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Abstract: This study presents an innovative approach to improving the performance of YOLO-v8 model for small 
object detection in radar images. Initially， a local histogram equalization technique was applied to the original images， 
resulting in a notable enhancement in both contrast and detail representation. Subsequently， the YOLO-v8 backbone 
network was augmented by incorporating convolutional kernels based on a multidimensional attention mechanism and 
a parallel processing strategy， which facilitated more effective feature information fusion. At the model’s head， an 
upsampling layer was added， along with the fusion of outputs from the shallow network， and a detection head 
specifically tailored for small object detection， thereby further improving accuracy. Additionally， the loss function was 
modified to incorporate focal-intersection over union （IoU） in conjunction with scaled-IoU， which enhanced the 
model’s performance. A weighting strategy was also introduced， effectively improving detection accuracy for small 
targets. Experimental results demonstrate that the customized model outperforms traditional approaches across various 
evaluation metrics， including recall， precision， F1-score， and the receiver operating characteristic （ROC） curve， 
validating its efficacy and innovation in small object detection within radar imagery. The results indicate a substantial 
improvement in accuracy compared to conventional methods such as image segmentation and standard convolutional 
neural networks.
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0 Introduction 

In recent years， the rapid development of vari‑
ous types of lightweight commercial unmanned aeri‑
al vehicles （UAVs） has posed unprecedented 
threats to airspace security worldwide. Small air tar‑
gets， characterized by erratic flight patterns and lack 
of control， have increasingly become significant 
challenges for air defense target identification. Radar 
image-based target detection plays a crucial role in 
addressing these challenges by enabling the detec‑

tion and tracking of such small air targets. The abili‑
ty to accurately detect and track objects in radar im ‑
agery is essential across numerous applications， in‑
cluding defense， surveillance， and security［1］. How‑
ever， detecting small-sized targets remains particu‑
larly difficult due to the presence of objects of vary‑
ing sizes and densely arranged patterns in radar im ‑
ages.

In the field of computer science， object detec‑
tion has evolved from traditional methods， such as 
image segmentation， to more sophisticated algo‑
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rithms that leverage deep learning techniques［2］. 
Among these， the YOLO model has emerged as 
one of the most popular real-time detection models. 
YOLO frames the object detection task as a regres‑
sion problem rather than a classification problem， 
enabling the model to predict both bounding boxes 
and class probabilities for objects in a single pass［3］. 
Object detection has wide-ranging applications 
across fields like biology， medicine， materials sci‑
ence， architecture， and the arts. However， this flex‑
ibility implies that no single model can address all 
detection problems， as each specific application may 
present unique challenges. Critical factors influenc‑
ing in object detection include background interfer‑
ence， object occlusion， computational resource con‑
straints， and data bias［4］.

In this study， we present an enhanced version 
of the YOLO-v8 model， tailored to improve the de‑
tection of small objects in radar images. A dataset of 
radar images， each containing up to three objects of 
varying sizes， was used for model development and 
evaluation. To begin， local histogram equalization 
was applied to the original images to enhance con‑
trast and detail［5］. Subsequently， we replaced the 
convolutional layers in the backbone network with 
convolutional kernels based on a multidimensional 

attention mechanism and a parallel processing strate‑
gy， enabling to improve the feature information fu‑
sion［6］. Furthermore， an upsampling layer was add‑
ed to the model’s head， which was fused and con‑
volved with outputs from the shallow network in the 
backbone［7］. We also introduced an additional shal‑
low network detection head. Finally， the loss func‑
tion was modified to incorporate both focal intersec‑
tion over union （FIoU） and scaled intersection over 
union （SIoU）， which were applied through a 
weighting strategy［8］.

To evaluate the performance of the customized 
YOLO-v8 model， we compared it against a basic 
image segmentation algorithm［9］ and the standard 
convolutional neural network VGG-16［10］， typically 
used for classification tasks. The experimental re‑
sults demonstrated that the customized YOLO-v8 
model achieved an overall weighted accuracy of 
86% in detecting small objects in radar images. In 
contrast， the standard convolutional neural network 
（CNN） achieved only 34% accuracy， while the im ‑
age segmentation algorithm performed poorly. Nota‑
bly， the YOLO-v8 model identified all larger ob‑
jects with near-perfect accuracy， indicating that the 
custom modifications did not compromise the mod‑
el’s standard predictive power. Fig.1 illustrates the 

Fig.1　Research process of the proposed algorithm
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process of the algorithm used to generate the results 
of this research. This includes data preprocessing， 
model customization， hyperparameter tuning and 
training， as well as iterative optimization through 
validation metrics， ultimately achieving small object 
detection and result validation.

