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Abstract: Aiming at the time-optimal control problem of hypersonic vehicles （HSV） in ascending stage， a 
trigonometric regularization method （TRM） is introduced based on the indirect method of optimal control. This 
method avoids analyzing the switching function and distinguishing between singular control and bang-bang control， 
where the singular control problem is more complicated. While in bang-bang control， the costate variables are 
unsmooth due to the control jumping， resulting in difficulty in solving the two-point boundary value problem 
（TPBVP） induced by the indirect method. Aiming at the easy divergence when solving the TPBVP， the continuation 
method is introduced. This method uses the solution of the simplified problem as the initial value of the iteration. Then 
through solving a series of TPBVP， it approximates to the solution of the original complex problem. The calculation 
results show that through the above two methods， the time-optimal control problem of HSV in ascending stage under 
the complex model can be solved conveniently.
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0 Introduction 

The optimal control problem （OCP） of hyper⁃
sonic vehicles （HSV） has always been a hot topic 
of research. The time-optimal control problem has 
great military significance and has attracted wide⁃
spread attention［1⁃3］. In some military launches， the 
mission places an important requirement on the ra⁃
pidity of the spacecraft reaching the designed state， 
which is necessary to develop the algorithm for time⁃
optimal control.

The methods for solving OCP include direct［4］ 
and indirect［5］ methods.

The direct method transforms the OCP into a 
finite-dimensional nonlinear parameter optimization 
problem through parametric methods［6］. Zhang［7］ 
proposed and verified the framework of solving 
multi-objective trajectory optimization problem of 
HSV based on pseudo-spectral methods. Yang et 

al.［8］ combined extrapolation and bisection methods 
to solve the time-optimal control problem from a so⁃
lution gained by convex optimization. The direct 
method has the merits of strong applicability， but it 
is computationally intensive and optimality unguar⁃
anteed.

The indirect method has high solution accuracy 
and the qualities of first-order optimality， but its cal⁃
culation of the costate variables is a bit complicated. 
Based on the riccati equation， Qiao et al.［9］ designed 
the control law of HSV with the quadratic energy-

consuming index， and designed a spiral dive maneu⁃
vering trajectory. Considering time-consuming in⁃
dex， Zhang et al.［10］ used a genetic algorithm to gain 
the costate variable initial value， and realized the tra⁃
jectory optimization of HSV in ascending stage. In 
the indirect method， enormous effort may be taken 
to analyze the switching function， derive the opti⁃
mal control， and calculate the costate variables that 
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do not have physical meaning. It makes the calcula⁃
tion process too cumbersome. And the costate vari⁃
ables is difficult to solve.

The OCP of atmospheric vehicles is prone to 
singular optimal control， which is hard to solve. In 
order to avoid the problem of analyzing the switch⁃
ing function which may result in singular control， 
and solve the problem of easy divergence of two-

point boundary value problem （TPBVP）， this pa⁃
per introduces the trigonometric regularization meth⁃
od （TRM）. This method avoids the need to analyze 
the switching function by applying the necessary 
conditions of first-order optimality， and gains the op⁃
timal control easily. The continuation method is also 
introduced to make the TPBVP easier to converge. 
Finally， the solution of the OCP under the simpli⁃
fied model is used as the initial value in the itera⁃
tion， and the solution of the HSV optimal time-con⁃
suming problem under the complex model is ob⁃
tained by the continuation method. The simulation 
results show that the TRM and the continuation 
method effectively realize the optimal time-consum⁃
ing control of the vehicle.

1 Trigonometric Regularization 
Method

Under the condition of unconstrained control， 
the optimal control can be easily obtained by utiliz⁃
ing the necessary conditions of first-order optimality

∂H
∂u

= 0 (1)

where H is the Hamiltonian function and u the con⁃
trol.

In the HSV control problem， the control is usu⁃
ally magnitude constrained and Pontryagin’s mini⁃
mum principle （PMP） should be used

H ( u* )= min
u

H (2)

where “*” in the upper corner indicates the optimal 
value. In the optimal control problem of the vehicle， 
the Hamiltonian function can be reduced to the fol⁃
lowing form.

