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Abstract: Remote sensing cross-modal image-text retrieval （RSCIR） can flexibly and subjectively retrieve remote 
sensing images utilizing query text， which has received more researchers’ attention recently. However， with the 
increasing volume of visual-language pre-training model parameters， direct transfer learning consumes a substantial 
amount of computational and storage resources. Moreover， recently proposed parameter-efficient transfer learning 
methods mainly focus on the reconstruction of channel features， ignoring the spatial features which are vital for 
modeling key entity relationships. To address these issues， we design an efficient transfer learning framework for 
RSCIR， which is based on spatial feature efficient reconstruction （SPER）. A concise and efficient spatial adapter is 
introduced to enhance the extraction of spatial relationships. The spatial adapter is able to spatially reconstruct the 
features in the backbone with few parameters while incorporating the prior information from the channel dimension. 
We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets. Compared 
with traditional methods， our approach achieves an improvement of 3%—11% in sumR metric. Compared with 
methods finetuning all parameters， our proposed method only trains less than 1% of the parameters， while 
maintaining an overall performance of about 96%. The relevant code and files are released at https：//github. com/
AICyberTeam/SPER.
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0 Introduction 

In recent years， the exponential growth of re⁃
mote sensing （RS） data and progressive processing 
techniques have greatly expanded human perceptual 
capabilities and prospected for many applications， 
such as ecological monitoring， land planning， and 

disaster prediction［1-2］. However， it is still challeng⁃
ing to process and retrieve valuable RS data effi⁃
ciently. Remote sensing cross-modal image-text re⁃
trieval （RSCIR） aims to retrieve RS images utiliz⁃
ing text that describes the content of the image. 
This content-based retrieval approach has gradually 
become a research hotspot in recent years［3］.
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The current mainstream in RSCIR is the end-

to-end retrieval method based on embedding vec⁃
tors［4］. Specifically， in order to directly measure sim ⁃
ilarity， the end-to-end retrieval approach utilizes the 
powerful representation capability of neural net⁃
works to map data from different modalities into a 
common hypersphere space. The cross-modal fea⁃
tures are aligned through contrastive learning.

According to the different ways of interacting 
between multimodal features， there are two main 
representative categories： Dual-stream and single-

stream. Dual-stream methods refer to independently 
encoding multimodal features without interaction. 
Representative methods include VSE++［5］， HV⁃
SA［6］， etc. Single-stream methods involve the fu⁃
sion and guidance of cross-modal features during the 
encoding process. Representative methods include 
AMFMN［7］， SWAN［8］， etc.

Meanwhile， the emergence of large-scale visu⁃
al-language pre-training （VLP） models has provid⁃
ed new insights for RSCIR［9］. Recently， there has 
been rapid development in large-scale multimodal 
pre-training models， such as CLIP［10］， ALBEF［11］ 
and BLIP-2［12］. Instead of training all parameters in 
VLP， the parameter-efficient transfer learning meth⁃
od is designed to train a fraction of the parameters， 
which significantly reduce computational consump⁃
tion while maintaining reliable performance［13］.

Although RSCIR has had some achievements， 
it still confronts some challenges. Firstly， as for the 
RS domain， training a VLP model from scratch re⁃
quires considerable computational resources and an⁃
notated data［14］. The initial CLIP method， for exam ⁃
ple， was trained on 400 million image-text pairs col⁃
lected from the internet， which has been upgraded 
to 2 billion. Captions in the RS domain mostly rely 
on manual annotation by professionals thus it is 
quite challenging to train a VLP from scratch for the 
RS domain. Therefore， how to efficiently transfer 
the prior knowledge of the natural domain to the 
complex RS domains is worth further exploration.

Moreover， recently proposed parameter-effi⁃
cient transfer learning methods mainly reconstruct 

features in the channel dimension by up-sampling 
and down-sampling［14-15］. This is because most of 
them tend to transfer to downstream tasks in the 
same domain as VLP［15］. However， there is an in⁃
herent domain gap between RS scenes and natural 
scenes. RS scenes are complex and targets can vary 
greatly in scale. Merely reconstructing channel fea⁃
tures is insufficient to explore the spatial relation⁃
ships of instances， making it suboptimal for image-

