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Abstract: Safety is the cornerstone of the civil aviation industry and the enduring focus of civil aviation. This paper 
uses air traffic complexity and potential aircraft conflict relationships as entry points to study the operational safety 
level of terminal area flight flows and proposes a deep learning-based method for safety situation awareness in terminal 
area aircraft operations. Firstly， a more comprehensive and precise safety situation assessment features are 
constructed. Secondly， a deep clustering situation recognition model with added safety situation information capture 
layer is proposed. Finally， a spatiotemporal graph convolutional neural network based on attention mechanism is 
constructed for predicting safety situations. Experimental results from a real dataset show that： （1） The proposed 
model surpasses traditional models across all evaluated dimensions； （2） the recognition model ensures that the 
encoded features capture distinctive safety situation information， thereby enhancing model interpretability and task 
alignment； （3） the prediction model demonstrates superior integrated modeling capabilities in both spatial and 
temporal dimensions. Ultimately， this paper elucidates the spatiotemporal evolution characteristics of air traffic safety 
situation levels， offering valuable insights for air traffic safety management.
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0 Introduction 

Currently， the contradiction between the con⁃
tinuously growing air traffic demand and the insuffi⁃
cient available resources is becoming increasingly 
prominent， exacerbating the busy nature of air 
routes and terminal area operations， and intensify⁃
ing the pressure on air traffic control. Mid-air colli⁃
sion has been identified by the International Civil 
Aviation Organization as one of the five high-risk 
events［1］. Air proximity incident is an inevitable step 
in mid-air collisions， and according to the accident 
chain principle， preventing air proximity incident 
can effectively avoid mid-air collisions. Technolo⁃
gies for detecting potential conflicts play a crucial 
role by providing real-time monitoring of aircraft po⁃
sitions， speeds， and altitudes. This allows for the 

proactive identification of potential conflicts based 
on the trajectory vectors of aircraft， thereby aiding 
in the prevention of air proximity incidents.

The terminal area， linking cruise flight above 
with takeoff and landing below， is a complex region 
where the airport surface integrates three-dimension⁃
ally with the air route network. This area is charac⁃
terized by high aircraft maneuverability and traffic 
density， making it a frequent zone for aircraft con⁃
flict incidents. According to the ASRS database， 
557 air proximity incidents occurred in the terminal 
area from 2016 to 2021［2］. Therefore， comprehen⁃
sively considering the traffic complexity of flight 
flows （i.e.， basic traffic flow parameters and aircraft 
maneuverability） and the potential conflict relation⁃
ships among groups of aircraft in the terminal area， 
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intelligently assessing the operational safety situa⁃
tion to enhance controllers’ situational awareness 
and support control decision-making is a core tech⁃
nology to eliminate air proximity. This has signifi⁃
cant scientific and practical value for ensuring air 
traffic safety， protecting lives， implementing pre⁃
cise control strategies， and improving air traffic effi⁃
ciency.

Situation awareness is a concept introduced by 
Endsley in 1988［3］， defined as “within a volume of 
time and space， the perception of the elements in 
the environment， the comprehension of their mean⁃
ing， and the prediction of their status in the near fu⁃
ture”. He proposed a theoretical model of situation 
awareness consisting of three stages， which were 
perception of elements in the environment， compre⁃
hension of the current situation， and prediction of fu⁃
ture status.In recent years， scholars have conducted 
extensive research on situation awareness in various 
air traffic contexts， such as congestion［4-6］， complex⁃
ity［7-9］， safety［10-13］， and environmental［14］ issues， 
achieving significant results that provide a solid foun⁃
dation for this study.

In recent years， machine learning has provided 
new directions for situational awareness issues. 
Scholars have conducted in-depth research on situa⁃
tional awareness in various scenarios within the air 
traffic domain. Generally， in the field of machine 
learning-based situational awareness， scholars have 
transformed situation recognition into a classifica⁃
tion problem and situation prediction into a time se⁃
ries prediction problem. Due to the significant spa⁃
tiotemporal heterogeneity in air traffic， and with the 
widespread application of graph convolutional neural 
networks in recent years， some scholars have con⁃
verted prediction problems into spatiotemporal se⁃
quence prediction problems.

Research outcomes related to the operational 
safety situational awareness in air traffic primarily fo⁃
cus on two aspects： the micro-level aircraft poten⁃
tial conflict collision risk and the macro-level overall 
airspace operational risk. Most studies approach the 
subject from the perspective of potential conflict and 
collision， utilizing various risk analysis models［15］ 
（including the Reich collision risk model， the poten⁃

tial conflict area-based collision risk model， the posi⁃
tion error probability-based collision risk model， the 
stochastic differential equation-based collision flight 
model， the event-based collision risk model， and 
the accident number-based risk analysis model） to 
study collision risks between aircraft. However， 
these studies describe air traffic safety situations 
solely from the perspective of potential conflict 
events and neglect the complexity of air traffic flight 
flows. This results in a situational awareness pro⁃
cess that lacks a holistic view， thereby limiting the 
ability to perceive， understand， and predict safety 
risks.

Therefore， in recent years， some scholars have 
combined macro-level traffic complexity with micro-

level aircraft potential conflicts to study the safety 
situational awareness of aircraft operations in air⁃
space from the perspective of complex networks. 
The main approach involves constructing potential 
conflict situation networks， mining situational repre⁃
sentation elements and achieving situational aware⁃
ness. Being data-driven， it is more capable of reveal⁃
ing the implicit information within the data. Rele⁃
vant scholars have established potential conflict rela⁃
tionships between aircraft based on methods such as 
relative physical distance between aircraft［16］， 
ACARS communication distance［17］， potential con⁃
flict probability and target safety level［11］， and three-

dimensional velocity obstacle models［18］. They then 
constructed potential conflict situation networks 
among aircraft， extract network attributes as situa⁃
tional representation elements， and used traditional 
clustering algorithms［11］， independent component 
analysis methods［17］， and other techniques to identify 
airspace operational safety situations. Methods like 
least squares support vector machine （LSSVM）［18］ 
and long short-term memory （LSTM）［19］ were em ⁃
ployed to predict airspace operational safety situa⁃
tions.

In terms of safety situation element extraction， 
existing research often focuses solely on attributes 
of the potential conflict network （e.g.， average node 
degree， average strength， average weighted cluster⁃
ing coefficient， network efficiency， network densi⁃
ty， etc.） to mine situation representation elements. 
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This approach tends to overlook the coupling effects 
of air traffic flow parameters and aircraft maneuver⁃
ability characteristics on safety situation awareness.

Regarding safety situation recognition， most 
current studies directly apply clustering algorithms 
to high-dimensional features. However， the existing 
research has shown that the performance and effi⁃
ciency of traditional clustering algorithms significant⁃
ly decrease in high-dimensional spaces， thus leading 
to the “curse of dimensionality” problem［20-22］， 
which affects the reliability and scientific validity of 
safety situation level classification results. Some 
scholars have combined feature dimensionality re⁃
duction algorithms with clustering algorithms to im ⁃
prove the clustering quality. Although the clustering 
quality can be enhanced， the processes of dimen⁃
sionality reduction and clustering are independent of 
each other， and the reduced features may lose the 
ability to capture safety risk information， thus lead⁃
ing to a mismatch between the goals of dimensionali⁃
ty reduction and clustering.

Furthermore， in the field of safety situation pre⁃
diction， research indicates significant spatiotemporal 
heterogeneity in air traffic［14， 23］. Existing studies often 
consider only the temporal characteristics of safety 
situation levels and ignore the spatial characteristics 
caused by airspace structure and flight procedures.

In summary， to address the research gaps in 
the aforementioned three aspects， this paper propos⁃

es a deep learning-based method for safety situation 
awareness in terminal area aircraft operations as 
shown in Fig.1. The main contribution can be sum ⁃
marized in four-folds.

（1） Following basic principles of measurabili⁃
ty， accessibility， timeliness， and multidimensionali⁃
ty， we construct safety situation assessment feature 
matrix from three perspectives： basic traffic flow 
parameters， aircraft maneuverability metrics， and 
aircraft potential conflict situation network attri⁃
butes.

