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Abstract: Under complex flight conditions， such as obstacle avoidance and extreme sea state， wing-in-ground （WIG） 
effect  aircraft need to ascend to higher altitudes， resulting in the disappearance of the ground effect. A design of high-

speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that 
combines conditional generative adversarial network （CGAN） and artificial neural network （ANN）. The CGAN 
model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect 
and non-ground effect conditions. Subsequently， the ANN model is utilized to forecast aerodynamic parameters of the 
generated airfoils. The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and 
enables the creation of novel airfoil designs. Furthermore， it demonstrates high accuracy in predicting aerodynamic 
parameters of these airfoils due to the ANN model. This method eliminates the necessity for numerical simulations 
and experimental testing through the design procedure， showcasing notable efficiency. The analysis of airfoils 
generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically 
have cambers of among ［0.08c， 0.105c］， with the positions of maximum camber occurring among ［0.35c， 0.5c］ of 
the chord length， and the leading-edge radiuses of these airfoils primarily cluster among ［0.008c， 0.025c］.
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0 Introduction 

When the wing-in-ground （WIG） effect air‑
craft operates near the surface of ground or water， 
the airflow beneath the wings is affected by the 
ground， causing changes in the aerodynamic charac‑
teristics of wings［1］. Unlike the conventional vessel， 
WIG aircraft maintain no contact with the water dur‑
ing operation， thus eliminating hydrodynamic drag 
and enabling remarkable increases in cruising speeds 

over water. Compared to traditional fixed-wing air‑
craft， WIG aircraft do not rely on runways for take‑
off and landing， endowing them with exceptional 
maneuverability and stealth capabilities. The WIG 
aircraft is highly valuable in areas such as maritime 
rescue， emergency response， surveillance， and de‑
fense［2］. When flying in uneven ground or extreme 
sea state， WIG aircraft need to operate at elevated 
altitudes， which results in the loss of ground effect 
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and a reduction in the lift-to-drag ratio （L/d）［3］. 
Consequently， it is essential to develop airfoil de‑
signs that are effective in both ground effect and non-

ground effect scenarios to ensure the successful oper‑
ation of WIG aircraft under challenging flying condi‑
tions［4］.

In recent years， as optimization algorithms 
have continuously advanced， some researchers have 
attempted to employ various optimization algorithms 
in the design of airfoils for WIG aircraft. Lee［5］ select‑
ed some of the previous Pareto optima for applying 
to a three-dimensional vehicle with a fuselage， lift‑
ing and control surfaces such as a horizontal tail， in 
order to analyze its aerodynamic characteristics， sta‑
bility， and three-dimensional effect. He et al.［6］ opti‑
mized the airfoil NACA 4412 using a multi-objec‑
tive genetic algorithm， and the lift coefficient and 
lift-to-drag ratio of the optimized airfoil were signifi‑
cantly improved. Hu et al.［7］ used the free deforma‑
tion technique and artificial neural network method 
to optimize airfoil shape in ground effect. They ob‑
tained an S-shaped airfoil with a maximum lift-drag 
ratio with satisfying stability. Rejish et al.［8］ adopted 
a parametric shape modeler， a low fidelity solver， 
and a non-dominated sorting genetic algorithm （NS‑
GA- Ⅱ） to support the preliminary airfoil design of 
WIG aircraft. Wang et al.［9］ used a global aerody‑
namic optimization method based on the Kriging 
model to enhance the lift-to-drag ratio for the airfoil 
design of WIG aircraft across Mach number of 0.2， 
0.3， 0.5， and 0.8.

