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Abstract: Ship detection via spaceborne synthetic aperture radar （SAR） has become a research hotspot. However， 
existing small ship detection methods based on the radar signal domain and SAR image features cannot obtain highly 
accurate results because of the obvious coherent speckle noise at sea and strong reflection interference from near‑shore 
objects. To resolve the above problems， this study proposes a dual‑domain joint dense multiple small ship target 
detection method for spaceborne SAR image that simultaneously detects objects in the image and frequency domains. 
This method uses an attention mechanism module and algorithm structure adjustments to improve the small ship 
target feature mining ability. In the frequency‑based image generation， extreme signal strength values are detected in 
the azimuth and range directions， with the results of the two complementing each other to realize dual‑domain joint 
small ship target detection. The comprehensive qualitative and quantitative evaluation results show that the proposed 
method can attain a final precision rate of 92.25% and achieve accurate results for SAR ship detection in open‑sea， 
coastal， and port area ships. The test results for the self‑built SAR small‑ship dataset demonstrate the effectiveness 
and universality of the method.
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0 Introduction 

Ship detection methods based on synthetic ap‑
erture radar （SAR）［1］ images primarily leverage the 
statistical distribution of vessels and the amplitude， 
phase， and texture characteristics of the images. Nu‑
merous traditional detection methods， such as the 
constant false alarm rate （CFAR） algorithm［2-3］ and 
automatic sea and land segmentation［4］ algorithms， 
emerged during the early developmental stages［5］ 
and demonstrated high detection accuracy in experi‑
ments conducted on typical SAR images. However， 
these methods often rely on statistical distribution［6］ 
of ships and the range information of the images， 

limiting their effectiveness in complex scenes and 
failing to meet the requirements for high‑precision 
detection［7］. In contrast， recent advancements in 
ship detection［8-10］ have been driven by deep learning 
techniques applied to SAR images， yielding satisfac‑
tory results. Deep learning ‑ based object detection 
methods are typically categorized into two‑stage and 
single‑stage approaches［11］. Despite the prevalence 
of small targets in SAR data， object detection meth‑
ods encounter challenges when targeting small 
ships. Consequently， achieving accurate detection 
of small ships in SAR images remains a significant 
and ongoing research endeavor［12］ .
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In cases where the SAR image resolution is 
low or the ship’s actual size is small， the ship may 
manifest as a bright spot within the image. Leverag‑
ing these distinctive characteristics， scholars have 
successfully detected small ship targets in SAR im ‑
ages by incorporating attention mechanism mod‑
ules， conducting multi‑scale feature parallel min‑
ing， and deploying enhanced multi‑directional algo‑
rithms［13-14］. The attention mechanism stands at the 
forefront of deep learning network optimization， en‑
hancing the feature extraction capability of backbone 
networks. Consequently， it has emerged as a pre‑
ferred technique for refining small target detection 
methods in SAR images of ships. For instance， Lin 
et al.［15］ introduced a squeeze excitation （SE）［16］ 
mechanism to enhance network feature extraction. 
However， the SE module focuses solely on channel 
correlations， overlooking the significance of spatial 
information. Addressing this limitation， Zhao et al.［17］ 
proposed an attention receptive pyramid network 
（ARPN） that integrates the convolutional block 
attention module （CBAM） introduced by Woo 
et al［18］. This integration aims to mitigate the ad‑
verse impact of surrounding environments. Nonethe‑
less， the CBAM module is limited to capturing lo‑
cal correlations and fails to establish long‑range fea‑
ture dependencies.

In addition to the attention mechanism， schol‑
ars have explored multiscale parallel methods for op‑
timization. For instance， Li et al.［19］ introduced the 
lightweight faster region‑convolutional neural net‑
work （Faster R‑CNN）， which leverages parallel 
multiscale convolution operations to extract feature 
information effectively. Similarly， Zhang et al.［20］ 
proposed a lightweight SAR ship detector that 
shares features across different detection scales via 
upsampling and downsampling. This approach has 
shown promising results in detecting multiscale tar‑
gets amidst complex backgrounds. However， the 
above methods do not focus on losing position infor‑
mation for high‑level feature of small objects in the 
networks. Therefore， when the information used for 
position refinement is mapped to the final feature 
map， a significant amount of data is lost.

However， the aforementioned methods do not 
address the issue of losing information about small 

targets in deep feature maps. Consequently， during 
the mapping of position refinement information onto 
the final feature map， a notable amount of data is 
lost. Moreover， due to the similarity in scattering 
mechanisms between certain local areas of ship tar‑
gets in SAR images and their surrounding regions， 
as well as the resemblance of image features be‑
tween small ship targets and shoreline features， the 
aforementioned algorithms tend to produce numer‑
ous false alarms in near‑shore areas. Furthermore， 
as the data pass through the convolutional neural 
network model， the deep convolutional layer may 
inadvertently discard valuable feature information 
about the boat， thereby increasing the likelihood of 
errors in small‑target detection［21］.