（2） Based on an autoencoder deep clustering al⁃
gorithm， we introduce a safety situation information 
capture layer and propose a risk-aware deep cluster⁃
ing model （RADCM） to ensure that the dimension⁃
ality-reduced features capture distinctive safety situa⁃
tion information， thus achieving precise and efficient 
classification of safety situation levels.

（3） We incorporate attention based spatial-tem⁃
poral graph convolutional networks （ASTGCN） to 
explore the spatiotemporal heterogeneity of safety 
situations， enabling accurate prediction of safety sit⁃
uation levels.

（4） This paper analyzes the characteristics of 
terminal area safety levels from three dimensions： 
the hourly distribution of safety level percentages， 
the duration of safety levels， and the spatiotemporal 
evolution of safety levels. It provides data support 
and reference for air traffic safety management， as⁃

Fig.1　Main research content of safety situation awareness
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sisting air traffic control departments in identifying 
high-risk areas and periods. This， in turn， enables 
the implementation of targeted measures to enhance 
safety management at these critical times and loca⁃
tions.

1 Methodology 

1. 1 Definitions and problem description　

Definition 1 Terminal area airspace network 
G s

To describe the characteristics of aircraft take⁃
off and landing operations and topological structure 
of the terminal area airspace， an undirected un⁃
weighted graph G s = {V s，E s，As } is used to repre⁃
sent the terminal area network structure. Here V s =
{ v s

1，v s
2，…，v s

N } represents the set of sub-airspace 
nodes within a terminal area， and N denotes the 
number of sub-airspace nodes in the terminal area； 
E s represents the set of edges， indicating connectivi⁃
ty between sub-airspace nodes； As = ( a s

ij ) ∈ RN × N is 
the adjacency matrix of this network， where as

ij = 1 
indicates a connection between nodes vs

i and vs
j.

Definition 2 Potential conflict relationship 
Potential conflict relationship refers to situa⁃

tions in air traffic management where， based on the 
current position， heading， and speed of aircraft， the 
future trajectory vectors of two or more aircraft may 
lead to conflict. It is considered a pre-alert state oc⁃
curring before an actual conflict arises.

Definition 3 Potential conflict situation time 
⁃varying network G p

t

As shown in Fig.2， the active aircraft at differ⁃
ent time slices are used as network nodes， and the 
potential conflict relationships between aircraft form 
the edges， thereby constructing an undirected un⁃
weighted graph G p

t = {V p
t ，E p

t ，A p
t } to represent the 

potential conflict situation network. Here， t repre⁃
sents the tth time slice， V p

t = { vp
t1，vp

t2，…，vp
tM t } the 

set of active aircraft nodes， and M t the number of ac⁃
tive aircraft nodes at time t； E p

t  represents the set of 
edges at time t， indicating potential conflict relation⁃
ships between active aircraft； A p

t = ( ap
ij ) ∈ RM t × M t is 

the adjacency matrix of this network， where ap
ij = 1 

indicates a potential conflict relationship between 
two active aircraft.

Definition 4 Safety situation assessment fea⁃
ture matrix X

As shown in Fig.3， this paper defines the air⁃
craft operation safety situation assessment feature 
matrix as X= ( X 1，X 2，…，XS ) T ∈ R S × F × N， repre⁃
senting features of all nodes over all time sequences. 
Here F represents the number of features， N the 
number of sub-airspace nodes， and S the total num ⁃
ber of time sequences. X t ∈ RF × N represents the met⁃
rics matrix at time t.

Fig.3　Data structure diagram

Fig.2　Illustration of potential conflict situational time-vary⁃
ing network
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Problem description 1 Safety situational 
awareness

This paper studies the representation of the op⁃
erational safety level of flight flows in terminal areas 
based on trajectory operational data by utilizing traf⁃
fic complexity and potential aircraft conflict relation⁃
ships.

Problem description 2 Safety situation rec⁃
ognition

This problem can be defined as the quantitative 
classification of historical air traffic operation states 
based on the assessment feature matrix representing 
the safety situation. The core is to establish and 
train a mapping function f1 to cluster the safety situa⁃
tion features at different times， thereby obtaining 
the safety situation levels L.

[ X 1,X 2,…,XS ] T¾ ®¾¾
f1 [ ( X 1,L 1 ) ,( X 2,L 2 ),…,

( X S,LS )] T

Problem description 3 Safety situation pre⁃
diction

This problem can be defined as establishing and 
training a mapping function f2 based on the terminal 
area airspace network G s， historical feature matrix， 
and historical safety situation levels to predict the 
safety situation levels for the next R time steps.

[ ( X 1，L 1 )，( X 2，L 2 )，…，( X S，LS )] T
¾ ®¾¾¾¾
f2，G

s

[ ( X S + 1，LS + 1 )，( X S + 2，LS + 2 )，…，( X S + R，LS + R )] T

1. 2 Potential conflict situation network con‑
struction model　

The potential conflict relationships between ac⁃
tive aircraft are characterized by their dynamic com ⁃
plexity and non-linearity. By comprehensively con⁃
sidering the three-dimensional spatial position infor⁃
mation and flight trajectory data （including heading 
and speed） of aircraft， this study establishes poten⁃
tial conflict edges through geometric methods to 
construct the potential conflict situation network. 
The following two conditions for defining potential 
conflict edges are proposed.

（1） Using the three-dimensional relative dis⁃
tance between active aircraft as the standard for con⁃
structing potential conflict edges has the advantage 

of being quick and intuitive. When the distance be⁃
tween aircraft is less than the threshold D， it is con⁃
sidered that there is a potential conflict relationship 
between the two aircraft， forming a potential con⁃
flict edge.

（2） Satisfying the velocity obstacle relation⁃
ship［24］. Firstly， establish an ellipsoidal protection 
zone， then construct a three-dimensional velocity 
obstacle region. This region represents all possible 
velocity vectors that could lead to a collision with 
the aircraft. Next， determine whether the relative 
velocity between the two aircraft falls within this ob⁃
stacle region to assess whether there is a potential 
conflict between the aircraft. The specific method is 
as follows.

Step 1 Establishing the ellipsoidal protection 
zone. In this study， the terminal area is taken as the 
research object， so a Cartesian coordinate system is 
established with the airport as the origin， in which 
the positive Z-axis points upwards， the positive X-

axis east， and the positive Y-axis north. Aircraft op⁃
erating in the airspace must maintain a certain hori⁃
zontal or vertical separation； therefore， an ellipsoi⁃
dal protection zone is established to simulate the ac⁃
tual flight state of the aircraft， as shown in Fig.4. 
Let the coordinates of aircraft in the terminal area be 
( xB，yB，zB ). The ellipsoidal protection zone can be 
represented as

( )X - xB
2

d 2
v

+
( )Y - yB

2

d 2
v

+ ( )Z - zB
2

d 2
l

≤ 1 (1)

where dv is the semi⁃major axis of the ellipsoid in 
the x⁃ and y⁃axis directions， and dl the semi⁃major 
axis of the ellipsoid in the z⁃axis direction.

Step 2 Constructing the three-dimensional ve⁃
locity obstacle region and determining the existence 
of potential conflict relationships. As shown in 
Fig.5， tangents are drawn from the active aircraft 
A ( xA，yA，zA ) in the airspace to the sides of the 

Fig.4　Illustration of ellipsoidal flight protection zone
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flight protection zone of aircraft B， forming a three-

dimensional velocity obstacle region. The relative 
velocity V r = VA - VB is then evaluated to deter⁃
mine whether it falls within the three-dimensional 
velocity obstacle region. If the relative velocity falls 
within this region， a potential conflict relationship 
exists， forming a potential conflict edge； other⁃
wise， no potential conflict relationship exists. The 
modeling process is as follows.