H = H 0 + S ⋅ u (3)
where H 0 is the control-independent part of the func⁃
tion and S the switching function. In common， the 

Hamiltonian function and switching function are 
used to analyze and determine whether it is bang-

bang control or singular control. When the switching 
function is constant equal to zero over a certain peri⁃
od， it is singular optimal control. And vice versa， it 
is bang-bang control.

The trigonometric regularization method［11-12］ 
proposes to use the mathematical properties of the 
trigonometric function to express the magnitude con⁃
strained control as the sine function， which will 
make the necessary conditions of first-order optimal⁃
ity available and bring great convenience to solve 
the OCP.

Assume that the magnitude of the control is
umin ≤ u ≤ umax (4)

where umin，umax are the lower and upper bound of 
control， respectively. Then let

u = umax - umin

2 sin uTRIG + umax + umin

2 (5)

where uTRIG is trigonometric control， which is uncon⁃
strained by magnitude. By introducing the trigonom ⁃
etry， the problem of solving optimal control u* is 
transformed into the problem of finding optimal trig⁃
onometric control u *

TRIG. The optimal trigonometric 
control can be gained from Eq.（1）. It also ensures 
that the actual control is limited as Eq.（4）. After 
such transformation， the problem of analyzing the 
switching function is avoided. The actual control 
and the trigonometric control can be converted to 
each other as Eq.（5）.

The control may jump during the flight and 
lead the costate variables unsmooth， which make 
TPBVP converted by indirect method hard to solve. 
Therefore， the error control is introduced to smooth 
the control. The smoothing effect is shown as Fig.1.

In order to achieve smoothing， while replacing 
the actual control with a sine control earlier， the er⁃

Fig.1　Control smoothing effect
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ror control can take the form of a cosine function， 
thereby forming a control triangle， as shown in 
Fig.2 （assuming the control bound is 1）， where the 
dashed line is the cosine error control， the green line 
is the sine smooth control， and the red line is the 
bound of the control. To achieve different smooth⁃
ing effects， an error parameter ε is introduced. The 
smaller the ε， the weaker the error control effect， 
and the smooth control is closer to ideal control. For 
OCPs， this error control can be added to the inte⁃
gral index， so the performance index J in the OCP 
is rewritten as

J = ϕ [ x ( t f ),t f ]+∫
0

t f

[ L ( x,u,t )+

ε
umax - umin

2 cosuTRIG ] dt (6)

where ϕ is the terminal index， and ∫
0

t f

Ldt the origi⁃

nal integral index.

By utilizing the TRM， the optimal trigonomet⁃
ric control can be calculated conveniently， and the 
actual control can be reverted from Eq.（5）. Then 
the OCP is converted to TPBVP of differential 
equations of states and costate variables.

2 Continuation Method 

For solving the TPBVP， the current classical 
methods include shooting method， finite difference 
method and finite element method［13］. These meth⁃
ods solve the TPBVP through iteration. But if the 
initial value of iteration is not set properly， the cal⁃
culation is likely to diverge［14］. For the TPBVP con⁃
verted by the OCP， the costate variables have no 
physical meanings， so their initial values are diffi⁃
cult to give reasonably.

The continuation method is a method of transi⁃
tioning from solving a simplified problem to solve a 
complex one. If the OCP can be simplified by ignor⁃

ing some nonlinear terms， and its solution can be 
solved analytically， the continuation method is suit⁃
able to be used. Through taking the solution of the 
simplified problem as the initial value， and solving a 
series of TPBVP， the original complex OCP can be 
solved by the method［15-16］.