Conventional optimization design methods ex‑
hibit inefficiency due to their reliance on iterative nu‑
merical simulation analyses. With the development 
of deep learning， Mirza et al.［10］ proposed a condi‑
tional generative adversarial network （CGAN）， 
which remedies the existing deficiencies in tradition‑
al optimization algorithms. The CGAN was initially 
widely used in image conversion， feature synthesis， 
production， editing of artwork and other fields. In 
2020， Achour et al.［11］ was the first to implement 
CGAN in the context of airfoil design， successfully 
generating airfoils that satisfy specified lift-to-drag 
ratios and surface areas. Wang et al.［12］ conducted a 
comparative analysis of two generative models： the 

conditional variational autoencoder （CVAE） and an 
integrated generative network combining CVAE 
and generative adversarial network （CVAE-GAN）. 
The findings revealed that the CVAE-GAN model 
significantly outperformed the CVAE model， 
achieving enhanced reconstruction accuracy across 
all samples within the dataset. Wu et al.［13］ intro‑
duced a novel data-augmented GAN （daGAN）， 
which was designed for the swift and precise predic‑
tion of flow fields， particularly in scenarios charac‑
terized by limited data availability. The findings indi‑
cated that daGAN serves as a promising instrument 
for the rapid and accurate assessment of intricate 
flow fields， obviating the necessity for extensive 
training datasets.

CGAN models have demonstrated the capabili‑
ty to generate airfoils that satisfy design specifica‑
tions. However， the aerodynamic parameters of the 
generated airfoil necessitate numerical simulation for 
determination. In response to this issue， a regres‑
sion prediction model is incorporated subsequently 
to the CGAN model to facilitate the forecasting of 
aerodynamic parameters for the generated airfoil. 
The algorithms of regression prediction can be clas‑
sified into three categories. The first one contains 
machine learning algorithms such as linear regres‑
sion （LR）［14］， support vector regression （SVR）［15］ or 
decision trees such as random forest regression 
（RFR） and stochastic gradient tree boosting 
（SGTB）［16］. In the second category， deep learning 
methods like long-short term memory （LSTM）， 
multi-layer perceptron （MLP） and artificial neural 
network （ANN） are prominent［17］. Lastly， research‑
ers compared surrogate models such as Gaussian 
process regression （GPR） and proper orthogonal de‑
composition （POD）［18］. ANN is the basic super‑
vised deep learning method that can be employed to 
classify and predict the data using labeled datasets， 
or to train algorithms［19］. Moin et al.［20］ proposed a 
data-driven model to predict aerodynamic coeffi‑
cients using sparse normalized 2D airfoil coordinates 
and ANN.

The application of this approach in the realm of 
aerodynamic design has addressed the limitations of 
conventional optimization design methods， offering 
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several advantages. Initially， CGAN enables the 
generation of airfoil shapes that adhere to specified 
constraints. The ANN model can predict the aerody‑
namic parameters of the generated airfoils. Thereby 
this approach obviates the need for numerical simula‑
tions and empirical testing during the design pro‑
cess， significantly reducing the airfoil design cycle 
duration. In addition， the model has the capability 
to acquire knowledge of the correlation between the 
geometric and aerodynamic characteristics of the air‑
foil， enabling it to produce the necessary airfoil with‑
out relying on designer expertise during the design 
phase. Furthermore， CGAN has the capability to 
generate a variety of airfoil designs that meet speci‑
fied constraints， thereby offering designers a broad‑
er selection of options.

In this paper， a database for airfoils under near-

ground and free-stream conditions at Ma=0.6 and 
a=6° is established. Subsequently， a two-step deep 
learning design framework based on CGAN and 
ANN is introduced. After training based on the data‑
base， the CGAN is utilized to design airfoils that 
meet lift-drag ratios under both ground effect and 
non-ground effect conditions. The lift coefficient 
（Cl）， drag coefficient （Cd）， and moment coefficient 
（Cm） of airfoils designed by CGAN are predicted us‑
ing the ANN model. In the results discussion sec‑
tion， two models are assessed， and the designed air‑
foil is examined， considering its geometric and aero‑
dynamic characteristics.

The contributions of our work can be summa‑
rized into two aspects. One is to provide a frame‑
work for airfoil inverse design under a certain operat‑
ing condition， which takes advantage of CGAN de‑
sign model and ANN prediction model， providing 
reference for the design of airfoil under more states. 
Secondly， by analyzing the geometric and aerody‑
namic attributes of the airfoil designed by CGAN 
model， this paper offers insights for airfoil design of 
WIG aircraft under challenging flying conditions.