The ellipsoid equation is given by
( X - xB )2

d 2
v

+ (Y - yB )2

d 2
v

+ ( Z - zB )2

d 2
l

= 1 (2)

Let the direction vector of the relative velocity 
be ( vx，vy，vz ). Then the parametric equation of the 
line representing the relative velocity is given by

X - xA

vx
= Y - yA

vy
= Z - zA

vz
= m (3)

By combining these equations， we obtain the 
discriminant Δ. A potential conflict relationship be⁃
tween the aircraft exists if the following two condi⁃
tions are simultaneously satisfied： （1） Δ > 0，indi⁃
cating that the line intersects the surface at two 
points； （2）cos α > 0，0° < α < 90°， where α is the 
angle between the relative velocity and line seg⁃
ment AB.

1. 3 Safety situation assessment feature matrix　

Aircraft operations in the terminal area are char⁃
acterized by complex procedures and highly dynamic 
maneuvering states. To comprehensively assess the 
safety situation of aircraft operations and identify po⁃
tential risks， this study constructs safety situation 
assessment feature matrix from three perspectives： 
basic traffic flow parameters， aircraft maneuverabili⁃
ty metrics， and aircraft potential conflict situation 
network attributes.
1. 3. 1 Basic traffic flow parameters　

The basic traffic flow parameters include flight 
flow， average horizontal speed， average vertical 

speed， average horizontal speed ratio， and average 
vertical speed ratio.

（1）Flight flow， denoted as Q t， is defined as 
the number of aircraft executing flight tasks， either 
in the departure climb or in the approach descent 
phase within a unit time slice in airspace.

Q t = count { Flight }t (4)
where  { Flight }t represents the set of aircraft execut⁃
ing flight tasks， either in the departure climb or in 
the approach descent phase in airspace at time t.

（2）Average horizontal speed， denoted as ------V h
t ， 

is defined as the average horizontal flight speed of 
aircraft within a unit time slice in airspace.

------
V h

t = ∑
i = 1

Qt

V hi
t /Q t (5)

where V hi
t  represents the horizontal flight speed of 

aircraft i in airspace at time t.
（3）Average vertical speed， denoted as ------V v

t ， is 
defined as the average vertical flight speed of aircraft 
within a unit time slice in airspace.

------
V v

t = ∑
i = 1

Qt

V vi
t /Q t (6)

where V vi
t  represents the vertical flight speed of air⁃

craft i in airspace at time t.
（4）Average horizontal speed ratio， denoted as 

R
------
V h

t ， is defined as the ratio of average horizontal 
flight speed to the maximum horizontal flight speed 
of all aircraft within a unit time slice in airspace. It 
describes the deviation of average horizontal speed 
of the flight flow from the maximum value， reflect⁃
ing the relative speed state in the horizontal direc⁃
tion.

R
------
V h

t = ------
V h

t / max _V h
t (7)

where max _V h
t  represents the maximum horizontal 

flight speed of all aircraft in airspace at time t.
（5）Average vertical speed ratio， denoted as 

R
------
V v

t ， is defined as the ratio of average vertical 
flight speed to the maximum vertical flight speed of 
all aircraft within a unit time slice in airspace， re⁃
flecting the relative speed state in vertical direction.

R
------
V v

t = ------
V v

t / max _V v
t (8)

where max _V v
t  represents the maximum vertical 

flight speed of all aircraft in airspace at time t.

Fig.5　Three-dimensional velocity obstacle model
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1. 3. 2 Aircraft maneuverability metrics　

Aircraft maneuverability metrics include aver⁃
age horizontal speed change， average altitude 
change， average vertical speed change， average 
heading change， horizontal speed change exceed⁃
ance， altitude change exceedance， vertical speed 
change exceedance， and heading change exceedance.

（1）Average horizontal speed change， denoted 
as - -- -----ΔV h

t ， is defined as the average change in horizon⁃
tal flight speed of aircraft within a unit time slice in 
airspace.

- -- -----ΔV h
t = ∑

i = 1

Qt

ΔV hi
t /Q t (9)

where ΔV hi
t  represents horizontal speed change of 

aircraft i in airspace at time t.
（2）Average altitude change， denoted as - -----ΔA t， 

is defined as the average change in altitude of air⁃
craft within a unit time slice in airspace.

- -------ΔA t = ∑
i = 1

Qt

ΔA i
t /Q t (10)

where ΔA i
t represents the altitude change of aircraft 

i in airspace at time t.
（3）Average vertical speed change， denoted as 

- -- -----ΔV v
t ， is defined as average change in vertical flight 

speed of aircraft within a unit time slice in airspace.
- -- -----ΔV v

t = ∑
i = 1

Qt

ΔV vi
t /Q t (11)

where ΔV vi
t  represents the vertical speed change of 

aircraft i in the airspace at time t.
（4）Average heading change， denoted as - -------ΔH t， 

is defined as average change in heading of aircraft 
within a unit time slice in airspace.

- -- -----ΔH t = ∑
i = 1

Qt

ΔH i
t /Q t (12)

where ΔH i
t  represents the heading change of aircraft 

i in airspace at time t.
（5）Horizontal speed change exceedance， de⁃

noted as Cos t， is defined as the number of aircraft 
within a unit time slice in airspace whose horizontal 
speed change exceeds the threshold.

Cos t = ∑
i = 1

Qt

ai
t    ai

t =ì
í
î

1    ΔV hi
t > limit_ΔV h

0    ΔV hi
t ≤ limit_ΔV h (13)

where ai
t represents the state variable of horizontal 

speed change for aircraft i in airspace at time t and 

limit_ΔV h the threshold for horizontal speed change.
（6）Altitude change exceedance， denoted as 

Coa t， is defined as the number of aircraft within a 
unit time slice in airspace whose altitude change ex⁃
ceeds the threshold.

Coa t = ∑
i = 1

Qt

bi
t    bi

t =ì
í
î

1    ΔA i
t > limit_ΔA

0    ΔA i
t ≤ limit_ΔA

(14)

where bi
t represents the state variable of the altitude 

change for aircraft i in airspace at time t and 
limit_ΔA the threshold for altitude change.

（7）Vertical speed change exceedance， denoted 
as Cov t， is defined as the number of aircraft within a 
unit time slice in airspace whose vertical speed 
change exceeds the threshold.

Cov t = ∑
i = 1

Qt

ci
t    ci

t =ì
í
î

1    ΔV vi
t > limit_ΔV v

0    ΔV vi
t ≤ limit_ΔV v (15)

where ci
t represents the state variable of vertical 

speed change for aircraft i in airspace at time t and 
limit_ΔV v the threshold for vertical speed change.

（8）Heading change exceedance， denoted as 
Coh t， is defined as the number of aircraft within a 
unit time slice in the airspace whose heading change 
exceeds the threshold.

Coh t = ∑
i = 1

Qt

d i
t     d i

t =ì
í
î

1    ΔH i
t > limit_ΔH

0    ΔH i
t ≤ limit_ΔH

(16)

where d i
t  represents the state variable of the heading 

change for aircraft i in airspace at time t and 
limit_ΔH the threshold for heading change.
1. 3. 3 Potential conflict situation network attri⁃

butes　

The aircraft potential conflict situation network 
attributes include potential conflict quantity， poten⁃
tial conflict rate， number of aircraft clusters， num⁃
ber of aircraft in the largest cluster， network densi⁃
ty， and average clustering coefficient.

（1）Potential conflict quantity， denoted as Cq t， 
is defined as the number of aircraft with potential 
conflict relationships within a unit time slice in the 
airspace.

Cq t = count { Flight_in_conflict }t (17)
where { Flight_in_conflict }t represents the set of air⁃
craft with potential conflict relationships in the air⁃
space at time t.

（2）Potential conflict rate， denoted as Cr t， is 
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defined as the ratio of the number of aircraft with po⁃
tential conflict relationships to the flight flow within 
a unit time slice in the airspace.

Cr t = Cq t /Q t (18)
（3）Number of aircraft clusters， denoted as 

Cc t， is defined as the number of connected compo⁃
nents in the aircraft potential conflict situation net⁃
work within a unit time slice.

（4）Number of aircraft in the largest cluster， de⁃
noted as Cmc t， is defined as the number of aircraft 
in the largest connected component of the aircraft 
potential conflict situation network within a unit 
time slice.

（5）Network density， denoted as Nd t， is de⁃
fined as the degree of connectivity in the aircraft po⁃
tential conflict situation network within a unit time 
slice.