In addition to the small‑target detection meth‑
ods based on SAR images mentioned earlier， Ding 
et al.［22-23］  proposed an innovative dual‑domain joint 
detection method for identifying small moving tar‑
gets in video SAR data. This approach combines 
high‑resolution SAR images with low‑resolution 
range‑Doppler （RD） spectrum data， supplementing 
missing RD spectrum target energy in the image and 
synchronously extracting target image features and 
energy. However， the method primarily focuses on 
the RD spectrum during frequency spectrum pro‑
cessing， specifically employing fast Fourier trans‑
form solely in the azimuthal direction， neglecting 
the distance‑range to the target energy. Consequent‑
ly， when maritime targets are close to land or other 
objects with similar reflectivity， similar object inter‑
ference may arise， as observed in the aforemen‑
tioned video SAR scenario. Furthermore， while the 
concept of dual‑domain joint detection shows prom ‑
ise， its application in various scenarios warrants fur‑
ther exploration and development.

The attention mechanism fails to exhibit long ‑
range dependence in detecting small ship targets in 
SAR images. Building upon this observation and in‑
sights derived from previous optimization strate‑
gies， this paper introduces a novel dual‑domain joint 
SAR image small‑ship target detection algorithm for 
addressing numerous challenges， including a high in‑
cidence of false alarms in multiscale parallelism and 
incomplete detection of single‑directional frequency 
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spectrum target energy. The dual domains consid‑
ered in this study encompass the original SAR im ‑
age domain and the frequency domain generated by 
Fourier transform in two directions. Firstly， to miti‑
gate feature loss in high‑level convolutional net‑
works encountered in prior SAR image domain pro‑
cessing studies， region proposals were enhanced［24］ 
to incorporate two‑scale downsampling layers with‑
in the spatial pyramid pooling （SPP） module inte‑
grated into the feature extraction modules of the 
YOLOv4 network. Additionally， a dilated convolu‑
tional layer was introduced to augment the receptive 
field， discern small‑scale target features， and re‑
duce the false alarm rate. Secondly， to mitigate sim ‑
ilar reflections on the shore， one‑dimensional inten‑
sity regional maximum value detection was indepen‑
dently performed， retaining and positioning the tar‑
gets with regional maximum value in both range and 
azimuth directions. Finally， the two domains were 
merged to yield the final detection outcomes. Evalu‑
ation on various public datasets （SSDD and SAR ‑
ship ‑ dataset） demonstrated the proposed method’s 
ability to achieve robust detection of small ship tar‑
gets across diverse environments， including open 
seas and near‑shore regions.

The subsequent sections of this paper are orga‑
nized as follows： Section 1 provides an overview of 
relevant literature encompassing key factors exam ‑
ined in this study， such as existing radar signals， 
deep learning methods for small‑target detection， 
and SAR small‑target datasets. It also outlines the 
initial steps taken to address the research objectives. 

Section 2 delves into efforts to enhance the YOLO 
detection method and frequency detection algo‑
rithm. Section 3 details the experimental setup and 
analysis of results. Finally， Section 4 offers the con‑
cluding remarks of this paper.

1 Related Work 

1. 1 Existing SAR ship datasets　

Existing public SAR ship datasets include SAR‑
ship‑dataset［25］， SSDD［26］， and AIR‑SARShip‑1.0/
2.0［27］. In the SAR‑ship‑dataset， the majority of ships 
exhibit relatively small and widely varying scales， 
and some examples of the SAR‑ship‑dataset are 
shown in Fig. 1. Fig. 2 illustrates the distribution of 
bounding box pixels for different ship sizes： 35 025 
ships with 0— 1 000 pixels are classified as small 
targets， 23 125 ships with 1 000—4 000 pixels as 
medium targets， and 1 385 ships as large targets. 
Similar data distributions are observed in the SSDD 
and AIR‑SARShip‑1.0 datasets. However， existing 
research has not yet reached the necessary level of 
detection capability for small ‑ ship targets in SAR 
images， with mainstream algorithms primarily fo‑
cusing on medium and large ships.