Assuming n nonlinear terms need to be ignored 
in order to simplify the problem， n continuation pa⁃
rameters are introduced. Add these continuation pa⁃
rameters to each nonlinear term as multipliers， and 
make all parameters equal to zero. Then the com⁃
plex problem reduces to a simplified one that can be 
solved. The solution of the simplified problem is set 
to be the initial value. Let k1 = k1 + dk1 
（k2，k3，⋯，kn = 0）， and solve the TPBVP induced 
by the indirect method. Continue with 
k1 = k1 + dk1， let the previous solution as initial val⁃
ue and solve the TPBVP at current k1. Repeat the 
process until k1 = 1. Leave k1 unchanged and follow 
this step to conduct k2，k3，⋯，kn. Fig.3 shows the 
schematic diagram of the continuation method. 
When the process completes， the solution of the 
original complex problem is obtained.

3 The Problem of Optimal Control 
of HSV 

The equations of motion of HSV are listed as 
follows

Fig.2　Control triangle

Fig.3　Diagram of the continuation method
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ẏ = vy

v̇x = - vx vy

R e + y
+ 1

m
u cos η - D cos θ

m
- L sin θ

m

v̇y = vx
2

R e + y
- μ

( R e + y )2 + 1
m

u sin η -

          D sin θ
m

+ L cos θ
m

ṁ = - u
Isp

(7)

where y is the flight height， m the vehicle mass， μ 
the earth’s gravitational constant， R e the radius of 
the earth， Isp the fuel specific impulse， u the thrust 
of the engine， η the angle of thrust relative to the lo⁃
cal horizontal direction； vx，vy are the projections of 
the velocity vector in the local horizontal and verti⁃
cal direction， respectively， and L， D the aerody⁃
namic lift and drag， respectively. And θ =

arctan ( vy

vx ) is the flight path angle. The downrange 

of the HSV is omitted here. The term vx vy

R e + y
 is the 

coriolis acceleration and vx
2

R e + y
 is the centrifugal ac⁃

celeration.
L and D are calculated by

ì

í

î

ï
ïï
ï

ï
ïï
ï

L = 1
2 CL ρv2 S

D = 1
2 CD ρv2 S

(8)

where CL，CD are the lift and drag coefficients， re⁃

spectively； v = v2
x + v2

y ； S is the reference area 

and ρ the air density

ρ = ρ0 e- y
h (9)

where ρ0 is the density at zero altitude and h the sca⁃
lar height factor［17］.

The vehicle initial states are set as
ì
í
î

y ( 0 )= 0, vx ( 0 )= 0,
vy ( 0 )= 0, m ( 0 )- m 0 = 0

(10)

The desired final states in ascending stage are
y ( t f )- y #

f = 0, vx ( t f )- v#
xf = 0, vy ( t f )= 0 (11)

where “#” in the upper corner indicates the desired 
value.

The engine thrust is limited as
0 ≤ u ≤ umax (12)

The performance index is
J = t f (13)

According to the TRM described previously， 
the thrust should be converted as

u = umax

2 sin uTRIG + umax

2 (14)

And the Hamiltonian function is

H = umax

2 ε cos uTRIG + λy vy +

λvx ( )-vx vy

R e + y
+ 1

m
u cos η - D cos θ

m
+

λvy

é

ë

ê
êê
ê
ê
ê vx

2

R e + y
- μ

( R e + y )2 +

ù
û
úúúú

1
m

u sin η - D sin θ
m

- λm

u
Isp

(15)

where the term umax

2 ε cos uTRIG is the error control. 

According to the PMP， the optimal thrust angle 
should satisfy

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

cos η = -λvx

λ2
vx + λ2

vy

sin η = -λvy

λ2
vx + λ2

vy

(16)

The optimal thrust can be easily derived out as 
follows according to the necessary conditions of first-
order optimality

uTRIG =

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

arctan ( )λvx cos η + λvy sin η
m

- λm

Isp

ε

arctan ( )λvx cos η + λvy sin η
m

- λm

Isp

ε
+ π

(17)

The two triangular control should be reverted 
to the actual control by Eq.（14）， and substituted in⁃
to Eq.（15）. The optimal control should choose the 
one that minimize Eq.（15）.

