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Abstract: With the development of unmanned driving technology， intelligent robots and drones， high-precision 
localization， navigation and state estimation technologies have also made great progress. Traditional global navigation 
satellite system / inertial navigation system（GNSS/INS） integrated navigation systems can provide high-precision 
navigation information continuously. However， when this system is applied to indoor or GNSS-denied environments， 
such as outdoor substations with strong electromagnetic interference and complex dense spaces， it is often unable to 
obtain high-precision GNSS positioning data. The positioning and orientation errors will diverge and accumulate 
rapidly， which cannot meet the high-precision localization requirements in large-scale and long-distance navigation 
scenarios. This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a 
nonlinear optimizer factor graph optimization as the basis for multi-source optimization. Through the collected 
experimental data and simulation results， this system shows good performance in the indoor environment and the 
environment with partial GNSS signal loss.
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0 Introduction 

Localization and state estimation are critical 
technologies enabling intelligent unmanned systems 
like robots to determine their position and orienta⁃
tion. Visual sensors provide rich visual information 
at low size and cost， exhibiting high applicability. 
When integrated with inertial measurement units 
（IMUs）， they offer high-frequency， continuous， jit⁃
ter-free state estimation and positioning data. Owing 
to their robustness and accuracy in complex environ⁃
ments， vision-aided inertial navigation systems of⁃
ten achieve high precision in short-range， short-du⁃
ration experimental measurements［1］. However， 
cameras and IMUs operate in the local frame， leav⁃
ing four unobservable degrees of freedom X， Y， Z 

position and yaw angle. Thus， odometry drift is 
present when using visual-inertial navigation［2］. Al⁃
though maintaining good short-term performance， 
errors can accumulate in long-range environments. 
Fortunately， global navigation satellite system 
（GNSS） provides real-time， drift-free global posi⁃
tioning with wide applicability. By concurrently 
tracking at least four satellites， the receiver obtains 
precise global geodetic frame coordinates［3］.

This paper combines visual-inertial systems 
and GNSS via factor graph optimization for multi-
sensor fusion state estimation. The front-end han⁃
dles feature extraction， matching， local map align⁃
ment， and motion estimation， while the back-end 
maintains the map and optimizes the sliding win⁃
dow. The workload and innovations of this paper 
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are：
（1） A tightly coupled fusion approach based on 

factor graph optimization combines the visual-iner⁃
tial odometry and GNSS. The probabilistic frame⁃
work is shown in Fig.1.

（2） The Kanade-Lucas algorithm is tracking 
multiple feature descriptors without inter-frame 
matching during corner tracking.

（3） Incorporating spatio-temporal measure⁃
ment correlations and GNSS error sources into the 
optimization.

（4） More accurate IMU models are used in 
this paper， including biases， scale factors， g-depen⁃
dent terms and skewness， with numerical stability 
improvements.

1 Related Technical Theory 

In visual simultaneous localization and mapping 
（SLAM）， the motion and observation models are 
fundamental in the probabilistic graphical model.

ì
í
î

ïï

ïï

x k = f ( )x k - 1,u k + w k

z k,j = h ( )y j,x k + v k,j

(1)

The robot pose x is usually parameterized with 
transformation matrices T in the lie group， with op⁃
timization performed via the tangent space using lie 
algebra

T = exp( ξ ) (2)
where ξ is the tangent vector of lie algebra. The ob⁃
servation model is determined by the camera projec⁃
tion function π

z = π ( x,l )+ n (3)
where z is the observed feature location， l the 3D 
landmark location， n the sensor noise. This projects 
l onto the image plane based on the camera intrin⁃
sics K and camera extrinsics Q relating the body and 
world frames.

Due to sensor noise， the motion and observa⁃
tion models are not perfect， containing error terms 
that make them hold only approximately. Accurate⁃
ly estimating the maximum a posteriori states x̂ 
from noisy measurements z is crucial for nonlinear 
optimization in visual SLAM. Multiple observations 
of the same landmarks over time and across cameras 
provide constraints that help resolve the pose ambi⁃
guity and noise， thereby recovering the optimal ro⁃
bot trajectory x̂ and map l̂［4］.