Nd t = 2vt /et ( et - 1 ) (19)
where vt denotes the number of edges and et the 
number of nodes in the network at time t.

（6）Average clustering coefficient， denoted as 
Acc t， is defined as the average clustering coefficient 
of all target nodes in the aircraft potential conflict sit⁃
uation network within a unit time slice.

Acc t = 1
n ∑

i = 1

Qt

C i
t (20)

where C i
t  denotes the clustering coefficient of node i 

at time t.

1. 4 Safety situation levels recognition model　

The deep clustering algorithm can improve the 
performance of clustering on high-dimensional da⁃
ta［25］. To address the issues of dimensionality confu⁃
sion and inconsistent tasks raised earlier， and to en⁃
hance clustering performance and model interpret⁃
ability， this paper proposes a deep clustering net⁃
work model incorporating a safety situation informa⁃
tion capture layer， specifically designed for the field 
of air traffic aircraft operation safety situation recog⁃
nition. This addition ensures that the encoded fea⁃
tures effectively capture discriminative information 
regarding safety situations. The model comprises 
three modules： an autoencoder， a clustering layer， 
and a risk capture layer. It incorporates reconstruc⁃
tion loss， clustering loss， and classification loss
（risk information capture loss）， as depicted in 
Fig.6. By jointly training these three loss functions， 
the model simultaneously considers data reconstruc⁃
tion ability， clustering performance， and the capabil⁃
ity to capture risk information from encoded fea⁃
tures. Through the backpropagation， the parame⁃
ters are optimized to ensure that the three layers are 
interconnected and integrated to achieve balanced 
optimization.

This approach， as illustrated in the following 
equation， helps the model learn more representative 
and generalizable feature representations， thereby 
improving the performance and effectiveness of the 
deep clustering model in practical applications. In 

Fig.6　Flow chart of risk-aware deep clustering model
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the recognition module， the aircraft operational safe⁃
ty situation feature matrix X ∈ R S × F × N is recon⁃
structed to X ∈ R ( )S ⋅ N × F to conform to the model in⁃
put.

Losstotal = ∂Lossrecon + βLossclass + γLosscluster  (21)
where Losstotal represents the total loss， Lossrecon  the 
reconstruction loss， Lossclass the classification loss， 
and Losscluster   the clustering loss. The coefficients ∂，
β and γ correspond to the weights assigned to differ⁃
ent losses.
1. 4. 1 Autoencoder　

An autoencoder is an unsupervised learning 
neural network consisting of an encoder and a decod⁃
er. It effectively captures complex and nonlinear pat⁃
terns in the data by learning and reconstructing the 
input data［26］. This allows the autoencoder to pro⁃
vide richer and more discriminative feature represen⁃
tations for safety situational awareness clustering.

The encoder is responsible for transforming the 
input data into latent codes to capture the underlying 
representations of the data. Its forward propagation 
process can be described by
X encoded = Encoder ( )X =

Re LU ( )Linear ( )X + Dropout ( )Linear ( )X
(22)

where X encoded represents the encoded features， X the 
original features， Re LU the activation function， 
Linear the fully connected layer， and Dropout the 
dropout layer used to prevent overfitting.

The decoder receives the output from the en⁃
coder and restores it to the original input data 
through a series of transformations. Its goal is to re⁃
construct the original input data as accurately as pos⁃
sible to maintain consistency with the original data. 
The forward propagation process can be described 
by
X recon = Decoder ( )X encoded = Re LU ( Linear ( )X encoded +

Dropout ( )Linear ( )X encoded ) (23)
where X recon represents the reconstructed features.

The feature matrix often includes both continu⁃
ous and discrete features. The mean squared error 
loss function is used for continuous features， while 
the cross-entropy loss function is employed for dis⁃
crete features， as described by

Losscont = 1
n ∑

i = 1

n

( )X cont
i - X cont

i,recon
2 (24)

Lossb
cate = - 1

n ∑
i = 1

n

[ X b,cate
i log X b,cate

i,recon +

( )1 - X b,cate
i log ( )1 - X b,cate

i,recon ] (25)

Lossm
cate = - 1

n ∑
i = 1

n

∑
c = 1

C

X m,cate
i,c log X m,cate

i,recon (26)

Losscate = Lossm
cate + Lossb

cate (27)
Lossrecon = ηLosscont + λLosscate (28)

where n is the number of samples， Losscont the loss 
for continuous features， Losscate the loss for discrete 
features， Lossb

cate the loss for binary discrete fea⁃
tures， Lossm

cate the loss for multi-class discrete fea⁃
tures， X cont

i  the original continuous features， X cont
i，recon 

the reconstructed continuous features， X b，cate
i  true la⁃

bel for the original binary discrete features， X b，cate
i，recon 

the predicted probability for the reconstructed binary 
discrete features， C the total number of classes， 
X m，cate

i，c  the true label for the original multi-class dis⁃
crete features， and X m，cate

i，recon  the predicted probability 
for the reconstructed multi-class discrete features. 
The coefficients η and λ correspond to the weights 
assigned to different losses.
1. 4. 2 Clustering layer　

The K-means algorithm is a commonly used 
unsupervised learning algorithm for partitioning a da⁃
taset into K distinct clusters. This method is sim ⁃
ple， efficient， and easy to interpret and understand， 
exhibiting good scalability for large-scale datasets. 
Therefore， in this paper， the K-means algorithm is 
employed at the clustering layer， using the encoded 
features as the input for this layer. The minimized 
objective function， used as the loss function for the 
clustering layer， is given by

Losscluster = ∑
i = 1

n

∑
j = 1

k

sij ( X i,encoded - uj )2 (29)

where sij indicates whether sample i belongs to clus⁃
ter j， and uj the jth cluster center.
1. 4. 3 Safety risk information capture layer　

To ensure that the encoded features retain suffi⁃
cient capability to express safety situational aware⁃
ness， this paper introduces a safety risk capture lay⁃
er. This layer is a supervised learning layer designed 
to use encoded features to distinguish whether ac⁃
tive aircraft are in potential conflict. The higher the 
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classification accuracy， the stronger the risk capture 
capability of the encoded features. The cross-entro⁃
py loss function is used as the loss function for this 
layer， as shown in Eq.（30）. By incorporating the 
supervised learning layer， the specific contributions 
of the encoded features to the operational safety situ⁃
ational awareness of aircraft can be more easily inter⁃
preted.

Lossclass = - 1
n ∑

i = 1

n
é
ë

ù
ûyi log yi + ( )1 - yi log ( )1 - yi

(30)
where yi represents true labels， and yi the predicted 
probabilities that the sample is classified as positive.

1. 5 Safety situation levels prediction model　

The terminal area connects with cruising flights 
above and with takeoff and landing operations be⁃
low， forming a complex interwoven region that inte⁃
grates the airport surface and the route network. 

This area is characterized by high aircraft maneuver⁃
ability and traffic density. In the field of air traffic 
safety situational awareness prediction， to fully con⁃
sider the spatiotemporal heterogeneity of situational 
evolution within the terminal area， this paper pro⁃
poses an attention based spatial-temporal graph con⁃
volutional network model that accounts for spatio⁃
temporal coupling changes. The situational levels 
are used as new features， and a time window of T 
moments is adopted， sliding by one moment at a 
time， to divide the dataset. The dataset X ∈ R S × F × N 
is reshaped to X ∈ R S′× N × F × T， where S′ represents 
the new number of samples. This model primarily 
consists of two modules： the attention mechanism 
and the convolutional module. Some parts of the 
modules involve dimension order adjustments， 
which are provided in the code. The framework is 
shown in Fig.7.

1. 5. 1 Attention mechanism　

The attention mechanism refers to a technique 
in neural networks that simulates the human atten⁃
tion focusing behavior， allowing the model to auto⁃
matically decide which part of the information to fo⁃
cus on when processing large-scale input data. This 
enhances the efficiency of data processing and im ⁃
proves the model’s performance. This paper inte⁃

grates self-attention mechanisms， temporal atten⁃
tion mechanisms， and spatial attention mechanisms 
into the model to capture the complex relationships 
between features and the spatiotemporal heterogene⁃
ity of the data， thereby improving the model’s per⁃
formance in analyzing spatiotemporal data tasks.

