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Abstract: The diffuse-interface immersed boundary method （IBM） possesses excellent capabilities for simulating 
flows around complex geometries and moving boundaries. In this method， the flow field is solved on a fixed Cartesian 
mesh， while the solid boundary is discretized into a series of Lagrangian points immersed in the flow field. The 
boundary condition is implemented by introducing a force term into the momentum equation， and the interaction 
between the immersed boundary and the fluid domain is achieved via an interpolation process. Over the past decades， 
the diffuse-interface IBM has gained popularity and spawned many variants， effectively handling a wide range of flow 
problems from isothermal to thermal flows， from laminar to turbulent flows， and from complex geometries to fluid-

structure interaction scenarios. This paper first outlines the basic principles of the diffuse-interface IBM， then 
highlights recent advancements achieved by the authors’ research group， and finally shows the method’s excellent 
numerical performance and wide applicability through several case studies involving complex moving boundary 
problems.
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0 Introduction 

In addition to theoretical analysis and experi⁃
ments， numerical simulation， commonly known as 
computational fluid dynamics （CFD）， is an essen⁃
tial method for studying fluid flow problems， form⁃
ing a significant branch of fluid mechanics. Nowa⁃
days， CFD has been extensively used in aerospace， 
meteorology， automotive， shipbuilding， and ocean⁃
ography， leading to notable achievements. The fun⁃
damental strategy of CFD is to discretize the fluid 
domain using a grid and to numerically solve a set of 
partial differential equations on that grid. There⁃
fore， the quality of the grid is crucial， as it directly 
affects the accuracy and efficiency of the numerical 
simulations.

Conventional CFD methods typically adopt 

body-fitted grids， where the grid lines conform to 
the solid boundaries， simplifying the imposition of 
boundary conditions. However， in practical applica⁃
tions， the solid geometries are usually complex， 
making the generation of body-fitted grids difficult 
and cumbersome. Moreover， moving boundary 
problems necessitate regenerating body-fitted grids 
at every time step， which substantially increases 
computational cost and reduces efficiency［1］. In con⁃
trast， the immersed boundary method （IBM）［2-6］ 
can handle complex geometries and moving bound⁃
ary problems on a fixed Cartesian grid， attracting 
widespread attention and rapid development in re⁃
cent decades. The IBM was originally proposed by 
Peskin［7］ in 1972 to simulate the blood flow around 
heart valves. In his approach， the flow field is 
solved on a fixed Cartesian （Eulerian） mesh and the 
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solid boundary is represented by a series of discrete 
（Lagrangian） points immersed in the flow field. 
The influence of the immersed boundary on the flow 
is incorporated by adding a force term to the momen⁃
tum equation. This approach decouples the mesh 
generation from the boundary geometry， avoiding 
the cumbersome and time-consuming mesh genera⁃
tion process encountered by conventional CFD 
methods when dealing with complex geometries and 
moving boundary problems. Since then， the ap⁃
proach of the “ immersed boundary” has been exten⁃
sively developed， leading to numerous variants of 
the IBM.

Depending on how boundary conditions are 
treated， existing IBMs can generally be categorized 
into diffuse-interface and sharp-interface approach⁃
es， as illustrated in Fig.1. The original IBM pro⁃
posed by Peskin［7］ is a typical diffuse-interface 
IBM， in which the force term F is evaluated at the 
Lagrangian points and then distributed to the sur⁃
rounding fluid points via a smooth interpolation func⁃
tion， ensuring a gradual transition from the bound⁃
ary to the fluid domain. In this approach， all mesh 
cells both inside and outside the boundary are treat⁃
ed uniformly as fluid cells， as shown in Fig.1（a）. In 

contrast， the sharp-interface IBM［8-10］ divides the 
mesh cells into interface cells， fluid cells， and solid 
cells， as illustrated in Fig.1（b）. This method en⁃
forces the boundary condition by directly recon⁃
structing the velocity in the interface （or ghost） 
cells， which are interpolated from the surrounding 
fluid cells and the boundary. Common approaches 
include the cut-cell method［11-12］， the ghost-cell 
method［13-14］， and the ghost-fluid method［15-16］， in 
which the immersed boundary is preserved as a 

“sharp” interface without smearing. However， dis⁃
tinguishing the cells in the sharp-interface IBM is 
both tedious and complex， and due to discontinui⁃
ties in the mesh cells near the immersed boundary， 
this method can suffer from spurious oscillations， 
particularly in moving boundary problems.

The diffuse-interface IBM originally proposed 
by Peskin［7］ treated the boundary as elastic and ap⁃
plied Hooke’s law to calculate the force term， a 
technique known as the penalty forcing method. 
Since its introduction， significant progress has been 
made in developing the diffuse-interface IBM. To 
ensure smooth transmission of the force term， Pes⁃
kin’s group［2， 17-19］ developed smooth Dirac delta 
functions to model the interaction between the fluid 
and the immersed boundary. These include the 3-

point discrete piecewise function［18］， the 4-point co⁃
sine function［17］， and the 4-point discrete piecewise 
function［19］， which have been widely adopted in vari⁃
ous diffuse-interface IBMs. However， because the 
penalty forcing method relies on Hooke’s law to cal⁃
culate the force term， it is more suitable for elastic 
bodies than for rigid ones. To simulate flows around 
rigid bodies， Goldstein et al.［20］ proposed a feedback 
forcing method， which involves integrating the 
boundary velocity. Both the penalty forcing and 
feedback forcing methods depend on ad hoc coeffi⁃
cients， which can hinder their broader adoption. 
Fadlun et al.［21］ then developed a direct forcing meth⁃
od， in which the desired velocity is imposed directly 
on the boundary without any dynamic process or us⁃
er-defined coefficients. Note， however， that the 
original direct forcing method［21］ is not a typical dif⁃
fuse-interface IBM， as it calculates the force term 
directly at the Eulerian cells near the boundary by 

Fig.1　Comparison of the diffuse-interface IBM and the 
sharp-interface IBM
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approximating the desired velocity using linear inter⁃
polation. Lima E Silva et al.［22］ proposed a physical 
virtual model to eliminate the need for such ad hoc 
constants by applying the Navier-Stokes （N-S） 
equations at the Lagrangian points to evaluate the 
force term. However， this method requires tedious 
derivative approximations and interpolations of the 
pressure and velocity. A simpler and more widely 
used version was later developed by Uhlmann［23］， 
who improved the direct forcing method by incorpo⁃
rating a smooth Dirac delta function and the fraction⁃
al-step technique. This improved scheme directly 
evaluates the force term based on the difference be⁃
tween the desired and predicted velocities at the La⁃
grangian point and then transfers it to the Eulerian 
mesh through the smooth Dirac delta function. Due 
to the common use of Cartesian meshes in both the 
IBM and the lattice Boltzmann method （LBM）， 
some researchers integrated IBM into LBM to de⁃
velop efficient algorithms. For example， by adding 
a force term to the collision term of the fundamental 
LBM equation， Feng and Michaelides［24-25］ success⁃
fully applied both the penalty forcing scheme［7］ and 
the direct forcing scheme［23］ to simulate particulate 
flows within the LBM framework. Additionally， 
since the density distribution function serves as the 
evolution variable in LBM， Niu et al.［26］ proposed a 
momentum exchange-based IBM， in which the 
force term is evaluated through the momentum ex⁃
change of the boundary particle density distribution 
functions.