text retrieval.
To address these issues， an efficient transfer 

learning framework for RSCIR is proposed， which 
is based on spatial feature efficient reconstruction 
（SPER）. First， to enhance spatial relationship ex⁃
traction and reduce computational consumption， we 
introduce a concise and efficient spatial adapter that 
reconstructs image-text features in the spatial dimen⁃
sion and integrates prior information from the chan⁃
nel dimension. By partitioning the cross-modal fea⁃
tures in the channel dimension， we can obtain fea⁃
tures that contain both spatial and a priori channel in⁃
formation. Differing from traditional methods， 
SPER reduces the volume of additional parameters 
introduced by the down-sampling and up-sampling 
processes. Then the proposed spatial adapters are in⁃
serted into the backbone of the VLP model. During 
training， SPER freezes the parameters of the back⁃
bone and only updates the parameters of the inserted 
spatial adapters. The main process of our method is 
illustrated in Fig.1， where SPA represents spatial 
adapter， LN the layer norm， MHA the multi-head 
attention， and FFN the feed-forward network. The 
contributions of this paper can be summarized as fol⁃
lows：

（1） Different from traditional methods based 
on fine-tuning all parameters， we propose an innova⁃
tive and efficient transfer learning framework for 
RSCIR， which reduces the consumption of compu⁃
tational and storage resources.

（2） To bridge the gap between different do⁃
mains， we design the spatial adapter to efficiently re⁃
construct multimodal features in the spatial dimen⁃
sion and achieve superior performance.
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（3） We have conducted quantitative and quali⁃
tative experiments on different publicly available da⁃
tasets， demonstrating the effectiveness of our ap⁃
proach.

1 Methods 

1. 1 Cross⁃modal feature representation　

Consistent with the idea of contrastive learn⁃
ing［16］， SPER constrains positive pairs to be as close 
as possible and negative pairs to be as far away as 
possible. The overall process is illustrated in Fig.1.

For simplicity， residual connections are ig⁃
nored in Fig.1. We denote the RS image and query 
text as I∈ RH × W × 3 and C= { wm }M

m = 0， respectively， 
where H × W  is the size of the RS image and wm is 
the mth word in the query text. For RSCIR， we 
first encode the RS image I and the corresponding 
caption C with a multimodal encoder to obtain the 
visual embedding vector v and the semantic embed⁃
ding vector s. Then， we map the visual embedding 
vector v∈ R dv and semantic embedding vector 
s∈ R d s to the common hypersphere space and mea⁃
sure the similarity S ( I，C ) by the inner product.

The vision transformers （ViTs）［17］ are utilized 
to extract visual features initially. Specifically， we 
divide the RS image into N × N patches and add the 
class token as an aggregate representation of the im ⁃
age， which can be defined as

Î=[ Ic,I0,I1,⋯,IN 2 - 1 ]+ Ip (1)

where Î∈ R ( N 2 + 1 )× dv is the input to the ViT， Ic ∈ R dv 
the class token for the image， In ∈ R ( H N ⋅ W N )× dv the 
nth image patch， and Ip ∈ R ( N 2 + 1 )× dv the position 
embedding added to each token. And one fundamen⁃
tal ViT block is modeled as follows

vh = SA ( Norm ( Î ) )+ Î (2)
vo = MLP ( Norm ( vh ) )+ vh (3)

where Norm ( • ) represents the layer normalization， 
SA ( • ) the self-attention module in ViT， and 
MLP ( • ) the multi-layer perceptron， vh ∈ R ( N 2 + 1 )× dv 
the hidden feature obtained by SA ( • )， and 
vo ∈ R ( N 2 + 1 )× dv the output feature of the ViT block.

Similar to the visual feature v， the semantic 
feature s is extracted with BERT［18］. The query cap⁃
tion is first preprocessed and then a sequence of to⁃
kens [ cbos，c0，c1，⋯，cM，ceos ] is obtained as

cm = wmM e + w p (4)
so = Trans ( cbos,c0,c1,⋯,cM,ceos )∈ RL × d s (5)

where wm ∈ R || V  represents the mth words in the cap⁃
tion， and | V | the vocabulary size of the BERT； 
w p ∈ R d s is the positional embedding vector， 
M e ∈ R || V × d s the word embedding matrix， cbos ∈ R d s 
the beginning of sentence token， and ceos ∈ R d s the 
end of the sentence token； L represents the length 
of tokens， and the semantic encoder is denoted by 
Trans ( • ).