1 Dataset Preparation 

The training of CGAN and ANN models re‑
quire a large amount of sample data. Prior research 
has predominantly relied on the UIUC database［21］ 

for the reverse design of airfoils. However， the ma‑
jority of airfoils within this database are low-speed 
airfoils， rendering them unsuitable for the high-

speed airfoil design of WIG aircraft discussed in this 
study. Consequently， this research opts to utilize 
the NACA4412 airfoil， a frequently employed air‑
foil in prior ground effect investigations［22］， as the 
benchmark airfoil for developing a library of high-

speed ground effect airfoils. This section provides a 
comprehensive account of the database creation pro‑
cess and the numerical simulation techniques em ‑
ployed to calculate aerodynamic parameters.

1. 1 Establishment of airfoil database　

A high-quality database can help the model 
learn the characteristics of the data better， thus im‑
proving the accuracy and effectiveness of the model. 
To ensure the diversity and availability of the data 
sets， the class function/shape function transforma‑
tion （CST） parametrization method［23］ and Latin hy‑
percube sampling （LHS） strategy［24］ are applied to 
generate 1 500 airfoils in the design space. The 
CST parametrization equations are presented as fol‑
lows

y = C ( x ) ⋅ SA ( x )+ x ⋅ yTE (1)
where y is the y-coordinates of the airfoil， x the x-

coordinate， yTE the last y-coordinates of the tailing 
edge of the airfoil， C（x） the class function， and SA（x） 
the shape function of airfoils.

C（x） is presented as
C ( x )= xn1 ⋅ ( 1 - x )n2 (2)

where n1 and n2 are usually set to 0.5 and 1.0， re‑
spectively.

SA（x） is  shown as

SA ( x )= ∑
i = 0

N

A i ⋅ Si ( x ) (3)

where Ai are undetermined coefficients and Si （x） is 
the Bernstein polynomial defined as

Si ( x )= N!
i!( N - i )!

xi ( 1 - x )N - i (4)

where N is set to 4.
There are five design parameters allocated to 

both the upper and lower surfaces， resulting in a 
combined total of ten design variables. The upper 
and lower limits for the ten variables are shown as
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ì
í
î

A iup = A ibase + 0.1
A ilow = A ibase - 0.1

(5)

where Aiup and Ailow are the up and low limits of un‑
determined coefficients， respectively； Aibase is unde‑
termined coefficients of NACA4412 which are 
solved using the least-square method and the airfoil 
coordinates of NACA4412.

By setting thresholds for the ten variables， the 
database identifies the upper and lower boundaries 
of the airfoil as illustrated in Fig.1. Subsequently， a 
total of 1 500 airfoils are produced within this design 
space utilizing the Latin hypercube sampling shown 
in Fig.2. Here c denotes the chord length.

1. 2 Calculation of aerodynamic parameters　

1. 2. 1 Governing equations and calculation con⁃

ditions　

The RANS method is employed to calculate 
the aerodynamic parameters of 1 500 airfoils with 
and without ground effect conditions. The mathe‑
matical formulations representing the governing 
equations are outlined as follows
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∂ρui

∂xi
= 0

∂ ( ρui uj )
∂xj

= - ∂p
∂xi

+ ∂τij

∂xj

∂ [ ( ρE + p ) ui ]
∂xi

= - ∂qi

∂xi
+ ∂ ( uj τij )

∂xi

(6)

where ρ， p， and E represent the density， pressure， 
and total energy of the fluid， respectively； ui and uj 
represent the velocity component and the compo‑

nent of viscous stress， respectively； qi represents 
the heat flux.

The aerodynamic parameters and computation‑
al conditions of the airfoil under investigation are as 
follows in this research.

The lift-drag ratio （（L/d）1）， lift coefficient 
（Cl1）， drag coefficient （Cd1）， and moment coeffi‑
cient （Cm1） in ground effect. The calculation condi‑
tions are T=288 K， Ma=0.6， h/c=0.2 and a=6°.