Fig.2　Distribution of bounding box pixels for ships of different sizes in SAR‑ship‑dataset

Fig.1　Examples of the SAR‑ship‑dataset
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1. 2 Existing deep learning⁃based methods for 
（small） object detection　

1. 2. 1 Deep learning⁃based small object detection

The detection of small targets has always been 
a challenging but popular topic in the field of target 
detection. A small target in an image refers to one 
with a small area in the image. The main reasons for 
the difficulty in detection are that： （1） Small‑target 
features are scarce； （2） the number of datasets is 
small； （3） the design of anchor boxes is difficult； 
and （4） deep network features can easily be lost. 
Mainstream solutions include the pyramid struc‑
ture， backbone network， anchor frame design， opti‑
mization objective， and gain component （attention 
mechanism module）. Existing algorithms such as 
the YOLO series， through the combination of the 
feature extraction network CSPDarknet53 and the 
spatial pyramid pooling layer， have better realized 
the detection of large‑and small‑scale targets and 
have become the improved basic network for many 
deep‑learning small‑target detection methods.

This solution is also applicable to the small‑tar‑
get detection of SAR images. In SAR images， 
small targets can be defined as targets with less than 
1 000 bounding box pixels. The bounding box is in‑
dicated by the red area in Fig.3.

1. 2. 2 YOLO algorithm　

The YOLOv4［28］ algorithm proposed in 2020 is 
based on the YOLOv3 algorithm， which integrates 
the ideas and training techniques of the algorithm 
model with the advantages obtained in deep learning 
neural networks in recent years. This algorithm can 
simultaneously compensate for many defects， there‑
by achieving dramatic improvements in speed and 
detection accuracy.

In YOLOv4， the parameters （the pixel coordi‑
nates x and y， width w， and height h of the anchor 

box） in YOLO‑Head are not independent and require 
a loss function to express their interrelationships. 
Therefore， the complete intersection over union 
（CIoU）［29］ was adopted， which achieved better re‑
sults.

Target box loss should consider three impor‑
tant geometric factors： Overlap area， center point 
range， and aspect ratio. However， the distance‑IoU 
（DIoU）［30］ in YOLOv2 and YOLOv3 does not con‑
sider the aspect ratios of the detection boxes. Detec‑
tion boxes with similar aspect ratios should exhibit 
lower losses. Therefore， CIoU was used in this 
study， shown as

CIoU = 1 - IoU +
ρ2( )b,bgt

c2 + αν (1)

where b and bgt mean the central points of anchor 
box and target box， ρ means the distance between b 
and bgt， c the diagonal length of the smallest enclos‑
ing box covering two boxes， α the positive measure‑
ment parameter， and ν the consistency of the aspect 
ratio. Thus， the overlapping area factor had a higher 
priority in the regression， especially in nonoverlap‑
ping scenarios.

YOLOv5， launched a month after YOLOv4， 
introduces significant improvements in its network 
architecture， especially with adaptive anchor boxes 
that are automatically learned from the training da‑
ta， offering an advantage in detecting small， 
fixed‑size objects. While YOLOv5 is more flexible 
and faster， YOLOv4 struggles with weak features 
for small targets， leading to a trade‑off between ac‑
curacy and efficiency in this study， which chooses to 
modify YOLOv4 for better precision. The YOLO 
series algorithm processes target detection by divid‑
ing the image into S×S （S means the size of the 
grid） grids and predicting target presence in each， 
followed by selecting the most appropriate frame. 
YOLOv4 enhances YOLOv3’s feature extraction 
by using CSPDarknet53， Mish activation and Drop‑
block regularization， and introduces SPP and path 
aggregation network （PAN） for handling varying 
image sizes and maintaining a fixed output value. 
YOLOv4 retains YOLOv3’s detection head， result‑
ing in a model with CSPDarknet53， SPP‑PANet， 
and YOLO‑Head components. The structure of the 
YOLOv4 network is illustrated in Table 1.

Fig.3　Diagram of the bounding box
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1. 3 Detection of radar one ⁃ dimensional signals 
and two⁃dimensional images　

Radar data primarily consist of radar echo sig‑
nal data， which can be transformed into various rep‑
resentations including one‑dimensional high ‑ resolu‑
tion range data， two‑dimensional RD data， and 
SAR images. Each dimension of data representation 
exhibits distinct characteristics， leading to variations 
in detection methods based on each data point.

Mainstream radar two‑dimensional image de‑
tection methods can be categorized into RD image 
detection， micro‑Doppler image （M‑D） detection， 
and SAR image detection. The RD map is generat‑
ed from the original radar echo signal through fast 
Fourier transform in the fast time domain to provide 
range dimension information. Subsequently， Fouri‑
er transform is applied to each range unit in the slow 
time domain to generate the RD spectrum map， re‑
vealing the energy distribution of echoes in the RD 
domain. The RD spectrum proves effective in distin‑
guishing energy differences between targets and in‑
terference. Both domestic and international research‑
ers have initiated target detection based on the RD 
spectrum to separate complex targets from the back‑
ground， significantly reducing the false alarm detec‑
tion rate， as depicted in Fig.4.