Visual odometry （VO） uses visual data for 
state estimation. Earlier VO methods used extended 
Kalman filters （EKFs） to iteratively estimate cam ⁃
era poses and landmark positions［1］. However， 
EKF-based approaches accumulate errors over time. 
Optimization-based formulations refine poses via 
bundle adjustment over sliding windows， improving 
on filtering［5］. Recent VO uses factor graphs and 
smoothing and mapping （SAM） for incremental 
nonlinear optimization without continual relineariza⁃
tion［6］. The factor graph and solvers like levenberg-

marquardt enable accurate simultaneous trajectory x̂ 
and structure l̂ estimation from visual measurements 
z by maximizing the posterior

x̂,l̂ = arg max P ( x,l|z ) (4)
x *

MAP = arg max P ( x|z )= arg max P ( z|x ) P ( x ) (5)
Visual-inertial odometry （VIO） which used 

EKFs for incremental state updates， suffers from 
linearization errors［1］. Contemporary VIO leverages 
optimization-based smoothing， better handling non⁃
linear dynamics and visual constraints［7］. Despite 
higher costs， optimization-based visual inertial navi⁃
gation （VIN） shows superior accuracy from joint 
state optimization over sliding windows［8］. In con⁃
trast， GNSS have used filter-based methods for effi⁃
cient sequential updates. Properly initialized graph 
optimization also shows potential for improving 
GNSS accuracy during signal issues［9］. There are 

Fig.1　Tightly coupled multi-sensor state estimation plat⁃
form
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opportunities to integrate filtering and optimization 
for efficiency and accuracy improvements in multi-
sensor state estimation.

2 System Frameworks and Theo⁃
retical Methods 

2. 1 Factor graph optimization framework

In studying localization and state estimation for 
unmanned systems， determining the current posi⁃
tion， attitude comprising translation and rotation in 
various frames is imperative initially. The un⁃
manned system’s pose can be parameterized with 
spatial points and unit quaternions that avoid singu⁃
larities in representing rotations［10］. Before construct⁃
ing the graph optimization framework， related coor⁃
dinate frames are defined and established per naviga⁃
tion frame conventions［3］ in Fig.2. Natural frames in⁃
clude the earth-centered， earth-fixed （ECEF） 
frame (* )E and the earth-centered inertial （ECI） 
frame (* )e， both centered on the earth and fixed. 
The transformation between them is given by the 
earth rotation matrix. Additionally， the natural 
frames include the local-world navigation frame 
(* )w， which is local-tangent with its Z-axis aligned 
with gravity towards the geocenter and X， Y axes 
pointing east and north. Custom frames include the 
unmanned system body frame (* )b and odometry 
frame (* )o. The transformation relationship of each 
frame is shown in Fig.3.

The vision and IMU are first jointly initialized， 
aligning their trajectories by combining the visual 
structure-from-motion［11］ and inertial navigation sys⁃

tem （INS） propagation［12］. GNSS initialization fol⁃
lows afterwards. The GNSS/INS optimization con⁃
stitutes a subset of the full GNSS/INS/Vision opti⁃
mization. Renders the state estimation question as a 
nonlinear least square problem by defining a factor 
graph［13］

χ̂ = arg min
χ
{||εpre - H pre χ||2 + ||ε c - h c ( χ c,z c ) ||2 +

||ε I - h I ( χ I,z I ) ||2 + ||εg - h g ( zg ) ||2 } (6)
where χ̂ represents the state vector to be estimated， 
including information such as position， velocity， 
and orientation. χ is the state vector to be opti⁃
mized， z the observation vector， ε the error vector， 
and H the jacobian matrix related to the preintegra⁃
tion error. h is a vector-valued function that associ⁃
ates the state and measurement values. It outputs a 
vector representing the expected observation. The 
subscripts c， I， and g represent the visual， IMU， 
and GNSS components， respectively， while the 
subscript pre represents the preintegration compo⁃
nent.

