This result indicates 

that points from AV sampling provide more valu‑
able information for surface reconstruction， which 
could also enhance further multi-sensor data fusion.

To evaluate the multi-sensor fusion perfor‑
mance of the proposed method， both touch probe 
points and laser scanner points are simulated based 
on the MATLAB Peaks surface. A Gaussian noise 
with standard deviation of 0.005 mm is added to the 
sampled points and the test points to simulate touch 
probe measurement results. 1 600 points are uni‑
formly sampled from the Peaks surface to simulate 
the laser scanner points. A larger Gaussian noise of 
0.02 mm is added to the laser scanner points as the 
random error. In addition， the following residual 
function is added to the laser scanner points to simu‑
late the systematic error.

h ( x,y ) = sin ( x
8 + 2)+ sin ( y

8 + 2) （13）

Figs. 6（a，c，e，g） display the sampled touch 
probe points with sizes of 10， 20， 30，and 50. The 
newly added points are located in positions that can 
bring the most incremental information based on the 
existing point clouds. Subsequently， the RA multi-
sensor fusion method reconstructs the surface using 
both the laser scanner data and the sampled touch 
probe data. The performance of the surface is char‑
acterized by the error across 900 test points. The 
corresponding MAE and the maximum absolute er‑
ror （marked as MAX） are reported in Figs.6（b，d， 
f，h）， respectively.

When using only 10 touch probe points， the 
multi-sensor reconstructed surface exhibits signifi‑
cant errors across the entire surface， with MAE of 
0.608 mm and MAX of 2.197 mm. This indicates 

Fig.4　The absolute Gaussian curvature function of 
MATLAB Peaks surface

Fig.5　Comparison of reconstructed MAE with different 
number of samples
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that the touch probe points are insufficient to accu‑
rately represent the systematic errors in the laser 
scanner data. However， as the number of touch 
probe points increases to 20， the error in central re‑
gion of the surface decreases rapidly. The error con‑
tinues to decrease with the addition of more sam ‑
ples. Finally， using 50 touch probe samples achieves 
MAE of 0.026 mm and MAX of 0.201 mm.

Fig.7 shows that the MAE and MAX of the 
multi-sensor reconstructed surface decrease as the 
number of touch probe points iteratively increases. 
The MAE can drop to less than 0.05 mm with more 
than 30 points. These results demonstrate that the 
proposed active sampling-based multi-sensor recon‑
struction method can achieve more accurate results 
with a limited number of points.

2. 2 Measurement case study　

This section verifies the proposed method in 
the actual measurement experiment of two freeform 
surfaces. Two surfaces and the measured point 
clouds are shown in Fig.8. The low-accuracy laser 
scanner data contains more than 100 000 points， 
and the high-accuracy touch probe points contain 

Fig.6 Sampled touch probe points with different sizes and the corresponding error maps of surface from RA multi‑sensor 
reconstruction

Fig.7　Change of MAE and MAX of multi-sensor recon‑
structed surface with the number of touch probe 
points

Fig.8　Experimental settings and measured points of two 
surfaces
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290 points. The details of the measurement experi‑
ment can be found in Ref.［27］. The multi-sensor 
measurement experiment is carried out from 10 
touch probe points， actively sampling until 40 touch 
probe points.

This case emphasizes the maximum reconstruc‑
tion error of the surface， as this criterion is of signifi‑
cant concern in real engineering applications. Fig.9 
presents comparison error maps of reconstructions 
using only low-accuracy data （Fig.9（a））， only high-

accuracy data （Fig. 9（b））， and the active sampling 
multi-sensor reconstruction （Fig.9（d））. The error 

maps are derived from 260 touch probe test points. 
The distribution of the 40 sampled touch probe 
points is shown in Fig.9（c）.

Fig.9（a） shows an overall error at the top of 
the surface， indicating either the systematic error of 
the laser scanner or the general learning error of the 
GP model. The maximum reconstruction error can 
be reduced from 0.438 mm to just 0.114 mm， dem‑
onstrating that the proposed active sampling-based 
multi-sensor fusion can achieve more accurate sur‑
face measurements and reconstructions than using 
only laser scanner data or touch probe data.

3 Conclusions 

The measurement of freeform surfaces plays a 
crucial role in quality control， reverse engineering， 
and various industrial applications. The integration 
of data from laser scanners and touch probes in 
multi-sensor measurement has garnered consider‑
able interest because of the complementary features 
of these sensors. Considering that the distribution of 
sampling points affects the accuracy and efficiency 
of multi-sensor fusion， this study introduces an 
aggregation‑value‑based active sampling method for 
multi-sensor measurement， which actively gener‑
ates touch probe sampling points on the surface 
based on combinational game theory. The main con‑
tributions of this research include：

（1） Introducing the concept of aggregation val‑
ue to describe the added value of each point in sur‑
face reconstruction， guiding the active sampling of 
touch probe points.

（2） Combining the classical residual approxi‑
mation method with the active sampling method to 
iteratively sample new points during multi-sensor 

measurement.
（3） Demonstrating through a toy case study 

and actual experiments that the proposed active sam ‑
pling-based multi-sensor fusion can achieve more ac‑
curate surface measurements and reconstructions.

While this research focuses solely on the combi‑
nation of active learning with residual approxima‑
tion， future studies could explore active sampling 
techniques with weighted fusion， implicit fusion， 
and other multi-sensor fusion methods.
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面向多传感器自由曲面测量与重构的聚合价值主动采样方法

陈耿祥 1，2， 李迎光 1， MEHDI‑SOUZANI Charyar2， 刘 旭 3

（1.南京航空航天大学机电学院, 南京  210016, 中国； 2.巴黎萨克雷大学, 伊维特河畔吉夫  91190, 法国； 
3.南京工业大学机械与动力工程学院, 南京  211816, 中国）

摘要：自由曲面测量是航空航天领域产品质量控制与逆向工程等的关键基础技术。基于激光扫描仪、接触式探

针等多传感器融合的曲面测量技术能够结合不同传感器的互补特性，目前在工业界与学术界广受关注，测量点

的数量与分布会显著影响多传感器融合的效率和曲面重建的精度。提出了一种面向多传感器融合自由曲面测

量与重构的聚合价值采样方法，基于博弈论迭代式主动生成探针测量点，将自由曲面上每个测量点对多传感器

融合的重要性显示地定义为测量点的 Shapley 值，从而将最优测量点集合获取问题转换为样本集合的聚合价值

最大化问题。仿真和真实测量结果验证了本方法能够在保证多传感器融合测量精度的情况下显著降低所需的

探针样本量。

关键词：多传感器融合；多传感器测量；数据采样；主动学习；Shapley 值；智能采样
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