SAR image detection stands as the prevailing 
direction for two‑dimensional target detection in ra‑
dar systems. With the ongoing evolution of deep ‑
learning algorithms， a growing array of deep ‑ learn‑

ing methods are finding applications in this domain. 
However， the overall performance of deep‑learning 
algorithms in SAR lags behind that of the computer 
vision field. Additionally， due to inherent disparities 
between optical and SAR images， many detection 
algorithms lack necessary adjustments to accurately 
interpret the fundamental characteristics of SAR im ‑
agery. Moreover， research and application pertain‑
ing to target scattering mechanisms remain relative‑
ly insufficient in comparison.

2 Methodology Improvement 

Inspired by the idea of two‑dimensional RD 
spectrum detection， this study attempts to mine the 
characteristics of small targets using the azimuth ‑
time distance‑frequency domain data and range‑time 
azimuth‑frequency domain data derived from the 
SAR intensity information.This work further supple‑
ments the results of SAR image detection and realiz‑
es SAR small ship target detection in complex envi‑
ronments with high background interference.

Table 1　YOLOv4 structure components

Step

Back‑
bone

Neck

Head

Output

Content
Feature extractor Darknet ‑ 53 or CSPDarknet ‑ 53 composes the backbone, which is responsible for extracting rich 
feature representations from input images based on multiple convolutional layers and residual connections; thus, it 
can effectively capture features at different scales and semantic levels.
SPP and PAN modules compose the neck and fuse features from the backbone network to obtain higher‑level seman‑
tic information. SPP captures context information at different scales by pooling the feature maps, while PAN 
achieves feature fusion via cascading and cross ‑ layer connections, thereby enhancing the accuracy and multi ‑ scale 
perception capability of object detection.
A multi‑scale prediction strategy is used for the head, which is responsible for generating bounding boxes and class 
probabilities for targets, with each scale having an independent detection head. Each detection head includes a series 
of convolutional layers and fully connected layers.
Loss functions, such as IoU loss, class balance, and CIoU loss, compose the output. Non ‑maximum suppression 
(NMS) is applied to predicted bounding boxes and class probabilities to filter overlapping bounding boxes. This pro‑
cess outputs the positions (bounding box coordinates) and class probabilities of the detected objects, resulting in the 
final detection results.

Fig.4　Detection performance of RD spectrum in various sit‑
uations
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2. 1 Overall algorithm workflow　

The algorithm flow of this study （Fig.5） com‑
prises three main steps： data preprocessing， dual ‑
track object detection， and collaborative processing. 
Compressing the SAR image in the azimuth and 
range directions to yield the range‑time domain azi‑
muth‑frequency domain data and the range‑frequen‑
cy domain and azimuth‑time domain data.

Dual‑track object detection： In the image 

track， the SAR image serves as the data source to 
construct a dataset， and the improved YOLOv4 al‑
gorithm is utilized for training and verification. 
Meanwhile， the frequency track conducts one‑dimen‑
sional signal detection on the compressed results in 
the azimuth and range directions to detect extreme 
energy values.

Collaborative processing： Targets identified in 
the image track and those at the energy extremes in 
the frequency track are synthesized. Weak signal tar‑
gets are eliminated， while targets missed by image 
detection are supplemented to enable dual‑domain 
collaborative detection.

In contrast to prior work， this study emphasiz‑
es feature mining in the frequency domain rather 
than relying solely on image features. This approach 
reduces the miss rate associated with single‑image 
feature mining. The method proposed in this study 
aims to offer a more dependable detection scheme 
for measured data.

2. 2 Improvement of the YOLO algorithm　

2. 2. 1 Attention mechanism　

During deep learning image analysis， all fea‑
tures and regions in an image are typically consid‑
ered equally important. However， attention mod‑
els， such as the one described in Ref.［31］， autono‑
mously learn the importance of each feature and re‑
gion. By assigning higher weights to important fea‑
tures and regions， attention models enhance the fea‑
ture extraction capability of deep learning algorithms 
without significantly increasing computational com ‑
plexity or parameters［32］.

One of the leading attention mechanism mod‑
ules is CBAM［33］， which builds upon the concepts of 
Senet while integrating spatial and channel features. 
CBAM comprises two key modules： the spatial at‑
tention mechanism module and the channel attention 
mechanism module.

In the channel attention mechanism module， 
global maximum pooling and global average pooling 
layers are employed to condense the spatial dimen‑
sions of the input feature map， yielding two 
one‑dimensional feature vectors. These vectors are 
then fed into a shared neural network with ReLU ac‑Fig.5　Overall algorithm flowchart
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tivation function. After combining the output values 
and applying a sigmoid activation function， a new 
feature map is generated.