1 Methods 

1. 1 YOLO　

YOLO-v8 is an object detection model and the 
latest version in the YOLO series［3］. Built on the 
Darknet framework， YOLO-v8 primarily employs 
CNNs to detect objects within images. Its architec‑
ture leverages Darknet-53 as the backbone network 
and integrates feature fusion methods such as fea‑
ture pyramid networks （FPNs） and path aggrega‑
tion networks （PANs）. To further enhance the 
model’s receptive field and feature representation 
capabilities， it incorporates modules like the spatial 
pyramid pooling （SPP） and the segment anything 
model （SAM）. YOLO-v8 also adopts multi-scale 
training and testing strategies， along with new loss 
functions based on intersection over union （IoU）， 
improving both accuracy and robustness.

The key attributes of the YOLO-v8 model in‑
clude efficiency， innovation， ease of use， and compre‑
hensiveness［11］. It is optimized to run on various hard‑
ware platforms， including central processing units 
（CPUs） and graphics processing units （GPUs）， 
achieving excellent performance in both speed and 
accuracy. YOLO-v8 builds on the design advantages 
of previous YOLO versions and has been enhanced 
to maintain its simplicity and ease of use in engineer‑
ing applications. In preprocessing， the model has 
been optimized for tasks such as letterbox resizing 
（with configurable scaling and padding modes， pri‑
marily to resize images to 640 pixel × 640 pixel）， 
and conversion to formats like RGB and CHW.

YOLO-v8’s architecture is divided into three 
primary components： the backbone， the neck （op‑
tional）， and the head［3］. In the backbone， two con‑
secutive 3×3 convolutions reduce the resolution by 

a factor of four， maintaining a small receptive field 
while enriching the model’s gradient flow through 
cross-layer connections. The head， the final layer of 
the model， adapts depending on the specific detec‑
tion task， enabling flexibility for various use cases.

The YOLO-v8 model has been pre-trained on 
the COCO dataset［12-13］ and is available in five differ‑
ent pre-trained model sizes： n， s， m， l， and x， ca‑
tering to diverse hardware and performance require‑
ments. The larger models， l and x， are designed to 
enhance accuracy while reducing the number of pa‑
rameters. For the present study， the YOLO-v8-m 
model was employed with a batch size of eight imag‑
es.

Figs.2—4 depict the modified YOLO-v8 archi‑
tecture used in this work. Fig.2 extracts features 
through the backbone network and the multi-scale 
fusion of the neck， and finally outputs object detec‑
tion results through the detection head. Fig.3 intro‑
duces the ODConv2d module into the backbone net‑
work to optimize feature extraction and adds multi-
scale feature fusion to the neck， the detection head 
outputs the target detection results. In Fig.4， the in‑

Fig.2　Original YOLO-v8 model architecture
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put image is subjected to feature extraction by the 
backbone network （ODConv2d， SPPF） and en‑
hanced by PAN， and the detection head is com ‑
bined with SIoU and FIoU to optimize target local‑
ization， ultimately outputting the annotation results. 
In the backbone section， we replaced a standard 
convolutional layer with an omni-dimensional con‑
volutional layer （ODConv2d）， which introduces 
multidimensional attention［6］. We then selected the 
YOLO-v8-p2 variant， specifically designed for 
small object detection. This version of the model 
differs from the default YOLO-v8 by adding an ad‑
ditional upsampling layer for feature fusion in the 
neck section， as well as an extra detection head in 
the layer. Furthermore， the loss function was tai‑
lored for each detection head to prioritize the small 
object detection.

1. 2 Synthetic aperture radar imagery　

Synthetic aperture radar （SAR） is a technique 
that provides high-resolution imaging even under 
conditions where traditional optical methods are im ‑
practical， such as in low-visibility environments［14］. 
Owing to its flexibility， SAR has become a widely 
used and reliable tool across various fields， includ‑
ing exploration and surveillance. The combination 
of polarizations and frequency bands plays a critical 
role in SAR data processing. In theory， an in‑
creased number of polarizations enhances the ability 
to distinguish between different types of land fea‑
tures［15］.

YOLO models have been proven to be effec‑
tive in SAR imagery， particularly in applications 

such as ship detection［16］. SAR imagery is especially 
valuable because it captures high-resolution images 
regardless of weather conditions or time of day， 
making it ideal for maritime surveillance and other 
remote sensing tasks.