According to the optimal control theory， two 
bound conditions are supplemented

{ H ( t f )+ 1 = 0,λm ( t f )= 0 } (18)
The differential equations for costate variables 

are
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λ̇y = - ∂H
∂y

= - λvx vx vy

( R e + y )2 + λvy v2
x

( R e + y )2 -

        2μλvy

( R e + y )3 -( λvx cos θ + λvy sin θ ) D
mh

+

        ( λvy cos θ - λvx sin θ ) L
mh

λ̇vx = - ∂H
∂vx

= λvx vy

R e + y
- 2λvy vx

R e + y
+

        λvx

CD ρ0 e- y
h S ( 2v2

x + v2
y )

2mvx 1 + v2
y

v2
x

+ λvy

CD ρ0 e- y
h Svy

2m 1 + v2
y

v2
x

+

        λvx

CL ρ0 e- y
h Svy

2m 1 + v2
y

v2
x

- λvy

CL ρ0 e- y
h S ( 2v2

x + v2
y )

2mvx 1 + v2
y

v2
x

λ̇vy = - ∂H
∂vy

= -λy + λvx vx

R e + y
+

         λvx

CD ρ0 e- y
h Svy

2m 1 + v2
y

v2
x

+ λvy

CD ρ0 e- y
h S ( v2

x + 2v2
y )

2mvx 1 + v2
y

v2
x

+

         λvx

CL ρ0 e- y
h S ( 2v2

x + v2
y )

2mvx 1 + v2
y

v2
x

- λvy

CL ρ0 e- y
h Svy

2m 1 + v2
y

v2
x

λ̇m = - ∂H
∂m

= u
m 2 ( λvx cos η + λvy sin η )-

       D
m 2 ( )λvx cos θ + λvy sin θ +

       L
m 2 ( )λvy cos θ - λvx sin θ

(19)
Eqs.（7，10，11，14，16—19） constitute the TP⁃

BVP of states and costate variables， where Eqs.（7，
19） are the ordinary differential equations and 
Eqs.（10，11，18） consist the boundary conditions.

Apparently， the differential equations of cos⁃
tate variables are quite complex due to the strong 
nonlinear terms of coriolis acceleration， centrifugal 
acceleration， aerodynamic lift and drag. Therefore， 
these make it impossible to solve the TPBVP direct⁃
ly.

However， when the model is simplified， the 
solution of the OCP can be solved analytically. The 
continuation method can be used here to solve the 
HSV time-optimal problem under the complex mod⁃
el.

Assuming the earth is an infinitely large plane 
and the aerodynamics is unconsidered. The simpli⁃
fied equations of motion can be described as

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

ẏ = vy,v̇x = u
m

cos η

v̇y = u
m

sin η - g,ṁ = - u
Isp

(20)

where the four nonlinear terms are ignored and g is 
the gravity acceleration which seen as a constant. So 
Eqs.（10—13，20） form the simplified time-optimal 
problem of HSV.

The differential equations for costate variables 
of simplified model are

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

λ̇y = 0
λ̇vx = 0,   λ̇vy = -λy

λ̇m = u ( λvx cos η + λvy sin η )
m 2

(21)

The simplified problem can be solved analyti⁃
cally by analyzing the corresponding switching func⁃
tion and conducting definite integral calculations on 
Eq.（21）. The analysis and calculation process is 
omitted here. Then the solution of the simplified 
model can be gained， among which the costate 
curves of the simplified problem are shown as Fig.4.

The continuation method is utilized through im ⁃
bedding continuation parameters into the original 
model. Parameters k1，k2，k3，k4 are introduced as 
multipliers of the four nonlinear terms. The original 
model is modified as

Fig.4　Costate curves of simplified problem
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ẏ = vy

v̇x = -k1
vx vy

R e + y
+ 1

m
u cos η -

         k3
D cos θ

m
- k4

L sin θ
m

v̇y = k2
vx

2

R e + y
- μ

( R e + y )2 + 1
m

u sin η -

         k3
D sin θ

m
+ k4

L cos θ
m

ṁ = - u
Isp

(22)

The costate equations should be modified corre⁃
spondingly. The modified equations of costate vari⁃
ables and Eqs.（10，11，14，16，17，22） form another 
TPBVP in the continuation model.