The specific formula is as follows
M c( F ) = σ ( MLP ( AvgPool ( F ) ) +

MLP ( MaxPool ( F ) ) ) = σ (W 1(W 0( F c
avg ) ) +

W 1(W 0( F c
max ) ) ) (2)

where F means the input feature； F c
avg and F c

max rep‑
resent the output features of global average pooling 
and global maximum pooling along channel， respec‑
tively； σ denotes the sigmoid function； W 0 ∈ RC/r × C， 
and W 1 ∈ RC × C/r. Note that the MLP weights， W 0 
and W 1， are shared for both inputs and the ReLU 
activation function is followed by W 0.

The spatial attention mechanism module com ‑
presses the feature image processed by the channel 
attention mechanism module using the global maxi‑
mum pooling layer and the global average pooling 
layer to obtain two one‑dimensional feature vectors， 
and it then directly stitches them together according 
to the channel dimension to obtain a feature map 
with a channel dimension of two. Finally， through a 
fixed convolution layer， the activation function re‑
mains sigmoid to obtain the final feature result map.

The specific formula is as follows
M s( F )=σ ( f 7×7( [ AvgPool ( F );MaxPool ( F ) ] ) )=

σ ( f 7×7 ( [ F s
aug;F s

max ] ) ) （3）
where F s

aug ∈ R 1 × H × W and F s
max ∈ R 1 × H × W， represent 

the output features of global average pooling and 
global maximum pooling along spatial， respecctire‑
ly； while f 7 × 7 represents a convolution operation 
with the filter size of 7×7.

The convolutional layer network structure of 
the feature extraction after adding the attention 
mechanism is shown in Fig.6.

In order to improve the perception ability of the 
detection model， the CBAM module was embedded 
in the backbone of YOLOv4 （i.e.， CSPDarknet）.
2. 2. 2 Optimization of the network architecture 

（1） CSPDarknet53 network optimization
In optimizing the CSPDarknet53 network， the 

channel dimensions of all convolutional layers with‑
in the backbone network were reduced to one‑third 
of their original size. This adjustment results in an 
exceptionally lightweight model. As a consequence， 
the lightweight backbone network does not require 
reliance on pre‑trained models for classification 
tasks and can directly utilize small datasets， such as 
SSDD， to train the detection model.

（2） Spatial pyramid pooling structure optimiza‑
tion

Drawing inspiration from advancements in re‑
gion proposals， the feature extraction module of the 
YOLOv4 network was enhanced with the addition 
of two scale‑down sampling layers within the SPP 
module. Additionally， a dilated convolution layer 
was introduced to expand the receptive field， isolate 
small‑scale target features， and diminish the false 
alarm rate of detection.

These structural optimizations to the YOLO 
detection algorithm heighten sensitivity to small tar‑
gets， diminish the rate of misses， and ensure accu‑
rate image detection by the SAR small target ship 
detection algorithm.
2. 2. 3 Frequency domain detection method　

The frequency‑domain detection method used 
in this study is divided into three steps： two‑dimen‑
sional frequency‑domain generation， two‑dimension‑
al frequency‑domain detection， and two‑way cooper‑
ative target positioning. The overall process is illus‑
trated in Fig.7.

Step 1 Two‑dimensional frequency‑domain 
generation

Because the original， acquired SAR image is in 
the space domain， it must be decompressed in the 
azimuth and range directions to realize the conver‑
sion from the space domain to the frequency do‑
main. Specifically， decompression in all directions 
was realized through a fast Fourier transform. The 
decompression in azimuth direction can obtain the 

Fig.6　Convolutional layer structure that incorporates 
CBAM
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azimuth‑frequency domain data， and the decompres‑
sion in range direction can obtain the range frequen‑
cy domain data. The azimuth‑frequency domain data 
can be used to detect the position of the target in the 
upward range， whereas the frequency domain data 
can be used to detect the position of the target in the 
upward direction. The matching of the two can real‑
ize accurate positioning of the target in the azimuth 
and upward directions.

F ( u,v ) =∫
-∞

+∞∫
-∞

+∞

f ( x,y ) e-j2π( ux + vy ) dxdy (4)

where F（u，v） is the Fourier transform of function 
f （x，y） in the frequency domain； f （x，y） a function 
in the spatial domain； j an imaginary unit； U and v 
are frequency variables on the horizontal and vertical 
axes， respectively； x and y the actual variables of 
the function f （x，y）.