The dataset used in this project consists of 668 
radar images， which are employed for the detection 
and classification of target objects. Fig.5 illustrates 
the original radar image. As illustrated in Fig.6， the 
target objects are categorized into three distinct 
classes： 0 （smallest）， 1 （medium size）， and 3 
（largest）. Several challenges are evident in this data‑
set. Firstly， the boundaries of the target objects are 
often difficult to discern by the human eye， which 
can lead to misjudgments. Secondly， the size dispar‑

Fig.3　A comprehensive presentation of the modifications 
made to the YOLO-v8 algorithm

Fig.4　A simplified presentation of the modifications made to the YOLO-v8 algorithm
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ity between target class 0 and class 3 is significant， 
posing challenges for image recognition， particular‑
ly in tasks like image segmentation. The dataset 
contains a total of 1 526 target objects. The images 
are in standard JPEG format， and the sample distri‑
bution across the categories is relatively balanced， 
with no significant class imbalance. To address any 
potential issues with class imbalance during train‑
ing， the focal loss was applied.

1. 3 Setup of the enhanced YOLO algorithm　

The dataset was partitioned into training， vali‑
dation， and test sets， with respective ratios of 
0.8∶0.1∶0.1. To evaluate the model’s accuracy， the 
IoU metric was employed［17］， calculated as

IoU = A ∩ B
A ∪ B

where the numerator represents the area of overlap 
between the predicted bounding box （A） and the 
ground truth （GT） bounding box （B）， while the 
denominator represents the area of their union. 
This metric provides a robust measure of the accu‑
racy of object detection models by quantifying the 
extent of overlap between predicted and actual 
bounding boxes.

During the training process， it is crucial to es‑
tablish a threshold value for IoU［18］. This threshold 
determines the criteria for a true detection. When 

the ratio of the intersection area of the predicted 
bounding box and the GT bounding box to their 
union area exceeds the threshold， it is classified as a 
true detection； otherwise， it is considered a false de‑
tection. In this project， the IoU threshold was set to 
0.8， which is sufficiently stringent to ensure high de‑
tection quality. This setting strikes a balance be‑
tween precision and recall， thereby enhancing the 
overall performance of the object detection model.

For the backbone network， as shown in the 
comparison between Fig. 2 and Fig. 3， we replaced 
the second convolutional layer with ODConv2d， in‑
troducing a multi-dimensional attention mechanism 
and parallel strategies to enhance the model’s fea‑
ture learning capabilities. ODConv2d is a dynamic 
convolution design that leverages multi-dimensional 
attention across four dimensions （channel， filter， 
spatial， and kernel） and incorporates squeeze-and-

excitation （SE） mechanisms. By employing SE at‑
tention mechanisms across these dimensions， 
ODConv2d enables dynamic behavior that improves 
the accuracy of both lightweight and large CNNs， 
while maintaining efficient inference speed.

The integration of the multi-dimensional atten‑
tion mechanism into YOLO-v8 aims at improving 
accuracy in small object detection， while preserving 
YOLO’s efficiency and speed advantages. By intro‑
ducing this mechanism， the model selectively focus‑
es on key parts of the image， ensuring efficient fea‑
ture extraction， particularly in small object detec‑
tion. The attention mechanism helps to reduce infor‑
mation loss， enabling the model to better capture 
fine-grained details， which is crucial for detecting 
small objects.

Small objects， which are often overlooked or 
affected by background interference， benefit from 
the network’s focused attention， improving detec‑
tion rates and reducing distractions from irrelevant 
background noise. This focused attention enhances 
small object detection rates by preventing the model 
from being distracted by irrelevant background 
noise. The mechanism also allows the model to 
more effectively focus on spatial locations and im ‑
portant features of small objects， addressing YO‑
LO’s limitations in detecting small targets.

Fig.5　Original data image

Fig.6　Original data image with target object
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Moreover， small objects may overlap with larg‑
er ones in an image， which presents additional chal‑
lenges for detection. Although YOLO-v8 incorpo‑
rates multi-scale feature fusion， combining this with 
the multi-dimensional attention mechanism further 
strengthens the model’s ability to distribute atten‑
tion across scales. This ensures that targets at differ‑
ent scales receive the necessary attention， prevent‑
ing small objects from being overshadowed or ig‑
nored by larger ones. While the attention mecha‑
nism introduces some computational overhead， we 
specifically replaced the second-layer convolution 
operation， avoiding the increase in parameters typi‑
cally seen in traditional convolutional networks. 
This allows for efficient integration with YOLO’s 
architecture， preventing over-complication and con‑
trolling the computational load to ensure that infer‑
ence speed remains unaffected.