Examining the evolution of the diffuse-interface 
IBM reveals that the calculation of the force term is 
essential to its performance. However， a persistent 
drawback is that the explicitly calculated force term 
cannot accurately enforce the no-slip boundary con⁃
dition， resulting in non-physical phenomena such as 
streamlines penetrating the boundaries at conver⁃
gence. To address this issue， Luo et al.［27］ and 
Wang et al.［28］ developed a multi-direct forcing meth⁃
od that iteratively used the direct forcing scheme to 
ensure that the fluid velocity at the immersed bound⁃
ary closely approximates the desired boundary veloc⁃
ity. Hu et al.［29］ improved the momentum exchange-

based IBM by introducing an iterative technique to 

enforce the no-slip condition. Chen et al.［30］ attempted 
to reduce the boundary velocity error in the direct 
forcing method by introducing a spatially uniform co⁃
efficient to correct the calculated force term. Shu et 
al.［31］ observed that the conventional diffuse-inter⁃
face IBM’s inability to accurately satisfy the no-slip 
boundary condition stems from the pre-calculation 
of the force term. Using a fractional-step technique， 
they concluded that adding a force term in the mo⁃
mentum equations was equivalent to correcting the 
velocity field. Consequently， they proposed an im ⁃
mersed boundary velocity correction method that en⁃
forced the no-slip condition by adjusting velocities at 
points adjacent to the boundary along horizontal and 
vertical mesh lines. Building on this concept， Wu 
and Shu［32-33］ developed an implicit velocity correc⁃
tion-based IBM， also known as the boundary condi⁃
tion-enforced IBM， in which the velocity correction 
（i. e.， the force term） was treated as an unknown 
and was implicitly determined by enforcing the no-

slip condition. This method couples the velocity cor⁃
rections at all Lagrangian points into a matrix sys⁃
tem for computation. Although the boundary condi⁃
tion-enforced IBM accurately enforces the no-slip 
condition and effectively eliminates non-physical 
penetration of streamlines， solving the matrix sys⁃
tem is computationally expensive， as its size de⁃
pends on the number of Lagrangian points.

To mitigate the computational burden of solv⁃
ing the matrix system， Dash et al.［34-35］ proposed a 
flexible forcing IBM that merges the concepts of im ⁃
plicit velocity correction［32-33］ and multi-direct forc⁃
ing［27-28］. This approach introduces a sub-iteration up⁃
date scheme with a convergence criterion to satisfy 
the no-slip condition. Based on the Taylor series 
analysis， Zhao et al.［36］ developed an explicit version 
of the boundary condition-enforced IBM， improving 
efficiency by avoiding time-consuming matrix opera⁃
tions. These two improved schemes are indeed ap⁃
proximate solutions to the velocity correction matrix 
system. Furthermore， to overcome the limitation of 
the original boundary condition-enforced IBM， 
where the solid body must be immersed in a uniform 
mesh region due to the use of the smooth Dirac del⁃
ta function， Du et al.［37］ introduced the inverse dis⁃
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tance weighting （IDW） interpolation［38-39］ to associ⁃
ate Lagrangian points with surrounding Eulerian 
points. This extension broadens the applicability of 
the boundary condition-enforced IBM to non-uni⁃
form meshes while reducing the required number of 
Lagrangian points. Additionally， Du et al.［40］ devel⁃
oped a virtual body-fitted grid-based IBM， which 
enforced the no-slip condition on a local virtual grid. 
This virtual grid decouples the spacing of Lagrang⁃
ian points from that of the Eulerian mesh， allowing 
for a more flexible distribution of both Lagrangian 
points and Eulerian cells. Due to their simplicity and 
robustness， the boundary condition-enforced 
IBM［32-33］ and its variants［34-37， 40-41］ have been exten⁃
sively used to simulate incompressible flows involv⁃
ing complex geometries and moving boundaries.

In addition to incompressible isothermal flows， 
the applications of the diffuse-interface IBM have 
been extended to thermal and multiphase flows. 
Thermal flow simulations must account for tempera⁃
ture boundary conditions， which typically include 
the isothermal condition and the iso-heat-flux condi⁃
tion. The isothermal condition， like the no-slip con⁃
dition， is a Dirichlet-type condition. Therefore， by 
incorporating a heating term into the energy equa⁃
tion， the isothermal boundary condition can be en⁃
forced in the same manner as in the no-slip condi⁃
tion. This approach has been successfully used by 
Zhang et al.［42］ and Ren et al.［43］ to extend their IBM 
for thermal flows. In contrast， the iso-heat-flux con⁃
dition is a Neumann-type condition that cannot be di⁃
rectly handled by conventional diffuse-interface 
IBMs. To address this， Zhang et al.［42］ converted 
the boundary heat flux into a boundary temperature 
using a difference approximation based on the tem ⁃
perature of an auxiliary layer， while Ren et al.［44］ de⁃
veloped a heat flux correction-based IBM that direct⁃
ly adjusted the temperature field utilizing the offset 
of the boundary temperature derivative. Additional⁃
ly， Wang et al.［45］ introduced two auxiliary layers of 
Lagrangian points， located inside and outside the 
solid body， and used the temperature difference be⁃
tween these layers to approximate the iso-heat-flux 
condition. Moreover， the virtual body-fitted grid-

based method proposed by Du et al.［46］ can easily 

handle the iso-heat-flux condition， as the local virtu⁃
al grid extends in the wall-normal direction. Tem⁃
peratures at virtual layers inside the immersed body 
are corrected using those from virtual layers outside 
the wall following a quadratic distribution， effective⁃
ly satisfying the iso-heat-flux condition. For multi⁃
phase flow simulations， Shao et al.［47］ designed an 
IBM-based method for implementing Neumann 
boundary conditions within the phase-field LBM 
and used it to study contact line dynamics. Wang et 
al.［48］ developed a two-dimensional IBM for fluid-

structure interactions with compressible multiphase 
flows， incorporating large structural deformations. 
Their approach employs a partitioned iterative cou⁃
pling strategy with a feedback penalty IBM. Further⁃
more， Huang et al.［49］ proposed an improved ver⁃
sion of the penalty IBM for simulating multiphase 
flows with nonuniform density and a moving inter⁃
face.

