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Abstract: When checking the ice shape calculation software， its accuracy is judged based on the proximity between 
the calculated ice shape and the typical test ice shape. Therefore， determining the typical test ice shape becomes the 
key task of the icing wind tunnel tests. In the icing wind tunnel test of the tail wing model of a large amphibious 
aircraft， in order to obtain accurate typical test ice shape， the Romer Absolute Scanner is used to obtain the 3D point 
cloud data of the ice shape on the tail wing model. Then， the batch-learning self-organizing map （BLSOM） neural 
network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the 
ice shape， while its tolerance band is calculated using the probabilistic statistical method. The results show that the 
combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape 
effectively， which can be used as the typical test ice shape for comparative analysis with the calculated ice shape.
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0 Introduction 

In order to check the ice shape calculation soft⁃
ware， it is necessary to compare and analyze the cal⁃
culated ice shape with the typical test ice shape to 
judge its accuracy. When determining the typical 
test ice shape， there are two problems： One is how 
to identify the typical characteristics of the test ice 
shape， and the other is how to accurately and com ⁃
prehensively describe and record the 3D test ice 
shape data. To solve these two problems， many ef⁃
forts have been made.

Ref.［1］ defined the ice shape parameters and 
pointed out that the angle of the upper ice angle was 
directly related to the maximum lift， drag and pitch⁃
ing moment. Working Group 12A believed that the 
higher the projection height of the upper ice angle in 
the lift direction， the more critical the ice shape［2］.

The geometric parameters of the ice shape are 

directly related to the aerodynamic effect of the ice 
shape on the aircraft. The method of recording the 
2D ice shape in the icing wind tunnel test is usually 
to draw the ice shape section on the card-board with 
a pencil［3］. Moreover， for the icing wind tunnel test 
of 2D models， even if the quality of the icing wind 
tunnel fully meets the requirements of the industry 
standard［4］， the spatial heterogeneity and temporal 
instability of the flow field， cloud field and tempera⁃
ture field can also lead to significant changes in the 
ice shape along the model direction. However， it 
will lose the 3D details of the ice shape. The mold 
and casting method method can completely repro⁃
duce the 3D details of the ice shape［5］， but it also 
has many disadvantages， such as too much process⁃
ing time［3］， difficult to scale and digitize［6］.

In 2012， NASA’s Ice Research Department 
proposed a research plan to develop and verify the 
technology of using commercial laser scanners to re⁃
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cord full 3D ice shape. The plan is divided into two 
stages. The first stage is to select laser scanners and 
post-processing software， and the second stage is to 
verify the selected hardware and software through a 
series of tests. At present， the first phase has been 
completed. The selected scanner is the Romer Abso⁃
lute Scanner， and the selected data processing soft⁃
ware is Geomagic［3］.

In order to verify the effectiveness of the laser 
scanning/rapid prototyping technology， Ref.［6］ 
completed the icing test in the NASA IRT icing 
wind tunnel， and successively used the laser scan⁃
ning/rapid prototyping technology and the mold and 
casting method to produce the artificial 3D ice 
shape， and determined the consistency of the two 
sets of ice shape geometry through comparison. 
Ref.［7］ compared the difference between the two 
sets of ice shapes through the force-measuring test 
with ice shape in the dry air wind tunnel. The re⁃
sults showed that the accuracy of the laser scanning/
rapid prototyping technology can meet the usage re⁃
quirements. Refs.［8-9］ used pressure-sensitive 
paint to compare the pressure distribution on the sur⁃
face of the model with two sets of ice shapes in⁃
stalled respectively in the dry air wind tunnel. The 
results showed that the consistency of the pressure 
distribution induced by the two sets of ice shapes 
was quite good.

The laser scanning/rapid prototyping technolo⁃
gy can record full 3D ice shape， and has more ad⁃
vantages than the traditional mold and casting meth⁃
od in terms of convenience and accuracy. However， 
since the comparison between the calculated ice 
shape and the test ice shape is usually carried out on 
a 2D profile， the laser scanning/rapid prototyping 
technology cannot be directly used to determine the 
typical test ice shape.