The lift-drag ratio （（L/d）2）， lift coefficient 
（Cl2）， drag coefficient （Cd2）， and moment coefficient 
（Cm2） in non-ground effect. The calculation condi‑
tions are T=288 K， Ma=0.6， h/c=30 and a=6°.
1. 2. 2 Numerical method validation　　

In order to evaluate the accuracy of the numeri‑
cal method for predicting the flow field and aerody‑
namic forces on an airfoil in ground effect and non-

ground effect， the flow fields of a RAE2822 airfoil 
in two flight conditions are simulated and compared 
with the wind tunnel experiment data. The diagrams 
depicting the mesh surrounding the airfoil can be ob‑
served in Fig.3［25］， with the section close to the air‑
foil being encrypted and the first layer grid height be‑
ing 1e-5c. Fig.4 shows the excellent comparison be‑
tween the pressure coefficient distribution from nu‑
merical simulation and experimental data.［26］

Fig.3　Mesh and comparison of computed and experimental 
pressure coefficients for the RAE2822 airfoil (h/c=
0.23, Ma=0.63, AOA=6°)[25]

Fig.1　Upper and lower boundaries of airfoil shape in data‑
base

Fig.2　Latin supercube sampled airfoil shapes
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2 Methodology 

2. 1 Two‑step inverse design framework　

Following the establishment of the database， 
airfoils are labeled with different labels based on the 
L/d range under distinct flight conditions. These la‑
bels are subsequently utilized for the training of the 
CGAN model. The training of the ANN is conduct‑
ed using Cl， Cd， and Cm. The training process is 
shown in Fig.5. Following the completion of train‑
ing， the CGAN model is capable of bypassing the 
numerical simulation phase and producing numerous 
airfoil designs that align with specified labels. Subse‑
quently， an ANN model is employed to forecast the 
aerodynamic parameters of the generated airfoil de‑
signs， facilitating the choice of the airfoil based on 
the projected parameters. The schematic representa‑
tion of this design procedure is depicted in Fig.6.

2. 2 CGAN design model　

2. 2. 1 Structure of CGAN　

Fig.7 illustrates the framework of the CGAN 
model， comprising a generator （G） and a discrimi‑
nator （D）. The generator and discriminator are de‑
signed with opposite training objectives. The genera‑
tor is responsible for producing airfoil shapes that ad‑
here to conditional information by utilizing random 
noise and conditional inputs. During the training 
phase， the network aims to reduce the loss func‑
tion， shown as

L generator = log ( 1 - D ( G ( z|y ) ) ) (7)

The discriminator distinguishes between real 
and synthetic airfoil shapes. Throughout the training 
process， the discriminator is tasked with maximiz‑
ing the loss functions， shown as

L discriminator = log ( 1 - D ( G ( z|y ) ) ) +logD ( x )
(8)

The loss function used during training is shown 
as
min

G
max

D
V ( D,G )= Ex ∼ pdata ( x ) [ log D ( x | y ) ]+

Ez ∼ pz ( z ) [ log ( 1 - D ( G ( z | y ) ) ] (9)
As illustrated in Fig. 8， the generator and dis‑

criminator networks in the CGAN model are built 
using MLP based on fully connected （FC） layers. 
An input vector for the generator network is created 
by combining a conditional vector y with the size of 
n×1 and a noise vector z with the size of 100×1. 

Fig.7 Framework of CGAN

Fig.4　Mesh and comparison of computed and experimental 
pressure coefficients for the RAE2822 airfoil 
(Freeflight, Ma= 0.73, AOA=2.3°) [26]

Fig.5　Flow chart of CGAN model and ANN model training

Fig.6　Flow chart of airfoil inverse design
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The generator produces a 120×200×1 three-di‑
mensional matrix showing a grayscale airfoil image. 
An input layer， three hidden layers， three batch nor‑
malization layers， three dropout layers and an out‑

put layer make up the generator network. The hid‑
den layer activation functions use LeakyReLU. The 
generator’s detail network parameters are shown in 
Table 1.

The labels and either the airfoil shape image 
produced by the generator or an actual airfoil shape 
picture from the airfoil database are received by the 
generator as input. Its output is a fixed numerical 
value within the range of 0 to 1， indicating the like‑
lihood that the airfoil originates from the training 
dataset as opposed to being generated by genera‑

tor. The discriminator architecture comprises an in‑
put layer， three hidden layers， three dropout lay‑
ers， and an output layer. The activation functions 
employed in hidden layers and output layers are 
LeakyReLU and Sigmoid， respectively. The dis‑
criminator’s detail network parameters are shown 
in Table 2.