The aforementioned developments of the dif⁃
fuse-interface IBM primarily focus on simulating 
laminar flows at low and moderate Reynolds num ⁃
bers. Turbulent flows at high Reynolds numbers 
pose a significant challenge to the diffuse-interface 
IBM due to the presence of a thin boundary layer. In 
the literature， various strategies have been devel⁃
oped for the sharp-interface approach， where veloci⁃
ty at the interface cell is reconstructed directly using 
wall models［45-55］. In contrast， the smooth interpola⁃
tion function used in the diffuse-interface approach 
to mediate interactions between the immersed 
boundary and the fluid field complicates the integra⁃
tion of wall models. Recently， several studies have 
attempted to address this issue. Based on the direct 
forcing IBM， Shi et al.［56］ integrated the tangential 
momentum equation along the wall-normal direc⁃
tion， linking the force term with the wall shear 
stress obtained from a wall model. This method was 
later incorporated into the boundary condition-en⁃
forced IBM［32-33］ and further refined by Du et al.［57］， 
who improved the tangential force term after integra⁃
tion to enhance computational accuracy. Additional⁃
ly， Ma et al.［58-59］ used the penalty forcing method［60］ 
to enforce the no-slip boundary condition in their 
large eddy simulations， while correcting the subgrid-
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scale viscosity of Eulerian cells near the boundary 
based on a wall model. Yan et al.［61］ employed a 
wall model to obtain a tangential slip velocity as a 
boundary condition， which was then enforced using 
the explicit boundary condition-enforced IBM［36］. 
Despite these advancements， the simulation of tur⁃
bulent flows at high Reynolds numbers using the dif⁃
fuse-interface IBM still requires further improve⁃
ment and exploration. Typically， a wall model is 
used at a reference point near the boundary to com ⁃
pute the wall shear stress. For greater accuracy， this 
reference point should be as close to the boundary as 
possible. However， in the diffuse-interface IBM， 
the reference point must remain outside the interpo⁃
lation range of the smooth function to avoid compu⁃
tational instability. Currently， this contradiction can 
be alleviated by refining the Eulerian mesh， but do⁃
ing so reduces computational efficiency.

The discussion above provides a brief review of 
the development and progress of the diffuse-inter⁃
face IBM. Overall， the diffuse-interface IBM is a 
highly promising method for simulating flows with 
complex geometries and moving boundaries. In the 
following sections， we will present its algorithm 
and applications in detail.

1 Governing Equations 

Unlike conventional body-fitted mesh meth⁃
ods， the diffuse-interface IBM introduces a force 
term into the momentum equation to account for the 
influence of the boundary on the flow field. This sec⁃
tion provides a brief overview of the governing equa⁃
tions for incompressible flows in the diffuse-inter⁃
face IBM.

1. 1 Governing equations for incompressible 
isothermal flows　

For incompressible isothermal flows， the gov⁃
erning equations consist of the continuity equation 
and the momentum equation， expressed as

∇ ⋅ u= 0 (1a)
∂u
∂t

+ u ⋅ ∇u= - 1
ρ

∇p + ν∇2u+ f (1b)

where ρ， p， t， and ν denote the density， pressure， 
time， and kinematic viscosity， respectively； u=

[ u v w ] T represents the velocity vector and f=

[ fx fy fz ]
T
 the force term exerted by the im ⁃

mersed boundary on the fluid.

1. 2 Governing equations for incompressible 
thermal flows　

For incompressible thermal flows， the energy 
equation is included to account for heat transfer ef⁃
fects， incorporating a heat source term to represent 
the influence of a heated immersed boundary. The 
governing equations are given by

∇ ⋅ u= 0 (2a)
∂u
∂t

+ u ⋅ ∇u= - 1
ρ

∇p + ν∇2u+ F b + f (2b)

∂T
∂t

+ u ⋅ ∇T = κ∇2T + q (2c)

where T is the temperature， κ the thermal diffusivi⁃
ty coefficient， and q the heat source term. Addition⁃
ally； F b represents the buoyancy force based on the 
Boussinesq approximation， which is a key external 
force in natural or mixed convection problems. It is 
defined as

F b = [ 0 -gβ ( )T - T ref 0 ]
T

(3)
where g represents the gravitational acceleration， β 
the thermal expansion coefficient， and T ref the refer⁃
ence temperature. Here， the buoyancy force acts on⁃
ly in the y-direction.

1. 3 Governing equations for incompressible 
turbulent flows　

For incompressible turbulent flows， the incom⁃
pressible Reynolds-Averaged Navier-Stokes （RANS） 
equations involving a force term can be expressed as

∇ ⋅ ū= 0 (4a)
∂ū
∂t

+ ū ⋅ ∇ū= - 1
ρ

∇p̄ + ∇ ⋅( ( ν + νt ) ∇ū ) + f (4b)

where the superscript “‒” denotes the Reynolds-Av⁃
eraged variables； and νt represents the eddy viscosi⁃
ty， which can be calculated by turbulence models， 
such as the Spalart-Allmaras （S-A） model［62］ and 
the k-ω shear stress transport （SST） model［63］. Al⁃
ternatively， the large eddy simulation （LES） is an⁃
other widely used approach for simulating turbulent 
flows and has also been combined with IBM in vari⁃
ous studies. The governing equations for the LES 
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are the filtered N-S equations， which take the same 
form as Eq.（4）. In this case， the superscript “ ‒ ” 
represents the filtered variables， and the eddy vis⁃
cosity νt can be determined by the Smagorinsky ed⁃
dy viscosity model［64］.

2 Diffuse⁃Interface Immersed 
Boundary Method 

In the diffuse-interface IBM， the flow field is 
solved on a Cartesian （Eulerian） mesh， while the 
solid boundary is represented by a set of discrete 
（Lagrangian） points immersed in the flow field. 
This section introduces the fundamental principles 
of the diffuse-interface IBM， followed by a focus on 
the boundary condition-enforced diffuse-interface 
IBM and its variants.

2. 1 Basic principles of the diffuse⁃interface 
IBM　

The diffuse-interface IBM evaluates the force 
terms at the Lagrangian points and distributes them 
to the surrounding Eulerian cells. Generally， the 
governing equations incorporating the force term 
can be solved using two different approaches， lead⁃
ing to two classifications of the diffuse-interface 
IBM. One is the discrete forcing approach［3］， which 
used the fractional-step technique， comprising a pre⁃
dictor step and a corrector step， to solve the govern⁃
ing equations. The prediction step solves the govern⁃
ing equations without the force term to obtain an in⁃
termediate flow field on the Eulerian mesh. Several 
solvers can be used for this step， including the pro⁃
jection method［65］ ， the SIMPLE method［66］ ， the 
LBM［32］， and the finite volume-lattice Boltzmann 
flux solver［67］. The corrector step then modifies the 
intermediate flow field by incorporating the force 
term. In this approach， the force term is introduced 
after discretizing the equations. Unlike the discrete 
forcing method， the other method incorporates the 
force term into the governing equations before dis⁃
cretization， which is called the continuous forcing 
approach［3］.