If the 2D ice shape is cut directly from the 3D 
ice shape by the Romer Absolute Scanner， it will be 
the same as the aforementioned method of manually 
drawing ice shape section. The self-organizing map 
（SOM） neural network technology can be used to 
cluster 3D data of the ice shape on the 2D plane， so 
that a small number of 2D data can be used to repre⁃

sent the overall trend of 3D ones. Therefore， the 2D 
average ice shape along the development direction of 
3D ice shape can be obtained， while its tolerance 
band can also be calculated by using the probabilistic 
statistical analysis method. The combination of aver⁃
age ice shape and its tolerance band can reflect all in⁃
formation of 3D ice shape， and thus can be used as a 
new description method of 3D ice shape.

Refs.［10-13］ used SOM neural network to de⁃
scribe the ice shape or its roughness. Besides， re⁃
searchers also used SOM neural network technolo⁃
gy to study point cloud data reconstruction［14］， cus⁃
tomer management［15］， information retrieval［16］， da⁃
ta mining［17-19］ and other issues.

In this study， the icing wind tunnel tests of a 
large amphibious aircraft were carried out at the 
3 m×2 m icing wind tunnel of China Aerodynamic 
Research and Development Center （CARDC）. Dur⁃
ing the tests， the Romer Absolute Scanner was 
used to measure the test ice shape， and the 3D point 
cloud data of the ice shape was obtained. Further⁃
more， the batch-learning self-organizing map 
（BLSOM） neural network method was used to pro⁃
cess the 3D point cloud data into a 2D average ice 
shape along the model spanning direction， while its 
tolerance band was obtained by using the probabilis⁃
tic statistical method. The results show that the 
combination of 2D average ice shape and its toler⁃
ance band can effectively represent the 3D character⁃
istics of the test ice shape， which can be used as the 
typical test ice shape for comparative analysis with 
the calculated ice shape.

1 BLSOM 

SOM neural network is an important class of 
unsupervised learning methods， which can be used 
for clustering， high-dimensional visualization， data 
compression， feature extraction and other purposes. 
It integrates a large number of signal processing 
mechanisms of the human neurons， and has unique 
structural characteristics. The standard SOM［20-22］ 
was proposed by Teuvo Kohonen in 1981， so it is 
also called Kohonen Network.

Based on the standard SOM， Abe and Kanaya 
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et al. developed the BLSOM neural network［22-24］， 
which is mainly used for gene classification current⁃
ly［23-25］. In this method， the initial value of the neural 
network array is determined by the principal compo⁃
nent analysis （PCA）［24］. Compared with SOM 
which randomly determines the initial value of the 
neural network array， the mapping results of 
BLSOM do not depend on the order of input data in 
the learning process. Besides， BLSOM can also re⁃
alize the parallel processing of large-scale data in the 
learning process.

There are three key points to note when using 
BLSOM to describe 3D ice shapes. Firstly， the ex⁃
perimental model should be an equal-straight seg⁃
ment model， which means that the geometric shape 
of the model is formed by directly stretching a 2D 
airfoil along the normal direction. In theory， this 
model should produce exactly the same ice shape 
across all sections. But in fact， due to various fac⁃
tors， the ice shapes of each cross section along the 
spanwise direction usually have significant differenc⁃
es. Secondly， the topological structure of BLSOM 
can be either 1D linear array or 2D planar array. 
However， when applying it to describe the 3D ice 
shape， the topological structure of one-dimensional 
linear array is more appropriate. Thirdly， it is neces⁃
sary to determine the number of neurons based on 
the actual ice shape. If the number of neurons is too 
small， it is not possible to fully capture the ice shape 
characteristics. If the number of neurons is too 
large， it will lead to a disordered average ice shape.

The detailed steps for using BLSOM to pro⁃
cess the 3D point cloud data of the ice shape are as 
follows：

（1） Project the 3D point cloud data of the ice 
shape onto the 2D plane along the spanwise direc⁃
tion to obtain the input dataset X.