The multi-sensor state estimation is formulated 
as a maximum posteriori estimation problem. After 
pre-processing， the sensor data are incorporated in⁃
to a factor graph optimization framework as probabi⁃
listic constraint factors to constrain the motion state 
of the unmanned system.

x k =[ ow
k ,vw

k ,pw
k ,b acc,bgyr,δt,δ ṫ ]T (7)

where k represents the discrete time； x k is the state 
vector of the unmanned system at discrete time k， 
which includes multiple state information； ow

k  is the 
orientation of the unmanned system in the world co⁃
ordinate system， vw

k  the velocity， and pw
k  the posi⁃

tion； b acc and bgyr represent the IMU’s accelerome⁃
ter bias and gyroscope bias， respectively， and δt， 
δ ṫ the GNSS time offset and its rate of change.

χ =[ x 0,x 1,⋯,x n,λ1,λ2,⋯,λm,ψ ]T (8)
where n denotes the size of the sliding optimization Fig.2　All the frames used in this paper

Fig.3　Transform relationships between the frames
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window， m the total number of visual features ob⁃
served within the window. λi the inverse depth pa⁃
rameter of the ith visual feature in the current win⁃
dow， and ψ the yaw deviation between the odome⁃
try frame and local-world frame.

In contrast to filtering approaches， latest mea⁃
surements can be incorporated into the factor graph 
for optimization without requiring perfect time syn⁃
chronization across sensors. Specifically， new mea⁃
surement factors can be incrementally added in the 
factor graph upon availability， regardless of their 

timestamp. This asynchronous inclusion of multi-
modal measurements differentiates graph optimiza⁃
tion from filtering techniques requiring sequential 
synchronized updates. The constraint factors can be 
categorized into GNSS， visual and inertial factors， 
elaborated below part. The pre-processed measure⁃
ments from GNSS， camera， and IMU are modeled 
as factors in a factor graph， which encapsulate the 
residual and uncertainty as probabilistic constraints 
between observations and states. The whole frame⁃
work as shown in Fig.4.

2. 2 Visual factors　

The visual constraint factors come from a set of 
prominent feature points. These points are detected 
and tracked across the image frames captured by the 
visual sensors. A key prerequisite for reliable visual 
factors is extracting a sufficient number of stable fea⁃
tures in the perceived imagery. Thus， the feature 
point extraction is continually iterated with an adap⁃
tive threshold set at 90. If the feature points in a new 
camera frame are less than 90， additional points will 
be identified. This ensures robust visual information 
under varying scene conditions for incorporation into 
the optimization framework. Only features persist⁃
ing across multiple views with consistent descriptors 
are triangulated into 3D landmarks for state estima⁃
tion. The visual reprojection errors between ob⁃
served 2D feature coordinates and projected land⁃
mark locations provide nonlinear constraints for tra⁃
jectory estimation. Representing the feature posi⁃

tions in homogeneous form as
p͂w

l =[ X l /Zl,Y l /Zl,1 ]T (9)
This provides a compact means to transform 

the points into the camera view via a linear projec⁃
tion matrix， while avoiding issues with division by 
zero and reflections implicit in euclidean coordi⁃
nates. The coordinates of feature points expressed 
in the local world frame need to be transformed into 
the image sensor pixel coordinates for further pro⁃
cessing. The relationship between the two coordi⁃
nate systems is given by

p͂ c
l = KT c

recT rec
w p͂w

l + n c (10)
where T is the transformation matrix， n c the image 
sensor noise inherent in the camera projection pro⁃
cess， and K the camera intrinsic matrix which does 
not depend on the external camera pose. After repro⁃
jecting feature points from the mth frame to the nth 
frame， the feature coordinates can be expressed as

Fig.4　System architecture diagram overview in this paper
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p̂͂ cn
l = KT c

recT rec
w [ T w

recT rec
c K-1 ( z cm

l p͂ cm
l ) ] (11)

The constraint factors are formulated from the 
deviations between the projected image feature 
point locations and their actual observed positions af⁃
ter coordinate transformation

E c ( ẑ c
n

l ,χ c )= p͂ c
n

l - p̂͂ c
n

l (12)
where E c is the visual error vector， representing the 
deviation between the projected position of the fea⁃
ture point and its actual observed position. It is the 
target value in the formula， meaning the error that 
needs to be minimized during the optimization pro⁃
cess. χ c denotes a subvector of the state vector that 
related with visual information.