To address the challenges presented above， 
the innovative aspects of our proposed method are： 
（1） Compared with recent efficient transfer learning 
methods， our approach enhances the extraction of 

Fig.1　Pipeline of the proposed SPER
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spatial relationships in RS images. It leverages few⁃
er parameters for the efficient reconstruction of mul⁃
timodal features in the spatial dimension. （2） Com⁃
pared with traditional RSCIR methods， our SPER 
framework is more concise and efficient. We only 
specify a limited number of parameters to be in⁃
volved in backpropagation and updates. Further de⁃
tails are provided below.

1. 2 Spatial adapter　

Compared with natural scenes， RS scenes are 
characterized by greater complexity and variability 
in scale. Traditional parameter-efficient transfer 
learning methods［14-15］ that rely solely on channel fea⁃
ture reconstruction are insufficient to capture the re⁃
lationships between instances in RS images. These 
methods are designed to transfer prior knowledge to 
downstream tasks within the same domain as the 
pre-training task， ignoring transfer learning across 
domains， e. g.， from the nature domain to the RS 
domain. Thus， they mostly focus on reconstructing 
channel features， as shown in Fig. 2（a）. They per⁃
form the reconstruction of features in the channel di⁃
mension by up-sampling and down-sampling， which 

can be expressed as
v͂o = ϕ ( voW down ) ⋅W up (6)

where vo represents the original visual feature， ϕ ( • ) 
the activation function， and v͂o ∈ R ( N 2 + 1 )× dv the recon⁃
structed feature； W down ∈ R dv × h and W up ∈ R h × dv rep⁃
resent the down-sampling matrix and the up-sam⁃
pling matrix， respectively.

To address the issue mentioned above， we pro⁃
pose the SPA which can better handle the complexi⁃
ty of RS scenes and the scale variability of valuable 
targets. The details are shown as SPA in Fig.1.

Specifically， the process of spatial reconstruc⁃
tion is shown in Fig.2（b）. In contrast to existing 
methods that primarily reconstruct channel features， 
our spatial adapter explicitly focuses on spatial fea⁃
ture reconstruction， a crucial aspect for handling RS 
images. It enhances the ability to model and extract 
spatial relationships while effectively incorporating 
prior channel information. We innovatively partition 
the visual feature vo in the channel dimension， ob⁃
taining a sequence of features containing spatial in⁃
formation as

vo =[ v0,v1,⋯,vN ] (7)

Different from traditional methods， we do not 
simply employ down-sampling and up-sampling for 
feature reconstruction. We complete the reconstruc⁃
tion by applying cross-correlation between the fea⁃
tures containing spatial information and the recon⁃
struction matrix. By utilizing cross-correlation， our 
method efficiently captures spatial dependencies 
while reducing the need for excessive parameter 
overhead as

im = r ( vo )= bm + ∑
n = 0

N - 1

Wm,n ⊗ vn (8)

where vn ∈ RH × W ×( dv N ) is the nth visual feature after 
partitioning， r ( • ) the spatial reconstruction func⁃
tion， ⊗ the valid cross-correlation operator， 
W ∈ RH × W ×( dv N ) the reconstruction weight matrix in 
the spatial adapter， and b the bias parameter. 
im ∈ R dv is the visual feature obtained by the mth 
spatial reconstruction matrix.

In order to decrease the gap between different 
domains and reduce the difficulty of cross-modal 
alignment， we similarly perform global reconstruc⁃
tion for semantic features. Similar to the visual fea⁃

Fig.2　Comparison of feature reconstruction between traditional methods and the spatial adapter
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ture vo， the semantic feature so is first partitioned in 
the channel dimension to obtain the global feature 
sequence [ s0，s1，⋯，sN ]. After efficient reconstruc⁃
tion， semantic features with global information are 
finally obtained， which can be expressed as

tm = r ( so )= bm + ∑
n = 0

N - 1

Wm,n ⊗ sn (9)

where sn ∈ RL ×( d s N ) is the nth global semantic fea⁃
ture after partitioning， and tm ∈ R d s the mth token af⁃
ter reconstruction.

Finally， we employ the class token from the 
last visual encoder as the visual embedding vector v 
and the begin of sentence （BOS） token from the 
last semantic encoder as the semantic embedding 
vector s. They are mapped to the d-dimensional hy⁃
persphere space after L2 normalization.