2. 2. 2 Evaluating metrics of CGAN　

In this paper， the database serves as the train‑
ing dataset for the model to optimize the weights 
and bias parameters. Subsequently， the trained 
CGAN model is employed to produce airfoils for 
each label followed by conducting numerical simula‑
tions on these airfoils. These generated airfoils are 
utilized as a validation set to assess the CGAN mod‑
el’s efficacy in airfoil design.

The evaluation of the CGAN’s performance is 
conducted through the utilization of two metrics： ac‑
curacy ratio （AR） and distance measure （DM）.

The AR signifies the proportion of airfoils with‑
in the validation set that conforms to the specified la‑
bel， serving as a means to assess the CGAN’s profi‑
ciency in producing accurate airfoils. The AR is ex‑
pressed as

Table 1　Detailed parameters of generator network

Layer 
1
2
3
4

Input size
104
256
512

1 024

Output size
256
512

1 024
120×220×1

Activation
LeakyReLU
LeakyReLU
LeakyReLU

Tanh

Dropout layer
√
√
√

Normalization layer
√
√
√

Fig.8　Network structure of generator and discriminator

Table 2　Detailed parameters of discriminator network

Layer 
1
2
3
4

Input size
120×220×1

1 024
512
128

Output size
1 024
512
256

1

Activation
LeakyReLU
LeakyReLU
LeakyReLU

Sigmoid

Dropout layer
√
√
√

Normalization layer
—

—

—
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AR = m 1

m
(10)

where m represents the number of airfoils generated 
by CGAN， and m1 the number of airfoils correspond‑
ing to the label after numerical simulation. Here 25 
airfoils are generated for each label， so m=25.

The DM is used to assess the ability of the 
CGAN to generate novel airfoil shapes， which is de‑
fined as

DM = min ∏
j = 1

1 500 ( )∑
i = 1

20

( yi - yji )2 (11)

where yi is the ith ordinate of the generated airfoil 
and yji the ith ordinate of the jth airfoil in the airfoil 
database.

2. 3 ANN prediction model　

2. 3. 1 Structure of ANN　

The architecture diagram of the ANN model 
employed is depicted in Fig.9. The model comprises 
multiple FC layers. Various hyperparameters of the 
ANN， such as the quantity of layers， neurons with‑
in each layer， epochs， batch size， learning rate， 
among others， are fine-tuned by exhaustively ex‑
ploring all feasible combinations of these hyperpa‑
rameters to identify the most effective configuration 
for training. It is determined that the optimal perfor‑
mance is achieved when utilizing a two-layer net‑
work with 128 neurons in the initial layer and 64 
neurons in the subsequent layer. The ideal number 
of epochs and batch size are determined to be 1 500 
and 48， respectively. The activation function em ‑
ployed by the model is Tanh， and the learning rate 
is set to 0.001. The detailed parameters of the ANN 
network are shown in Table 3.

2. 3. 2 Evaluating metrics of ANN　

The experimental design involvs 1 500 airfoils 
to serve as the training set， while 100 airfoils pro‑
duced by the CGAN are utilized as the test set to as‑
sess the predictive accuracy of the ANN. The aero‑
dynamic parameters of the airfoil anticipated by the 
ANN model pertain to a regression issue. The stan‑
dard evaluation metrics for regression problems typi‑
cally consist of root mean squared error （RMSE）， 
mean absolute error （MAE）［27］， and R-squared （R2）［28］.

RMSE is a measure of how spread out these re‑
siduals are， and it is usually used to show how con‑
centrated the data is distributed around the line of 
best fit.

RMSE = 1
n ∑

i = 1

n

( )ŷ i - yi

2
(12)

MAE is simply calculated as the sum of abso‑
lute difference between predicted and actual values 
divided by the sample size.

MAE = 1
n ∑

i = 1

n

|| ŷ i - yi (13)

R2 is the measurement of the range of variation 
about the best-fit line relative to overall variation in 
real value. R2 = 1.0 indicates that the predicted val‑
ues show the same trend of actual values.