For the neck and head networks， as demon‑
strated in the comparison between Fig.2 and Fig.3， 
we employed the YOLO-v8 variant YOLO-v8-p2， 
which is tailored for small object detection. Unlike 
the default YOLO-v8 model， YOLO-v8-p2 intro‑
duces an additional upsampling layer for feature fu‑
sion in the “Neck” section， along with an extra de‑
tection head within that layer， further enhancing the 
model’s ability to detect small objects.

For the loss function， we initially employed the 
SIoU， shown as

LSIoU = 1 - L IoU + Δ + Ω
2

where LSIoU represents the SIoU loss， which takes 
into account the shape difference between the GT 
and predicted detection boxes， specifically their as‑
pect ratio （width-to-height ratio）； Ω the shape loss， 
which considers the shape difference between the 
GT and predicted detection boxes； Δ the distance 
loss， which evaluates the distance between the GT 
and predicted detection boxes， measured by the ar‑
ea of the minimum enclosing rectangle between the 
two boxes； LIoU the IoU loss， which calculates the 
IoU between the two boxes， and by using 1-IoU， it 
emphasizes the non-overlapping part of the predict‑
ed bounding box. Finally， focal loss is applied to the 
SIoU loss to address class imbalance， ensuring the 
model focuses on harder-to-classify samples. This 

improves the training speed， inference accuracy， 
and generalization ability of the model.

SIoU extends the traditional IoU by introduc‑
ing three additional loss components： Angle loss， 
distance loss， and shape loss. The angle loss ac‑
counts for the vector angle between the ground-truth 
bounding box and the predicted bounding box， ad‑
dressing any directional mismatch between the two 
boxes. The distance loss evaluates the spatial dis‑
crepancy by focusing on the minimum circumscribed 
rectangular area encompassing both bounding box‑
es. The shape loss evaluates the shape similarity be‑
tween the ground-truth bounding box and the pre‑
dicted bounding box， focusing on the ratio of their 
lengths to widths.

Subsequently， we incorporated the standard 
IoU loss to enhance the stability and reliability of 
the model［19］. These four loss components： Angle 
loss， distance loss， shape loss， and standard IoU 
loss， were combined using a weighted averaging ap‑
proach. This fusion of loss components helps ensure 
a more comprehensive evaluation of the model’s 
performance.

To address potential class imbalance issues， 
we further integrated the focal-IoU loss， shown as

LFocal_SIoU = LSIoU + ( A inter

A union + ε ) γ

where γ is a hyperparameter in the focal loss that 
controls the model’s focus on “hard samples” （i.e.， 
samples with a low IoU）； ε a very small constant 
used to prevent division by zero errors and numeri‑
cal instability； A inter the intersection area； and 
Aunion the union area.

Focal-IoU loss specifically targets hard-to-de‑
tect objects that are often overshadowed by domi‑
nant classes. This modification enhances the 
model’s ability to focus on small objects， which is 
crucial for the task at hand.

Finally， an additional coefficient， given by 
C - w×h， was added to the loss value calculated 
by the final Focal-SIoU loss function. This coeffi‑
cient is designed to adjust the loss based on the 
width （w） and height （h） of the predicted bounding 
box， detailed as

Loss = ( C - w × h ) LFocal_SIoU

where C is a positive integer greater than all w×h， 
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and w×h denotes the area of the bounding box. 
Consequently， the larger the area of the bounding 
box is， the smaller the loss is， and the smaller the 
area of the bounding box is， the larger the loss is. 
This adjustment encourages the model to focus 
more on objects with smaller areas， thereby improv‑
ing detection accuracy for small objects.

This approach is designed to direct the model’s 
attention toward challenging-to-distinguish small ob‑
jects， while maintaining a balance between training 
speed， accuracy， and model generalization. By em‑
phasizing small objects， the model becomes more ef‑
fective when detecting them， which is crucial for 
tasks like small object detection in radar images.

1. 4 Setup of the VGG‑16 algorithm　

VGG-16 is a deep convolutional neural net‑
work consisting of 16 layers： 13 convolutional lay‑
ers， five max-pooling layers， and three fully con‑
nected layers. It consistently uses 3×3 convolution 
filters across the network［10］. Studies indicate that 
deeper networks， like VGG-16， achieve higher ac‑
curacy than shallower architectures. VGG-16 was 
originally trained on the ImageNet dataset， which 
contains over 1.2 million images categorized into 
1 000 classes［20］. The representations learned by 
VGG-16 exhibit strong generalizability， allowing it 
to achieve state-of-the-art performance in image rec‑
ognition tasks. Due to its ability to extract hierarchi‑
cal features， VGG-16 is often used as a backbone 
network for object detection models［21］. The convo‑
lutional layers of VGG-16 capture various levels of 
abstraction， which are crucial for detecting objects 
of different sizes and shapes.