1. 3 Efficient transfer learning　

Moreover， to reduce the consumption of com ⁃
putational and storage resources， SPER freezes the 
parameters of the backbone and only updates the pa⁃
rameters of the proposed SPAs during transfer learn⁃
ing. Following the same procedure as previous 
methods［12］， the ViT and BERT in SPER are initial⁃
ized by the pre-training weights of CLIP and encode 
images and query text as backbone networks， re⁃
spectively， shown as

θ ( n + 1 )
b = θ ( n )

b (10)

θ ( n + 1 )
s = θ ( n )

s - η
δL

δθ ( n )
s

(11)

where θ ( n )
b  denotes the parameter of backbone at the 

iteration n， θ ( n )
s  the parameter of spatial adapter at it⁃

eration n， η the step size of the parameter update， 

and δL
δθ ( n )

s
 the derivative of the loss function L with 

respect to parameter θ ( n )
s .

Our objective is to restrict positive paired sam ⁃
ples as close as possible and negative paired samples 
as far away as possible. Instead of the traditional 
triplet loss， we employ the InfoNCE loss in contras⁃
tive learning［13］. In a batch of training data contain⁃
ing N paired samples， the alignment loss of one pos⁃
itive pair ( I，C ) can be expressed as
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where S ( • ) is the cosine similarity between image I 
and caption C， and τ the temperature coefficient； In 
and C n represent the nth image and caption in the 
current batch， respectively. During backpropaga⁃
tion， only the parameters of the proposed spatial 
adapter are updated.

2 Experimentation and Analysis 

2. 1 Experimental datasets　

RSICD and RSITMD are two commonly used 
RSTIR datasets. The RSICD dataset contains 
10 921 RS images of various resolutions and 54 605 
query texts. The image size is 224 pixel × 224 pixel. 
The RSITMD dataset includes 4 743 images of dif⁃
ferent resolutions and 23 715 query texts. The im⁃
age size is 256 × 256. The pixel resolution is about 
0.5 m to 20 m.

The UCM Captions and Sydney datasets were 
not considered due to their small sample sizes and 
single resolutions， with only 2 100 and 613 sam⁃
ples， respectively， and resolutions of 0.3 m and 
0.5 m.

2. 2 Experimental implementation details　

We conducted qualitative and quantitative ex⁃
periments on the RSICD and RSITMD datasets. 
To ensure the fairness and reproducibility of the ex⁃
periments， we follow the same dataset partitioning 
as in Ref.［13］. Two metrics， R@K （K = 1， 5， 
10） and sumR， are used to evaluate retrieval perfor⁃
mance quantitatively. The R@K metric denotes the 
percentage of ground truth in the first K recalled re⁃
sults. The sumR metric reflects the overall perfor⁃
mance of the retrieval and can be calculated by 
Eq.（13）. The optimization algorithm is AdamW. 
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The initial learning rate is set to 5 ✕ 10-4， with the 
linear warm-up strategy for the first four epochs， 
and a total of 20 epochs for training. The dimension 
of the multimodal features is 512. All experiments 
are conducted on one NVIDIA Telsa V100 GPU.

sumR = ∑
K ∈ [ 1,5,10 ]

R@K (13)

2. 3 Retrieval performance comparison　

We compare our approach with previous excel⁃
lent methods， including traditional RSCIR methods 
and methods transferred from VLP （CLIP）. Tradi⁃
tional methods include HVSA［6］ ， AMFMN［7］ ， 
SWAN［8］， etc. Transfer learning-based methods in⁃
clude Full fine-tuning［10］， Adapter［14］， Cross-Modal 
Adapter［15］， etc. To demonstrate the effectiveness 
of the proposed framework， we choose the Full fine-

tuning method and the Adapter algorithm as our 

baselines. We also report the zero-shot capability of 
the CLIP model in RSCIR， with 0.00 million train⁃
ing parameters.

Table 1 demonstrates the experimental results， 
where “R” denotes traditional methods and “T” 
CLIP methods. If not specified， the architecture of 
the visual encoder always adopts ViT-B-32. With 
the exception of Singe Language and Full fine-tun⁃
ing methods， the best results are bolded to provide 
a better illustration of comparisons between similar 
methods. Concretely， the Full fine-tuning method 
for direct transfer learning is based on the CLIP 
model， all 151.00 million parameters are involved in 
backpropagation and gradient updates. Methods like 
the Adapter［13］， Cross-Modal Adapter［14］， etc. are 
employed to efficiently transfer the pre-trained 
CLIP’s prior knowledge to RSCIR.

