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Abstract: The defect detection of wafers is an important part of semiconductor manufacturing. The wafer defect map 
formed from the defects can be used to trace back the problems in the production process and make improvements in 
the yield of wafer manufacturing. Therefore， for the pattern recognition of wafer defects， this paper uses an improved 
ResNet convolutional neural network for automatic pattern recognition of seven common wafer defects. On the basis 
of the original ResNet， the squeeze-and-excitation （SE） attention mechanism is embedded into the network， through 
which the feature extraction ability of the network can be improved， key features can be found， and useless features 
can be suppressed. In addition， the residual structure is improved， and the depth separable convolution is added to 
replace the traditional convolution to reduce the computational and parametric quantities of the network. In addition， 
the network structure is improved and the activation function is changed. Comprehensive experiments show that the 
precision of the improved ResNet in this paper reaches 98.5%， while the number of parameters is greatly reduced 
compared with the original model， and has well results compared with the common convolutional neural network. 
Comprehensively， the method in this paper can be very good for pattern recognition of common wafer defect types， 
and has certain application value.
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0 Introduction 

As semiconductor and information technology 
continue to advance， the proliferation of chips 
across various sectors has significantly impacted our 
lives and production processes. 5G communication 
systems rely on specialized chips， while the bur‑
geoning field of autonomous driving necessitates so‑
phisticated vehicle-grade chips. The internet of 
things （IOT） demands chips for control applica‑
tions， and the aerospace industry imposes even high‑
er standards， requiring chips with enhanced compu‑
tational capabilities. The demand within the semi‑
conductor market is surging. The semiconductor 
and integrated circuit industry play a pivotal role in 
chip manufacturing. Typically， chip design compa‑
nies initiate the process by completing the integrated 

circuit design. Subsequently， the manufacturing 
phase begins with the fabrication of wafers， which 
serves as the foundation for chip production.

The standard process involves several key 
steps： Raw materials are cut to form monocrystal‑
line silicon wafers， followed by a series of opera‑
tions including engraving， cleaning， oxidation， dif‑
fusion， chemical vapor deposition， metal sputter‑
ing， photoresist coating， lithography， etching， and 
testing. The fabricated or cut wafers are then for‑
warded to packaging facilities for pin packaging and 
final product testing. As in Fig.1， this paper concen‑
trates on the testing phase of the wafer manufactur‑
ing process， which is critical for ensuring the quality 
and reliability of the chips produced. As semiconduc‑
tor processes advance， the performance of chips in‑
creases， as does their complexity， leading to a high‑
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er likelihood of defects. Thus， testing wafers to con‑
trol quality is imperative and timely elimination of un‑
qualified wafer. Generally， using electronic probes 
for each die for testing， for failure to pass the test 
grain， will be recorded with different numbers， and 
ultimately the formation of the wafer test chart， and 
can be simplified into the wafer defects maps［1-2］. By 
analyzing various defect patterns， quality engineers 
are able to identify distinct defect signatures， thereby 

deducing the underlying causes of these defects. This 
analysis is crucial for enhancing the production yield 
rate. As the scale and efficiency of wafer production 
increase， the timely and rapid detection and infer‑
ence of wafer defects maps become increasingly im ‑
perative. In the production process， sometimes there 
will be a variety of defect patterns at the same time， 
so how to efficiently and accurately identify the de‑
fect patterns of wafers is very important.

1 Related Work 

Traditional methods for identifying wafer de‑
fect maps typically require engineers to have rele‑
vant knowledge and experience， followed by manual 
analysis［3］. However， the manual identification pro‑
cess is slow and inefficient， which is incompatible 
with the rapid and voluminous production and inspec‑
tion demands of the modern integrated circuit indus‑
try. Consequently， machine vision technology has 
been increasingly employed to automate the detec‑
tion of wafer defect maps. It can be divided into two 
main parts： traditional machine vision methods and 
machine learning clustering methods. Common ap‑
proaches for machine vision involve Hough［4］ trans‑

form to detect defects in the contour， the template 
matching method to match defects in the graph， HU 
invariant， Fisher discriminant［5］， regional feature 
modeling［6］， and support vector［7］. Such as this kind 
of method can detect simple defects to a certain ex‑
tent in the contour， but the accuracy of detection is 
poor and manual feature extraction is required， 
which is difficult to use in practice and inefficient. 
Meanwhile， the clustering method often exhibits 
limitations when applied to practical scenarios due to 
its complex and time-consuming， which render it un‑
suitable for industrial-scale productions［8］. Besides， 
clustering paramenters often need to be set manual‑
ly. With the development of deep learning， there are 
many scholars trying to use deep learning methods 