While VGG-16 provides strong baseline perfor‑
mance， it has been surpassed by more recent archi‑
tectures， such as ResNet and EfficientNet， in terms 
of both accuracy and efficiency［22］. Nevertheless， 
VGG-16 remains a popular choice due to its simplic‑
ity and ease of implementation.

For this project， we employed the same train-

test-validation dataset split ratios to train a standard 
VGG-16 CNN. To adapt the model for object detec‑
tion， its output was modified to predict bounding 
boxes， transforming the task from classification to 
regression. During the backpropagation step， we 

used the root mean squared error （RMSE） in com‑
bination with the median absolute error （MedAE） 
as the loss function. Upon completion of the train‑
ing， the IoU metric was employed to validate the 
predicted bounding boxes against the ground-truth 
bounding boxes in the validation set.

1. 5 Image segmentation algorithm for radar 
images　

Image segmentation is a subfield of computer 
vision that involves dividing an image into multiple 
regions or segments， where each segment corre‑
sponds to an object or a part of an object［23］. The pri‑
mary objective is to identify object-specific pixels by 
analyzing similarities among neighboring pixels and 
regions. Such algorithms are often utilized for object 
detection due to their ability to directly extract fea‑
tures from images.

A classic and enduring algorithm in this field is 
the gray-level co-occurrence matrix （GLCM）， 
which calculates the frequency of specific pixel value 
pairs occurring at defined distances and direc‑
tions［24］. By analyzing pixel pairs， GLCM extracts 
crucial texture information， making it a robust tool 
for texture analysis. With its capability to compute 
across multiple spatial directions， GLCM offers 
flexibility and enables comprehensive texture feature 
extraction.

GLCM can be computed in various spatial di‑
rections， offering significant flexibility in capturing 
different types of texture information. The features 
derived from the GLCM include contrast， correla‑
tion， energy， and homogeneity.

In this work， we utilized the GLCM algorithm 
to segment radar images， effectively distinguishing 
up to three objects from the background and noise. 
First， we converted the radar images to true gray‑
scale， ensuring uniformity in pixel intensity values 
for consistent analysis. Subsequently， a range of 
threshold values was used to segment and isolate 
the objects of interest. The GLCM algorithm is es‑
pecially effective for radar image segmentation be‑
cause it captures essential spatial relationships be‑
tween pixels， a key factor for accurate texture analy‑
sis［25］.
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2 Results 

2. 1 Image preprocessing　

Fig.7 presents the histogram visualizations of 
the dataset both before and after the application of the 
local histogram equalization technique， which en‑
hance the texture of the relevant objects in the images.

2. 2 Ablation study　

We conducted ablation experiments using the 
default YOLO-v11 model. Table 1 provides a com ‑

parative analysis of the performance of three distinct 
models in the context of small object detection with‑
in radar imagery， utilizing mean average precision 
（mAP70） as the benchmark metric. This metric， 
which stands for mAP at 70% IoU， is a pivotal 
standard for assessing the efficacy of object detec‑
tion models， particularly in scenarios involving the 
identification of smaller targets. As shown in 
Table 1， the enhanced YOLO-v8 model demon‑
strates superior performance in detecting small ob‑
jects in radar images compared to both the default 
YOLO-v11 model and the YOLO-v8 model with 
complete IoU （CIoU）. Specifically， the enhanced 
YOLO-v8 model achieved an increase of 0.144 in 
mAP70 accuracy for small objects and an improve‑
ment of 0.095 in mAP70 accuracy across all class‑
es， highlighting the significant impact of SIoU in 
small object detection.

Fig.8 illustrates the training stage metrics for 
the YOLO-v8 model with CIoU. During training， it 
is evident that the loss curve for YOLO-v8 with CI‑

Fig.8　YOLO-v8 with CIoU training stage metrics

Table 1　mAP70 comparison between the default 
YOLO‑v11 model and the enhanced YOLO‑v8 
model on preprocessed data

Model

Default YOLO‑v11
YOLO‑v8 with CIoU
Enhanced YOLO‑v8

mAP70
Smaller object

0.362
0.310
0.454

All classes
0.770
0.706
0.801

Fig.7　Pixel intensity distribution before and after local 
histogram equalization technique
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oU fluctuates significantly， indicating potential is‑
sues such as gradient explosion. This instability 
could impede model convergence. In contrast， the 
enhanced YOLO-v8 model exhibits a much smooth‑
er and more stable loss reduction during training， 
suggesting that it effectively controls gradient up‑
dates and mitigates the risk of gradient explosion. 
This enhanced stability accelerates convergence， en‑
abling the model to achieve optimal performance 
more efficiently.