2. 3 GNSS constraint factors　

GNSS measurements typically comprise two 
components： the legacy code and tracking channel 
factors. In the graph optimization framework pro⁃
posed in this study， the constraint factors originat⁃
ing from GNSS incorporate pseudorange factors， 
Doppler shift factors， and receiver clock bias fac⁃
tors. The pseudorange rpse observation equation and 
carrier phase φ observation equation can be ex⁃
pressed as
ì
í
î

ïï

ïï

rpse = r + c ( )δt rec - δts + L + M + γpse

φ = λ-1[ ]r + c ( )δt rec - δts + L + M + N + γφ

(13)
where rpse represents the pseudorange measure⁃
ment， which is the distance from the satellite to the 
receiver， including various errors and biases； φ is 
the carrier phase measurement， representing the 
phase measurement from the satellite to the receiver 
measured in cycles， which includes integer ambigui⁃
ty and error terms； N is the integer ambiguity， rep⁃
resenting the unknown integer number of cycles in 
the carrier phase measurement； r is the true geomet⁃
ric distance between the receiver and the satellite 
and c the speed of light； δt rec and δts represent the 
clock biases of the receiver and the satellite， respec⁃
tively； L and M the ionospheric delay and tropo⁃
spheric delay， respectively； and γpse and γφ the pseu⁃
dorange measurement noise and carrier phase mea⁃
surement noise， respectively.

Considering various interference factors， the 
pseudorange measurement model between a ground 

receiver and navigation satellite can be expressed as
p̂ s

rec = ||pE
rec - pE

s || + c ( δt rec + δts + ΔL + ΔM )+ γ

(14)
where pE

rec is the position of ground receiver in earth-

centered inertial frame， pE
s  the position of navigation 

satellite in earth-centered inertial frame， || pE
rec - pE

s || 
the measured pseudorange of GNSS signal， and γ 
the pseudorange carrier phase measurement noise.

The pseudorange constraint factors originate 
from the measured and true pseudorange data. 
These pseudorange residuals serve as one part of 
the GNSS constraint factors incorporated into the 
factor graph optimization framework
E pse = ||pE

rec - pE
s || + c ( δt rec + δts + ΔL + ΔM )- r̂pse

(15)
where E pse represents the pseudorange residual， 
which is the error between the measured pseudor⁃
ange and the predicted pseudorange. The predicted 
pseudorange r̂pse is the estimated pseudorange based 
on the state vector.

The constraint factors originating from GNSS 
Doppler shift measurements can be formulated as 
the residuals between the theoretically modeled 
Doppler shifts and the empirically observed shifts.
EDop =-( [ θ s

rec ( vE
rec - vE

s )+ c ( δt rec + δts ) ]- δf ̂ s
rec ) /λ

(16)
where EDop represents the Doppler shift residual， 
which is the error between the theoretically calculat⁃
ed Doppler shift and the measured Doppler shift； 
θ s

rec the part of the projection matrix or direction co⁃
sine matrix， used to translate the velocity difference 
into the doppler shift effect； δf ̂ s

rec the measured Dop⁃
pler shift value； vE

rec and vE
s  represent the velocity of 

the receiver and the satellite in the ECEF coordinate 
system.

2. 4 IMU pre⁃integration and IMU factors　

The IMU sensor constraint factors comprise 
gyroscope measurement residuals and accelerometer 
measurement residuals. Important parameters are 
the gyroscope and accelerometer biases. The raw 
IMU measurements are preintegrated rather than di⁃
rectly incorporated. Specifically， the IMU preinte⁃
gration includes attitude and position preintegration， 
integrating the gyroscope and accelerometer read⁃
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ings to propagate the orientation and position incre⁃
ments between sensor updates. Velocity preintegra⁃
tion， integrating the accelerometer-derived specific 
force to propagate the delta velocity increments.