Step 2 Two‑dimensional frequency‑domain 
detection

The azimuth‑frequency domain data and range 
frequency domain data generated in Step 1 are con‑
verted from two‑dimensional to one‑dimensional 
maps， and the signal strength map of the center po‑
sition is obtained. After the specific implementa‑
tion， the results of Step 1 are shown in ② and ③ 
processes of Fig.7， and then the local regional maxi‑
mum value is detected. The regional maximum val‑
ue position corresponds to the position of the ship 
target in this direction.

Step 3 Two‑way cooperative target positioning

Following the completion of target regional 
maximum value detection in Step 2， the target posi‑
tions in both azimuth and range directions are ob‑
tained. These two positions are then reconstructed 
into the image to achieve precise target positioning. 
In this study， the presence of a target is determined 
based on extreme intensity values occurring in both 
azimuth and range directions. Consequently， unidi‑
rectional extreme values are disregarded. This ap‑
proach allows intensity regional maximum value to 
better indicate the target’s position at sea， minimiz‑
ing interference from highly reflective objects on 
land and facilitating accurate target positioning in 
maritime environments.

3 Experimental Design 

3. 1 Experimental data　

The SAR image small‑ship detection dataset 
primarily relies on the SSDD dataset［34］， supplement‑
ed with data from our Gaofen 3 and TerraSAR ‑ X 
sources for augmentation and expansion. The final‑
ized dataset consists of 1 680 images， each with di‑
mensions of approximately 500 pixel×500 pixel， 
with some exemplar data showcased in Fig. 8. All 
targets within the bounding box have a pixel count 
of less than 1 000， with the smallest target measur‑
ing 23 pixels， as depicted in Fig.9.

Fig.7　Flowchart of target detection in the range and azi‑
muth directions

Fig.8　Partial dataset for ship detection in SAR images

Fig.9　Distribution of pixel numbers for target surrounding 
boxes in the dataset
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For dataset organization， 80% of the samples 
were randomly chosen as the training set， while the 
remaining 20% were evenly split between the vali‑
dation and test sets. These samples were structured 
according to the file arrangement of the Pascal VOC 
2012 Public Dataset. The distribution of specific 
number of ships （NoS） and number of images 
（NoI） is presented in Table 2.

3. 2 Experimental environment　

The SAR image detection algorithm was exper‑
imentally implemented using the Win11 operating 
system. The PyTorch environment was conFig.d， a 
Pychram editor was used， and the target detection 
algorithm was implemented， trained， and predicted 
using an NVIDIA GeForce RTX 3070 8G graphics 
card.

In the SAR image detection part of the experi‑
ment， an end‑to‑end training method was adopted. 
The hyperparameters were set as follows： initial 
learning rate， 0.001 3； the maximum number of iter‑
ations， 50 500； batch， 64； momentum， 0.949； and 
regular weight decay term， 0.000 5.

3. 3 Experimental results and analysis　

To verify the effectiveness of the dual‑domain 
SAR small‑ship detection method proposed in this 
paper for real SAR images， ablation experiments 
were conducted under the conditions of the experi‑
mental design arrangement in Section 2 to support 
the quantitative analysis， and three typical areas 
（far sea area， near‑shore area， and port area） were 
selected for qualitative analysis and evaluation.
3. 3. 1 Experimental design　

（1） Ablation experiment design
To verify the effectiveness of the method used 

in this study， we designed a total of four layers of 
ablation tests based on the basic YOLOv4 method. 
The first layer represented the basic YOLOv4 al‑
gorithm， the second layer represented the improved 
YOLOv4 algorithm， the third layer represented 
the improved YOLOv4 algorithm embedded in the 
attention mechanism module， and the fourth layer 
was based on the third layer. Subsequently， the 
frequency spectrum detection part was added. The 
ablation experiment demonstrated the effectiveness 
of each module using the improved method devel‑
oped in this study. The specific design compo‑
nents of the ablation test structure are listed in 
Table 3.

（2） Comparative method experimental design
After the ablation experiment was completed， 

different methods were compared， including the sin‑
gle shot MultiBox detector（SSD）［35］， Faster R‑CNN， 
YOLOv4， YOLOv5［36］， and a vision‑centric founda‑
tion model to explore the limits of visual representa‑
tion at scale using only publicly accessible data 
（EVA）［37］ algorithms. A comparison between ad‑
vanced algorithms in related research at home and 
abroad and the algorithm in this study can further 

demonstrate the effectiveness and advancement of 
the algorithm proposed in this study.
3. 3. 2 Analysis of experimental results　

（1） Evaluation of the ablation experiment results
The results of the quantitative analyses present‑

ed in Table 4 clearly show that after optimizing the 
network structure of YOLOv4， the overall preci‑
sion of ship target detection increases from 77.46% 
to 89.78%. However， a 4.37% increase in the miss 
rate is observed. This indicates that the addition of 