R2 = 1 -
∑
i = 1

n

( )yi - ŷ i

2

∑
i = 1

n

( )yi - y 2 2
(14)

where ŷ i and yi are the predicted and actual values at 
point i， respectively； and n is the sample size.

3 Results and Discussion 

3. 1 Training and validation　

In the cases with two attributes of （L/d）1 and 
（L/d）2， four classes can be induced by setting thresh‑
olds for each attribute. After being one-hot encod‑
ed， the discrete labels will be put into the CGAN Fig.9　Network structure of ANN

Table 3　Detailed parameters of ANN network

Layer
1
2
3

Input size
20

128
64

Output size
128
64
6

Activation
Tanh
Tanh
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model. The lift-drag ratio intervals for airfoils corre‑
sponding to different labels are shown in Table 4.

Fig.10 illustrates the distributions of aerody‑
namic parameters for airfoils under two different 
flight conditions within the dataset. A linear function 
y=x is represented by the red dashed line， while 
the black dashed line is utilized to separate four dis‑
tinct labels. The top figure of the curve shows the 
variation of aerodynamic parameters in ground effect 
while the right figure indicates variation of aerody‑
namic parameters in non-ground effect. The middle 
figure of the contour line represents the probability 
density. The middle figure of the L/d and Cl are all 
situated below the line y=x， whereas that of the Cd 

is positioned above it. This distribution characteris‑
tics indicate that the ground effect yields to an in‑
creased lift and reduced drag， as well as the in‑
creased lift-drag ratio. The analysis of the Cm distri‑
bution reveals a direct correlation between the Cm 
values of the airfoils under two different flight condi‑
tions. Furthermore， the ground effect is noted to in‑
crease Cm， resulting in a reduction in the pitch stabili‑
ty of the airfoils. Evidently seen from separate （L/d）1 
and （L/d）2 variation curves， the values of （L/d）1 
are mainly distributed among ［20，120］， while the 
（L/d）2 are mainly distributed among ［10，60］. 
From the combined distribution of （L/d）1 and （L/d）2， 
it can be seen that （L/d）1 and （L/d）2 are concen‑
trated around values of 45 and 20， respectively.

The time required for CGAN to generate an 
airfoil design is 1.2 s， while ANN model takes 0.4 s 
to predict aerodynamic parameters. Consequently， 
this inverse design framework enables an airfoil de‑
sign meeting specified criteria and the acquisition of 
its aerodynamic characteristics within a total time of 

Fig.10　Aerodynamic parameter distribution of airfoils under two different flight conditions

Table 4　Range of lift‑drag ratio for airfoils with differ‑
ent labels

Label
(L/d)1

(L/d)2

Code

1
(80,200]
(40,100]

[1,0,0,0]

2
(80,200]

(0,40]
[0,1,0,0]

3
(0,80]

(40,100]
[0,0,1,0]

4
(0,80]
(0,40]

[0,0,0,1]
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1.6 s. In order to evaluate the time performance， a 
CFD simulation is carried out on the same desktop， 
requiring approximately 1 800 s for convergence to 
be achieved. The reverse design approach outlined 
in this research significantly reduces the time re‑
quired by nearly 1 000 times in comparison to CFD， 
highlighting substantial time-saving benefits.

The accuracy rate of the CGAN model for dif‑
ferent labels are shown in Fig.11. The model 
achieves the highest design accuracy rate for airfoils 
labeled as 4， with Label 1 airfoils closely trailing be‑
hind in accuracy. Conversely， airfoils labeled as 2 
and 3 exhibit the lowest design accuracy rates. 
There is a positive correlation between the quantity 
of airfoils categorized under various labels and the 
accuracy rate of the model. This suggests that aug‑
menting the training dataset size can lead to enhance‑
ments in model accuracy. Fig.12 illustrates the pro‑
portion of correct and incorrect airfoils generated by 
CGAN when focused on different flight conditions. 
The CGAN demonstrates a commendable accuracy 
rate of 82% when takeing both （L/d）1 and （L/d）2 
into consideration， suggesting its reliability. Fur‑
thermore， Fig.12（b） presents the accuracy rates of 
CGAN when solely focusing on （L/d）1 with accura‑
cy rate of 88% which is lower than the accuracy rate 
of 93% observed in Fig. 12（c） when concentrating 
on （L/d）2. The increased intricacy of the airfoil’s 

aerodynamic characteristics influenced by ground ef‑
fect leads to the struggle to effectively assimilate of 
the model.