A notable example of the continuous forcing ap⁃

proach is the penalty forcing method， proposed by 
Peskin［7］， which uses Hooke’s law to compute the 
force term

Fm = -k ( Xm - X e
m ) (5)

where Fm is the force at the mth Lagrangian point 
and k a positive spring constant. Xm and X e

m denote 
the actual and equilibrium positions of the mth La⁃
grangian point， respectively. This method is particu⁃
larly suitable for elastic bodies. Goldstein et al.［20］ ex⁃
tended this approach by developing a feedback-forc⁃
ing method for rigid bodies， expressed as

Fm = α∫
0

t

Um( t ′) dt ′+ βUm( t ) (6)

where Um is the velocity at the mth Lagrangian 
point， and α and β are the negative constants. The 
penalty forcing method［7］ can be viewed as a specific 
case of this model. However， both approaches in⁃
volve artificial coefficients， limiting their broader ap⁃
plicability.

A more commonly used approach is the direct 
forcing method， introduced by Uhlmann［23］. This 
method determines the force term based on the dif⁃
ference between the predicted velocity U ∗

m and the 
desired velocity U B

m  at the Lagrangian point， as fol⁃
lows

Fm = U B
m - U ∗

m

Δt
(7)

This method is widely used due to its simplici⁃
ty and the absence of artificial constants.

Besides， Niu et al.［26］ introduced a momentum 
exchange-based method for the LBM， where the 
force term was evaluated based on the density distri⁃
bution function

Fm = ∑
j

e j( )fm,j - fm,i (8)

where f and e are the density distribution function 
and the lattice velocity， respectively； i and j repre⁃
sent the lattice velocity directions which are oppo⁃
site to each other.

As illustrated in Fig.2， the computed force 
term is then distributed to the surrounding Eulerian 
cells using an interpolation function， typically a 
smooth Dirac delta function［17-19］

142



No. 2 YANG Liming, et al. On Advances of Diffuse-Interface Immersed Boundary Method and Its Applications

fn = ∑
m

Fm Δsm D ( )x n - Xm (9)

where Δsm is the area of the mth boundary element；  
x n is the position of the nth Eulerian cell； and 
D ( x n - Xm ) is composed of the one-dimensional 
discrete Dirac delta function， expressed as
D ( )x n - Xm =

1
h3 δ ( )xn - Xm

h
δ ( )yn - Y m

h
δ ( )zn - Zm

h
(10)

where h is the mesh spacing of the Eulerian mesh.

Commonly used discrete delta functions in⁃
clude the 2-point hat function［68］， shown as

δ ( r ) =
ì
í
î

ïï
ïï

1 - || r || r ≤ 1
0 || r > 1

(11)

the 3-point discrete piecewise function［18］， shown as
δ ( r ) =
ì

í

î

ï

ï
ïïï
ï

ï

ï
ïïï
ï

ï

ï

1
3 ( )1 + 1 - 3 || r

2        || r ≤ 0.5

1
6 ( )5 - 3 || r - 1 - 3( )1 - || r

2
0.5 < || r ≤ 1.5

0        || r > 1.5
(12)

the 4-point cosine function［17］， shown as

δ ( r ) =
ì

í

î

ï
ïï
ï

ï
ïï
ï

1
4 ( )1 + cos ( )π || r

2
|| r ≤ 2

0 || r > 2
(13)

and the 4-point discrete piecewise function［19］， 
shown as
δ ( r ) =
ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

1
8 ( )3 - 2 || r + 1 + 4 || r - 4 || r

2     || r ≤ 1

1
8 ( )5 - 2 || r - -7 + 12 || r - 4 || r

2 1 < || r ≤ 2

0     || r > 2
(14)

In addition to the above， Yang et al.［69］ pro⁃
posed a smoothing technique to develop new 
smooth discrete delta functions. These functions， 
with derivatives satisfying a higher-order moment 
condition， effectively suppress non-physical oscilla⁃
tions in moving boundary simulations. However， all 
these smooth discrete delta functions are limited to 
uniform Cartesian meshes. To extend IBM to non-

uniform meshes， Du et al.［37］ introduced inverse dis⁃
tance weight interpolation as an alternative to the 
discrete delta function. Additionally， Vanella et al.［70］ 
used moving least squares reconstruction to estab⁃
lish transfer functions between the Eulerian mesh 
and Lagrangian points.

While the methods discussed above explicitly 
calculate the force term， there also exist implicit 
IBMs， where the force is determined implicitly. For 
example， Taira et al.［65］ proposed a fully implicit 
IBM using the projection method， treating both the 
force term and pressure as a single set of Lagrange 
multipliers in a modified Poisson equation. This 
method enforces both the no-slip condition and in⁃
compressibility constraint simultaneously through a 
projection. Similarly， Goncharuk et al.［66］ developed 
an implicit direct forcing IBM based on the SIM ⁃
PLE algorithm， which couples pressure， velocity， 
and force term corrections while enforcing incom ⁃
pressibility and the no-slip condition.

2. 2 Boundary condition⁃enforced diffuse⁃inter⁃ 
face IBM　

In the conventional diffuse-interface IBM， the 
force term is evaluated locally and explicitly at each 
Lagrangian point. However， this approach fails to 
strictly enforce the no-slip boundary condition， lead⁃
ing to non-physical flow leakage through the im ⁃
mersed boundary. To address this issue， Shu et al.［31］ 
proposed the immersed boundary velocity correction 
method （IBVCM）， which directly corrected the ve⁃
locities at points adjacent to the boundary using lin⁃
ear interpolation. This method is based on the obser⁃
vation that， in a fractional-step technique， adding a 
force term to the momentum equation is equivalent 
to correcting the velocity field. The correction step 
is given by

Fig.2　Influence ranges of Lagrangian points when using the 
smooth Dirac delta function for interpolation
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∂u
∂t

= f (15)

which can be discretized as
ul + 1 = u∗ + Δtf= u∗ + Δu (16)

where the superscript “l+1” represents the next 
time step and “*” the predicted intermediate flow 
variables. Building on the IBVCM［31］， Wang et 
al.［71］ introduced the second-order Lagrange interpo⁃
lation to enhance the accuracy of velocity correction. 
The IBVCM［31］ corrects velocities at Eulerian 
points located on either side of the intersection 
points between mesh lines and the immersed bound⁃
ary. This differs from the conventional diffuse-inter⁃
face IBM and may introduce oscillations near the 
boundary.