By preintegrating the IMU data， the nonlinear 
state optimization is simplified to operate on these 
delta increments rather than the high-rate raw IMU 
data. The biases are estimated as part of the state to 
account for sensor errors. This preintegration ap⁃
proach provides an efficient theoretical framework 
for fusing IMU measurements in a nonlinear estima⁃
tor. The IMU preintegration is utilized to provide 
relative motion constraints between two state nodes. 
The specific model is as follows
ì
í
î

x k - 1 =[( pw
k - 1 )T ( qw

k - 1 )T ( vw
k - 1 )T ( b acc

k - 1 )T ( bgyro
k - 1 )T ]T

x k ∈ P × SO ( 3 )× B

(17)
where qw

k - 1 represents the orientation of the un⁃
manned system in the world coordinate system at 
time k-1， usually expressed as a quaternion； The 
state vector x k is defined within the space that in⁃
cludes position P， orientation SO ( 3 )， and the ve⁃
locity along with IMU biases B.

3 Experiments 

3. 1 Simulation experiments based on open⁃
source dataset　

The experiments in this section are primarily 
based on the datasets sport_field. bag and com⁃
plex_environment. bag. Since the solution proposed 
in this paper utilizes multi-sensor fusion with multi-
channel data input， the open-source dataset should 
contain raw GNSS data， images captured by visual 
sensors and related features， and raw IMU record⁃
ings. The devices and specific information used in 
the open-source datasets are shown in Table 1.

The dataset utilized in simulation is captured 
by a customized stereo visual-inertial sensor rig， 
comprising a calibrated stereo camera system as the 
primary visual sensor for acquiring images， along 
with an IMU and GNSS receiver recording inertial 
and position data， respectively. The stereo visual-in⁃
ertial data in sport_field. bag is recorded outdoors， 
providing robust GNSS signals and enabling accu⁃
rate global position measurements for state estima⁃
tion. Sample stereo image frames with detected and 
matched features and state estimation results are vi⁃
sualized in Fig.5. Through the optimization frame⁃
work of our multi-sensor fusion algorithm， noisy 
GNSS measurements are effectively suppressed by 
the visual-inertial data， exploiting their complemen⁃
tary error characteristics. Consequently， the estimat⁃
ed unmanned system trajectory as shown in Fig.6 
exhibits negligible drift， with no discernible cumula⁃
tive errors even after multiple laps along the same 
trajectory.

In contrast， the complex_environment. bag da⁃
taset presents a more challenging scenario， compris⁃
ing indoor and outdoor settings with variations in al⁃
titude. Specifically， one segment involves ascending 
indoor stairwells where both GNSS signals and visu⁃
al odometry drift more significantly. The degraded 

Table 1　Devices for open⁃source dataset

Sensor

Visual sensor

IMU sensor

GNSS

Device
Stereo camera Aptina 

MT9V034 image sensors
Analog device ADIS 

16448 IMU
u⁃blox ZED⁃F9P

Frequency/Hz

20

200

10

Fig.5　Extracting features by visual sensor

Fig.6　Outdoor sport field state estimation trajectory
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visual and inertial measurements in these indoor sec⁃
tions test our approach. While the outdoor perfor⁃
mance capitalized on strong GNSS cues， our algo⁃
rithm’s robustness is highlighted by accuracies on 
par with the sport_field.bag dataset despite compro⁃
mised sensing in the complex mixed environment. 
This demonstrates the strengths of our visual-iner⁃
tial optimization and drift reduction capabilities 
when GNSS observations are intermittent or highly 
noisy.

The state estimation trajectory plot indicates 
the segment corresponding to the indoor stairwell 
environment， where diminished GNSS signal recep⁃
tion is expected. Despite compromised GNSS mea⁃
surements in this room， our approach still achieves 
smooth， unbiased state estimates. This demon⁃
strates the ability of our visual-inertial fusion algo⁃
rithm to maintain accurate tracking even in GNSS-

denied indoor areas by leveraging the complementar⁃
ity of the visual and inertial cues again likes in Fig.7. 
As you can see in Fig.8， the robust performance in 
both outdoor and indoor settings highlights the ver⁃
satility of our system.