Table 2　Correspondence between datasets NoS and NoI 
in small ship detection for SAR images

NoS
NoI

1
1 056

2
266

3
130

4
68

5
65

6
23

7
22

8
12

9
6

10
16

10+
16

Table 3　Ablation experimental models and their architecture

Index

1
2
3
4

Model

YOLOv4
Improved YOLOv4

Improved YOLOv4+CBAM
Our method

YOLOv4

√
√
√
√

Optimization 
of network 
architecture

√
√
√

CBAM

√
√

Collaboration 
of RD spec‑
trum maps

√

Precision/%

77.46
89.78
91.54
92.25

Miss 
rate/%

18.82
23.19
17.98
11.09

F1 score

0.792 7
0.827 9
0.865 2
0.905 5
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scale‑downsampling layers facilitates the extraction 
of small targets but also leads to some land targets 
being detected as ships. The attention mechanism 
described in the second section improves the feature 
extraction capability for ships and reduces interfer‑
ence from land and noise， resulting in a slight im ‑
provement in target detection accuracy. Further‑
more， with the addition of azimuth and range fre‑
quency spectrogram detection， the overall precision 
increases by 0.71%. Additionally， because the inter‑
ference from land in the frequency spectrogram is 
relatively low， there is a partial reduction in the 
miss rates. Compared with the original unimproved 
algorithm， our method achieves a 14.79% increase 
in precision and a 7.73% decrease in miss rate. 
From a quantitative analysis perspective， our meth‑
od demonstrates good detection performance and a 
significant improvement in the miss rate.

（2） Qualitative analysis and evaluation of abla‑
tion results

For this qualitative evaluation， three main de‑
tection scenarios are selected： open‑sea， coastal， 
and port area ships， as shown in Fig.10.

It is evident from the detection results of ships 
in far‑sea areas that the method proposed in this pa‑
per and the original methods can achieve relatively 
accurate detection. There are no obvious differences 
in ship detection precision results between methods 
shown in Figs.10（c—e）.

SAR small‑ship detection results in the coastal 
ship scenario are shown in Fig.11.

Fig.11 shows that the original YOLOv4 algo‑
rithm cannot achieve more accurate ship detection 
due to interference from shore environment noise. 
Four ships in the north are not detected. After add‑
ing the attention mechanism， the algorithm still 
misses two ships. Finally， after adding the two‑way 
frequency spectrum detection， only one ship in the 
north is missed. Compared with the YOLOv4 algo‑
rithm， the detection precision of ships in this area is 
significantly improved. For ship detection in coastal 
areas， the proposed algorithm has a higher precision 
rate and a lower miss rate.

SAR small ship detection results in port area 
scenario are shown in Fig.12. Fig.12 clearly reveals 
that environmental noise is more severe than that in 
the near‑shore area. Buildings in the port area and 
rocky formations along the shore generate strong 
signal reflections， causing significant interference in 
target detection. When only YOLOv4 is used for ob‑
ject detection， there are significant instances of 
missed targets. However， target detection is im ‑
proved after network improvement and attention 

Fig.10　Detection results of various models in the far‑sea ar‑
ea ship detection experiment

Fig.11　Detection results of various models in the coastal 
ship detection experiment

Table 4　Analysis of the ablation experiment results

Index

1
2

3

4

Model

YOLOv4
Improved YOLOv4

Improved YOLOv4+
CBAM

Our method

Precision/%

77.46
89.78

91.54

92.25

Miss 
rate/%
18.82
23.19

17.98

11.09

F1 score

0.792 7
0.827 9

0.865 2

0.905 5
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mechanism adjustment. In this study， the proposed 
method further utilizes strong scattering for mari‑
time target detection， thereby refining the position 
of the target. The experimental results further con‑
firm the effectiveness of the proposed method.

A qualitative analysis of the above three scenar‑
ios indicates that the improvement in the detection 
precision of the proposed method is not obvious 
compared with that of the original deep learning 
method when detecting ships in the open sea area. 
However， the improvement is more obvious when 
detecting ships in the near‑shore and port areas 
based on the reduced false alarm rate caused by land 
and port buildings. Thus， the final precision is sig‑
nificantly improved.

（3） Evaluation of comparative experimental re‑
sults

The quantitative results in Table 5 indicate that 
our method has higher precision than all other five 
algorithms， 1.41% higher than the second highest 
algorithm （EVA algorithm）， and the miss rate also 
reaches the second lowest value. The F1 score of 
our method is only little lower than the EVA algo‑
rithm， and overall， our method achieves better re‑
sults compared to existing algorithms.