Firstly， compared with traditional methods on 
the RSICD， we have achieved a significant perfor⁃
mance lead， which we believe is due to the powerful 
visual-semantic extraction capability of the pre-

trained model. Additionally， compared with CLIP 
methods， our approach requires fewer training pa⁃
rameters and exhibits superior overall performance. 
Compared with the baseline method Adapter， 

Table 1　Comparison of cross⁃modal retrieval performance on RSICD

Type

R

T

Method

LW⁃MCR⁃u[19]

AMFMN⁃sim[7]

MCRN[20]

SWAN[8]

GaLR with MR [21]

Single Language[22]

Linear probe[10]

RS⁃light[23]

TGKT[24]

Cross⁃Modal Adapter[15]

Full fine⁃tuning[10]

Adapter[14]

CLIP(ViT⁃B⁃16)[10]

Adapter (ViT⁃B⁃16)
Ours

Ours (ViT⁃B⁃16)

Training 
parameter/

106

1.65
35.94
52.35

-
46.89

151.00
0.53
9.20
4.70
0.16

151.00
2.57
0.00
2.57
0.18
0.60

RSICD
Text retrieval

R@1
4.39
5.21
6.59
7.41
6.59

10.70
8.46
6.67
8.69

11.18
13.54
12.99
6.67

14.36
14.36
16.01

R@5
13.35
14.72
19.40
20.13
19.85
29.64
24.41
18.92
24.52
27.31
30.83
28.63
17.65
31.65
30.19
33.57

R@10
20.29
21.57
30.28
30.86
31.04
41.53
37.72
28.42
37.15
40.62
43.46
42.54
26.44
44.46
43.73
46.11

Image retrieval
R@1
4.30
4.08
5.03
5.56
4.69
9.14
7.81
8.94
6.61
9.57

11.55
9.84
7.33

11.60
10.57
11.82

R@5
18.85
17.00
19.38
22.26
19.48
28.96
25.89
26.45
24.74
30.74
33.14
30.74
22.15
32.68

30.52
31.94

R@10
32.34
30.60
32.99
37.41
32.13
44.59
42.47
41.06
39.71
48.36

49.83
45.92
33.57
48.32
46.03
47.77

sumR

93.52
93.18

113.67
123.63
113.78
164.56
146.76
130.46
141.42
167.78
182.35
170.66
113.81
183.07
175.40
187.22
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SPER only needs to train 0.18 million parameters， 
while the Adapter method requires training 
2.57 million parameters. Importantly， the sumR 
metric of SPER leads the Adapter method by 
4.74 points on the RSICD dataset. In our opinion， 
the advancement of SPER lies in its ability to model 
and extract spatial relationships， whereas the Adapt⁃
er method mainly focuses on channel features. 
Furthermore， compared to the Full fine-tuning 
method， SPER only needs to train less than 1% of 
the parameters to achieve 96% of its performance， 
demonstrating the efficiency of our proposed 

approach.
Our method also performs well on the RSIT ⁃

MD， as shown in Table 2. Compared with similar 
methods， our approach makes a better trade-off be⁃
tween the volume of training parameters and retriev⁃
al performance. It is worth noting that the perfor⁃
mance of SPER （ViT-B-32） is comparable to the 
Adapter （ViT-B-16）， which demonstrates the va⁃
lidity of SPER for efficient reconstruction of spatial 
features. The rest of the experimental results are 
more or less the same as RSICD and will not be re⁃
peated.

2. 4 Ablation study　

We explored the effect of the channel division 

step on the proposed SPER and the experimental re⁃

sults are shown in Table 3. When multimodal fea⁃

tures are partitioned in the channel dimension， dif⁃

ferent division steps can be adopted， which is an im ⁃

portant scientific hyperparameter. The division step 

size affects the quantity of spatial information as 

well as the volume of parameters required for recon⁃
struction， which in turn affects the retrieval perfor⁃
mance of the SPER. The best overall results are 
achieved when the division step takes 1. A longer di⁃
vision step length brings about an improvement in 
image retrieval metrics and has little effect on the 
overall performance. Therefore， we believe that 
SPER can efficiently perform feature reconstruction 
when the division step takes.