（2） Select 1D linear array as the topological 
structure of BLSOM. The number of neurons is set 
to M， while the learning times is set to 1 000.

（3） Determine the initial weight vector of neu⁃
rons using PCA， as shown in Fig.1.

b i = X av + 5 × σ1 × T 1 × i - M 2
M

(1)

where b i is the weight vector of the ith neuron and 
X av the average vector of the dataset X； σ1 and T 1 
are the standard deviation and feature vectors of the 
first principal component determined by PCA.

（4） Assign the data in dataset X to adjacent 
neurons to form M clusters， and update the neuron 
weight vector as

b i
new = b i + α ( r ) × ( X i

av - b i ) (2)
where X i

av represents the position average vector of 
all data allocated by the ith neuron and α ( r ) the rth 
learning efficiency， which is determined as

α ( r ) = max{0.01,0.06 × ( 1 - r 1 000 ) } (3)
（5） After learning with 1 000 times， the final 

weight vectors of M neurons are obtained， and each 
neuron is located in the center of its cluster.

Compared with SOM， BLSOM has two obvi⁃
ous advantages. First， since the initial value of neu⁃
rons is calculated by PCA， neurons can always 
maintain their own topological structure during the 
learning process （Fig.2）. Second， the original data⁃
set X participates in the calculation in a holistic man⁃
ner， the learning process of neurons can achieve 
large-scale parallel computing， greatly improving 
computational efficiency.

Fig.1　Initial value of neural network array determined by 
PCA

Fig.2　Manifold determined by BLSOM
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As shown in Fig. 2， a manifold β is formed by 
connecting neurons using linear segments according 
to their own topological structure. In the processing 
of the 3D point cloud data of the ice shape， manifold 
β is referred to the 2D average ice shape along the 
spanwise direction of the model from its 3D ice 
shape.

2 Tolerance Band Calculation for 
Average Ice Shape

In Fig.2， BLSOM is used to cluster the point 
cloud data to form a series of clusters， each of 
which is represented by a winning neuron located in 
the center. Therefore， the standard deviation of the 
data in the cluster relative to the winning neuron rep⁃
resents its dispersion， which can be used to repre⁃
sent the uncertainty of the winning neuron.

Fig.3 shows the winning neuron bn and its two 
adjacent neurons bn - 1 and bn + 1 on manifold β. In 
this paper， it is assumed that manifold β is the first 
order manifold in the 2D space， characterized by the 
fact that the local slope of manifold β at neuron bn is 
equal to the slope of a straight line determined by 
the two closest neurons bn - 1 and bn + 1. Assume that 
all deviations of the point cloud data from manifold 
β are perpendicular to manifold β， which means that 
the deviation between arbitrary point cloud data and 
manifold β is equal to the projection height in the 
normal direction of its winning neuron bn.

In Fig.3， αbn represents the angle between vec⁃
tor bn - 1 bn + 1 and the X-axis， which is the tangential 
angle of manifold β at neuron bn. As shown in 
Fig.4， when the vector bn - 1 bn + 1 is located in the 
first and fourth quadrants of the XY coordinate 

plane， αbn ∈ (-π/2，π/2 )， αbn can be directly ob⁃
tained from the inverse tangent function. When the 
vector bn - 1 bn + 1 is located in the second and third 
quadrants of the  XY coordinate plane， 
αbn ∈ ( π 2，3π 2 ) ， it is necessary to add π to the arc⁃
tangent function value to obtain the correct αbn. 
Therefore， the complete expression for αbn is shown 
as

αbn =
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As can be seen from Fig.3， the normal angle 
χbn of manifold β at neuron bn can be described as 
χbn = αbn + π 2. For the point xj， its direction angle 
γxj relative to the neuron bn can be calculated as

γxj =
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Therefore， the normal projection height dN xj of 
the point xj relative to the manifold β at the neuron 
bn is calculated as

dN xj = h∙ cos (γxj - χbn) (6)

where h = é
ë( xxj - xbn ) 2 + ( yxj - ybn) 2ù

û

1 2

 is the lin⁃

ear distance between the point xj and the neuron bn.