（1）Self-attention mechanism
The self-attention mechanism originates from 

Fig.7　Attention based spatial-temporal graph convolutional networks
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the Transformer model proposed in the paper “At⁃
tention is All You Need” by Google team［27］， which 
initiated a new paradigm in the field of deep learn⁃
ing. The self-attention mechanism allows the model 
to dynamically adjust its focus among different posi⁃
tions within a single sequence， assessing the interre⁃
lationships and importance of various features. This 
helps the model identify the features most crucial for 
prediction. This paper uses the scaled dot-product 
attention mechanism to extract the weights among 
features. The calculation steps are as follows， 
where the input is X ∈ R S′× N × F × T and the output 
X self ∈ R S′× N × F × T.

Step 1 Compute Q （Query）， K （Key）， and 
V （Value）；

Step 2 Calculate the attention scores matrix 
using Q，K and V by

A= Q ⋅K T

F in

(31)

where F in  is the dimension of features.
Step 3 Output the self-attention weighted ma⁃

trix by
X self = soft max ( A )V ∈ R S′× N × F × T (32)

（2）Temporal attention mechanism
As a special type of recurrent neural network 

（RNN） ， LSTM can capture long-term dependen⁃
cies in time series data through its unique internal 
structure， Therefore， this paper uses the LSTM 
layer to capture the long-term dependencies and tem ⁃

poral dynamics in the time series data. Then， a fully 
connected layer is used to map the hidden states out⁃
put by the LSTM layer at each time step （which 
contain temporal dynamic information） into a new 
feature space. The attention weights for each time 
step relative to other time steps are generated using 
a softmax function， ultimately producing a time at⁃
tention-weighted matrix. The input is 
X self ∈ R S′× N × F × T， reshaped to X self ∈ R ( )S′⋅ N × T × F. 
x t = X self[：，t，：]，t ∈ { 1，2，…，T } is the input at the 
current time step t. The output is XTemp ∈ R S′× N × F × T.

Step 1 Output time weights through the 
LSTM model 

Tw = soft max ( )Wm ⋅ ht + bm ∈ R S′× N × T × T (33)
where Tw is the time weight matrix， Wm the weight 
matrix for the fully connected layer， h t the hidden 
state and bm the bias term for the fully connected lay⁃
er.

Step 2 Output time attention weighted matrix 
by 

XTemp = X self ⋅Tw ∈ R S′× N × F × T (34)
（3）Spatial attention mechanism
This paper employs a spatial attention mecha⁃

nism to adaptively capture the spatial correlations of 
safety situational awareness between nodes in the 
airspace network through multiple learnable parame⁃
ters and matrix operations. The input is 
XTemp ∈ R S′× N × F × T and the output is S ∈ R S′× N × N. 
The spatial attention weight matrix is computed as

Input: Safety situation feature matrix and levels X and adjacency matrix A
Data Processing
Model Initialization
Model Training:
 For each training epoch
  For each mini⁃batch:
   For each node and time step in the batch:
    Pass X through the self⁃attention mechanism layer (Eqs.（31—32）) to obtain X self

    Pass X self through the temporal attention mechanism layer (Eqs.（33—34）) to obtain XTemp

    Pass XTemp through the spatial attention mechanism layer (Eqs.（35—36）) to obtain S
    Pass X,S and A through the spatial convolution layer (Eqs.（37—41）) to obtain X cheb

    Pass X cheb through the temporal convolution layer (Eq.（42）) to obtain X time

    pass X,X cheb through the residual layer (Eq.（43）) to obtain X res

    Pass X res through the classification layer (Eq.（44）) to obtain the final output Y
    Compute the total loss, perform backpropagation, and update model parameters.
  Save the model parameters for the current epoch
Output：Select the model with the best performance on the validation set as the final ASTGCN model
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S= P s ⋅ σ (( XTempW 1 )W 2(W 3XTemp )
T

+ b s) (35)

Sw = soft max ( S ) (36)
where P s，W 1，W 2 and W 3 are learnable parameters.
1. 5. 2 Graph convolution　

（1）Graph convolution in spatial dimension
The terminal area airspace network is a typical 

non-Euclidean data structure. Therefore， this paper 
uses a spectral graph convolutional neural network 
（GCN）［28］ to explore the spatial dynamic relation⁃
ships of air traffic safety situational awareness in the 
terminal area. In spectral GCN， the convolution op⁃
eration is performed in the spectral domain of the 
graph （i. e.， the domain of the graph’s eigenvalues 
and eigenvectors）. This utilizes the eigen decompo⁃
sition of the graph Laplacian matrix， combining fea⁃
tures of nodes with characteristics of the graph for 
convolution operations. The specific steps are as fol⁃
lows， where the input is X ∈ R S′× N × F × T and 
S ∈ R S′× N × N， and the output is X cheb ∈ R S′× N × F spcace × T.

Step 1 Spectral representation of graph sig⁃
nals 

In graph theory， each graph can be represented 
by a corresponding symmetric normalized Laplacian 

matrix， denoted as L= In - D
- 1

2 AD
- 1

2， where D 
represents the degree matrix， A the adjacency ma⁃
trix， and In the identity matrix of order n. The eigen 
decomposition of L yields L= UΛU-1 = UΛU T， 
where Λ is a diagonal matrix of eigenvalues， and U 
the matrix of eigenvectors （Fourier basis）. The 
Fourier transform of the graph signal x t = X [：，：，：
，t ]，t ∈ { 1，2，…，T } at time t is x̂ t = U T x t and the 
inverse transform x t = Ux̂ t.

Step 2 Graph convolution operation 
Graph convolution is performed by using a diag⁃

onalized linear operator defined in the Fourier do⁃
main to equivalently replace the classical convolu⁃
tion operator［29］. The convolution operation on 
graph G s with a filter gθ is given by
gθ ∗G s x t = gθ( L ) x t = gθ(UΛU T ) x t = Ugθ( Λ )U T x t

(37)
where “∗G s”denotes a graph convolution operation.

To reduce computational costs， the convolu⁃
tion filter is approximated using Chebyshev polyno⁃

mials. The Chebyshev recursive expression is given 
by

Tk( x ) = 2xTk - 1( x ) - Tk - 2( x ) (38)
where T 0( x ) = 1 and T 1( x ) = x. Therefore， the 
graph convolution operation can be expressed as

g θ ∗G s x t = gθ( L ) x t ≈ ∑
k = 0

K - 1

θkTk( L͂ ) x t (39)

L͂= ( 2/λmax ) L- In (40)
where θk is the Chebyshev polynomial coefficient，
and λmax the largest eigenvalue of the Laplacian ma⁃
trix.

Adding spatial attention weights gives

g θ ∗G s x t = gθ( L ) x t ≈ ∑
k = 0

K - 1

θk( )Sw ⊙Tk( )L͂ x t = y t (41)

where “⊙” represents the Hadamard product. Inte⁃
grating outputs across all time steps yields X cheb =
( y1，y2，…，yT ) ∈ R S′× N × F space × T， where F space denotes 
the number of spatial convolution filters.

（2）Graph convolution in temporal dimension
To further extract the dynamic changes and de⁃

pendencies of the features processed by the graph 
convolution layer in the temporal dimension， this pa⁃
per uses 2D convolution to incorporate information 
from adjacent time steps， forming richer and more 
expressive temporal feature representations. The in⁃
put is X cheb ∈ R S′× N × F spcae × T and the output is 
X time ∈ R S′× N × F time × T， where F time denotes the number 
of temporal convolution filters.

X time = Time_conv2d( X cheb ) (42)
1. 5. 3 Residual connection and layer normaliza⁃

tion　

Residual connections are introduced to address 
issues such as overfitting， gradient vanishing， and 
gradient explosion caused by network depth. 2D 
convolution is used to adjust feature dimensions， 
and layer normalization is applied to stabilize the 
training process and accelerate convergence. A 
Dropout layer is also added to prevent model overfit⁃
ting. The input is X ∈ R S′× N × F × T and 
X time ∈ R S′× N × F time × T， and the output is 
X res ∈ R S′× N × F time × T.