Following the concept of velocity correc⁃
tion［31］， Wu and Shu［32］ developed the boundary con⁃
dition-enforced IBM. This method ensures the no-

slip boundary condition by enforcing the velocity at 
Lagrangian points， interpolated from surrounding 
Eulerian cells， to match the boundary velocity， 
shown as

U B
m = ∑

n

u l + 1
n h3 D ( )Xm - x n (17)

Here， a smooth Dirac delta function［17-19］ is used to 
interpolate the velocities from the Eulerian cells to 
the Lagrangian points. Conversely， the velocity cor⁃
rections （equivalent to the force term） for Eulerian 
cells are distributed from the velocity corrections of 
Lagrangian points， following the same procedure as 
in Eq.（9）， i.e.

Δun = ∑
m

ΔU B
m Δsm D ( )x n - Xm (18)

Combining Eqs.（16—18） results in the follow⁃
ing equation

U B
m = ∑

n

u ∗
n h3 D ( )Xm - x n + ∑

n

h3 D ( Xm -

x n )∑
m

ΔU B
m Δsm D ( )x n - Xm (19)

which can be rewritten in a matrix form as
AX= B (20)

where
X= [ ΔU 1 Δs1 ΔU 2 Δs2 ⋯ ΔUM ΔsM ] T

A=
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Here， M and N represent the number of Lagrangian 
points and affected Eulerian cells， respectively. By 
solving Eq.（20） and applying Eq.（16） and 
Eq.（18）， the underlying flow field can be corrected. 
A key advantage of this method is that the term 

“ΔUm Δsm” is treated as an unknown， eliminating 
the need to evaluate the area Δs of the boundary ele⁃
ment. In contrast， the conventional IBM approach⁃
es typically assume an immersed boundary thickness 
of h to calculate the area Δs. Throughout the pro⁃
cess， the boundary condition-enforced IBM does 
not explicitly compute the force term. Instead， it im⁃
plicitly couples the velocity corrections at all La⁃
grangian points， ensuring strict enforcement of the 
no-slip boundary condition and preventing non-phys⁃
ical streamline penetration through the boundary. 
This improvement is demonstrated by the compari⁃
son of streamlines in Fig.3［32］ for flow around a cir⁃
cular cylinder at Re = 40.

Fig.3　Comparison of streamlines obtained by using differ⁃
ent methods for the flow around a circular cylinder at 
Re = 40[32]
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To further improve computational efficiency， 
Zhao et al.［36］ developed an explicit boundary condi⁃
tion-enforced IBM， eliminating time-consuming ma⁃
trix operations. Eq.（20） can be rewritten as

∑
i = 1

M

ami ΔU i Δsi = bm m = 1,2,⋯,M (21)

where
ì
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î

ï
ïï
ï
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ï
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ï

ami = ∑
n = 1

N

h3 D ( )Xm - x n D ( )x n - X i

bm = U B
m - ∑

n = 1

N

u ∗
n h3 D ( )Xm - x n

(22)

Eq.（21） can be further reduced to
∑

i ∈ { }ami ≠ 0

ami ΔU i Δsi = bm (23)

A crucial observation is that only when the nth 
Eulerian cell is influenced by both the mth and ith 
Lagrangian points （i.e.，  Xm - x n ≤ R and 
 x n - X i ≤ R， where R = O ( h ) is the influence 
radius of the interpolation function）， D ( Xm -
x n ) D ( x n - X i ) ≠ 0. Thus， to ensure ami ≠ 0， we 
have
 Xm - X i ≤ Xm - x n + x n - X i ≤ 2R = O ( h )

(24)
When the distance between the mth and ith La⁃

grangian points satisfies the above restriction， apply⁃

ing a Taylor series expansion and conducting an er⁃
ror analysis yield

ΔU i Δsi = ΔUm Δsm + O ( h2 ) (25)
Thus， Eq.（23） can be approximated as

∑
i ∈ { }ami ≠ 0

ami ΔUm Δsm = bm (26)

which implies that the velocity correction at the mth 
Lagrangian point can be efficiently computed by

ΔUm Δsm = bm

∑
i ∈ { }ami ≠ 0

ami

(27)

This explicit approach eliminates computation⁃
ally expensive matrix operations when evaluating ve⁃
locity corrections， significantly improving computa⁃
tional efficiency， particularly in moving boundary 
problems. Zhao et al.［36］ compared computational 
time consumption for different Lagrangian point 
counts in a simulation of flow past a transversely os⁃
cillating circular cylinder. Table 1 summarizes the 
CPU time per time step and IBM’s contribution to 
total computational cost. Clearly， the computational 
cost of the explicit method［36］ grows nearly linearly 
with the number of Lagrangian points， making it 
significantly more efficient than the original bound⁃
ary condition-enforced IBM［32］.

2. 3 Local virtual body⁃fitted grid⁃based 
diffuse⁃interface IBM　

The use of a smooth Dirac delta function for 
transferring boundary effects imposes certain limita⁃
tions. Specifically， the object must be immersed in a 
uniform Eulerian mesh region， and a large number 
of uniformly distributed Lagrangian points are re⁃
quired due to the limited influence range of the Dirac 

delta function. To overcome these constraints， Du 
et al.［40］ developed a local virtual body-fitted grid-

based IBM， which enforced the no-slip boundary 
condition indirectly through a local virtual body-fit⁃
ted grid. Based on the distribution of Lagrangian 
points， a local virtual body-fitted grid can be easily 
generated along the immersed boundary. As illus⁃
trated in Fig.4， this grid consists of two layers of 

Table 1　Comparison of CPU time for different IBMs per time step with varying numbers of Lagrangian points in the 
simulation of flow past a transversely oscillating circular cylinder [36]

Number of Lagrangian points

Original boundary condition⁃enforced IBM

Multi⁃direct forcing IBM

Explicit boundary condition⁃enforced IBM

CPU time/ms
Percentage/%
CPU time/ms
Percentage/%
CPU time/ms
Percentage/%

100
6.98
6.44
1.15
1.12
0.14
0.13

250
42.12
29.28
5.16
4.83
0.35
0.34

500
173.21
63.01
20.64
16.87
0.74
0.72

1 000
745.56
87.98
52.49
34.04
1.37
1.33
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virtual cells located inside and outside the immersed 
body. The Eulerian cells （represented by blue 
squares in Fig.4） covered by the virtual grid are re⁃
sponsible for receiving boundary influence from the 
virtual grid. In this method， the velocity correction 
is performed on the virtual grid. Before applying this 
correction， the predicted velocity field must first be 
interpolated from the underlying Eulerian mesh onto 
the virtual grid. Once the velocity field is corrected 
on the virtual grid， it is then mapped back to the Eu⁃
lerian mesh to update the overall flow field.