（4） Qualitative analysis and evaluation of com ‑
parative experimental results

For the qualitative evaluation， three typical 
scene images are selected for comparison： far‑sea ar‑
eas， dense target scene， and near‑shore land inter‑
ference， as shown in Fig.13. The algorithm achieves 
good results for these scenes. In particular， when 
dealing with dense scenes of small targets， the im‑
age slice contains 24 small targets， 17 of which are 
accurately detected by the EVA algorithm and， 22 
of which are accurately detected by the V5 algo‑
rithm， and there are three false alarms. However， 
the proposed algorithm realizes the accurate detec‑
tion of 23 small targets and only produces two target 
false alarms. At the same time， in coastal scenari‑
os， the effect of the EVA algorithm is far inferior to 
our method. Only Faster R‑CNN and the method 
proposed in this paper have achieved good detection 
for several coastal ships in the southern part of the 
scene. The comparative experiments with the meth‑

Fig.13　Results of small‑ship targets for various models in 
comparative experiments

Table 5　Analysis of the ablation experiment results

Index

1
2
3
4
5
6

Model

SSD
Faster R‑CNN

YOLOv4
Improved YOLOv5

EVA
Our method

Precision/%

81.59
73.79
77.46
86.26
90.84
92.25

Miss 
rate/%
48.95
42.78
18.82
14.33
6.52

11.09

F1 score

0.628 0
0.644 6
0.792 8
0.859 6
0.921 4
0.905 5

Fig.12　Detection results of various models in the port area 
ship detection experiment
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ods described in this section further demonstrate the 
high detection accuracy and low miss rate of the pro‑
posed algorithm in complex and multi‑background 
interference scenarios.

4 Conclusions 

This study introduces an innovative approach 
by combining the SAR small ship detection algo‑
rithm commonly utilized in the image domain with 
an intensity detection method in the frequency do‑
main. To tackle the challenges inherent in SAR 
small‑ship detection， particularly susceptibility to in‑
terference from highly reflective objects on the 
shore， a dual‑domain joint SAR ship target detec‑
tion algorithm is proposed. This algorithm inte‑
grates the lightweight attention mechanism module 
CBAM into the feature extraction stage of the YO ‑
LOv4 algorithm and optimizes its structure to en‑
hance ship target features while suppressing interfer‑
ence images， such as environmental features. The 
proposed SAR small‑ship detection dataset facili‑
tates achieving higher detection precision and lower 
miss rates.

The combined quantitative and qualitative eval‑
uation approach yields superior results in ablation ex‑
periments across far‑sea， near‑shore， and port ar‑
eas， as well as in method comparison experiments 
covering far‑sea areas， small target dense scenes， 
and near‑shore land interference scenarios.

However， experiments reveales a high false 
alarm rate in the ship detection process within port 
areas using the proposed algorithm. Additionally， 
the combination of the two algorithm domains em ‑
ployed in this study is found to be insufficient. 
Therefore， further research efforts should focus on 
developing methods to reduce the false alarm rate of 
SAR small ship detection in complex environments 
and enhance the internal integration of the algorithm 
for improved performance in future studies.
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面向星载 SAR图像的双域联合密集多小舰目标检测算法

贾 鹏 1， 董天成 2， 汪韬阳 3， 张 过 2， 盛庆红 1， 李 俊 1

（1.南京航空航天大学航天学院，南京  211106，中国； 2.武汉大学测绘遥感信息工程国家重点实验室，

武汉  430079，中国； 3.武汉大学遥感与信息工程学院，武汉  430079，中国）

摘要：通过星载合成孔径雷达（Synthetic aperture radar， SAR）进行舰船探测已成为研究热点，但由于海上相干斑

点噪声明显，近岸物体反射干扰强等问题，现有的基于雷达信号域和  SAR 图像特征的小型舰船探测方法无法获

得高精度的结果。为解决上述问题，提出了一种针对空间  SAR 图像的双域联合密集多重小型船舶目标检测方

法，可同时在图像域和频域检测目标。该方法利用注意力机制模块和算法结构调整来提高小船目标特征挖掘能

力。在基于频率的图像生成中，检测方位角和测距方向的极端信号强度值，二者结果互为补充，实现双域联合小

型舰船目标检测。定性和定量的综合评价结果表明，所提出的方法最终精确率可达  92.25%，在开阔海域、沿海

和港区船舶的  SAR 船舶探测方面取得了准确的结果。自建  SAR 小型船舶数据集的测试结果证明了该方法的

有效性和通用性。

关键词：合成孔径雷达；小型船舶探测；深度学习；注意力模块；YOLO；双域联合
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