When k1，k2，k3，k4 = 0， Eq.（22） reduces to the 
simplified problem which has been solved analytical⁃
ly. Then the solution acts as an initial value of the 
first step of continuation. Firstly， the process starts 
from k1. It should be noted that at each step of con⁃
tinuation， the previous solution must be set as initial 
value at the current step. When k1 = 1， progress 
k2，k3，k4 in the same way， and the solution of the 
time-optimal problem of HSV under the complex 
model is obtained.

The parameters used in the problem are shown 
in Table 1.

The simulation results are shown as Figs.5—10. 
As can be seen from Figs.5—6， the HSV reaches 
the desired final states. Fig. 8 shows that the HSV 
flies at the maximum thrust all the way， and the fuel 
is consumed at a constant speed as Fig.6 shown. 
The second plot of Fig.8 shows that the thrust angle 
is slowly becoming negative， so that the vertical ve⁃
locity becomes zero in the final. The switching func⁃

Table 1　Parameters used in the problem

Parameter
umax /N

Isp / ( m ⋅ s-1 )
m 0 /kg

v#
xf / ( m ⋅ s-1 )

y #
f /m

R e /m
μ/( m3 ⋅ s-2 )

Value
9.2 × 105

3 000
3 × 104

3.4 × 103

3 × 104

6.378 × 106

3.983 × 1014

Fig.5　Height curve

Fig.6　Velocity curves

Fig.7　Mass curve

Fig.8　Control curves
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tion in Fig.9 is always negative， supporting the cor⁃
rection of u* ≡ umax. The Hamiltonian function in 
Fig.10 equals to -1 within the error of 10-4， con⁃
sidering meets the necessary conditions of optimali⁃
ty. The slight fluctuations are due to the introduc⁃
tion of error control and the calculation error of the 
computer.

The paper tries to solve the problem by the tra⁃
ditional indirect method to verify the convenience 
and effectiveness of the above method. However， 
the traditional method to solve TPBVP of the opti⁃
mal problem under such a complex coupled model 
always diverges， while the above method solves it 
successfully.

4 Conclusions 

Based on the indirect method of optimal con⁃
trol， this paper introduces the TRM， which elimi⁃
nates the need for switching function analysis. For 
the problem that the costate variables have no rea⁃
sonable initial value guess in the TPBVP under the 
complex model， resulting in the divergence easily， 
the continuation method is introduced. The OCP un⁃

der the complex model can be gradually approached 
and solved by taking the solution of the simpler 
problem as the initial value. Finally， through the 
analysis and simulation of the time-optimal problem 
of HSV in ascending stage， the effectiveness of the 
above method is successfully verified.

There are some constraints such as heat con⁃
straint and load constraint due to the structure of the 
vehicle during the flight. But those constraints are 
not considered in the paper. Further research may 
lay on the state constraints for the optimal control 
method.
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基于三角正则化和延拓法的高超声速飞行器时间最优控制

林裕杰， 韩艳铧
（南京航空航天大学航天学院，南京  211106，中国）

摘要：针对高超声速飞行器（Hypersonic vehicles， HSV）上升段的最优控制问题，基于间接法引入了三角正则化

方法（Trigonometric regularization method， TRM）。相较于传统间接法，该方法免于分析开关函数，从而区分

bang⁃bang 控制或难以求解的奇异最优控制。bang⁃bang 控制情况会使协态变量在控制跃变处不平滑，从而引起

由间接法转化的两点边值问题（Two⁃point boundary value problem， TPBVP），导致求解困难。为了 TPBVP 求解

更易收敛，引入了延拓法。该方法由简化问题的解作为延拓初值，通过求解一系列 TPBVP，逼近至原复杂问题

的解。计算结果表明，以上方法能够方便有效地求解高超声速飞行器上升段时间最优控制问题。

关键词：高超声速飞行器；最优控制；三角正则化法；延拓法
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