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Abstract: Intelligent production is an important development direction in intelligent manufacturing， with intelligent 
factories playing a crucial role in promoting intelligent production. Flexible job shops， as the main form of intelligent 
factories， constantly face dynamic disturbances during the production process， including machine failures and urgent 
orders. This paper discusses the basic models and research methods of job shop scheduling， emphasizing the 
important role of dynamic job shop scheduling and its response schemes in future research. A multi-objective flexible 
job shop dynamic scheduling mathematical model is established， highlighting its complex and multi-constraint 
characteristics under different interferences. A classification discussion is conducted on the dynamic response methods 
and optimization objectives under machine failures， emergency orders， fuzzy completion times， and mixed dynamic 
events. The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also 
analyzed. Finally， based on the current development status of job shop scheduling and the requirements of intelligent 
manufacturing， the future development trends of dynamic scheduling in flexible job shops are proposed.
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0 Introduction 

The flexible job shop scheduling problem 
（FJSP） is a fundamental optimization problem that 
has extensive applications across both manufactur‑
ing and service industries. Intelligent manufacturing 
requires optimizing job shop scheduling to achieve 
complex system management， promoting the inte‑
gration of industrialization and informatization in the 
development of “smart factories”. Sisson［1］ first ex‑
plained the job shop， stating that the manufacturing 
units of different batches of processing orders in the 
job shop are independent of each other， meaning 
that there are constraints on the process path and 
processing steps. Scheduling is the process of orga‑
nizing and executing production plans during the op‑

eration of a production system， and efficient produc‑
tion scheduling is the key to improving production 
efficiency［2］. Jackson［3］ is the first to carry out job 
shop scheduling on the production line， optimizing 
the maximum order lead time to meet production re‑
quirements.

According to the characteristics of different job 
shops， job shop scheduling can be divided into sin‑
gle machine scheduling， parallel machine schedul‑
ing， job shop scheduling， flexible job shop schedul‑
ing， replacement flow shop scheduling， open job 
shop scheduling， and distributed job shop schedul‑
ing. Single machine and parallel machine scheduling 
are fundamental scheduling problems， which only 
need to consider the scheduling of one machine or 
one workpiece. Job shop scheduling has expanded in 
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the scale of machines and processes， but processes 
can only be dealt on fixed machines without flexible 
features. The workpieces and machines in FJSP ex‑
hibit high flexibility， allowing processes to be car‑
ried out on any machine with varying processing 
times. Research on FJSP has begun in the 1950s. 
During this period， scholars had a vague concept of 
this job shop model， but the research object could 
be seen as a standard FJSP instance［4-6］. Brucker et 
al.［7］ extended the “one to many” relationship be‑
tween workpieces and machines to job shop schedul‑
ing theory， forming the basic definition of FJSP. 
Brandimarte［8］ and Kacem et al.［9］ generated MK 
and Kacem scheduling instances for job shops with 
different degrees of flexibility， which became the ba‑
sic experimental dataset for subsequent researchers 
on FJSP. FJSP is a typical non deterministic polyno‑

mial problem， and a large amount of research has 
mainly focused on two aspects： Job shop models 
and scheduling methods［10-26］. Table 1 summarizes 
the relevant research on job shop scheduling. Black‑
stone et al.［10］ summarized and compared the early 
scheduling rules for solving the job shop scheduling 
problems （JSP）， and believed that these rules were 
highly effective in addressing complex and dynamic 
scheduling issues. Ramasesh［11］ examined dynamic 
job shop scheduling problems （DJSP） with the fo‑
cus on the development of job shop models and opti‑
mization objectives. The emergence of intelligent al‑
gorithms has provided a new direction for address‑
ing the JSP. Blazewicz et al.［12］ compared exact 
methods and approximate algorithms， and pointed 
out that approximate algorithms are more effective 
in solving large-scale problems.

With the advent of the artificial intelligence and 
big data era， Sellers［13］ provided a detailed introduc‑
tion to the application of neural network algorithms 
in JSP， and categorized them into three mainstream 
methods along with heuristic rules and classical opti‑
mization methods. Allahverdi et al.［14，17］  comprehen‑
sively summarized JSP that considers setting time 
（acquiring tools， locating work in process materi‑
als， etc.）， enriching the basic model of job shop 

scheduling. Qian et al.［15］ analyzed the pros and cons 
of traditional and intelligent scheduling methods， 
and believed that integrating the strengths of both 
approaches would be a new breakthrough in schedul‑
ing methods. Gordon et al.［16］ compared single ma‑
chine and parallel machine scheduling， mainly con‑
sidering order delivery time and other optimization 
objectives. Abdullah et al.［18］ summarized FJSP 
with fuzzy concepts， and divided it into fuzzy pro‑

Table 1　Classification of studies on job shop scheduling

Reference
Blackstone[10]

Blazewicz et al.[12]

Sellers[13]

Qian et al.[15]

Xie et al.[22]

Li et al.[25]

Ramasesh[11]

Allahverdi et al.[14]

Gordon et al.[16]

Allahverdi et al.[17]

Abdullah et al.[18]

Peng et al.[19]

Dhiflaoui et al.[20]

Gao et al.[23]

Xiong et al.[24]

Mohan et al.[21]

Jiang et al.[26]

Research objective
Scheduling method
Scheduling method
Scheduling method
Scheduling method
Scheduling method
Scheduling method
Scheduling model
Scheduling model
Scheduling model
Scheduling model
Scheduling model
Scheduling model
Scheduling model
Scheduling model
Scheduling model
Model and method
Model and method

Research content
JSP scheduling rules

Accurate methods and approximate algorithms
Neural networks and classical optimization methods

Traditional methods and intelligent optimization methods
Meta heuristic and classical optimization algorithms

Dynamic scheduling algorithms and reinforcement learning
DJSP

JSP considering setting time
Single machine and parallel online scheduling

JSP considering setting time
FJSP considering fuzzy time
Multi‑objective static FJSP

Dual resource JSP and FJSP
Swarm intelligence algorithms and evolutionary algorithms

JSP and FJSP
Response scheduling of DJSP

Intelligent algorithms for FJSP and DFJSP
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cessing time and fuzzy delivery time， which were 
more in line with production reality. Peng et al.［19］ 
summarized the research on multi-objective static 
FJSP， focusing on the application of intelligent 
search algorithms in multi-objective scheduling. Dhi‑
flaoui et al.［20］ distinguished between dual resource 
JSP and dual resource FJSP， considering both ma‑
chine resources and worker resources in the schedul‑
ing category， extending the FJSP.

Mohan et al.［21］ analyzed and compared the 
complete response scheduling and pre-response 
scheduling methods of DJSP， concluding that the 
latter can quickly handle dynamic events and exhib‑
its stronger robustness. Xie et al.［22］ classified the 
methods for solving FJSP into exact algorithms， 
heuristic algorithms， and metaheuristic algorithms. 
Metaheuristic algorithms perform well by relying on 
local search and optimization strategies. Gao et 
al.［23］ comprehensively summarized the application 
of swarm intelligence algorithms and evolutionary al‑
gorithms on FJSP， providing detailed introductions 
to encoding， decoding， initialization， and search op‑
erators. Xiong et al.［24］ analyzed the properties， as‑
sumptions， basic types， and performance metrics of 
JSP， and also introduced the general representation 
and overview of the JSP model. Li et al.［25］ summa‑
rized various methods for handling DJSP， emphasiz‑
ing the application of reinforcement learning in dy‑
namic scheduling. Jiang et al.［26］ analyzed the FJSP 
problem from both static and dynamic scheduling 
perspectives， and comprehensively summarized the 
current mainstream algorithms and scheduling mod‑
els. A comprehensive analysis was conducted on 
preventive maintenance when dealing with machine 
fault interference in job shop scheduling， and it was 
believed that achieving real-time status monitoring 
of equipment is a prerequisite for improving fault 
prediction， fault diagnosis， and fault-tolerant con‑
trol.