For 2D case， the interaction between the un⁃
derlying Eulerian mesh and the virtual grid can be 
handled by using bilinear interpolation， as the virtu⁃
al grid is quadrilateral. However， in 3D case， the in⁃
terpolation procedure requires modifications due to 
the irregular nature of the virtual grid. Specifically， 
the predicted velocity field can still be interpolated 
using a simple trilinear interpolation method， given 
that the Eulerian mesh remains Cartesian. Howev⁃
er， to map the corrected velocity field from the virtu⁃
al grid back to the Eulerian mesh， the IDW interpo⁃
lation［38-39］ is employed to accommodate the irregular 
spatial distribution.

The velocity correction procedure is conducted 
on the virtual body-fitted grid to enforce the no-slip 
boundary condition. Due to the irregularity of the 
virtual grid， the commonly used smooth Dirac delta 
function becomes unsuitable， necessitating the adop⁃
tion of the IDW method［39］. For the mth Lagrangian 
point， its fluid velocity can be interpolated from the 
surrounding virtual grid points， given by
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ï
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ï

U l + 1
m = ∑

k = 1

K

ωmku l + 1
G,k

ωmk = γmk

∑
k = 1

K

γmk

,γmk = ( )R - dmk

Rdmk

2

,R = max ( )dmk

                                 k = 1,2,⋯,K

(28)
where the subscript “G” represents the flow vari⁃
able on the virtual grid； K denotes the number of 
virtual grid points associated with the mth Lagrang⁃
ian point； and dmk the distance between the mth La⁃
grangian point and its kth associated virtual grid 
point， i.e.

dmk = ( )X m - xk
2 + ( )Y m - yk

2
+ ( )Zm - zk

2

(29)
To enforce the no-slip boundary condition， the 

interpolated fluid velocity at the mth Lagrangian 
point must be equal to the boundary velocity， i.e.
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U B
m = U l + 1

m = ∑
n

ωmnu l + 1
G,n = ∑

k

ωmku l + 1
G,k

ωmn =ì
í
î

ωmk dmn ≤ R
0 dmn > R

(30)

Conversely， the velocity correction at the nth 
virtual grid point is distributed from the velocity cor⁃
rections at Lagrangian points as

ΔuG,n = ∑
m

ωmn ΔUm (31)

Then， the velocity at the nth virtual grid point 
is corrected by

u l + 1
G,n = u ∗

G,n + ΔuG,n (32)
Substituting Eqs.（31—32） into Eq.（30）， the 

following formula can be obtained as
U B

m = ∑
n

ωmn u∗
G,n + ∑

n

ωmn∑
m

ωmn ΔUm (33)

which can be rewritten as
AGXG = BG (34)

where

XG = [ ΔU 1 ΔU 2 ⋯ ΔUM ] T

AG =
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Fig.4　Schematic diagram of the virtual body-fitted grid for 
2D case
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By solving the above equation system （Eq.（34）） 
and using Eqs.（31，32）， the velocity field on the vir⁃
tual grid can be corrected. The corrected velocity 
field is then interpolated back onto the underlying 
Eulerian mesh to update the flow field.

The local virtual grid， to some extent， decou⁃
ples the spacing of Lagrangian points from that of 
the Eulerian mesh， enabling a more flexible non-uni⁃
form distribution of Lagrangian points. Compared to 
the original boundary condition-enforced IBM［32-33］， 
this method can accurately enforce the no-slip 
boundary condition with fewer Lagrangian points. 
Furthermore， it allows objects to be immersed in a 

non-uniform Eulerian mesh region， which is particu⁃
larly useful for practical engineering applications. 
Du et al.［40］ tested this method by simulating flow 
around a NACA0012 airfoil at Re = 500 using two 
sets of meshes， as summarized in Table 2. The 
term “Uniform mesh” refers to the airfoil discretized 
using uniformly distributed Lagrangian points and 
immersed in a uniform Eulerian mesh region. In con⁃
trast， “Non-uniform mesh” indicates that the airfoil 
has non-uniformly distributed Lagrangian points and 
is immersed in a non-uniform Eulerian mesh region. 
As shown in Table 1， the non-uniform mesh uses 
fewer Lagrangian points， leading to reduced compu⁃
tational cost. Fig.5 illustrates a NACA0012 airfoil 
immersed in a non-uniform Eulerian mesh region， 
with the obtained pressure distribution matching 
that of the uniform mesh case［40］.

2. 4 Diffuse⁃interface IBM for incompressible 

thermal flows　

Currently， the diffuse-interface IBM has been 
extensively applied for simulating incompressible 
thermal flows， incorporating temperature boundary 
conditions such as isothermal and iso-heat-flux con⁃
ditions. The conventional diffuse-interface IBM can 

easily deal with the isothermal boundary condition 
since it is a Dirichlet-type condition， similar to the 
no-slip boundary condition. For instance， Zhang et 
al.［42］ and Ren et al.［43］ extended their IBM frame⁃
works to simulate thermal flows by introducing a 
heat source term in the energy equation and imple⁃
menting the isothermal boundary condition in the 
same manner as the no-slip condition. In contrast， 

Table 2　Comparison of different meshes for the flow around a NACA0012 airfoil at Re=500[40]

Mesh
Mesh size

Minimum Mesh spacing h
Minimum Lagrangian mesh spacing

Number of Lagrangian points

Uniform mesh
681×301

0.002 5
0.006 36

320

Non⁃uniform mesh
501×301

0.002 5 (near the leading and trailing edges)
0.006 25 (near the leading and trailing edges)

160

Fig.5　Non-uniform mesh and pressure distribution for the flow around a NACA0012 airfoil at Re = 500[40]
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the iso-heat-flux boundary condition， classified as a 
Neumann-type condition， is more challenging to im ⁃
plement， which is the focus of this section. Ren et 
al.［44］ proposed a heat flux correction-based IBM 
that directly adjusted the temperature field by using 
the offset of the given normal temperature derivative 
at the boundary and the predicted value. However， 
the Neumann boundary condition is only approxi⁃
mately satisfied by their heat flux correction proce⁃
dure［73］. Due to its simplicity and efficiency， Suzuki 
et al.［74］ further extended this heat flux correction 
method［44］ to simulate thermal flows with moving 
boundaries. Different from Ren et al.［44］， Hu et al.［75］ 
derived the jump conditions for the temperature de⁃
rivative to enforce the Neumann boundary condi⁃
tion. In their method， the difference between the 
normal derivatives on either side of the interface con⁃
tributes as a heat flux， which is then distributed to 
surrounding Eulerian points to correct the tempera⁃
ture field. In addition， Guo et al.［76］ proposed an al⁃
ternative heat flux correction-based IBM， in which 
the Eulerian point is defined at the center of the cell 
face. This method enforces the heat flux boundary 
condition by correcting the temperature gradient at 
the cell face center.