3. 2 Experiments based on real environment　

For real-world experiments， we collect datas⁃
ets across several locations at Nanjing University of 
Aeronautics and Astronautics. Due to inherent limi⁃
tations of onboard sensors， visual-inertial odometry 
often suffers from drift and accumulation of errors 
over time. To obtain robust GNSS signals， we se⁃
lect open areas with minimal obstructions. To evalu⁃
ate performance in complex dynamic environment， 
we focus on a trajectory from the east playground to 
Yufeng Park， traversing crowded pedestrian over⁃
passes， tree-lined walkways， and staircases. Prior 
to data collection， we perform feature extraction 
testing across scenes with varying lighting condi⁃
tions and architectural environments as in Fig.9. 
This is to validate the operational integrity of the vi⁃
sual sensor suite under diverse real-world condi⁃
tions. Thorough pre-deployment testing ensure ro⁃
bust visual feature detection and matching perfor⁃
mance during subsequent experiments. Our devices 
are shown in Table 2.

The presence of pedestrians and foliage de⁃
grades visual odometry and GNSS reception to an 
extent. Furthermore， ascending and descending the 
overpass stairs induce altitude change. During data 
collection， we minimize erratic sensor motions to 
avoid confounding the state estimator. Despite these 
challenges， our approach demonstrates accurate and 
robust performance. The natural environment stress 

Fig.7　Trajectory of indoor stairs

Fig.9　Extracting features by visual sensor in real environ⁃
ment

Fig.8　Complex environment state estimation trajectory

Table 2　Devices for real environment test

Sensor
Visual sensor
IMU sensor

GNSS

Device
Stereo camera Intel D435i
Microchip MPU9250 IMU

u⁃blox ZED⁃F9P

Frequency/Hz
20

200
10
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tests the limits of visual-inertial navigation， provid⁃
ing insights into real-world viability as shown in 
Fig.10.

Due to the four unobservable degrees of free⁃
dom inherent in tightly coupled VINS algorithms 
like VINS-Mono［7］， some cumulative drift is inevita⁃
ble along these directions. The loosely coupled 
VINS-Fusion［14］ mitigates long-term drift by fusing 
VI and GNSS in a decoupled architecture， bound⁃
ing the drift to a constant level［15］. Our method pro⁃
vides better error control to both techniques. The vi⁃
sual-inertial constraints in our optimization effective⁃
ly reduce the GNSS noise while still utilizing its 
global position information to limit drift. This ap⁃
proach delivers accurate and robust state estimates 
over extended trajectories. The specific comparison 
results are shown in Fig.11.

4 Conclusions 

We study on sensor fusion for navigation， de⁃
veloping a multi-sensor state estimation algorithm. 
Our key contributions encompass the formulation of 

the core estimation approach， experimental valida⁃
tion， and development of the hardware/software 
platform. The proposed method achieves robust and 
accurate state estimation by tightly fusing vision， in⁃
ertial， and GNSS measurements under a joint graph 
optimization framework. Extensive experiments 
demonstrate the effectiveness of our sensor fusion 
approach in reducing drift and maintaining consisten⁃
cy across diverse environments.
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基于因子图优化的无人系统 GNSS/INS/视觉多传感器

融合状态估计方法

朱泽堃， 杨 忠， 薛八阳， 张 驰， 杨 欣
（南京航空航天大学自动化学院，南京  211106，中国）

摘要：随着无人驾驶技术、智能机器人和无人机的发展，高精度定位、导航和状态估计技术也取得了很大进步。

传统的全球导航卫星/惯性（Global navigation satellite system / inertial navigation system， GNSS/INS）集成导航

系统可以持续提供高精度的导航信息。然而，当该系统应用于室内或 GNSS 受限环境（如具有强电磁干扰和复

杂密集空间的户外变电站）时，通常无法获得高精度的 GNSS 定位数据。定位和定向误差会迅速发散和积累，无

法满足大规模和长距离导航场景中的高精度定位要求。本文提出了一种基于非线性因子图优化的 GNSS/INS/
视觉融合的高精度状态估计方法。通过收集的实验数据和仿真结果，该系统在室内环境和部分 GNSS 信号丢失

的环境中表现良好。

关键词：状态估计；多传感器融合；组合导航；因子图优化；复杂环境
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