Based on the above research， the following 
conclusions can be drawn.

（1） Early research mostly focused on the JSP， 
where swarm intelligence algorithms， with their effi‑
cient optimization capabilities， have gradually re‑

placed precise algorithms and traditional scheduling 
rules. Deep learning exhibits strong adaptability 
through data-driven approaches， yet its interpretabil‑
ity remains limited.

（2） The research has gradually shifted from 
theoretical methods to analyzing job shop models un‑
der multiple constraints， such as the green job shop 
considering carbon emissions， the multi-resource 
job shop expanding scheduling resources， the com‑
prehensive job shop improving scheduling process‑
es， and the fuzzy job shop with fuzzy processing 
time.

（3） Due to the continuous interference in the 
job shop production environment， the goal of dy‑
namic scheduling is to maintain system balance and 
ensure the normal execution of production plans. 
Obviously， dynamic scheduling is more complex 
and difficult to solve.

We retrieved the keyword “dynamic flexible 
job shop scheduling” from the Web of Science 
（WoS） database and obtain 266 articles published in 
core journals from 2000 to 2024. We used Citespace 
to cluster its keywords. Fig.1 shows the top ten 
most frequently occurring keyword maps， and Fig.2 
shows the clustered ten keyword maps. It can be 
seen that the research hotspots in this direction in‑

Fig.1　Keyword frequency for papers of “dynamic flexible 
job shop scheduling”

Fig.2　Clustering graph for papers of “dynamic flexible job 
shop scheduling”
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clude dynamic scheduling， multi-objective optimiza‑
tion， etc.

In summary， this paper explores dynamic re‑
sponse methods for multi-objective dynamic flexible 
job shop scheduling problems （DFJSP） based on 
different dynamic events. The remaining chapters 
are arranged as follows： Section 1 elaborates in de‑
tail on the FJSP model， the multi-objective optimi‑
zation model， and the multi-objective dynamic 
scheduling model for flexible job shop； section 2 
compares the pros and cons of different dynamic re‑
sponse methods and rescheduling schemes for 
DFJSP under machine failures； section 3 discusses 
DFJSP under urgent orders， analyzes the effects of 
order arrival processing schemes and different inser‑
tion schemes； section 4 analyzes the application of 
fuzzy theory in dynamic scheduling for DFJSP un‑
der fuzzy processing time； section 5 summarizes 
DFJSP under mixed dynamic events and studies the 
mixed processing scheme for dynamic events； sec‑

tion 6 presents an application case of scheduling 
methods in aviation manufacturing； section 7 draws 
certain conclusions and provides direction for future 
research.

1 Problem Description 

This section elaborates the basic FJSP mathe‑
matical model， the multi-objective optimization 
model， and the multi-objective dynamic scheduling 
model for flexible job shops.

1. 1 Flexible job shop scheduling model　

The classical FJSP can be described as： m ma‑
chines processing n workpieces； any workpiece con‑
tains several processes； the process path of any 
workpiece is fixed； the processing time of any pro‑
cess on different machines is different； the purpose 
of scheduling is to select the appropriate process se‑
quence and machine allocation to achieve the opti‑
mal scheduling goal. Table 2 shows the symbol defi‑
nitions in the FJSP mathematical model.

FJSP modeling needs to consider both work‑
piece constraints and machine constraints. Eq.（1） 
indicates that the process can only be processed on 
one machine. Eq.（2） indicates that there is a pre 
and post‑relationship between the processes of the 
same workpiece. Eq.（3） indicates that the start time 
of any workpiece must be after time 0. Eq.（4） indi‑
cates that the machine’s setting time is ignored. 
Eq.（5） indicates that the machine can only process 
one workpiece at a time.

∑
k = 1

m

xijk = 1        1 ≤ i ≤ n; 1 ≤ j ≤ ni (1)

T S
i ( j + 1 ) ≥ T S

ij + tijk · xijk

1 ≤ i ≤ n; 1 ≤ j ≤ ni; 1 ≤ k ≤ m
(2)

T S
ij ≥ 0       1 ≤ i ≤ n; 1 ≤ j ≤ ni; 1 ≤ k ≤ m (3)

T E
ij = T S

ij + tijk · xijk

1 ≤ i ≤ n; 1 ≤ j ≤ ni; 1 ≤ k ≤ m (4)
( T E

ij - T E
pq - tijk ) xijk xpqk ( zijqpk( )zijqpk + 1 )+

( T E
pq - T E

ij - tpqk ) xijk xpqk ( zijqpk( )zijqpk - 1 )
1 ≤ i ≤ n; 1 ≤ j ≤ ni; 1 ≤ k ≤ m (5)

1. 2 Multi‑objective optimization model　

The multi-objective optimization problem is de‑
scribed as

min F ( X ) = [ ]f1( )x ,f2( )x ,⋯,fn( )x
T

(6)
where X ∈Ω，f1( x )，f2( x )，⋯， fn( x ) represent n 
optimization objectives and Ω the decision space cor‑
responding to the scheduling scheme set.

Table 2　FJSP model variables

Symbol
n
m
i
j
k

Ci

ni

P I
k

Definition
Total number of workpieces
Total number of machines

Workpiece index
Process index
Machine index

Duration
Number of processes

No‑load power consumption

Symbol
O ij

M ij

T S
ij

T E
ij

tijk

xijk

zijpqk

P P
k

Definition
The jth process of workpiece i

The machinable machine set of O ij

The starting processing time of O ij

The end processing time of O ij

The processing time of O ij on M k

Equals 1 when O ij is machined on M k, otherwise 0
Equals 1 when O ij is processed before O pq, otherwise 0

Load energy consumption
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Multi-objective optimization problems are usu‑
ally solved by non-dominated sorting， and the supe‑
riority or inferiority of new solutions generated dur‑
ing the iterative process needs to be evaluated. For 
the two solutions x 1，x 2 ∈Ω， the condition that x 1 
can dominate x 2 is given by Eq.（7）. If none of the 
solutions can dominate x 1， it is a Pareto solution 
and given by Eq.（8）. The Pareto solution corre‑
sponds to a set of scheduling schemes and is 
mapped as a Pareto front in n-dimensional space. 
Eqs.（9—12） provide conventional definitions for 
the minimizing completion time， the minimizing to‑
tal machine load， the maximum machine load， and 
the minimizing job shop energy consumption.

fi( x 1 ) ≤ fi( x 2 )       i ∈ 1,2,⋯,n (7)

fk ( x 1 ) < fk ( x 2 )       k ∈ 1,2,⋯,n (8)
min ( max Ci )     1 ≤ i ≤ n (9)

min ∑
i = 1

n

∑
j = 1

ni

∑
k = 1

m

tijk · xijk (10)

min ( )max ∑
i = 1

n

∑
j = 1

ni

tijk · xijk (11)

min ∑
i = 1

n

∑
j = 1

ni

∑
k = 1

m

tijk xijk P P
k +( Ci - tijk xijk ) P I

k (12)

Fig.3 shows common job shop scheduling opti‑
mization objectives， which can be divided into static 
indicators and dynamic indicators. Static indicators 
mainly involve order and job shop indicators， while 
dynamic indicators can mostly reflect the response 
effect of manufacturing systems to interference.