Fig.4　Definition of αbn angle

Fig.3　Projection of point cloud data
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The normal projection height of all points in the 
clusters relative to the manifold β can be used to cal⁃
culate the uncertainty of the corresponding winning 
neuron. In this study， it is assumed that the position 
deviation of the points in the cluster relative to the 
winning neuron obeys the normal distribution. Fig.5 
shows the average ice shape with its tolerance band. 
The average ice shape is obtained by connecting all 
neurons， and the tolerance band is obtained by con⁃
necting the inner and outer boundaries of the 95% 
confidence interval of all neurons. In the comparison 
of the calculated ice shape and the test ice shape， if 
the upper and lower corners of the calculated ice 
shape locate in the tolerance band， it can be argued 
that the calculated ice shape and the test ice shape 
have similar aerodynamic effects on the aircraft.

3 Experimental Results and Discus⁃
sion 

The icing tests were performed in the 3 m×
2 m icing wind tunnel at CARDC. The test model 
HS2 was the flat tail airfoil of a large amphibious air⁃
craft， which was formed by stretching the 2D airfoil 
for 2 m in the vertical direction. The model was ver⁃
tically installed in the middle of the wind tunnel test 
section.

The test condition numbered HS2-02 is as fol⁃
lows： The simulated altitude is 4 500 m， the air ve⁃
locity is 105.56 m/s， the model’s angle of attack is 
2.15°， the static air temperature is -1.25 ℃， the to⁃
tal air temperature is -6.8 ℃， the median volumet⁃
ric diameter is 20 µm， the liquid water content is 
0.49 g/m3， and the icing spray time is 22.5 min. In 
order to investigate the repeatability of the icing test， 
another icing test numbered HS2-09 was conducted， 

which had the same test condition with HS2-02.
Fig.6 shows the comparison of the ice shape in 

the test HS2-02 and HS2-09. Generally， the ice 
shape of the two tests agreed with each other well. 
For the areas near the wind tunnel wall at the top 
and bottom of the model， due to the mutual interfer⁃
ence between the wall and the model， the distribu⁃
tions of the flow field and cloud field in these areas 
were uneven， thereby resulting in quite different ice 
shapes. Therefore， ice shape recording should avoid 
these areas. In the tests， the quality of the flow 
field， the temperature field， and the cloud field at 
the height range of 500 mm to 1 500 mm meets the 
relevant requirements of SAE APR 5905， and the 
ice shape in this area was effective. Therefore， four 
2D ice profiles were obtained at the height of 500， 
1 000， 1 100， and 1 500 mm by using hand tracing.

3. 1 2D ice shape　

Fig.7 shows the comparison of the 2D ice pro⁃
files at four different locations in the HS2-02 test. 
Since the test model was made of a single airfoil di⁃
rectly stretched in the vertical direction， the four ice 
profiles should be identical in theory. However， in 
practice， since the flow field， the temperature field 
and the cloud field could not be at absolutely uni⁃
form distribution， the ice shape at different locations 
would have differences， which means that the test 
ice shape has significant 3D characteristics. As can 
be seen in Fig. 7， the four ice profiles have obvious 
differences， especially for the two ice profiles at the 
heights of 1 500 mm and 1 100 mm.

Fig.8 shows the comparison of the 2D ice pro⁃
files at four different locations in the test HS2-09. 
Similarly， the four ice profiles were different obvi⁃
ously.

Fig.5　Average ice shape and its tolerance band
Fig.6　Comparison of ice shape in the tests
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Therefore， how to select the accurate and ap⁃
propriate 2D test ice shape becomes a difficult prob⁃
lem when comparing it with the results calculated by 
the ice shape calculation software. Since the ice pro⁃
files obtained by hand tracing cannot reflect the full 
3D characteristics of the ice shape， it cannot be used 
to determine the typical ice shape effectively.

3. 2 3D ice shape　

The Romer Absolute Scanner was used to ob⁃
tain the 3D ice shape with the height range of 
121 mm. Fig.9 shows the test model and its 3D 

shape. The amount of the 3D points of the model 
shape was 601 619， and their average distance was 
0.252 2 mm.