Some other approaches utilize auxiliary layers 
to enforce the Neumann boundary condition. For in⁃
stance， Zhang et al.［42］ introduced an auxiliary layer 
outside the boundary and approximated the bound⁃
ary temperature from the heat flux using a finite dif⁃
ference scheme. Furthermore， Wang et al.［45］ ex⁃
tended this idea by incorporating two auxiliary lay⁃
ers to approximate the iso-heat-flux condition. They 
also employed a fractional-step technique to solve 
the governing equations （Eq.（2））. For thermal 
flows， both the velocity and temperature fields must 
be corrected to account for the immersed boundary’s 
thermal effects. The temperature correction is ob⁃
tained by solving

∂T
∂t

= q (35)

which can be discretized as
T l + 1 = T ∗ + Δtq = T ∗ + ΔT (36)

To enforce the iso-heat-flux condition， two 
auxiliary layers of Lagrangian points are positioned 

on either side of the solid boundary， as illustrated in 
Fig.6［45］. The constant heat flux at the boundary is 
approximated by

∂T B
m

∂n
= 1

2h
( T O,l + 1

m - T I,l + 1
m ) (37)

where the superscripts “O” and “I” represent the 
outer and inner auxiliary layers， respectively. The 
temperature of the mth Lagrangian point in the auxil⁃
iary layer is interpolated from the temperature of the 
surrounding Eulerian cells， i.e.

T O,l + 1
m = ∑

n

T l + 1
n h3 D ( )X O

m - x n (38a)

T I,l + 1
m = ∑

n

T l + 1
n h3 D ( )X I

m - x n (38b)

According to the work of Wang et al.［45］， only 
the temperature correction on the inner layer is se⁃
lected and subsequently distributed to the Eulerian 
cells inside the inner layer. The corresponding ex⁃
pression is given by

ΔTn =
ì
í
î

ïïïï

ïïïï

∑
m

ΔT I
m Δs I

m D ( )x n - X I
m x n ∈ Ω I

0 x n ∉ Ω I

(39)

where Ω I represents the domain inside the inner lay⁃
er. The combination of Eqs.（36—39） yields

2h
∂T B

m

∂n
- T O,∗

m + T I,∗
m = ∑

n

h3( D ( X O
m - x n ) -

D ( X I
m - x n ) )∑

m

ΔT I
m Δs I

m D ( )x n - X I
m (40)

where
T O,∗

m = ∑
n

T ∗
n h3 D ( )X O

m - x n (41a)

T I,∗
m = ∑

n

T ∗
n h3 D ( )X I

m - x n (41b)

Eq.（40） can be rewritten in a matrix form as
CY= D (42)

where

Fig.6　Illustration of auxiliary layers for iso-heat-flux bound⁃
ary condition[45]
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By solving the above equation system （Eq.（42）） 
and utilizing Eq.（39）， the temperature corrections 
for the Eulerian cells inside the inner layer are deter⁃
mined， allowing the temperature field to be updated 
using Eq.（36）. This method effectively simulates 
thermal flows with the Neumann boundary condi⁃
tion.

An important characteristic of the above meth⁃
od［45］ is its biased distribution of the heat source 
term. Du et al.［46］ incorporated this concept into 
their virtual body-fitted grid-based IBM for simulat⁃
ing thermal flows with the Neumann boundary con⁃
dition. Utilizing the local virtual body-fitted grid， 
they adopted a simpler and more direct approach us⁃
ing quadratic function fitting. As shown in Fig.7［46］， 
layers 1 and 2 lie inside the immersed body， while 
layer 3 represents the immersed boundary. The tem⁃
peratures in these layers are treated as unknowns， 
whereas the temperatures in layers 4 and 5， located 
outside the immersed body， are considered known. 
The normal spacing between these virtual layers is 
Δη. Assuming a quadratic temperature distribution 
along the normal direction of the wall

T ( η ) = aη2 + bη + c (43)

where η represents the normal position relative to 
the boundary. Given the heat flux at the boundary 
∂T B

∂n
， we obtain

|

|
|
||
|dT

dη
η = 0

= b = ∂T B

∂n
(44)

Substituting the temperatures of layers 4 and 5 
into Eq.（43） results in

T 4 = a ( Δη )
2
+ bΔη + c (45a)

T 5 = 4a ( Δη )
2
+ 2bΔη + c (45b)

Solving Eqs.（44， 45） yields
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a = 1
3( )Δη

2 ( )T 5 - T 4 - Δη
∂T B

∂n

b = ∂T B

∂n

c = 1
3 ( )4T 4 - T 5 - 2Δη

∂T B

∂n

(46)

Consequently， the temperatures at layers 1， 2， 
and 3 can be calculated by

T 1 = 4a ( Δη )
2
- 2bΔη + c (47a)

T 2 = a ( Δη )
2
- bΔη + c (47b)

T 3 = c (47c)
Finally， the temperatures of the Eulerian cells 

（blue squares in Fig.7） covered by the virtual grid 
inside the boundary are corrected using the tempera⁃
tures at layers 1， 2， and 3.

The forced convection over a stationary cylin⁃
der is a benchmark case widely studied in the litera⁃
ture. In this simulation， the circular cylinder trans⁃
fers heat outward under a non-dimensional heat flux 

condition ∂T
∂n

=-1. Wang et al.［45］， Suzuki et al.［74］， 

Guo et al.［76］， and Du et al.［46］ all simulated this case 

Fig.7　Illustration of the virtual body-fitted grid for iso-heat-
flux boundary condition[46]
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using their respective thermal IBMs. Fig.8 presents 
the distribution of the local Nusselt number Nu 
along the cylinder surface［46］. The results indicate a 
gradual decrease in the local Nusselt number from 
the leading edge （0°） to the trailing edge （180°）. 
The agreement between results obtained from differ⁃
ent IBMs［45-46， 74］ demonstrates consistency and reli⁃
ability. Fig.9 displays isothermal contours for differ⁃
ent Reynolds numbers， including the results from 

Guo et al.［76］ and Du et al.［46］. As the Reynolds num ⁃
ber increases， enhanced convection lowers the tem ⁃
perature around the cylinder， further validating the 
accuracy of these methods.