1. 3 Multi‑objective dynamic scheduling model 
for flexible job shop　

In response to sudden disruptions in the produc‑
tion line， resources and workpieces need to be 
re‑arranged or rescheduled. There are three common 
rescheduling strategies： Right shift rescheduling， 
partial rescheduling， and complete rescheduling. The 
characteristics of the three rescheduling schemes are 
given in Table 3. Based on the characteristics of inter‑
ference， an appropriate rescheduling strategy should 
be selected to minimize interruptions and optimize re‑

source utilization to the greatest extent possible.
Dynamic events in flexible job shops can be di‑

vided into two categories： （1） Resource related； 
（2） workpiece related. Fig. 4 shows the process for 
building available machine sets. Based on different 
dynamic events， common flexible job shop dynamic 
scheduling models can be divided into the following 
categories.

DFJSP under machine failure： Machine fail‑
ures occurring randomly during the production pro‑
cess and the unavailability of equipment due to regu‑
lar maintenance activities are collectively regarded 
as machine failures. A machine failure can be de‑
scribed as follows： Machine M k fails randomly at 
time t， the expected repair time is t r， the process on 
the machine is O ij， and the failed machine should be 
removed from the set of available machines until the 
failure is repaired. Right shift rescheduling is suit‑
able for minor failures； complete rescheduling is ef‑
fective in reducing the completion time when the 
failure has a long repair time. And partial reschedul‑

Fig.3　Job shop scheduling optimization objective classification

Table 3　Comparison of rescheduling schemes

Reschedul‑
ing scheme
Right shift 

rescheduling

Complete 
rescheduling

Partial 
rescheduling

Characteristic

Good robustness; waiting for machine repairs 
significantly affects the delivery time of orders
Poor robustness; complete resource realloca‑
tion effectively shortens maximum comple‑
tion time
Better robustness; ignoring machine failures 
results in low overall scheduling efficiency
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ing can reduce the impact of the failure on the over‑
all production.

DFJSP under urgent order： Urgent orders 
have special delivery requirements compared to reg‑
ular orders and have higher priority. An urgent order 
can be described as： A new batch of orders is added 
to the set of workpieces to be processed at time t， 
and the priority of the orders and workpieces needs 
to be evaluated. The workpieces with higher priority 
are inserted into the original processing schedule for 
production. The common insertion schemes in‑
clude： Return insertion， extension insertion， and re‑
arrangement insertion. Table 4 shows the character‑
istics of three types of insertion schemes.

DFJSP under fuzzy time： During the produc‑
tion process， the machining time of the workpiece 
fluctuates within a certain range due to factors such 
as changes in the machine’s state and machining er‑
rors.

DFJSP under mixed dynamic events： With the 
increasing complexity of production scenarios， dy‑
namic job shop scheduling needs to consider various 
dynamic event interferences， mainly including ma‑
chine interference and workpiece interference.

2 DFJSP Under Machine Failure 

There are three common ways to handle ma‑
chine failures in DFJSP： Right shift rescheduling， 
partial rescheduling， and complete rescheduling. 
Fig.5 shows distribution of different rescheduling al‑
gorithms. Right shift rescheduling waits for machine 
availability to be restored before processing work‑
pieces， partial rescheduling partially reallocates 
workpieces on faulty machines， and complete re‑
scheduling reallocates all workpieces after the fault 
time.

2. 1 Intelligent‑algorithm‑based approaches　

The dynamic job shop scheduling problem un‑
der machine failure continues to use the intelligent 
algorithms of static scheduling. Common intelligent 

Fig.5　Distribution of approaches for FJSP

Table 4　Comparison of insertion schemes

Insertion 
scheme

Return insertion

Extension 
insertion

Rearrangement 
insertion

Characteristic

Ensure the delivery time of most orders, 
but affect the completion of regular orders
Quickly responding to urgent orders, but 
causing delays in the completion of most 
regular orders
The cost of rearranging insertion orders is 
low, but the completion of urgent orders is 
delayed

Fig.4　Process for building available machine sets
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algorithms include genetic algorithms， particle 
swarm algorithms， bee colony algorithms， etc.［27-32］ 
Table 5 presents the classification of intelligent algo‑
rithms for handling job shop scheduling problems un‑
der machine failures. As illustrated in Fig.5， the dis‑
tribution of these methods for single-objective FJSP 
reveals that meta-heuristic algorithms are the most 
prevalent， constituting roughly half of the total us‑
age.

2. 1. 1 Genetic‑algorithm‑based approaches　

The genetic algorithm（GA） is the earliest intel‑
ligent algorithm applied to job shop scheduling， and 
its basic idea is to achieve gene evolution through 
chromosomes to ultimately form stable species. 
With its characteristics of simple operation and easy 
implementation， GA has been widely used to solve 
complex systems and has become a conventional 
method for solving dynamic interference vehicle 
scheduling problems.

Gholami et al.［33］ used genetic algorithm to 
solve DFJSP under machine failures， while optimiz‑
ing the expected time span and expected average de‑
lay. The method adopts an event driven strategy to 
simulate the occurrence of machine failures， and de‑
termines the time of failure based on the schedule of 
machines in the job shop. They believe that atten‑
tion needs to be paid to the machine failure interval 
and repair time in future research. Al-Hinai et al.［34］ 
proposed a two-stage hybrid genetic algorithm， in 
which the first stage optimizes robustness and stabil‑
ity through multiple metrics， and the second stage 
integrates machine allocation and operation se‑
quence with expected machine faults to verify the ef‑

fectiveness of the optimization method. Meanwhile， 
they pointed out that multi-objective optimization 
was the research focus of DFJSP， and the Pareto 
optimization set could be used by decision makers to 
choose appropriate scheduling schemes. He et al.［35］ 
proposed a new idle time insertion strategy to en‑
hance the robustness and stability of scheduling 
schemes. This strategy improves the right shift re‑
scheduling strategy by rearranging the workpieces 
during the maintenance period of the faulty ma‑
chine， alleviating the delayed delivery. Based on the 
nature of different machine failures， a suitable re‑
scheduling scheme is selected from idle time inser‑
tion， right shift rescheduling， and route switching 
scheduling to improve the efficiency of rescheduling. 
Wang et al.［44］ designed a genetic algorithm with 
special chromosome encoding and optimized the en‑
coding method and crossover mutation operator. 
This method achieves real-time machine allocation 
and scheduling rule adjustment， and comparative ex‑
periments with right shift rescheduling have shown 
that it can adapt to interference with minimal time. 
Li et al.［36］ divided machine tools into two states： 
Processing and standby， and established an energy 
consumption optimization model for machine tools. 
They used a non-dominated sorting method to solve 
the dynamic scheduling under machine failures.

Yang et al.［40］ proposed a dual objective optimiza‑
tion method combining an improved non‑dominated 
sorting genetic algorithm and an extreme learning 
machine to improve the robustness and completion 
time of machine fault optimization scheduling. The 
robustness was measured by the position of fault 
probability and floating time in the extreme learning 
machine. Wang et al.［41］ considered that preventive 
maintenance activities could cause machine unavail‑
ability， and incorporated the transportation process 
of workpieces into the DFJSP model， establishing a 
dual objective optimization model to optimize total 
energy consumption and total construction period. 
They combined genetic algorithm and differential 
evolution algorithm to design a multi-region parti‑
tioning sampling strategy to solve the model， 
achieving good optimization results.