Fig.1　Wafer test framework

82



No. S YANG Yining, et al. Wafer Defect Map Pattern Recognition Based on Improved ResNet

for the detection of scratches on the wafer surface， 
the classification of defects. Nakazawa and Kang et 
al.［9-10］ have successfully used the power of convolu‑
tional neural networks （CNNs） for the recognition 
of wafer defects maps， as well as for wafer defects 
maps retrieval tasks. Their approach achieved a well 
classification accuracy， demonstrating the efficacy of 
deep learning techniques in the domain of semicon‑
ductor manufacturing quality control. Yu et al.［11］ 
proposed an 8-layer structure convolutional neural 
network to detect whether a wafer has a defect， and 
built a 13-layer model to classify wafer defect maps. 
Wang et al.［12］ used the polar mapping to convert the 
wafer map into a matrix and then used CNN to clas‑
sify the matrix data to obtain the better performance.
Jin et al.［13］ used CNN to extract features from wafer 
defects maps， which were subsequently fed into a 
support vector machine incorporating an error-cor‑
recting output code to classify them. Shim et al.［14］ 
have developed a cost-effective convolutional neural 
network （CNN） classification model that not only 
exhibits well performance but also incurs minimal la‑
beling cost. To augment the training efficiency of 
this model， they integrated active learning tech‑
niques to selectively filter unlabeled wafer defect 
maps， thereby prioritizing them for labeling. Howev‑
er， the above deep learning methods still have low 
accuracy and poor adaptation to wafer defect classifi‑
cation. So there is still room for improving the model 
effect. At the same time， most of the model parame‑
ter counts are large， which is not conducive to subse‑
quent deployment. Therefore， this paper improves 
the ResNet network. Firstly， by adding the squeez-

and-excitation （SE） attention mechanism to im ‑
prove the feature extraction ability of the network， 
the useless information is suppressed. Then the acti‑
vation function is replaced to improve the nonlinear 
expression ability of the model. And the depth sepa‑
ration convolution is used to lighten the model. Fi‑
nally， good results are achieved.

2 Theories and Methods 

As a class of feed-forward neural networks that 
contain convolutional computation and have a deep 

structure， CNN is one of the representative algo‑
rithms for deep learning. ResNet［15］ is a classical 
convolutional neural network. The network pio‑
neers the residual architecture， which improves the 
information propagation efficiency by adding directly 
connected edges to the nonlinear convolutional lay‑
ers， and enables the gradient at the higher level to 
be directly transmitted back to solve the problem of 
gradient vanishing in deeper networks. The ResNet 
network is scalable and can be directly used in other 
networks， and the network training is fast and easy 
to optimize. In this paper， ResNet34 is used， in 
which the number 34 represents the number of lay‑
ers of the network. The structure of ResNet34 is 
shown in Table 1.

In order to make the ResNet network better 
meet the requirements of pattern recognition of wa‑
fer defects maps， this paper improves it in several 
aspects： changing the activation function， embed‑
ding the SE attention mechanism， and using depth-

separated convolution.

2. 1 Changing the activation function　

Activation functions enhance model nonlineari‑
ty. The ReLU activation in CNNs mitigates the van‑
ishing gradient problem but risks dead neuron is‑
sues， potentially reducing training efficacy. In this 
paper， we use Leaky ReLU with leakage linear rec‑
tification function as the activation function， which 
can avoid the above problems. The mathematical ex‑
pression of Leaky ReLU function is shown as

Table 1　Structure of ResNet34

Layer name
Conv 1

Conv 2_x

Conv 3_x

Conv 4_x

Conv 5_x

Output

-

Output size
112 × 112

56×56

28×28

14×14

7×7

1×1

-

Structure
7 × 7 ，64，stride 2

3×3，64
3×3，64

3×3，128
3×3，128
3×3，256
3×3，256
3×3，512
3×3，512

Average pooling
Full connection

Softmax

Number
1

3

4

6

3

1

1
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Leaky ReLU ( x ) ={x     x > 0
ax   x ≤ 0

（1）

Leaky ReLU function in x < 0 can still calcu‑
late the gradient， so set x equal to 0.01.

2. 2 Embedding the SE attention mechanism　

Squeeze-and-excitation network（SE-net）［16］ is 
a channel attention network. Hence SE-net is em ‑
bedded into ResNet. Its function is to enhance criti‑
cal features and suppress generic features. SE-net 
can learn the importance of feature channels indepen‑
dently without changing the original spatial dimen‑
sion， and improve the model training by boosting 
the weights of more effective feature information 
based on the importance of feature channels.  The 
SE-net model structure consists of three parts： 
Squeeze， excitation， and reweight， as shown in 
Fig.2. The process of SE-net function is as follows.

(1) Squeeze operation　
The feature graph with the size of C × W  × 

H is compressed into a feature graph with the size of 
1 × 1 × C by using average pooling， as F sq shown 
in Eq.（2）.