Table 2　Comparison of cross⁃modal retrieval performance on RSITMD

Type

R

T

Method

LW⁃MCR⁃u[19]

AMFMN⁃sim[7]

MCRN[20]

SWAN[8]

GaLR with MR[21]

Single Language[22]

Linear probe[10]

RS⁃light [23]

TGKT [24]

Cross⁃Modal Adapter[15]

Full fine⁃tuning[10]

Adapter[14]

CLIP(ViT⁃B⁃16)[10]

Adapter (ViT⁃B⁃16)
Ours

Ours (ViT⁃B⁃16)

Training 
parameter/

106

1.65
35.94
52.35

-
46.89

151.00
0.53
9.20
4.70
0.16

151.00
2.57
0.00
2.57
0.18
0.60

RSITMD
Text retrieval

R@1

9.73
10.63
13.27
13.35
14.82
19.69
13.71
12.61
17.92
18.16
24.16
21.01
8.84

23.67

21.46
23.45

R@5

26.77
24.78
29.42
32.15
31.64
40.26
33.41
31.85
36.95
36.08
47.12
41.59
23.45
40.92
43.36
42.47

R@10

37.61
41.81
41.59
46.90
42.48
54.42
48.01
46.23
52.88
48.72
61.28
53.76
36.28
52.65
54.42

52.87

Image retrieval

R@1

9.25
11.51
9.42

11.24
11.15
17.61
10.97
12.92
12.83
16.31
20.40
16.94

9.86
15.35
16.81
15.48

R@5

34.07
34.69
35.53
40.40
36.68
49.73
36.85
38.98
43.14
44.33
50.53
46.19
34.38
46.72
45.88
47.38

R@10

54.03
54.87
52.74
60.60
51.68
66.59
56.15
60.08
62.48
64.75
68.54
64.02
49.38
65.35
62.96
65.84

sumR

171.46
178.29
181.97
204.64
188.45
248.30
199.10
202.67
226.20
228.35
272.03
243.51
162.19
244.66
244.89
247.49
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2. 5 Case study　

Fig.3 shows some of the SPER retrieval re⁃
sults in different RS scenarios， and the retrieved im ⁃
ages are arranged in order of similarity from left to 
right. The ground truth is indicated by the green 
box. Benefiting from the efficient reconstruction of 
spatial features， SPER is able to better extract valu⁃
able information and enhance the spatial relation⁃
ships in RS images which is bolded in the query 
text. As shown in Fig.3（a）， the performance of the 
proposed SPER remains reliable even in the pres⁃

ence of many entities and complex spatial relation⁃
ships. Besides the ground truth， the retrieved imag⁃
es also contain the white building or boats in the riv⁃
er that are relevant to the query text. As shown in 
Fig.3（b）， SPER could also align the image content 
and query semantics well when dealing with multi-
scale targets. However， SPER is not accurate 
enough in retrieving RS images based on the num ⁃
ber of entities described in the queries， as shown in 
Fig. 3（c） and Fig. 3（d）. The SPER should be fur⁃
ther optimized for the ability to extract the quantity 
of valuable targets.

2. 6 Analysis of time consumption　

Table 4 presents a comparison of the retrieval 
time consumption between different methods， 
where TT denotes the training time for one pass 
through the training set， ET the evaluation time for 
the test set， and IT the inference time for a single 
cross-modal retrieval. The computing platform con⁃
sists of a 2.50 GHz Intel Xeon Gold 6133 CPU and 
a single NVIDIA 32 GB V100 GPU. The experi⁃
mental dataset is RSITMD. The recorded results 