In summary， genetic algorithms can effectively 

Table 5　Classification of intelligent algorithms for DFJSPs 
under machine failures

Method

Intelligent algorithm
Multi objective evolutionary algorithm
Particle swarm optimization algorithm

Knowledge optimization algorithm
Teaching optimization algorithm

Bird optimization algorithm

Number 
of papers

7
2
2
1
1
1

Reference

[33‑39]
[40‑41]
[42‑43]

[44]
[45]
[46]

7



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

handle dynamic job shop scheduling problems， but 
further research is needed to improve the search per‑
formance of the algorithm， especially in terms of 
global and local search strategies.
2. 1. 2 Approaches based on other algorithms

The advancement of artificial intelligence has 
led to an increasing application of swarm intelli‑
gence algorithms in addressing job shop scheduling 
problems. Considering the probability， location， 
and time of machine failures， Xiong et al.［42］ pro‑
posed a multi-objective robust scheduling algorithm 
to optimize the maximum completion time， and be‑
lieved that dynamic scheduling under machine fail‑
ures can be extended to handle disturbances such as 
time disturbances and workpiece arrivals. Shen et 
al.［45］ developed a multi-objective evolutionary algo‑
rithm that can optimize the efficiency and stability of 
the job shop. Experiments have shown that the intro‑
duction of stability objectives is beneficial for im ‑
proving job shop stability after machine failures oc‑
cur， while ensuring production efficiency. In addi‑
tion， they also designed a dynamic decision-making 
program that can provide different rescheduling solu‑
tion sets for decision-makers to select.

Event driven response methods require effi‑
cient rescheduling strategies， and researchers have 
begun to combine machine states with job shop 
scheduling to achieve faster response times. Ahmadi 
et al.［37］ studied a method for optimizing completion 
time and job shop stability to handle machine fail‑
ures in DFJSP. On the basis of Al-Hinai et al.［34］， 
stability was defined as the deviation of the average 
workpiece completion time. It is worth noting that 
they paid more attention to the state and conditions 
of the machine while dealing with machine failures， 
and achieved multi-objective optimization of DFJSP 
through an improved genetic algorithm. Nouiri et 
al.［47］ proposed a two-stage particle swarm optimiza‑
tion algorithm， which performs better in robustness 
and stability compared to the hybrid genetic algo‑
rithm proposed by Al‑Hinai et al［34］. Buddala et 
al.［38］ designed a predictive schedule with minimum 
completion time， which can generate a stable re‑
scheduling plan based on the schedule when a fault 
occurs.

As research deepens， more and more produc‑
tion line indicators are being considered. Fig.6 
shows proportion of papers we summarize on dy‑
namic scheduling optimization objectives under ma‑
chine failures. The makespan remains the most fun‑
damental indicator for measuring job shop perfor‑
mance， and robustness and stability performance re‑
flect the response efficiency of dynamic events. In 
addition， machine utilization and processing energy 
consumption are also important indicators for dy‑
namic scheduling under machine failures. Teymouri‑
far et al.［39］ used scheduling rules based on gene ex‑
pression programming to solve dynamic scheduling 
under random faults， where limited buffering condi‑
tions enhance the complexity of the problem. They 
optimize the maximum completion time， maximum 
machine load and total machine load by taking the 
average value. Duan et al.［43］ established a dynamic 
response strategy that considers the total energy con‑
sumption， completion time， and reusability of the 
system. They proposed a Pareto multi-objective par‑
ticle swarm optimization algorithm that could 
achieve stable rescheduling in the event of machine 
failure. Wei et al.［46］ proposed a multi-objective bird 
optimization algorithm based on game theory. In re‑
sponse to the game relationship between production 
efficiency and stability after interference occurs， 
they adopted an approximate Nash equilibrium solu‑
tion to solve the problem and designed a neighbor‑
hood operator based on path re‑linking and machine 
service age to enhance the search ability.

2. 2 Deep‑learning‑based approaches　

With the flourishing development of deep learn‑
ing， researchers have applied it to DFSJP. Table 6 
presents the relevant literature on deep learning for 
solving DFJSP under machine faults in recent years.

Fig.6　Proportion of papers on optimization indicators under 
machine fault rescheduling
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Luo et al.［48］ argued that conflicting objectives 
in DFJSP should be optimized， and they proposed 
an online scheduling framework that optimized 
weighted latency and average machine utilization 
through a two-layer deep Q-network . At each re‑
scheduling point， the current job shop state is used 
as the state feature input， and a feasible target is se‑
lected to determine the Q-network behavior. In addi‑
tion， they designed six composite scheduling rules 
to allocate available operations to feasible machines 
as candidate action sets for the network. Zhang et 
al.［49］ proposed a two-stage algorithm based on con‑
volutional neural networks to solve machine failure 
problems， and established a DFJSP model with 
completion time and robustness as the objectives. 
The first stage trains the prediction model through 
convolutional neural networks， and the second 
stage uses the model to predict the robustness of 
scheduling. The evaluation criteria for robustness in‑
clude machine failures， machine loads， and the 
floating time of operations. Wang et al.［50］ designed 
a dynamic multi-objective scheduling algorithm 
based on deep reinforcement learning to optimize 
the completion time， average machine utilization， 
and average workpiece delay rate of the job shop. 
This algorithm combines deep Q-learning with a re‑
al-time scheduling framework and uses an improved 
local search algorithm to optimize scheduling re‑
sults. Experiments show that this method signifi‑
cantly improves all three objectives compared to 
scheduling rules. Luo et al.［51］ designed a scheduling 
optimization scheme based on multi-agent near end 
strategies， which includes three types of agents 
based on different levels of near end optimization 

strategies： Optimization target agent， workpiece 
agent， and machine agent. The optimization target 
agent determines the target value at a fixed resched‑
uling cycle， and the workpiece and machine agents 
select the workpiece order and machine allocation at 
the rescheduling node.

Solving DFJSP under machine faults has high 
complexity and randomness， and can be well ap‑
plied in modern Industry 4.0 and intelligent factories 
in the future. Common solving methods can be di‑
vided into scheduling rules， intelligent algorithms， 
and deep learning. Scheduling rules， as a traditional 
method， are gradually being replaced by intelligent 
methods. Intelligent algorithms are the main method 
for dealing with such problems， and deep learning 
has great potential in handling dynamic events with 
efficient learning. In terms of solving methods， the 
combination of deep learning algorithms under col‑
laborative mechanisms and local search strategies 
has profound significance for dynamic scheduling un‑
der machine failures. In addition， real-time monitor‑
ing of machine status can greatly improve the effi‑
ciency of rescheduling and reduce the impact of in‑
terference.

3 DFJSP Under Urgent Orders 

When receiving an urgent order， it is necessary 
to proactively rearrange the scheduling plan. Job in‑
sertion is the effective integration of new orders into 
existing plans to ensure job shop scheduling stability 
and progress. DFJSP for urgent orders considers the 
priority of orders based on the model in section 1.1， 
and usually adds the following workpiece con‑
straints： New jobs need to have the characteristics 
of standard FJSP， that is processing flexibility； 
when inserting a new job， the procedure needs to 
complete it as soon as possible， and to consider the 
impact on the previous scheduling plan as well. 
That is stability.

There are three common methods for handling 
urgent orders： Extension insertion， return inser‑
tion， and rearrangement insertion. Return insertion 
requires sufficient processing time to be reserved for 
emergency orders， and urgent insertion allows for 
rescheduling of scheduling schemes.