Fig.10 and Fig.11 show the actual test ice and 
its corresponding 3D ice shape measured by the 
Romer Absolute Scanner in the test HS2-02 and 
HS2-09. The amount of the 3D ice shape points 
were 847 329 and 988 733， while their average dis⁃
tance were 0.267 5 mm and 0.268 3 mm.

3. 3 Average ice shape and tolerance band　

Fig.12 shows the 2D average shape and its tol⁃
erance band calculated by using BLSOM based on 
the 3D model shape points. Since the surface of the 
test model is not covered with any shape， the calcu⁃
lated 2D average shape actually describes the shape 
characteristics of the test model.

Overall， the average shape and its tolerance 

Fig.8　Comparison of ice profile in the test HS2-09

Fig.7　Comparison of ice profile in the test HS2-02

Fig.9　Test model and its 3D shape

Fig.10　Actual ice and its 3D shape in the test HS2-02

Fig.11　Actual ice and its 3D shape in the test HS2-09
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band are smooth and slender， which accurately de⁃
scribe the shape of the test model. It can be seen 
from the enlarged image that， the average shape is 
located in the middle of the points， and a 95% prob⁃
ability tolerance band is located on both sides of the 
average shape， covering most of the point cloud ar⁃
ea. The average shape has the arc length of about 
356.42 mm， and the average width of the tolerance 
band is about 0.15 mm， which is determined by the 
manufacturing error of the model and the measure⁃
ment error of the scanner.

When using the BLSOM to describe the 3D 
test ice shape， the number of neurons should be de⁃
termined according to the actual ice shape. As 
shown in Fig.13， three average ice shapes are ob⁃
tained by using BLSOM with 15， 30 and 50 neu⁃
rons respectively in the test HS2-02. In Fig.13（a）， 
the average ice shape is clear but does not capture 
the upper and lower ice corners well. In Fig.13（b）， 
not only the average ice shape is clear， but also the 
upper and lower ice corners are captured well. In 
Fig.13（c）， the average ice shape obtains the best 
upper and the lower ice corners， but its structure is 
relatively messy. Therefore， by comparison， the 
neural network with 30 neurons could describe the 
ice shape best.

Fig.14 shows the average ice shape and its 
95% probability tolerance band in the test HS2-02. 
It can be seen that each neuron is located at the cen⁃
ter of its point cluster， and the average ice shape 
represents the trend of 2D point cloud data. At the 
upper and lower ice corners， which have the great⁃

Fig.13　Average ice shapes by using BLSOM with different 
number of neurons

Fig.14　Average ice shape and its tolerance band in the test 
HS2-02

Fig.12　Average shape and the tolerance band of the test 
model
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est impact on aerodynamic forces， the distribution 
of point cloud data is relatively scattered， and the 
95% probability tolerance band can cover most of 
the point cloud area. In the lower regions with low 
ice content， the tolerance band range is sharply nar⁃
rowed， and the average ice shape and its tolerance 
band outline the model shape.

Fig.15 shows the comparison of the average ice 
shape and the 2D ice profiles at four locations in the 
test HS2-02. It can be seen that the trend of the av⁃
erage ice shape and the 2D ice profiles at four loca⁃
tions are roughly the same，and the 95% probability 
tolerance band basically encloses the 2D ice profiles 
at four locations. Generally， the average ice shape 
calculated by BLSOM and its 95% probability toler⁃
ance band can represent all information contained in 
the 3D ice shape of the test HS2-02.

Fig.16 shows the average ice shape and its 

95% probability tolerance band in the test HS2-09， 
while Fig.17 shows the comparison between the av⁃
erage ice shape and the 2D ice profiles at four loca⁃
tions. Similarly， the average ice shape calculated by 
BLSOM and its 95% probability tolerance band can 
effectively represent all information contained in the 
3D ice shape of the test HS2-09.