X res = Dropout (Layernorm ( Re LU ( X time +

Res_conv2d( X ) ) ) ) (43)
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1. 5. 4 Final convolution and classifier layer　

The final convolution refines and transforms 
the features processed by the main modules， aggre⁃
gating information learned across different feature 
channels to achieve the final situational level classifi⁃
cation task. The input is X res ∈ R S′× N × Ftime × T， and the 
output is Y ∈ R S′× N × C × T ′， where T ′ denotes the 
number of future time steps to be predicted， and C 
the number of prediction categories.

Y= Classifier_conv2d( final_conv2d( X res ) )  (44)

2 Numerical Experiment 

This section will conduct various experiments 
based on the ADS-B data in the terminal area of Chi⁃
nese civil aviation to evaluate the performance of the 
models and analyze the spatiotemporal coupling evo⁃
lution patterns of safety situational levels.

2. 1 Date description　

Xi’an Terminal Area is one of the largest and 
busiest terminal areas in northwest China. The area 
features a dense distribution of both military and ci⁃
vilian airports， with an ever-increasing number of 
flights. In 2019， Xi’an Xianyang International Air⁃
port ranked the seventh nationwide in terms of pas⁃
senger throughput as shown in Fig.8（a）. There⁃
fore， this paper selects the Xi’an Terminal Area as 
the experimental subject.

There are five approach sectors in the Xi’an 
terminal area， with altitude range boundaries set at 
1 800， 3 000， and 6 000 m. The flight traffic exhib⁃
its a clear north-south flow pattern. To describe the 
spatiotemporal characteristics of flight flows in the 
airspace of the terminal area， as shown in Fig.8（b）， 
the terminal area is divided into four sub-airspaces 
（Airspace 1： 0—1 800 m； Airspace 2： 1 800—
3 000 m， Airspace 3： south of 3 000—6 000 m； 
Airspace 4： north of 3 000—6 000 m）. What is 
more，referring to the aircraft arrival and departure 
procedures， a sub-airspace adjacency matrix is con⁃
structed. Accordingly， ADS-B data from the four 
sub-airspaces， spanning from July 1， 2019， to July 
7， 2019， are selected.

Given the complex airspace structure and the 
dynamic maneuvering of aircraft in the terminal ar⁃

ea， rapid detection and response to potential safety 
issues are crucial to ensuring flight safety. There⁃
fore， this paper constructs a time-varying potential 
conflict situation network at 10 s intervals to com ⁃
pute basic traffic flow parameters， aircraft maneu⁃
verability metrics， and aircraft potential conflict situ⁃
ation network attributes， thereby establishing an air⁃
craft operational safety situational awareness feature 
matrix X ∈ R 60 480 × 19 × 4 （with a total of 60 480 rows 
and 19 columns for a single node）.

2. 2 Experimental setting　

This paper implements the RADCM and AST ⁃
GCN models based on the Pytorch framework. The 
experimental environment consists of Windows 11， 
Python 3.9.0， Pytorch 2.1.0， and an Intel（R） Core
（TM） i5-9400F CPU @ 2.90 GHz.

In the RADCM model， the key parameter set⁃
tings are shown in Table 1.

In the ASTGCN model， the key parameter set⁃
tings are shown in Table 2.

2. 3 Experimental results　

2. 3. 1 Analysis of recognition model training re⁃

sults　

Fig.9 illustrates the progressive convergence of 
the proposed RADCM model during the training 
and testing processes. The reconstruction loss， clus⁃
tering loss， validation loss and classification loss all 

Fig.8　Date description
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exhibit a continuous downward trend. The reduction 
in reconstruction loss indicates that the model per⁃
forms well in retaining the original data features. 
The decrease in clustering loss reflects the model’s 
increasingly clear clustering effect in the feature 
space. The decline in classification loss ensures that 
the encoded features possess a certain risk-capturing 
capability， demonstrating the model’s effectiveness 
in safety situation recognition. The continuous de⁃
crease in validation loss indicates that the model has 
good generalization ability.

The clustering effect is visualized using princi⁃

pal component analysis （PCA）， whose results are 
shown in Fig.10. With the progression of the model 
training， different categories of data gradually sepa⁃
rate on the two-dimensional plane， displaying more 
distinct clustering boundaries.

Additionally， as shown in Fig.11， during the 
first 40 epochs， although the model’s silhouette co⁃
efficient is relatively high， the classification loss re⁃
mains high and has not yet converged. This indi⁃
cates that the encoded features do not effectively 
capture the discriminative information of the safety 
situation. If the encoded features are clustered at 
this stage， good clustering performance might be 
achieved， but it will lead to a mismatch between the 
dimensionality-reduced features and the clustering 
objectives.

Table 3 presents the clustering performance of 
the proposed RADCM model compared to baseline 
clustering models in the task of safety situation level 
recognition. The trained model is used to classify 
the safety situation levels of the entire dataset. The 
study finds that the RADCM model outperforms tra⁃
ditional clustering methods in terms of the Silhou⁃
ette Coefficient， Calinski-Harabasz Index， and Da⁃
vies-Bouldin Index.

This indicates that deep clustering can more ef⁃
fectively partition the dataset， generating clusters 
with greater distinguishability.

Table 4 presents the clustering performance of 
the proposed RADCM model compared to the base⁃
line models that cluster after dimensionality reduc⁃
tion in the task of safety situation level recognition. 
The RADCM model still demonstrates superior per⁃
formance.

Although clustering the features after dimen⁃
sionality reduction improves clustering performance 
relative to traditional clustering models， this ap⁃
proach severs the relationship between feature re⁃
duction and the situation recognition task. Conse⁃
quently， it is challenging to determine whether the 
reduced features effectively capture the discrimina⁃
tive information of the safety situations.

In summary， the RADCM model has powerful 
feature extraction capabilities， enabling it to capture 
more complex patterns and structures within the da⁃

Table 1　Parameter settings of RADCM

Parameter
Dropout rate

β
η

Number of classes
Hidden dim

∂
γ

λ
Number of clusters

Latent dim

Setting
0.15

1
1
2

126
1

0.2
1
3

18

Table 2　Parameter setting of ASTGCN

Parameter
Time steps

Future steps
Time strides

Number of time filters
Number of Chebyshev filters

Order of Chebyshev polynomial
Hidden dim
Dropout rate

Batch size
Learning rate

Learning rate decay
Number of ASTGCN blocks

Setting
24
3
3

64
64
2

65
0.3
128

0.001
0.95

2

Fig.9　Training and testing of the RADCM model
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ta， thereby avoiding the curse of dimensionality. 
This makes it perform better in handling nonlinear 
and complex data distributions. The addition of the 
safety situation risk information capture layer en⁃
sures that the encoded features possess a certain abil⁃
ity to distinguish aircraft operational safety risks， 
aligning the encoded features with the situation rec⁃
ognition task.

By employing the RADCM model to cluster 

the dataset， the safety levels of historical time slices 
are determined. Using LightGBM to analyze feature 
importance as shown in Fig.12， it is evident that the 
key indicators include - -------ΔH t，Cc t，Cr t，Cmc t，

- -----ΔA t，Q t，

Cq t and ------V h
t . The mean values of these key indica⁃

tors are being statistically across different safety situ⁃
ation levels， as shown in Table 5.

Under high-risk safety situations， the flight 
flow reaches its peak， accompanied by the lowest 
average horizontal flight speed， indicating relatively 
slower traffic movement. Additionally， the average 
heading change of traffic is significant， while alti⁃
tude changes are comparatively minor， resulting in a 
dense and complex network of potential conflicts 
with high volumes and rates of potential conflicts. In 
such scenarios， high traffic flow and low-speed oper⁃
ations may prolong flight delays， exacerbating air 
traffic congestion， tightening airspace resources， 
and increasing the likelihood of potential conflicts， 
thereby elevating safety risks.