Table 6　Deep learning for solving DFJSP under machine 
failure

Method
Double layer deep 

Q‑learning
Convolutional 
neural network

Deep Q‑learning

Multi agent

Optimization objective
Average latency, machine uti‑
lization

Completion time, robustness

Completion time, machine 
utilization, workpiece delay
Total order delay, machine 
utilization, machine load

Reference

[48]

[49]

[50]

[51]
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3. 1 Intelligent‑algorithm‑based approaches　

Urgent orders have the highest priority， and in‑
telligent algorithms can quickly respond to such dy‑
namic events， demonstrating good stability in ad‑
dressing such issues. Fattahi et al.［52］ established a 
new workpiece arrival type DFJSP model for a man‑
ufacturing enterprise instance， which is actually a 
flexible job shop. They defined stability as the total 
deviation and penalty of the start time between the 
rescheduling scheme and the pre‑scheduling 
scheme， and used Pareto optimal frontier collabora‑
tive optimization to improve the efficiency of the 
scheduling scheme. The limitation of this research is 
that it is difficult to obtain the optimal solution for 
medium to large-scale job shops. Nie et al.［53］ point‑
ed out that not all workpieces were available at the 
beginning of scheduling， and the arrival time of 
workpieces was unpredictable. They proposed a dy‑
namic scheduling strategy based on gene expression 
planning for such dynamic events， achieving self-
construction of scheduling strategies. This method 
effectively solves the dynamic arrival of workpieces 
in large-scale cases， jointly optimizing completion 
time， average flow time， and average delay time. 
Gao et al.［54-55］ used new workpiece insertion as a 
constraint in DFJSP modeling and designed a two-

stage artificial bee colony algorithm to optimize the 
maximum completion time. They improved the pop‑
ulation initialization rules and introduced local 
search operators to improve the search efficiency of 
bee colonies and proved the superiority of their 
method in the pre‑scheduling and rescheduling stag‑
es through three different rescheduling strategies. 
Zhang et al.［56］ selected processing tasks based on 
the correlation between orders and achieved informa‑
tion transmission between tasks through multi‑task 
genetic programming. Experimental results showed 
that the proposed algorithm can significantly im ‑
prove the effectiveness of scheduling heuristic meth‑
ods in multitasking scenarios.

The handling of urgent orders in actual produc‑
tion often relies on manual experience and expert 
knowledge. There is relatively little research on dy‑
namic response under a single emergency order， 

and further research is needed on fast response meth‑
ods under emergency orders.

3. 2 Deep‑learning‑based approaches　

The multi-agent state space can accurately re‑
flect the real-time changes in the job shop， and deep 
learning is widely applied to dynamic scheduling of 
urgent orders.

Aydin et al.［57］ are the first to use deep learning 
algorithms to solve job shop scheduling under ur‑
gent orders， and designed an improved Q-learning 
algorithm to train agents to select corresponding 
rules for processing workpiece insertion. Wang et 
al.［58］ believed that reward machines in deep Q-learn‑
ing can handle dynamic events to the maximum ex‑
tent possible， and optimized the average delay by se‑
lecting appropriate scheduling schemes through in‑
telligent agents. The job shop they studied does not 
have flexibility， but has greatly promoted subse‑
quent research on emergency orders. Bouazza et 
al.［59］ used deep learning to solve DFJSP， which 
can determine the most suitable machine selection 
rules and operation scheduling rules， thereby mini‑
mizing the weighted average waiting time in a dy‑
namic and flexible job shop with workpiece inser‑
tion. Wang et al.［60］ proposed a multi-agent optimiza‑
tion strategy with a buffer， which adopts a weighted 
Q-learning optimization with dynamic greedy search 
to penalize delivery time. Luo［61］ modeled DFJSP as 
a Markov decision process， in which intelligent 
agents determine the next operation and machine al‑
location to be processed based on the production sta‑
tus of the current decision point. It is highly feasible 
to solve this problem through reinforcement learning 
methods.

The dynamic scheduling of job shops under ur‑
gent orders focuses more on the delay and comple‑
tion rate of orders， and has higher robustness and 
stability compared to machine fault rescheduling. 
Deep learning performs efficiently on this problem， 
and intelligent algorithms can stably output resched‑
uling solutions when solving such problems. For de‑
layed delivery of urgent orders， in addition to deliv‑
ery penalties， targets such as production costs and 
energy consumption should also be considered.

10
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4 DFJSP Under Fuzzy Time 

Ambiguity is commonly present in flexible 
manufacturing systems， and fuzzy time refers to the 
fluctuation of workpiece processing time within a 
certain range due to unpredictable factors. In the 
fuzzy flexible job shop scheduling problem 
（FFJSP）， workpieces have fuzzy start and finish 
times. Triangular fuzzy numbers are usually used to 
represent workpiece processing information， and 
the processing sequence between processes is based 
on fuzzy set operation rules.

Triangular fuzzy numbers are widely used 
membership functions in scheduling. The processing 
times t1， t2 and t3 correspond to the earliest process‑
ing time， the highest probability processing time， 
and the latest processing time of the workpiece， re‑
spectively. Given two arbitrary triangular fuzzy num ‑
bers t͂ = ( t1，t2，t3 ) and s͂ = ( s1，s2，s3 )， the sum of 
fuzzy numbers can be expressed as t͂ + s͂ = ( t1 +
s1，t2 + s2，t3 + s3 ).

The fuzzy nature of FFJSP also results in dif‑
ferences in its performance on Gantt charts. Fig. 7 
shows the FFJSP Gantt chart. Above the timeline 
of machine M 1 is the fuzzy completion time of the 
workpiece， and the below is the fuzzy start time of 
the workpiece. O 11 is the first processed workpiece 
represented by a rectangle.

4. 1 Single objective optimization　

Fuzzy completion time is a commonly consid‑
ered optimization metric in FFJSP. Lei et al.［62‑63］ 
used an effective decomposition integral genetic al‑
gorithm to solve the fuzzy job shop and optimize the 
fuzzy completion time， extending the decoding 
method in FJSP to FFJSP. Wang et al.［64］ proposed 
a distribution estimation algorithm to solve FFJSP， 
which adopts a left shift strategy to optimize the 

scheduling scheme for idle machines and uses fuzzy 
number operations to optimize the completion time. 
Liu et al.［65］ transformed dynamic FFJSP into 
FJSP， simplifying the solution process of fuzzy job 
shop and using distribution estimation algorithm to 
optimize fuzzy completion time. Xu et al.［66］ used a 
new encoding method and improved scheduling effi‑
ciency through a two-stage search strategy based on 
teaching mechanism and local search. Lin［67］ com‑
bined optimization algorithms based on biogeogra‑
phy with heuristic algorithms， and developed migra‑
tion operations through path connections to obtain 
scheduling schemes. Lin et al.［68］ proposed a hybrid 
multidimensional optimization algorithm for 
FFJSP， which introduced heuristic insertion rules 
and path re‑linking techniques， greatly improving 
search efficiency. Sun et al.［69］ proposed a hybrid co‑
evolutionary algorithm that combines particle 
swarm optimization and genetic algorithm under the 
collaborative mechanism to improve convergence 
ability. Li et al.［70］ proposed an improved genetic al‑
gorithm for solving fuzzy job shops， which accurate‑
ly solves the processing time using the triangular 
fuzzy number sorting criterion and introduces a simu‑
lated annealing mechanism to prevent local optima. 
Gao et al.［71］ designed a new selection mechanism to 
enhance the effectiveness of differential evolution al‑
gorithm in solving fuzzy job shops， optimizing fuzzy 
completion time through various fuzzy instances.