3. 4 Overlap of average ice shapes　

In statistics， multiple measurements and their 
arithmetic mean can eliminate the randomness error 
of measuring. Therefore， in this study， the mea⁃
sured 3D ice shape points in the test HS2-02 and 
HS2-09 are overlapped together， base on which the 
average ice shape and its tolerance band are calculat⁃
ed by using BLSOM.

Fig.18 shows the comparison of the calculated 

Fig.18　Comparison of average ice shapes in the tests 
HS2-02 and HS2-09

Fig.15　Comparison of ice profile in the test HS2-02

Fig.16　Average ice shape and its tolerance band in the test 
HS2-09

Fig.17　Comparison of ice profile in the test HS2-09
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average ice shapes in the tests HS2-02 and HS2-09. 
Fig.19 shows the overlapped 3D ice shape points. 
Fig.20 shows the average ice shape and its tolerance 
band calculated based on the overlapped 3D points. 
Consistent with previous analysis， the average ice 
shape and its tolerance band can also represent all in⁃
formation contained in the 3D ice shape.

Fig.21 shows the comparison of the average ice 
shapes. It can be seen that the height of the upper 

ice horn in the overlapping state is between the 
height of the upper ice horn in the tests HS2-02 and 
HS2-09. In the upper region of the lower ice horn， 
the average ice shape in the overlapping state is 
more similar to that in HS2-09. In most of the re⁃
maining areas， the average ice shape of the three 
states almost coincide with each other.

Obviously， increasing the number of ice tests 
with the same condition can obtain more ice shape 
data. Therefore， the average ice shape and its toler⁃
ance band calculated after overlapping the ice shapes 
can more accurately describe the characteristics of 
the 3D ice shape in the test， which can be used as 
the typical test ice shape for comparative analysis 
with the calculated ice shape.

4 Conclusions 

Compared with other ice shape description 
methods， the main advantages of our proposed 
BLSOM based 3D ice shape description method in⁃
clude：

（1） Compared with hand tracing method， our 
proposed method can record the changes in ice 
shape along the spanwise direction， which can re⁃
flect all information about the 3D ice shape. There⁃
fore， the combination of the 2D average ice shape 
and its tolerance band can be used as the typical test 
ice shape better.

（2） Compared with the mold and casting meth⁃
od， our proposed method can record the 3D ice 
shape in a numerical manner， and convert it into 2D 
ice shape data for subsequent usage. In addition， by 
overlapping the 3D ice shapes， the randomness er⁃
ror of measuring can be eliminated.

In the future work， the BLSOM based 3D ice 
shape description method can be improved in the fol⁃
lowing aspects：

（1） To develop an accurate point cloud data 
alignment method to reduce the deviation of their 
overlapping.

（2） To enable the number of neurons to auto⁃
matically adjust with the curvature change of the ice 
shape.

Fig.19　Overlapped 3D ice shape points

Fig.20　Average ice shape and its tolerance band in overlap⁃
ping state

Fig.21　Comparison of average ice shapes in different states
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基于 BLSOM 神经网络的三维冰形描述方法

朱百六 1， 左成林 2

（1.中航通飞华南飞机工业有限公司，珠海  519040，中国； 
2.中国空气动力研究与发展中心结冰与防除冰重点实验室，绵阳  621000，中国）

摘要：在校核冰形计算软件时，根据计算冰形与典型试验冰形的接近程度来判断冰形计算软件是否准确，因此确

定典型试验冰形就成为冰风洞试验的关键任务。在某大型水陆两栖飞机尾翼冰风洞试验中，为获得精确的典型

试验冰形，使用 Romer Absolute 扫描仪获得了尾翼模型结冰冰形的三维点云数据，然后使用批学习自组织映射

（Batch⁃learning self⁃organizing map，BLSOM）神经网络获得了冰形的三维点云数据沿模型展向的二维平均冰形，

并使用概率统计方法获得了二维平均冰形的公差带。结果表明，二维平均冰形与其公差带相结合可准确代表试

验冰形的三维特征信息，因此可作为一种典型试验冰形与计算冰形进行对比分析。

关键词：结冰风洞试验；冰形；批学习自组织映射；神经网络；三维点云
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