In contrast， under low-risk safety situations， 

Fig.10　Cluster visualization

Table 3　Comparison of clustering models

Evaluation metrics
SC
CH
DBI

RADCM
0.97

17 770 989.86
0.06

FCM
0.32

29 117.26
1.75

K⁃means
0.33

33 689.70
1.40

Fig.11　Class loss and SC per epoch

Table 4　Comparison of dimensionality reduction followed by clustering models

Evaluation metrics
SC
CH
DBI

RADCM
0.97

17 770 989.86
0.06

TSNE⁃FCM
0.37

82 588.95
0.87

TSNE⁃K⁃means
0.37

82 893.01
0.87

PCA⁃FCM
0.80

516 532.95
0.32

PCA⁃K⁃means
0.80

516 573.26
0.32
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moderate flight flow and higher average horizontal 
flight speeds are observed， with no potential con⁃
flicts present， leading to an orderly and well-struc⁃
tured traffic flow. Medium-risk safety situations， as 
a transitional state between high⁃ and low-risk situa⁃
tions， exhibit the lowest flight flow but not the high⁃
est average horizontal speed. With the largest aver⁃
age altitude changes and occasional potential con⁃
flicts， this state demonstrates operational complexi⁃

ty and instability. It neither matches the tension of 
high-risk scenarios nor maintains the clarity of low-

risk ones， embodying a higher degree of uncertainty 
and potential hazards.

Based on the above analysis， the attributes of 
each safety level can be summarized as follows.

（1） Safety level 0， no risk： The number of ac⁃
tive aircraft in the airspace does not meet the neces⁃
sary conditions for forming potential conflicts.

（2） Safety level 1， low risk： The number of 
aircraft in the airspace is moderate， meeting the nec⁃
essary conditions for potential conflicts， with low 
traffic complexity， but no potential conflicts exist.

（3） Safety level 2， moderate risk： There are 
many aircraft in the airspace， with moderate traffic 
complexity， and a few potential conflicts. Moderate 
air traffic control is required to ensure that aircraft 
follow designated routes and altitude levels to pre⁃
vent potential conflicts.

（4） Safety level 3， high risk： The airspace is 
densely populated with aircraft， meeting the neces⁃

sary conditions for potential conflicts， with high traf⁃
fic complexity， and numerous potential conflicts. 
Strict air traffic control is required， demanding pre⁃
cise adherence to control instructions， and flow con⁃
trol measures may need to be implemented.
2. 3. 2 Analysis of predication model training re⁃

sults　

Fig.13 shows training and testing results of the 
ASTGCN model. Fig.13（a） depicts the conver⁃
gence of the training loss. The model’s loss on the 
training set is very low， indicating that the error be⁃
tween the model’s predicted output and the actual 

Fig.12　Feature importance

Table 5　Mean values of these key indicators

Safety level
1
2
3

- -------ΔH t

3.29
3.73
4.08

Cc t

3.00
2.05
2.83

Cr t

0.00
0.00
0.48

Cmc t

1.00
1.00
1.75

- -------ΔAt

52.12
54.95
49.58

Q t

3.00
2.05
3.61

Cq t

0.00
0.01
1.47

------
V h

t

540.66
529.50
478.80
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data is minimal. The accuracy on the training set is 
0.91， with an F1 score of 0.87. Fig.13（b） shows the 
ROC evaluation curve and AUC area of the AST ⁃
GCN model on the test set. In real-world applica⁃
tions， situation datasets may exhibit class imbal⁃
ance， where the distribution of data across different 
situation levels is uneven. The ROC curve is robust 
in such scenarios， and an AUC area closer to 1 indi⁃
cates better model performance. The AUC areas for 
Classes 0 through 3 are 0.98， 0.96， 0.94， and 
0.97， respectively， with a micro-average AUC area 
of 0.98， demonstrating the model’s strong perfor⁃
mance. Fig.13（c） presents the normalized confusion 
matrix on the test set， showing that the model has 
high classification accuracy across all categories. In 
summary， the model exhibits good predictive perfor⁃

mance on both training and test sets.
The robustness and generalization ability of the 

model are key to evaluating its practicality. There⁃
fore， this paper conducts cross-testing experiments 
to further assess the model. The K-fold cross-test⁃
ing involves dividing the dataset into K mutually ex⁃
clusive subsets of similar size. Each time， one sub⁃
set is used as the test set， and the remaining K-1 
subsets are used as the training set. This process is 
repeated K times， each time with a different subset 
as the test set， to evaluate the model’s stability and 
generalization ability.

Fig.14 shows the accuracy and F1 score of the 
training and test sets across different folds. In the 
training set， both accuracy and F1 score remain high 
and stable across all five folds （accuracy ranging 
from approximately 90.68% to 90.75%， and F1 
score ranging from approximately 87.02% to 
87.12%）， indicating consistent learning by the mod⁃
el on the training data. In the test set， the accuracy 
and F1 score also exhibit relative stability （accuracy 
ranging from approximately 90.41% to 90.81%， 
and F1 score ranging from approximately 86.67% to 
87.24%）. The maximum difference in accuracy and 
F1 score between the training and test sets does not 
exceed 0.5%， showing that the model’s perfor⁃
mance on the training and test sets is close， indicat⁃
ing no significant overfitting. This demonstrates that 
the model has good generalization ability.

Table 6 presents comparative experimental re⁃
sults between the ASTGCN model and the baseline 
models （TGCN， LSTM， GRU）. It is evident that 
the ASTGCN model demonstrates superior perfor⁃
mance across all evaluation metrics.

Fig.14　K-fold cross-testing results

Fig.13　Training and testing results of the ASTGCN model
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2. 3. 3 Analysis of safety situation levels charac⁃

teristics　

Table 7 shows the distribution of safety levels 
for flight flows within 60 480 time slices across dif⁃
ferent sub-airspaces. It is noticeable that high-risk 
situations frequently occur in the flight flows within 
sub-airspace Node 1 and Node 2. This is because 
the civil aviation terminal area below 3 000 m is 
typically the final stage of convergence for ap⁃
proaching aircraft and the initial stage of divergence 
for departing aircraft， marking a critical phase of ar⁃
rival and departure. In this altitude range， the flight 
density is high， and flights need to perform fre⁃
quent altitude changes and maneuvers such as 
turns， making it prone to potential conflicts be⁃
tween aircraft， especially near flight intersection 
points.

（1） Hourly distribution of safety situation levels
Fig.15 shows percentage of safety levels per⁃

hour for the first three days across different 
sub⁃airspaces. Overall， it presents a trend of transi⁃
tioning from low⁃ to high-risk situations and then 
gradually back to low-risk. From 18：00 to 22：00， 
the airspace flight flows are predominantly in a no-

risk state， indicating a lower level of aircraft activity 
during these hours.

In Nodes 1， 2， and 3， the proportion of medi⁃

um⁃ to high-risk flight flows exceeds 50% during 
many time periods. In contrast， flight flows in Node 
4 are predominantly characterized by no- and low-

risk statuses most of the time. In the hourly distribu⁃
tion of safety situational levels in Node 1， multiple 
time points show a high-risk status exceeding 0.5， 
crossing the red line. In Node 2， high-risk statuses 
exceed 0.5 at a few time points， whereas in Nodes 3 
and 4， there are virtually no instances of high-risk 
statuses crossing the red line.

Descriptive statistics for the hourly distribution 
of flight flow safety situation levels in different sub-

airspaces are shown in Fig.16. This includes the 
mean average duration， standard deviation， 25th 
percentile， 75th percentile， median， and maximum 
proportion.