4. 2 Multi‑objective optimization　

Considering the characteristics of fuzzy job 
shops， researchers have innovated optimization ob‑
jectives and research methods for such problems. 
Table 7 presents the studies on multi-objective opti‑
mization of FFJSP. Fuzzy processing time leads to 
uncertainty in equipment load， so machine load is a 
commonly considered optimization objective. The 
fuzzy multi-objective job shop scheduling model typ‑
ically includes decision variables （such as operation 
start times and machine assignments）， objective 
functions （such as minimizing fuzzy makespan and 
fuzzy tardiness）， and constraints （such as operation 
sequence and resource limitations）.

Fig.7　FFJSP Gantt chart
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Sakawa et al.［72］ established a fuzzy job shop 
scheduling model with fuzzy processing time and in‑
troduced the concept of Gantt chart similarity into 
genetic algorithms， which became the basis for sub‑
sequent fuzzy job shop research. Gao et al.［73］ ap‑
plied the discrete harmony search algorithm to 
FFJSP， enriching the population and optimizing 
the maximum fuzzy machine workload during the 
initialization phase. Wang et al.［74］ proposed a 
decomposition‑based hybrid adaptive multi-objec‑
tive evolutionary algorithm that optimizes fuzzy 
completion time while reducing total workload. 
Saraçoğlu et al.［75］ used multi-objective fuzzy linear 
programming to model cellular manufacturing sys‑
tems， minimizing fuzzy completion time and total 
flow time by increasing the utilization rate of each 
stage. Wang et al.［76］ combined non-dominated sort‑
ing genetic algorithm-Ⅱ with local simulated anneal‑
ing algorithm to optimize the Pareto set through 
neighborhood operators， while optimizing fuzzy 
completion time and robustness. Zhong et al.［77］ pro‑
posed a modified artificial bee colony algorithm to 
optimize machine workload. The algorithm incorpo‑
rates a variable neighborhood search local search op‑
erator and crossover operator. The researchers de‑
signed a system that reflects the relationship be‑
tween delivery time and completion time. Li et al.［78］ 
proposed an improved artificial immune algorithm to 
optimize job shop energy consumption， designed 
four initialization heuristics for specific problems， 
and introduced simulated annealing mechanism in 
the algorithm to improve its search ability. Vela et 

al.［79］ proposed a measurement method for evaluat‑
ing expiration dates， which combines tabu search 
and genetic algorithm to optimize the fuzzy comple‑
tion time and deadline of fuzzy job shops. Pan et 
al.［80］ considered energy-saving FFJSP and designed 
a feedback‑based dual population evolutionary algo‑
rithm to optimize fuzzy total energy consumption. 
They proposed an effective evaluation mechanism 
and adopted a feedback mechanism based on popula‑
tion quality to dynamically adjust the population. Li 
et al.［81］ used reinforcement learning algorithms to 
optimize the completion time and total machine load 
of fuzzy job shops. Their contributions mainly in‑
clude three aspects： Improved initialization strate‑
gy， parameter adaptive strategy based on Q-learn‑
ing， and local search strategy based on reinforce‑
ment learning. Li et al.［82］ established a mixed inte‑
ger linear programming model for optimizing ma‑
chine workload in fuzzy job shops. They improved 
efficiency by using specialized fuzzy number mixed 
initial rules and developed five different search meth‑
ods to enhance search capabilities.

The difficulty of FFJSP lies in the complexity 
of fuzzy operations， and the flexibility of the job 
shop places higher demands on the algorithm’s 
search ability. Fuzzy characteristics are more diffi‑
cult to solve compared to random dynamic events 
such as machine failures and emergency orders. 
Fuzzy processing time can affect process sequencing 
and machine allocation， thereby affecting job shop 
production efficiency and costs. Fuzzy job shop 
should be deeply integrated with supply chain man‑

Table 7　Research classification of DFJSP under fuzzy time

Optimization objective
Delivery time
Machine load
Machine load

Total flow time
Robustness

Machine load
Power consumption

Delivery time
Power consumption

Machine load
Machine load

Method
Genetic algorithm

Harmony search algorithm
Adaptive multi‑objective evolutionary algorithm

Multi‑objective fuzzy linear programming
Improved genetic algorithm

Modified artificial bee colony algorithm
Artificial immune algorithm

Genetic algorithm
Dual population evolutionary algorithm

Reinforcement learning
Mixed integer linear programming algorithm

Reference
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
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agement， big data analysis and other fields to ex‑
plore the reasons for processing time fluctuations 
and achieve intelligent and digital management of 
the entire production process.

5 DFJSP Under Mixed Dynamic 
Events 

Job shop scheduling is influenced by factors 
such as the coupling relationship between equipment 
and processes， uncertain task arrival time and quan‑
tity， limited and uncertain resources， production 
equipment failures， order priorities and constraints， 
etc. These factors lead to the need to consider multi‑
ple uncertainties in the dynamic scheduling process 
to achieve efficient production［26］. At present， the 
handling of different dynamic events is independent， 
and it is of great significance to consider the synchro‑
nous occurrence of multiple dynamic events in pro‑
duction systems.

5. 1 Intelligent‑algorithm‑based approaches　

Gao et al.［83］ studied DFJSP under new work‑
piece insertion and with workpiece fuzzy processing 
time constraints. They combined the characteristics 
of artificial bee colony algorithm to divide the pro‑
cess of solving DFJSP into pre‑scheduling stage， 
execution stage， and rescheduling stage， and pro‑
posed three variant algorithms to optimize the maxi‑
mum fuzzy completion time. Li et al.［84］ developed a 
hybrid artificial bee colony algorithm based on a 
combination of bee colony algorithm and tabu algo‑
rithm for two dynamic events： Inserting new work‑
pieces and canceling old jobs. They introduced clus‑
tering grouping during the initialization phase and 
used an adaptive strategy based on tabu search to en‑
sure population diversity and prevent premature con‑
vergence. The local search strategy based on taboo 
search effectively improved the search ability of the 
algorithm. Li et al.［85］ considered four different dy‑
namic events： Machine failures， arrival of new 
jobs， job cancellation， and changes in workpiece 
processing time， and proposed a search algorithm 
based on Monte Carlo tree. Previous studies could 
not address the issue of rapid response to dynamic 

events. Instead， they gradually generated a subse‑
quent processing schedule for unprocessed workpiec‑
es through a designed continuous time window. 
This method has shown efficient results in solving 
quality and scheduling efficiency issues. Lyu et al.［86］ 
modeled the energy consumption of flexible manu‑
facturing systems and described DFJSP as a mixed 
integer programming optimization problem. Based 
on a heuristic framework， they designed a reschedul‑
ing algorithm for machine failures and workpiece ar‑
rivals. The effectiveness of the proposed reschedul‑
ing scheme has been demonstrated through compara‑
tive case simulations in different scenarios. An et 
al.［87］ considered machine preventive maintenance 
while solving workpiece insertion and established a 
multi-objective optimization model to jointly opti‑
mize production scheduling and maintenance plans. 
In order to obtain a comprehensive maintenance pro‑
duction scheduling plan， they constructed a local 
search mechanism based on critical path and studied 
the influence of parameters on the proposed 
non‑dominated genetic algorithm through experi‑
ments.