Figs.9 and 10 compare the prediction results of 
both models on the same dataset. Fig.9 shows the 

confusion matrix displaying the predictions made by 
the model across the entire radar image dataset. YO‑
LO-v8 with CIoU exhibits multiple misdetections 
due to overlapping bounding boxes， where several 
targets are incorrectly detected as a single object. In 
contrast， the enhanced YOLO-v8 model shows al‑
most no such misdetections. This improvement 
highlights the effectiveness of SIoU， which reduces 
overlapping bounding boxes and misdetections com ‑
pared to CIoU， thus enhancing both the accuracy 
and robustness of the model. By optimizing the 
bounding box regression process， SIoU enables the 
model to better handle object boundaries and posi‑
tions， improving detection performance， especially 
in challenging scenarios where stability and reliabili‑
ty are critical.

When compared to the default YOLO-v11 
model， the enhanced YOLO-v8 model achieved a 
0.092 increase in mAP70 accuracy for small objects 
and a 0.031 increase in mAP70 accuracy across all 
classes. In terms of model inference speed， the en‑
hanced YOLO-v8 model is 2.1 ms slower per image 
than the default YOLO-v11 model， which we con‑
sider to be within an acceptable range.

Additionally， ablation studies were conducted 
to evaluate the impact of local histogram equaliza‑
tion， a data preprocessing technique discussed in 
Section 2.1. The datasets， with and without local 
histogram equalization， were compared using object 
segmentation tasks performed with the enhanced 
YOLO-v8 model. The results， shown in Table 2， 
the mAP performance of the enhanced YOLO-v8 
model was compared when using and not using local 
histogram equalization， where a more stringent 
range from 50% to 95% （mAP50-95） is used for 
validation. The results showed that equalization im ‑

Table 2　mAP comparison of the enhanced YOLO‑v8 
model on preprocessed data with and without 
local histogram equalization

Preprocessed 
data

Original
Use local histo‑

gram equalization

mAP50‑95
Smaller 

object
0.298

0.381

Medium‑size 
object
0.592

0.647

Larger 
object
0.766

0.795

All cate‑
gories
0.552

0.607

Fig.9　YOLO-v8 with CIoU prediction results

Fig.10　Enhanced YOLO-v8 prediction results
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proved the mAP for small， medium， large， and all 
categories， increasing the overall mAP from 0.552 
to 0.607， demonstrating a significant improvement 
in the mAP metric across all target sizes. This high‑
lights the critical role of local histogram equalization 
in radar image preprocessing. By enhancing local 
contrast， this technique reveals more details in pre‑
viously dark or uniformly bright areas， helping the 
model recognize object edges and textures more ef‑
fectively. Moreover， it reduces the impact of low-

frequency noise， allowing the model to focus on sa‑

lient features during training and minimizing back‑
ground interference.

2. 3 Training and evaluation of the enhanced 
YOLO algorithm　

After 289 epochs， the training process was 
stopped， and the best performance metrics were 
achieved at epoch 239. The model weights from this 
epoch were saved and used to make predictions on 
the validation dataset. Fig.11 summarizes the train‑
ing process for both the training and validation datas‑
ets.

The bounding box loss measures how well the 
predicted bounding boxes match the GT bounding 
boxes， while the classification loss evaluates the ac‑
curacy of class predictions for each detected object. 
The distribution focal loss， used for bounding box re‑
gression， is designed to improve the precision of pre‑
dicted bounding boxes. Other key evaluation metrics 
include precision： The ratio of true positive predic‑
tions to the total number of positive predictions， and 
recall： The ratio of true positive predictions to the to‑
tal number of actual positive instances.

Upon completion of the training process， we 
proceeded to the testing phase using a dataset con‑
sisting of 74 images. The results of the testing 
phase are presented in Table 3， which includes de‑
tailed metrics for the three object classes in the ra‑
dar images.