The distance measurements between the gener‑
ated and original airfoils are shown in Fig.13. The 
dashed red lines separate the DM distribution of dif‑
ferent labels. It is observed that all distance matrices 
exceed a value of 0.575， with a significant propor‑
tion of them surpassing 0.7， indicating that the mod‑
el exhibits the ability to generate novel airfoil 
shapes. The dataset comprises a greater number of 
airfoils categorized as Label 4， accompanied by dis‑
tance matrices that demonstrate elevated values in 
comparison to the remaining three labels. This find‑
ing suggests that an expanded dataset has the capabil‑
ity to enhance the model’s ability for generalization.

Fig.14 shows the evolution of the loss function 
of ANN versus the number of epochs. The training 
and testing errors converge after 1 000 epochs. The 

Fig.11　Pie chart of the proportion for correct and incorrect 
airfoils generated by CGAN when focused on differ‑
ent labels

Fig.12　Pie chart of the proportion for correct and incorrect 
airfoils generated by CGAN with and without 
ground effect conditions

Fig.13　Distribution of distance measurements between gen‑
erated airfoils and original airfoils in database

64



No. 1 WANG Chenlu, et al. Optimization of High-Speed WIG Airfoil with Consideration of Non-ground…

performance of the trained model on the testing data‑
sets is comparable to that on the training datasets， 
showing the generalization of the proposed model. 
After training， the model is employed to predict 
new values and validate its performance. Table 5 
shows the performance metrics for the ANN model. 
The R2 metrics for Cd1， Cd2， Cm1 and Cm2 all exceed 
0.9， while that for Cl1 and Cl2 is approximately 
0.84， which shows reasonable accuracy values for 
the ANN model. The RMSE are 0.002 63， 0.039， 
and 0.005 2 for Cd1， Cl1， and Cm1， respectively， and 
0.001 78， 0.028， and 0.005 7 for Cd2， Cl2， and Cm2， 
respectively. Fig.15 shows the scatter plot of the pre‑
dicted Cl， Cd， and Cm values against their correspond‑
ing truth values using the test dataset. Ideally， the 

scatter points should be on the top of the regressed di‑
agonal line with a slope equal to one， representing a 
perfect fit. The red dashed line in the diagram repre‑
sents a 10% error line. It can be seen that most of the 
predicted results fall within a 10% margin of error ，as‑
serting the reliability of the ANN predictions.

Fig.15　Scatter plots of the predicted Cd, Cl, and Cm versus the corresponding truth values

Fig.14　Evolution of loss function of the ANN

Table 5　Performance metrics for the ANN model

Evaluation metric
R2

RMSE
MAE

Cd1

0.933
0.002 63

0.002

Cl1

0.840
0.039
0.031

Cm1

0.943
0.005 2
0.004 3

Cd2

0.916
0.001 78
0.001 24

Cl2

0.842
0.028

0.019 3

Cm2

0.907
0.005 7

0.004 52
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3. 2 Analysis of design airfoils　

Then a detailed analysis of the geometric and 
aerodynamic features of the airfoil designed by 
CGAN is conducted. The airfoil shapes generated 
by CGAN with different labels are shown in Fig.16. 
The blue curves represent airfoils that are excluded 
from the analysis as they are generated incorrectly. 
To more intuitively illustrate the differences in geo‑
metric features of airfoils corresponding to various 
labels， Fig.17 illustrates histograms for three key 
parameters： maximum camber， position of the max‑
imum camber， and leading-edge radius of airfoils. 
The airfoils labeled as 1 demonstrate excellent aero‑
dynamic performance in both flight conditions. The 
camber distribution of these airfoils is primarily 

among ［0.08c， 0.105c］， with the maximum camber 
located at approximately among ［0.35c，0.5c］. Addi‑
tionally， the leading-edge radii of airfoils are pre‑
dominantly situated at around distributed among 