5. 2 Deep‑learning‑based approaches　

Rajabinasab et al.［88］ developed an information-

based multi-agent scheduling system that combines 
dynamic events such as machine failures and random 
workpiece arrivals， and compared its effectiveness 
with multiple scheduling rules. This system optimiz‑
es job shop utilization， tight delivery time， fault lev‑
el， and average repair time， and can be extended to 
open job shops and integrated production lines. 
Shahrabi et al.［89］ considered the dynamic job shop 
scheduling problem with random job arrivals and 
machine failures， and optimized the scheduling 
scheme through Q-learning of optimal parameters 
and variable neighborhood search at any reschedul‑
ing point. Waschneck et al.［90］ developed a multi-
agent dynamic scheduling method for flexible job 
shops with machine failures and order insertion. In 
this method， each agent is represented by a deep Q-

network and trained through deep Q-learning. 
Baykasoğlu et al.［91］ studied dynamic events such as 
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machine failures， new order arrivals， and changes 
in expiration dates， and proposed a constructive al‑
gorithm based on greedy random pose search. They 
focused on the instability of order progress， comple‑
tion time， average delay， and average running time. 
The effectiveness of this method has been demon‑
strated by comparing the event driven rescheduling 
strategy with the periodic rescheduling strategy. 
Ghaleb et al.［92］ considered real-time joint optimiza‑
tion of maintenance planning and production sched‑
uling in intelligent manufacturing systems. A 
pre‑reaction scheduling scheme based on genetic al‑
gorithm is proposed for new job arrivals， unexpect‑
ed expiration date changes， machine degradation， 
and random failures. Experimental results have 
shown that this rescheduling scheme can effectively 
save costs. Zhang et al.［93］ proposed a 
genetic‑programming‑based assisted evolutionary 
multi‑task algorithm， which constructs tasks 
through multi-agent systems and evaluates schedul‑

ing rules based on phenotype characteristics. This 
method can not only improve the completion effi‑
ciency under dynamic events， but also be used for 
knowledge transfer in multi task‑learning.

Mixed dynamic events require consideration of 
the complex relationships between different interfer‑
ences and proposing targeted response strategies. 
Future research can expand existing scheduling mod‑
els and consider more assumptions， such as material 
resources， human resources， and variable process‑
ing time.

6 Application in Aviation Manufac‑
turing 

To verify the application of scheduling methods 
in practical problems， simulations were conducted 
based on order data from an aviation manufacturing 
impeller production line at a certain research insti‑
tute. Table 8 presents the specific processing infor‑
mation of the production line. The effectiveness of 

Table 8　Processing information of aviation manufacturing impeller production line

Workpiece

Impeller 1

Impeller 2

Impeller 3

Impeller 4

Process
Rough milling shape

Precision milling shape
Swarf machining

Edge milling
Round corner milling

Precision milling flow channel
Rough milling shape

Precision milling shape
Edge milling
Point milling

Round corner milling
Precision milling flow channel

Rough milling shape
Precision milling shape
Rough milling channel

Point milling
Round corner milling

Precision milling flow channel
Rough milling shape

Precision milling shape
swarf machining

Edge milling
Point milling

Rough milling channel
Precision milling flow channel

M 1

5
7
4
—

6
8
7
8
—

5
7
8
4
5
8
5
6
7
7
8
4
—

5
7
8

M 2

6
9

4
7
8
8

10
5
7
8

5
7
—

7
6
7
8

10
—

4
7
8
—

M 3

8
—

4
6
9
—

10
—

7
—

—

8
7
—

8
—

9
—

10
—

4
6
—

10
8

M 4

—

8
5
7
—

12
—

9
8
—

9
12
—

6
12
—

—

11
—

9
5
7
—

—

12

M 5

5
—

—

2
8
9
7
—

3
6
—

9
4

9
6
8
8
7
—

—

2
6
7
9

M 6

9
10
3
—

8
—

—

11
—

7
9
8
8
8
8
7
7

11
3

7
—

8
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the aviation manufacturing impeller production line 
was verified using a hybrid particle swarm algorithm 
based on the improved variable neighborhood search 
operation. Fig.8 shows the flowchart of the method. 

To ensure the fairness of the experiment， the param ‑
eters of hybrid particle swarm optimization（HPSO） 
and dynamic particle swarm optimization（DPSO） 
are kept consistent： The maximum number of itera‑
tions is set to 100； the population size is set to 100； 
the mutation probability is set to 0.15； the accelera‑
tion factor and the update probability are set to 0.5 
and 0.7， respectively， and each test question is inde‑
pendently run 20 times.

6. 1 Dynamic scheduling of machine failures　

In scenario 1， the faulty machine is machine 4 
which holds two faults in the 20th and the 30th 
hours separately. In scenario 2， the faulty machine 
is machine 6 which holds two faults in the 30th and 
the 20th hours separately. The scheduling results of 
the three methods in the two scenarios are shown in 
Table 9， where the two values of each solution cor‑
respond to the completion time and energy consump‑
tion of the optimal scheduling scheme， measured in 
hours and kW·h， respectively.

Figs.9， 10 show the scatter plots of the results 
for the two scenarios. In scenario 1， HPSO solved 
the scheduling instance and obtained 12 
non‑dominated solutions， NSGA Ⅱ obtained four 
non‑dominated solutions， and DJaya obtained one 
non‑dominated solution. In scenario 2， HPSO ob‑

tained 14 non‑dominated solutions for scheduling in‑
stances， NSGA Ⅱ obtained nine non‑dominated so‑
lutions， DJaya had no non dominated solutions， and 
HPSO obtained the highest number of non-dominat‑
ed solutions with higher search accuracy， proving 
the effectiveness of the algorithm in dynamic sched‑
uling problems.

Fig.8　Rescheduling process diagram

Table 9　Comparison of three methods under machine faults

Scenario

1
2

NSGAⅡ
Solution/[h,kW·h]

[70.0, 2 569.1]
[67.0, 2 388.6]

Number
4
9

DJaya
Solution/[h,kW·h]

[73.0, 2 253.1]
[69.0, 2 329.6]

Number
1
0

HPSO
Solution/[h,kW·h]

[67.0, 2 355.9]
[64.0, 2 100.4]

Number
12
14

Fig.9　Dynamic scenario 1 scatter plot Fig.10　Dynamic scenario 2 scatter plot

15



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

Fig.11 shows the dynamic scheduling scheme 
for machine 4 after failure obtained by the HPSO 
algorithm， with corresponding maximum comple‑
tion time and energy consumption of 67.0 h and 
2 355.9 kW·h， respectively. Fig.12 shows the 
dynamic scheduling scheme for machine 6 after fail‑
ure obtained by the HPSO algorithm， with corre‑
sponding maximum completion time and energy con‑
sumption of 64.0 h and 2 100.4 kW·h， respectively. 
The fault intervals are within the 30th hour and the 
20th hour separately， and M6 is unavailable from the 
30th to the 50th hours. 6. 2 Dynamic scheduling for random arrival of 

workpieces　

In dynamic scenario 3， workpiece 2 arrives at 
an interval of the 10th hour. In scenario 4， work‑
piece 2 arrives at the 30 th hour. The scheduling re‑
sults of the three methods in two scenarios are 
shown in Table 10， where the two values of each 
solution correspond to the completion time and ener‑
gy consumption of the optimal scheduling scheme， 
measured in hours and kW·h， respectively.

Figs.13， 14 show the scatter plots of the re‑
sults for scenario 3 and scenario 4， respectively. In 
scenario 3， HPSO solved the scheduling instance 
and obtained 21 non‑dominated solutions， NSGAⅡ 
obtained two non‑dominated solutions， and DJaya 
did not have any non‑dominated solutions. In scenar‑

io 4， HPSO obtained 21 non‑dominated solutions 
for scheduling instances， NSGA Ⅱ obtained two， 
DJaya obtained zero， and HPSO obtained the high‑
est number of non‑dominated solutions with higher 
search accuracy， proving the effectiveness of the al‑
gorithm in dynamic scheduling problems.