F sq ( C )= 1
HW ∑

i = 1

H

∑
j = 1

W

C ( i,j ) (2)

where H and W  are the hight and width of the fea‑
ture map， respectively； C is the channel of the fea‑
ture map； i and j are the pixel setting variables.

(2) Excitation operation　
 Through two fully connected layers， the 

weight and channel correlation of different feature 
channels are represented by the parameter W， 
shown as

F ex( Z,W ) = σ (W 2 δ (W 1,Z ) ) (3)
where Z is the output of the squeeze operation， W1 
and W2 are channel weights， σ (⋅) is the activation 
function and δ (⋅) the normalization function.

(3) Reweight operation　
The weight vector just generated is multiplied 

with the feature graph of C ×H ×W， and the 
weight is assigned to it to get a new feature graph. 
The resulting feature map is exactly the same size as 
before shown as

F scale( C,S ) = SC (4)

2. 3 Depth‑separated convolution　

Because the ResNet guarantees that the quality 
of network training will not be degraded by continu‑
ously deepening the number of network layers and 
using short-connection， it eventually achieves good 
results. However， as the number of network layers 
increases， the complexity of the network and the 
number of parameters also increase， ultimately lead‑
ing to a too large model， which is not conducive to 
the subsequent industrial deployment. Therefore， it 
is very important to lighten the model. Therefore， 
in this paper， we use depth separable convolution to 
replace the original convolution.

The deep separable convolution consists of two 
parts， depth convolution and point-by-point convolu‑
tion， as shown in Fig.3. As can be seen from the fig‑
ure， the number of convolution kernels used for 
depth convolution is the same as that of channels of 
the input feature matrix， and the number of chan‑
nels of the convolution kernel is 1. This operation 
can reduce a large number of parameters， but the 
depth convolution is only a convolution operation 
for each channel of the input layer independently， 
which cuts off the connection between different 
channels of the input feature map in the same spatial 
position. Following this， the newly generated out‑
put results are produced. Therefore， the newly gen‑
erated output feature matrix needs to be convolved 
point-by-point to be used as the input layer， which 
finally realizes the weighting operation of the feature 
map in the depth direction. Point-by-point convolu‑
tion is similar to the traditional convolution， and the 
difference is that the convolution kernel size used in 
point-by-point convolution is 1×1 and multiply the 
channel value. The depth-separable convolution 
used reduces the number of parameters used in the 
model compared to the traditional convolution， 
greatly reducing the complexity of the model.

Fig.2　SE attention mechanism
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Finally， the depth-separable convolution is in‑
corporated into the residual block and replaces part 
of the traditional convolution， while the SE atten‑
tion mechanism is added to the residual block， and 
the improved residual block is shown in Fig.4.

3 Experiments 

To test the effectiveness of the proposed meth‑
od， comparative tests are conducted. The operating 
system used is Windows 10， the CPU model is 
AMD Ryzen 7 4800 H， 16 GB of RAM， and the 
CUDA11.1.114 parallel computing framework with 
NVIDIA GTX1650 graphics card is used.

The experimental part is mainly divided into ex‑
perimental data， model training， and comparison ex‑
periments.

3. 1 Experimental data　

A total of 6 149 wafer defect map data are used 
from the international public dataset， containing a 

total of 7 categories shown in Fig.5. The image size 
is 640×640.

3. 2 Model training　

The number of training rounds， Epoch， is set 
to 100； the learning rate is set to 0.001， which is a 
hyperparameter determining the required step size 
for optimization； and the momentum is 0.9， which 
is also a hyperparameter in deep learning and is used 
to update the weight parameters of the model. The 
batch size is set to 10 to use the Adam optimizer.

Precision （P）， Recall（R）， Accuracy （Acc） 
and F1 point are used to evaluate the detection re‑
sults， which can be respectively expressed as

P = TP
TP + FP (5)

R = TP
TP + FN (6)

Acc = TP + TN
TP + FP + TN + FN (7)

F 1 = 2 × P
P + R

(8)

where TP is the number of true classes， FP the 
number of false positive classes， FN the number of 
false negative classes， and TN the number of true 
negative classes. The train result of the improved 
ResNet is shown in Fig.6.

In Fig.6， the red line represents the loss value 
of training， the loss is the comparison between the 
prediction and the real label， and the smaller the 
loss value represents the better the training effect. 
From Fig.6， it can be seen that the loss value of the 
improved ResNet model in this paper decreases and 
converges rapidly， and finally stays below 0.1， with 
a better training effect. The blue line represents the 

Fig.3　Depth-separated convolution

Fig.4　Residual block comparison

Fig.5　Wafer map sample
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accuracy value in training. As the number of training 
rounds increases， the accuracy rate increases rapidly 
and finally reaches about 98%. Considering the 
aforementioned results， the model improved in this 
paper shows good training performance.