Fig.16（a） shows that the average proportion of 

Fig.15　Percentage of safety levels per hour for the first 
three days across different sub⁃airspaces

Table 7　Distribution of each safety situation level

Safety level
0
1
2
3

Node 1
37 367
2 399
9 346

11 368

Node 2
26 990
8 947

13 930
10 613

Node 3
28 001
9 878

14 761
7 840

Node 4
37 711
5 231

12 432
5 106

Table 6　Comparative experimental results

Model
ASTGCN

TGCN
LSTM⁃Node 1
LSTM⁃Node 2
LSTM⁃Node 3
LSTM⁃Node 4
GRU⁃Node 1
GRU⁃Node 2
GRU⁃Node 3
GRU⁃Node 4

Accuracy
0.91

0.84
0.82
0.79
0.79
0.83
0.85
0.81
0.84
0.86

F1

0.87

0.84
0.81
0.79
0.79
0.83
0.85
0.81
0.84
0.86

AUC
0.98

0.94
0.92
0.92
0.93
0.93
0.94
0.93
0.94
0.94
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Safety level 0 per hour is 0.537， which is the domi⁃
nant situation， and Fig.16（b） indicates that its aver⁃
age standard deviation of 0.28 is significantly higher 
than other safety levels， with a wide range of fluctu⁃
ations. This suggests there might be significant risk 
transitions during certain periods， meaning that 
even if the airspace has been relatively safe earlier， 
it cannot be taken lightly. Furthermore， Fig.16（f） 
reveals that there is a noticeable jump in the maxi⁃
mum values of Safety levels 2 and 3 at Node 1 and 
Node 2， indicating that high-risk situations may oc⁃
cur more irregularly and intensely at these nodes， re⁃
flecting the potential for more uncertain and rapidly 
changing risk factors at these locations.

（2） Duration of different safety situation levels
Descriptive statistics of the duration of differ⁃

ent safety situation levels across various nodes are 
shown in Fig.17. This includes the mean average 
duration， standard deviation， 25th percentile， 75th 
percentile， median， and maximum proportion. 
Since the airspace is mostly in a quiescent state， the 

duration of Safety level 0 is much longer than that 
of other safety levels. Therefore， Fig.17 only dis⁃
plays the duration statistics for Safety levels 1， 2， 
and 3.

Fig.17（b） shows that high-risk levels among 
all node flight flows exhibit a larger standard devia⁃
tion compared to low⁃ and medium⁃ risks， particu⁃
larly at Node 1， where the standard deviation is sig⁃
nificantly higher than those at other nodes， indicat⁃
ing a certain degree of variability. This suggests that 
the duration of high-risk states fluctuates greatly， re⁃
flecting instability and necessitating close monitor⁃
ing. Fig.17（f） reveals that the maximum durations 
of high-risk states at Nodes 1 and 2 are 1 480 and 
940， respectively， higher than those at other nodes， 
further indicating that Nodes 1 and 2 are more likely 
to face more complex risk situations.

In summary， the airspace overall shows a trend 
of gradually transitioning from low-risk situations to 
high-risk situations and then back to low-risk situa⁃
tions. Flight flows in Nodes 1 and 2 are more likely 

Fig.16　Descriptive statistics of the hourly distribution
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to face complex risk scenarios， with the duration of 
each safety level being unstable and Safety level 3 
showing the greatest fluctuation in duration. The air 
traffic control system should have adequate resil⁃
ience to address and resolve emergencies.

（3） The potential temporal and spatial propaga⁃
tion paths of safety situation levels

This study employs cross-correlation to mea⁃
sure the similarity between time series at different 
time lags， aiming to uncover the potential temporal 
and spatial propagation paths of flight flow safety sit⁃
uation levels. The maximum cross-correlation lag 
time for each node’s safety situation level is deter⁃
mined based on the connectivity between nodes， as 
illustrated in Fig.18.

Fig.18（a） shows that the safety situation level 
state of flight flows in Node 3 changes 34 time 
points earlier （approximately 5.7 min） than that in 
Node 2. Fig.18（b） indicates that Node 2 changes 28 
time points earlier （approximately 4.7 min） than 
that in Node 1， and Fig.18（c） shows that Node 2 

changes 12 time points earlier （approximately 2 
min） than that in Node 4. From Fig.18（d）， it is evi⁃
dent that Node 3 is the key node triggering safety 
state changes in other nodes and requires close moni⁃
toring to detect and prevent the spread of medium⁃ 
and high-risk situations at the source. Since Node 2 
is centrally located in the topology， acting as a hub 
connecting other nodes， it plays a crucial role in the 
transmission of safety situations. Therefore， it is es⁃
sential to enhance monitoring and management of 
medium⁃ and high-risk situations in Node 2’s flight 
flows to interrupt the spread of risks along the trans⁃
mission path.

3 Conclusions 

We first extract a multidimensional safety situa⁃
tion assessment feature matrix centered on potential 
conflict risk， encompassing basic traffic flow param ⁃
eters and aircraft maneuverability characteristics， 
providing a more comprehensive and accurate safety 
assessment perspective. Secondly， we propose a 

Fig.17　Descriptive statistics of the duration
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deep clustering model with an added safety situation 
information capture layer to ensure that the encoded 
features can capture distinctive information about 
safety situations. Finally， we introduce a spatiotem ⁃
poral graph convolutional neural network based on 
attention mechanism， comprehensively considering 
the spatiotemporal heterogeneity of safety situation 
to achieve precise prediction of safety situation lev⁃

els.
According to experimental results， the follow⁃

ing findings are drawn：
（1） Regarding air traffic situation recognition， 

a high silhouette coefficient does not necessarily indi⁃
cate that the encoded（dimensionality-reduced） fea⁃
tures can effectively capture distinctive information 
about the safety situation. This may lead to a mis⁃
match between dimensionality-reduced features and 
the safety situation clustering goal. The proposed 
RADCM model not only more effectively partitions 
the dataset and generates more distinguishable clus⁃
ters， but also ensures that the encoded features pos⁃
sess a certain capability to express safety risks.

（2） Concerning air traffic situation prediction， 
compared with traditional time series prediction 
models or simple neural networks， the ASTGCN 
model’s comprehensive modeling capability in both 
space and time results in superior predictive perfor⁃
mance， providing lower prediction errors and better 
generalization ability. This demonstrates the necessi⁃
ty of considering spatiotemporal heterogeneity in the 
field of air traffic prediction.

（3） High-risk situation usually occurs during 
critical phases of aircraft takeoff and landing， requir⁃
ing more maneuver operations such as climbing， de⁃
scending， and adjusting heading and speed， thereby 
increasing flight complexity and risk. These phases 
exhibit certain variability and instability， necessitat⁃
ing close monitoring.

（4） There is a general possibility of extreme 
events across all risk levels， which should be consid⁃
ered a key factor in risk management and emergency 
preparedness to ensure that the system has sufficient 
flexibility and resilience to handle sudden situations.

（5） Regarding safety risk management， 
strengthening the monitoring of flight flow risk ori⁃
gins （specifically in airspaces with high densities of 
arrival initiations and departure terminations） and 
optimizing transit management （particularly in areas 
near initial approach fix points） can significantly en⁃
hance the safety performance of the entire airspace 
system. This approach effectively reduces the likeli⁃
hood of safety risks and diminishes their overall im ⁃
pact on the airspace network.

Fig.18　The maximum cross-correlation lag time
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However， the proposed deep learning-based 
method for air traffic safety situation awareness in 
this study are only preliminary attempts. Future re⁃
search will consider other factors affecting air traffic 
safety situations， such as emergency events and 
weather conditions.
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基于深度学习的终端区航班流运行安全态势感知方法

邓 成， 张启钱， 张洪海， 万俊强， 李靖宇
（南京航空航天大学民航学院空中交通管理系统全国重点实验室, 南京 211106, 中国）

摘要：安全是民航业的生命线，也是民航永恒的主题。本文面向终端区航班流，以空中交通复杂性及航空器潜在

冲突关系为切入点，研究终端区航空器运行安全态势，提出了一种基于深度学习的终端区航班流安全态势感知

方法。首先，提出更为全面和准确的安全态势评估特征；其次，构建一种添加安全态势信息捕捉层的深度聚类态

势识别模型；最后，基于注意力机制构建时空图卷积神经网络的安全态势等级预测模型。通过真实数据集实验

结果对本文所提方法进行评估，发现：（1） 本文所提模型在各方面性能上优于传统模型；（2） 所提态势识别模型

能够确保编码特征可以捕捉到安全态势的区分性信息，增强模型的可解释性与识别任务的匹配性；（3）所提态势

预测模型具有更优秀的空间和时间的综合建模能力。最后本文揭示了空中交通安全态势的时空演变特性，为空

中交通安全管理提供参考。

关键词：空中交通；安全态势感知；深度学习；安全管理
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