Fig.11　Machine allocation Gantt of scenario 1

Fig.12　Machine allocation Gantt of scenario 2

Table 10　Comparison of three methods under random arrival

Scenario

1
2

NSGAⅡ
Solution/[h, kW·h]

[80, 2 679.2]
[76, 2 581.4]

Number
2
2

DJaya
Solution/[h, kW·h]

[84, 2 729.4]
[79, 2 689.7]

Number
0
0

HPSO
Solution/[h, kW·h]

[78, 2 689.0]
[76, 2 581.4]

Number
21
21

Fig.13　Scatter plot of dynamic scenario 3 Fig.14　Scatter plot of dynamic scenario 4
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Fig.15 shows the dynamic scheduling scheme 
for machine 4 after failure obtained by the HPSO 
algorithm ， with corresponding maximum comple‑
tion time and energy consumption of 67.0 h and 
2 355.9 kW·h， respectively. Fig.16 shows a dynam ‑
ic scheduling scheme for scenario 4 obtained by the 
HPSO algorithm， with corresponding maximum 
completion time and energy consumption of 76 h 
and 2 581.4 kW·h， respectively. This dynamic 
scheduling scheme adds new workpieces to the 
schedule at the 30th hour， which extends the maxi‑
mum completion time by 15 units compared to the 
original scheme.

6. 3 Prototype system　

We develop a cloud edge control platform for 
intelligent production lines in aviation manufactur‑
ing based on the SupOS system. Fig.17 shows the 
control platform， which includes safety monitor‑
ing， model management， quality management， im‑
peller production line， shell production line， and 
planning and scheduling module. Fig.18 shows the 
relevant indicators of the impeller production line， 
including qualification rate， processing progress， 

job shop energy consumption， equipment operating 
time， equipment utilization rate， and capacity utili‑
zation rate indicators. The impeller production sta‑
tus can be obtained through it. Fig.19 shows the 
scheduling scheme corresponding to the impeller 
production line， and shows the running time of the 
production equipment. The scheduling scheme 
Gant is the Pareto optimal solution. Fig. 20 shows 

Fig.15　Gantt chart of scenario 3

Fig.18　Impeller production line

Fig.17　Control platform

Fig.16　Gantt chart of scenario 4

Fig.19　Pre‑scheduling plan

Fig.20　Right shift rescheduling scheme
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the right shift rescheduling plan after the machine 
malfunctioned， with the completion time extended 
to 20：00. Fig. 21 shows the complete rescheduling 
scheme after a machine failure， which reschedules 
the processing tasks after the failure time， reduces 
the impact of dynamic interference， and improves 
production efficiency. Fig. 22 shows the scheduling 
scheme after inserting the turbine impeller order. 
The scheduling scheme is rescheduled using a se‑
quential insertion scheduling scheme to ensure its 
robustness.

7 Conclusions and Outlook 

This paper summarizes DFJSP， focusing on op‑
timization objectives， job shop constraints， and dy‑
namic response schemes and conducts in-depth re‑
search on scheduling under machine failures， emer‑
gency orders， fuzzy time， and mixed dynamic events.

By analyzing existing literature， the following 
conclusions can be drawn.

（1） Method and model： Classic FJSP is an ac‑
ademic optimization problem used to solve practical 
scheduling problems. A large number of swarm in‑
telligence algorithms have been developed to solve 
FJSP， and deep learning methods have shown good 

performance in handling dynamic scheduling. A 
more comprehensive job shop scheduling model has 
been established， which extends the basic FJSP 
mathematical model to simulate actual production 
scenarios.

（2）Optimization objective： The completion 
time is the most important optimization indicator， 
but there are often multi-objective requirements in 
actual production. Multi-objective optimization is 
usually necessary in job shop scheduling， and dy‑
namic scheduling focuses more on optimizing the 
two indicators of robustness and stability.

（3）Dynamic event： Machine failures are the 
most common dynamic disturbances in the job 
shop， and rescheduling and predictive maintenance 
are the main ways to reduce the impact of machine 
failures. The mixed dynamic interference increases 
the difficulty of job shop scheduling， and the fast re‑
sponse characteristics of deep learning provide a 
new direction for dealing with such problems.

Job shop scheduling has a wide range of appli‑
cations in practical production， and future research 
can focus on the following directions.

（1） Optimize scheduling algorithm： Most intel‑
ligent algorithms have limitations， and deep learn‑
ing algorithms have poor interpretability. Develop‑
ing a new scheduling method by combining the ad‑
vantages of two algorithms and considering the dy‑
namic event processing mode under the collabora‑
tive mechanism is of great significance for improv‑
ing scheduling performance and job shop production 
efficiency.

（2）Establish a dynamic model： Production 
scheduling radiates to many industries， including 
semiconductors， healthcare， military， etc. Analyz‑
ing the characteristics of different industries and ex‑
tending the FJSP model can enrich the theory of job 
shop scheduling. A robust and predictive job shop 
model can be established using techniques such as 
state monitoring［94］， risk mitigation［95］， and data-

driven［96］. More practical instance validations can be 
conducted and the DFJSP model can be combined 
with the assembly line job shop model and distribut‑
ed job shop model.

（3） Collaborative fault diagnosis： Machine fail‑

Fig.22　Rescheduling plan for urgent orders

Fig.21　Complete rescheduling plan
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ures will seriously affect the efficiency of production 
systems. At present， most fault handling methods 
use pre‑reaction scheduling， which requires high 
time and resource reallocation for reactions. Perform ‑
ing fault diagnosis using production line scheduling 
collaborative adaptive technology［97］， fault-tolerant 
control［98］， and distributed control［99］， analyzing the 
mechanism of fault propagation， and establishing a 
fault knowledge base in the form of a knowledge 
graph［100］ can reduce response time and resource waste.

（4）Develop prototype system： Conduct re‑

search on key technologies can be studied for preci‑
sion control， dynamic scheduling， energy efficiency 
optimization， and equipment operation and mainte‑
nance in cloud edge collaborative production lines. 
Fig.23 shows the cloud edge collaborative optimiza‑
tion scheme for intelligent production lines. Based 
on this， a multi-objective dynamic control and opti‑
mization technology for intelligent production lines 
is established， and a prototype system integration 
verification new method and technology are devel‑
oped.
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柔性车间多目标动态调度方法及其在航空制造中的应用综述

马亚杰 1， 姜 斌 1， 管 理 1， 陈丽君 2， 黄斌达 2， 陈 智 1

（1.南京航空航天大学自动化学院，南京  211106，中国； 
2.中航工业南京机电液压工程研究中心，南京  211106，中国）

摘要：智能生产是智能制造的重要发展方向，智能工厂是推动智能生产的关键因素。柔性车间作为智能工厂的  
主要形式， 在生产过程中会不断地发生动态干扰，包括机器故障和紧急订单等。本文讨论了车间调度的基础模

型与研究方法， 强调了动态车间调度及其响应方案在未来研究中的重要地位；建立了多目标柔性车间动态调度

数学模型， 指出其在不同干扰下呈现出复杂多约束特性；针对机器故障、紧急订单、模糊完工时间和混合动态事

件下  的动态响应方法及优化目标进行了分类讨论，分析了传统调度规则与智能方法在动态调度中的发展过程 ; 
根据车间调度发展现状与智能制造发展要求，给出了柔性车间动态调度未来发展趋势。

关键词：柔性车间；动态调度；机器故障；紧急订单；多目标优化
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