Additional results from the training and evalua‑
tion of the YOLO-v8 model are provided below. 
Fig.12 shows the confusion matrix displaying the 
predictions made by the model across the entire ra‑
dar image dataset. In Fig.12， the last column repre‑
sents the background. It refers to instances where 
non-background objects are incorrectly predicted as 
background， leading to missed detections of non-

background objects. The last row represents the 
background as well. It refers to cases where back‑
ground areas are incorrectly predicted as non-back‑

Fig.11　YOLO-v8 with CIoU training and validation stage metrics

Table 3　Enhanced YOLO‑v8 testing stage metrics

Class
0
1
3

Weighted 
average

Instance
56
48
65

—

Precision
0.842
0.919
0.945

0.902

Recall
0.804
0.979
0.846

0.876

mAP70
0.454
0.973
0.975

0.801

mAP50‑95
0.381
0.647
0.795

0.607
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ground， resulting in false detections of objects that 
do not actually exist.And the progress bar is the nor‑
malized range in columns， whose values in the grid 
are the ratios of the quantity to the total number of a 
column. Fig.13 shows F1-confidence curves， which 
illustrate how the F1-score varies with different con‑
fidence thresholds. The legend “All classes 0.95 at 
0.496” indicates that when the confidence threshold 
is 0.496， the average F1-score across all classes 
reaches its maximum value of 0.95. Fig.14 shows re‑
call-confidence curves， demonstrating how recall 
changes with different confidence thresholds. The 
legend “All classes 1.00 at 0.000” indicates that 
when the confidence threshold is 0.000， the average 
recall across all classes reaches its maximum value 
of 1.00. Fig.15 shows precision-confidence curves， 
depicting how precision changes with varying confi‑
dence thresholds. The legend “All classes 1.00 at 
0.545” indicates that when the confidence threshold 
is 0.545， the average precision across all classes 
reaches its maximum value of 1.00. Fig.16 shows precision-recall curves， illustrating the trade-off be‑

tween precision and recall at varying confidence 
thresholds. The legend “All classes 0.820 mAP@
0.7” indicates that when mAP is set to 0.7， the av‑
erage precision-recall value across all classes reach‑
es its maximum value of 0.820.

2. 4 Training and evaluation of the VGG‑16 
algorithm　

The training and validation losses for the VGG-

16 model are shown in Fig.17. The model’s loss 
function was specifically designed to predict bound‑

Fig.13　F1-confidence curves for the enhanced YOLO-v8 in 
the training stage

Fig.14　Recall-confidence curves for the enhanced YOLO-

v8 in the training stage

Fig.15　Precision-confidence curves for the enhanced YO ‑
LO-v8 in the training stage

Fig.16　Precision-recall curves for the enhanced YOLO-v8 
in the training stage

Fig.12　Confusion matrix from predictions made by the en‑
hanced YOLO-v8 model in the evaluation stage
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ing boxes through a regression task. For evaluation， 
we set a threshold based on the IoU between the 
ground-truth and predicted bounding boxes， with a 
value of 80% （IoU = 0.8）. This threshold allowed 
us to classify a detection as positive when the IoU 
exceeded 0.8.

By applying this threshold， we effectively con‑
verted the regression task into a classification prob‑
lem， enabling the construction of a confusion matrix-

like graph to better visualize the results. Fig.18 illus‑
trates the VGG-16 model’s predictions for objects 

labeled as 0， 1， and 3， showing only the count of 
true positives and true negatives under the 80% IoU 
threshold.

2. 5 Image segmentation for radar images　

We applied GLCM to a subset of randomly se‑
lected images from the dataset. For each image， we 
manually adjusted the gray threshold value to opti‑
mize object detection. Additionally， we determined 
an average optimal gray threshold value of 93， 
which was then used for batch processing to seg‑
ment the entire dataset. This approach generally pro‑
duced satisfactory results. However， the accuracy 
was lower when handling small objects and images 
with noisy backgrounds.

Fig.19 shows three randomly selected image 
segmentation results as examples. The top row dis‑
plays the original images， while the bottom row 
shows the corresponding segmentation results ob‑
tained using the GLCM algorithm.

3 Discussion 

During the training phase of the enhanced YO ‑
LO-v8 model， we observed that after 200 epochs， 
the improvement in model accuracy became less sig‑
nificant compared to earlier stages. This trend is evi‑
dent in the metrics shown in Fig.5， indicating that 
even the most advanced models today cannot 
achieve perfect solutions for object detection tasks. 
Nonetheless， the accuracy attained is impressive. 
As shown in Fig.6， the model successfully detected 
backgrounds， medium-sized objects， and large ob‑
jects in radar imagery. However， the primary focus 
of this study was on the detection of small-sized ob‑
jects， where the model achieved over 84% weight‑

Fig.17　Train and validation loss for the VGG-16 in the 
training stage

Fig.18　True positives and true negatives from predictions 
made by the VGG-16 in the evaluation stage

Fig.19　Original and segmented images using the GLCM 
algorithm
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ed accuracy， as detailed in Table 1.
Numerous studies emphasize the challenges 

posed by speckle noise in radar images for object de‑
tection［26-27］. Noise is a well-known issue in comput‑
er vision， but effective solutions remain limited. 
Our model successfully identified all objects except 
for the smallest ones， which were frequently mistak‑
en for noise. This gives us confidence that future ad‑
vancements in techniques and algorithms will bring 
us closer to achieving perfect detection in such tasks.