Fig.17　Histograms of geometric parameters for airfoils of different labels

Fig.16　Airfoils of different labels generated by CGAN
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［0.008c， 0.025c］. In comparison to the airfoils iden‑
tified as Label 1， those labeled as 2 exhibit in‑
creased leading-edge radii and cambers. These air‑
foils may demonstrate decreased lift-drag ratios 
when flight in ground effect， while maintaining high‑
er lift-drag ratios in non-ground effect. The airfoils 
identified as Label 3 are characterized by their re‑
duced leading-edge radii， leading to lower lift-drag 
ratios in non-ground effect conditions and favorable 
aerodynamic performance in ground effect. Label 4 
airfoils are characterized by larger leading-edge radii 
and forward positions of the maximum camber， 
leading to reduced lift-drag ratios across both flight 
conditions.

4 Conclusions 

An inverse design of high-speed ground effect 
airfoil based on a two-step inverse design frame‑
work is carried out with the consideration of non-

ground effect. A database is developed for the pur‑
pose of examining airfoils under various conditions， 
including near-ground and free-stream scenarios. 
Subsequently， the data from this database is used to 
train CGAN and ANN. Next， we evaluate the mod‑
els and analyze the designed airfoils from both geo‑
metric and aerodynamic features. The conclusion 
can be drawn as follows.

（1） The CGAN model boasts an 82% accura‑
cy rate， attesting to its reliability. The distance ma‑
trices for generated airfoils exceed 0.57， affirming 
the model’s capability to produce novel airfoils. 
The RMSE of ANN for aerodynamic parameters 
prediction is mostly within 10%， which means the 
model has the generalization ability to make credible 
predictions.

（2） By incorporating an ANN model following 
the CGAN model， it is possible to realize the multi-
objective parameter design of airfoils without the 
need or numerical simulations as well as the experi‑
ence of designers. This approach significantly en‑
hances the efficiency of airfoil design processes.

（3） The airfoils exhibiting favorable aerody‑
namic performance in both flight conditions demon‑
strate concentrated cambers among ［0.08c， 0.105c］， 

with the maximum camber positions among ［0.35c， 
0.5c］. Additionally， the leading-edge radii of these 
airfoils are primarily centered approximately among 
［0.008c， 0.025c］.
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基于两步深度学习逆向设计方法考虑非地面效应的

高速地效翼型优化

王晨鹭 1， 孙建红 1，2，3， 郑达仁 1， 孙 智 2， 左 思 1， 刘 浩 1， 李 佩 1

（1.南京航空航天大学飞行器环境控制与生命保障工业和信息化部重点实验室，南京  210016，中国；

2.南京航空航天大学民航应急科学与技术重点实验室，南京  211106，中国；

3.南京航空航天大学航空航天结构力学及控制全国重点实验室，南京  210016，中国）

摘要：在避障、极端海况等复杂飞行工况下，地效飞行器需爬升至更高空域，导致地面效应消失。本文通过一种

融合条件生成对抗网络（Conditional generative adversarial network， CGAN）与人工神经网络（Artificial neural net‑
work， ANN）的新型两步逆向翼型设计方法，开展了考虑非地效工况下的高速地效翼型设计研究。CGAN 模型

用于生成同时满足地效与非地效工况目标升阻比的多样化翼型设计，ANN 模型用于预测生成翼型的气动参数。

结果表明，CGAN 模型能够生成满足条件的新型构型的翼型，ANN 模型对翼型气动参数的预测具有较高精度，

该方法在设计过程中无需依赖数值模拟与实验测试，具有显著的高效性。对 CGAN 生成翼型的分析表明，双工

况下具有高升阻比的翼型弯度多分布于［0.08c， 0.105c］区间，最大弯度位置位于弦长的［0.35c， 0.5c］区间，且翼

型前缘半径主要集中在［0.008c， 0.025c］范围。

关键词：条件生成对抗网络；人工神经网络；翼型设计；地效翼飞行器；地面效应
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