are the average of three runs.
Compared with the traditional GaLR method， 

SPER’s TT increases by 26.22 s， and IT increases 

Table 3　Comparison of different division steps on RSITMD

Division step

1
3
5

Training 
parameter/

106

0.18
0.43
0.67

RSITMD
Text retrieval

R@1

21.46

20.79
20.57

R@5

43.36

42.03
42.69

R@10

54.42

53.54
53.53

Image retrieval

R@1

16.81
18.23

17.96

R@5

45.88
45.93
46.01

R@10

62.96
63.32
63.67

sumR

244.89

243.84
244.43

Fig.3　Retrieval cases of SPER on the RSITMD test set

Table 4　Retrieval time consumption of different methods

Type

R

T

Method

AMFMN

GaLR

CLIP

Adapter

SPER

TT/s

47.83

50.18

101.04

79.39

76.40

ET/s

4.79

4.85

5.66

5.86

5.71

IT/ms

1.76

1.78

2.08

2.16

2.10
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by 0.32 ms. However， considering the significant 
improvement in SPER’s retrieval performance， we 
believe the additional time consumption is accept⁃
able. Compared with the CLIP method， SPER re⁃
duces the TT by 24.3%， while the ET and IT are 
at the same level. Compared with the baseline meth⁃
od Adapter， SPER benefits from the efficient recon⁃
struction of spatial features， leading to superior re⁃
trieval performance along with improved training 
and inference efficiency.

2. 7 Limitations of SPER　

One potential limitation of SPER is its perfor⁃
mance in aligning fine-grained information， particu⁃
larly regarding quantities. As demonstrated in sub⁃
section 2.5， SPER is not always accurate when re⁃
trieving RS images based on the number of entities 
described in the queries. This suggests that while 
SPER performs well in general retrieval tasks， 
there is room for improvement in its ability to model 
and retrieve precise numerical or quantity-based de⁃
tails.

Another limitation is SPER’s efficiency when 
processing high-resolution remote sensing images 
（e.g.， 10 000 pixel × 10 000 pixel）. The high-reso⁃
lution RS images were sliced to accommodate re⁃
trieval. As discussed in subsection 2.6， compared 
with traditional CNN-based approaches， i. e.， ap⁃
proaches for instance AMFMN and GaLR， SPER 
could require more computational resources， poten⁃
tially affecting inference speed. Thus， the trade-off 
between retrieval performance and efficiency is an 
important area for further exploration.

3 Conclusions 

（1） We propose an efficient spatial feature re⁃
construction framework for RSCIR， which appar⁃
ently reduces the consumption of computational and 
storage resources. Compared with the baseline 
method of fine-tuning all parameters in the VLP， 
our framework requires training only 0.18 million pa⁃
rameters （<1%） to achieve 96% of the baseline 
performance， reducing the training time by 24.3%.

（2） To bridge the gap between different do⁃
mains， our designed spatial adapter efficiently mod⁃
els and extracts spatial relationships from multimod⁃
al features. In terms of retrieval performance， 
SPER leads similar methods by at least 2.7%.

（3） As discussed in the limitations section， our 
future research will focus on addressing the challeng⁃
es of improving fine-grained retrieval and reducing 
computational demands during inference.
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基于空间特征高效重构的遥感图文检索方法

张伟航 1，2，3， 陈佳良 1，2， 张文凯 1，2， 李新明 4， 高 鑫 1，3， 孙 显 1，2，3

（1.中国科学院空天信息创新研究院，北京  100190，中国； 
2.中国科学院目标认知与应用技术重点实验室，北京  100190，中国； 

3.中国科学院大学电子电气与通信工程学院，北京  100190，中国； 
4.空天信息大学计算机与人工智能学院，济南  250299，中国）

摘要：遥感跨模态图文检索（Remote sensing cross⁃modal image⁃text retrieval， RSCIR）旨在利用查询文本灵活、主

观地检索遥感图像，近年来受到了越来越多研究者的关注。然而，随着预训练模型参数的不断增加，直接迁移学

习的方法需要消耗大量的计算和存储资源。此外，最近提出的参数高效迁移学习方法主要聚焦于通道特征的重

建，忽略了对关键实体关系建模至关重要的空间特征。为了解决这些问题，本文提出了一种基于空间特征高效

重构（Spatial feature efficient reconstruction， SPER）的遥感跨模态图文检索方法，设计了一个简洁高效的空间适

配器，以增强空间关系的提取能力。空间适配器只需通过少量参数即可对骨干网络中的特征进行空间重构，同

时结合通道维度的先验信息。在两个常用的遥感图文检索数据集上进行的定量和定性实验表明，本文方法在

sumR 指标上相比传统方法提升了 3%~11%。此外，与全参数训练方法相比，本文方法仅训练不到 1% 的参数，

但整体性能仍保持在 96% 左右。本文相关代码和文件将开源在：https：//github.com/AICyberTeam/SPER。

关键词：遥感跨模态图文检索；空间特征；通道特征；对比学习；参数高效迁移
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