In evaluating the VGG-16 model， we tested 
various threshold values for the IoU metric. The re‑
sults， presented using a stringent threshold value of 
0.8， showed that the VGG-16 model performed 
poorly at this threshold， with an average small-ob‑
ject detection accuracy of 33.7%. The model per‑
formed better for medium-sized objects， achieving 
61.9% accuracy， and much better for large objects， 
with an accuracy of 82.8%.

By lowering the threshold value to 0.6， the 
VGG-16 model’s overall accuracy per class im ‑
proved to acceptable ranges. Furthermore， using a 
threshold of 0.4 resulted in near-perfect accuracy 
across all classes. This suggests that while the 
VGG-16 model can accurately predict the presence 
or absence of objects and provide a reasonable 
bounding box approximation， IoU is a stringent 
metric that ensures state-of-the-art performance in 
object detection［28］.

After applying the GLCM algorithm to the ra‑
dar image dataset， we found that image segmenta‑
tion provided a simple and effective solution to the 
problem. Image segmentation has been shown to be 
a valuable technique for SAR imagery， as demon‑
strated in empirical classification tasks［29］. Other seg‑
mentation methods， such as semantic segmenta‑
tion， have also proven feasible for automation in 
similar projects［30］. Since image segmentation is not 
a machine learning technique， its implementation 
presents a much easier learning curve［31］. As a re‑
sult， professionals from various fields can utilize im ‑
age segmentation algorithms without requiring the 
expertise needed for complex deep learning models 
like YOLO.

4 Conclusions 

This study improved small object detection in 
radar imagery by customizing YOLO-v8 with algo‑
rithm and data modifications. Local histogram equal‑
ization enhanced contrast， while a multi-dimension‑
al attention mechanism increased precision in noisy 
environments. An upsampling layer fused high-level 
and low-level information， improving performance 
in complex scenarios.

Two loss functions， FIoU and SIoU， were 
compared to optimize the model. FIoU addressed 
class imbalance， while SIoU improved bounding 
box alignment and convergence speed. Combining 
the two was most effective for the noisy radar data‑
set.

YOLO-v8 outperformed VGG-16 in small ob‑
ject detection， showing better precision and robust‑
ness. It also surpassed the GLCM algorithm in accu‑
racy， scalability， and real-time analysis， making it 
more reliable for small object detection in noisy ra‑
dar images.
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基于多维注意和上采样融合的 YOLO‑v8雷达图像

空中小目标检测

江振宇 1， 李晓东 1， 杜 晨 2，3， 陈 安 2，3， 韩彦强 2，3， 李金金 2，3

（1.国防科技大学空天科学学院, 长沙 410073, 中国； 2.上海交通大学先进微纳制造技术国家重点实验室, 上海

200240，中国； 3.上海交通大学电子信息与电气工程学院微纳电子系, 上海 200240, 中国）

摘要：提出了一种提高 YOLO‑v8 雷达图像中小目标检测性能的创新方法。首先，对原始图像应用局部直方图均

衡化技术，显著增强对比度和细节表示。然后，通过结合基于多维注意力机制和并行处理策略的卷积核增强

YOLO‑v8 骨干网络实现更有效的特征信息融合。在模型上部添加了一个上采样层，与浅层网络输出融合，设计

一个专门为小物体检测量身定制的检测头，从而进一步提高了精度。此外，对损失函数进行了修改，将局部交并

比（Intersection over union， IoU）与尺度 IoU 结合使用，从而提高了模型的性能。引入了加权策略，有效地提高了

小目标的检测精度。实验结果表明，定制模型在各种评估指标上优于传统方法，包括召回率、精确度、F1 评分和

受试者特征（Receiver operating characteristic， ROC）曲线，验证了其在雷达图像中小目标检测方面的有效性和创

新性。结果表明，与图像分割和标准卷积神经网络等传统方法相比，所提方法准确性有了显著提高。

关键词：YOLO；雷达图像；目标检测；机器学习
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