In addition， the deep learning typically em ‑
ploys a comparison between the true and predicted 
values for each class to construct a confusion ma‑
trix， thereby evaluating the performance of the mod‑
el in recognizing various categories within the test 
dataset. The confusion matrix plot for the ResNet 
model modified in this paper is shown in Fig.7.

From Fig. 7， it can be seen that the improved 
ResNet model can effectively identify most of the 
wafer defect types， with only a few errors， proving 
that the proposed model has good identification re‑
sults.

In addition， to verify the robustness and gener‑
alization of the improved model presented in this pa‑
per， validation experiments are conducted on the 
trained model using a validation set. Experimental 
results indicate that the improved ResNet network 

achieves a precision value of 98.5%， an accuracy of 
99.0%， a recall of 99.5%， and an F1 point of 
99.5%. The validation set shows that the improved 
model in this paper can well accomplish the pattern 
recognition of seven common wafer defects maps.

3. 3 Comparison test　

In order to verify the effectiveness of the im ‑
proved model in this paper， comparison tests with 
other common convolutional neural networks （Mo‑
bileNet， Alexnet，VGG） are also conducted. The 
test results are shown in Table 2.

From the experimental results in Table 2， the 
performance of the improved ResNet in this paper is 
optimal compared to the other convolutional neural 
networks with the same test set， and the precision 
value is 10.1% higher than that of the worst-per‑
forming Mobilenet. Taken together， the improve‑
ment of ResNet in this paper achieves good results 
in the wafer defect map pattern recognition task. Fi‑
nally， in order to verify the effectiveness of the light‑
ening effect by using depth-separable convolution， 
the improved model is compared with the original 
ResNet34， whose results are shown in Table 3.

From the results in Table 3， it can be clearly 
seen that improved ResNet variant exhibits a reduc‑
tion in the number of parameters， amounting to a 
mere 62.8% of the parameter count in the original 
ResNet， and the network size and complexity are re‑
duced significantly， but at the same time the accura‑
cy is higher than that of the original ResNet by 3%. 
It shows that the improved network achieves a bal‑

Fig.6　Train loss curves

Fig.7　Confusion matrix

Table 2　Comparison results %

Model
MobileNet

Alexnet
VGG

Our method

Precision
88.4
93.8
92.5
98.5

Accuracy
87.5
92.7
91.6
99.0

Recall
86.5
94.0
90.4
99.5

Table 3　Parameter comparison

Model

ResNet34
Our method

Number of total 
parameters
21 797 672
13 707 176

Parameter 
size/MB

83.15
52.29

Precision/%

95.5
98.5
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ance between lightweight and performance， show‑
ing good performance.

4 Conclusions 

A deep learning convolutional neural network 
approach is used for automated pattern recognition 
of wafer defect maps， while the original ResNet is 
improved in order to increase the accuracy of the rec‑
ognition and lighten the network. The feature extrac‑
tion capability of the network is increased by embed‑
ding the SE attention mechanism， the activation 
function is changed to improve the nonlinear capabil‑
ity of the network， and finally a deep separable net‑
work is used to make the network lightweight for de‑
ployment. The final experiments a precision show 
that the improved ResNet in this paper achieves 
good results， with a precision of 98.5%， an accura‑
cy of 99%， and a recall of 99.5%. Comprehensive‑
ly， it is better than similar methods， and the 
amounts of parameters is reduced to 62.8% of the 
original ResNet， achieving the balance of network 
lightweight and performance， and has good applica‑
tion effect.
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基于改进 ResNet的晶圆缺陷模式识别研究

杨祎宁， 魏鸿磊
（大连工业大学机械工程与自动化学院，大连 116034，中国）

摘要：晶圆缺陷检测是半导体制造的重要环节，通过对由缺陷形成的晶圆图进行缺陷模式的识别可以追溯生产

过程中问题并进行专项改进，从而提高晶圆制造的良品率。因此，针对晶圆缺陷的模式识别问题，探究采用改进

的 ResNet 网络对 7 种常见晶圆缺陷进行自动识别。在原 ResNet 的基础上，将 SE 注意力机制嵌入到网络中，提

高网络的特征提取能力，发现关键特征，抑制无用特征。改进残差结构，加入深度可分离卷积代替传统卷积，降

低网络的计算量和参数量使得网络轻量化，从而方便在工业环境中更好的进行部署。实验表明，改进后的

ResNet 模型准确率达到 98.5%，参数量较原模型大幅减少，与常见的卷积神经网络相比具有较好的效果。综合

来看，该方法能够很好地进行常见晶圆缺陷类型的模式识别，具有一定的应用价值。

关键词：ResNet；深度学习；机器视觉；晶圆缺陷模式识别
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