2. 5 Diffuse⁃interface IBM for incompressible 
turbulent flows　

Simulating turbulent flows at high Reynolds 
numbers has long been a challenge for the diffuse-in⁃
terface IBM. These flows exhibit thin boundary lay⁃
ers with steep velocity gradients， necessitating high 
mesh resolution. However， in IBM， refining the 
Cartesian mesh exclusively in the normal direction 
of a curved wall is not feasible. To mitigate this is⁃
sue， wall models［77-80］ have been widely adopted， re⁃
ducing the need for excessive mesh refinement. In 
the literature， numerous approaches have integrated 
wall models with the sharp-interface IBM［50-55］ for 
high-Reynolds-number turbulence simulations， le⁃
veraging its straightforward velocity reconstruction 
at interface nodes. However， this comes at the cost 
of a complex and labor-intensive mesh identification 
process. In contrast， the diffuse-interface IBM elimi⁃
nates the need for mesh cell identification but intro⁃
duces additional complexity due to the smooth inter⁃
polation function governing flow field interactions 
with the boundary， complicating the integration of 
wall models. To address this， recent methods［57， 61］ 
based on boundary condition-enforced IBM have 
been developed.

Shi et al.［56］ linked the tangential force term to 
the wall shear stress by integrating the momentum 
equation in the wall-normal direction. Building on 
this， Du et al.［57］ incorporated this approach into 
boundary condition-enforced IBM［32-33］， simplifying 
the tangential force term to

Fτ ≈ τw

ΔP
- τP

ΔP
(48)

where τw is the wall shear stress and τP the shear 
stress at the point P. Unlike Shi et al.［56］， who re⁃
tained only the first term on the right-hand side of 
Eq.（48）， Du et al.［57］ refined the formulation. 
Here， the subscript “τ” represents the tangential di⁃
rection of the wall. The integral length ΔP and the 
shear stress τP are determined using Reichardt’s law 

Fig.8　Local Nusselt number along the cylinder surface for 
the forced convection over an iso-heat-flux circular 
cylinder[46]

Isotherms: results of Du et al.[46]

Black diamond: results of Guo et al.[76]

Fig.9　Comparison of isotherms for the forced convection 
over an iso-heat-flux circular cylinder at Re = 10, 
20, and 40
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and Spalding’s formula［81］.
To incorporate wall models， Du et al.［57］ intro⁃

duced two auxiliary layers outside the wall， consist⁃
ing of a series of Lagrangian points： The reference 
layer and the enforced layer. As shown in Fig.10， 
the wall model is used at the reference layer （point 
F） to calculate the wall shear stress τw， while the 
boundary condition is enforced at the enforced layer 
（point Q）［57］. The vector B in Eq.（20） can be de⁃
composed in the local orthogonal coordinate system 
as

B= B τeτ + B nen (49)
where

B τ = ΔtF τ = é

ë
ê
êê
êΔt ( τw

ΔP
- τP

ΔP ) ùûúúúúM × 1

(50a)

B n = ΔtF n = [ ]V̄ B - V̄ ∗
M × 1

(50b)
where the subscript “n” represents the normal direc⁃
tion of the wall， and “V̄” the normal velocity com ⁃
ponent. The unit vectors e τ and en correspond to the 
tangential and normal directions， respectively. The 
normal velocity at the enforced layer is reconstruct⁃
ed using a parabolic distribution

V̄ B
Q = Δ 2

Q

Δ 2
F

V̄ F (51)

where ΔF and ΔQ are the distances from points F and 
Q to the wall， respectively. The components B τ and 
B n are then transformed back into vector B in Eq.（20）， 
ensuring that the wall shear stress is enforced within 
the boundary condition-enforced IBM frame⁃
work［32-33］. Du et al.［57］ used this wall model-based 
diffuse-interface IBM to perform the RANS simula⁃
tions of high Reynolds number turbulent flows， in⁃
cluding the flow around NACA23012 airfoil at 
Re = 1.88×106. Fig.11 shows the computed pres⁃
sure coefficient Cp and skin friction coefficient Cf dis⁃
tributions， compared against reference results from 
a body-fitted method［57］. The developed IBM dem ⁃
onstrates good agreement with the reference data， 
except near the leading edge， where slight discrep⁃
ancies appear due to the thinner boundary layer. 
This thinning may cause the auxiliary layer to extend 
beyond the boundary layer， leading to deviations.

In addition， Shi et al.［82］ and Yan et al.［61］ incor⁃
porated a non-equilibrium wall model， utilizing the 

velocity at the reference layer to establish a tangen⁃
tial slip velocity at the Lagrangian point

Ū B
W = Ū F - ΔF

|

|
|
||
|∂Ū

∂n ΔF

(52)

where “Ū” denotes the tangential velocity compo⁃
nent. The normal gradient of tangential velocity 

|

|
|
||
|∂Ū

∂n ΔF

 is determined by integrating the turbulent 

boundary layer （TBL） equation
|

|
|
||
|∂Ū

∂n ΔF

= τw + SΔF

ρ ( )ν + νt

(53)

where the term S is simplified to the pressure gradi⁃

Fig.10　Illustration of the local orthogonal coordinate sys⁃
tem and auxiliary layers[57]

Fig.11　Distributions of pressure coefficient Cp and skin fric⁃
tion coefficient Cf along the surface of the NA ⁃
CA23012 airfoil at Re = 1.88×106 [57]
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ent term only. Yan et al.［61］ enforced the tangential 
slip velocity and the normal non-penetration condi⁃
tion at the boundary using an explicit boundary con⁃
dition-enforced IBM［36］. Leveraging the LES， they 
used their wall-modeling diffuse-interface IBM to 
simulate turbulent flow past a circular cylinder at 
Re = 3 900. Fig.12 compares the mean velocity pro⁃
files at three locations in the cylinder wake［61，83⁃84］， 
where U0 is the free⁃stream velocity. The results 
show a transformation from a U-shaped to a V-

shaped mean streamwise velocity profile， while the 
mean spanwise velocity exhibits an asymmetric pat⁃
tern. These observations are consistent with previ⁃
ous studies［83-84］. Fig.13 depicts the 3D wake struc⁃
tures identified using the Q⁃criterion， capturing key 

flow features such as separation， free shear layer 
transition， vortex shedding， and the multiscale na⁃
ture of wake dynamics［61］.

It is important to note that an auxiliary layer 
outside the wall is crucial for computing wall shear 
stress using wall models. Various wall models are 
available for turbulent flow simulations， including 
wall functions （logarithmic and power laws［80］） and 
the wall stress model （also known as the two-layer 
model）［77， 79， 85］. Once an appropriate wall model is 
selected， determining the location of the reference 
layer becomes essential， as it directly impacts the 
accuracy of the computed wall shear stress. The ref⁃
erence layer must be positioned sufficiently close to 
the wall to capture boundary layer effects while re⁃
maining outside the boundary influence region to 
maintain numerical stability. Currently， its place⁃
ment is typically determined artificially. For exam ⁃
ple， Ma et al.［58］ and Yan et al.［61］ both set ΔF = 3h 
in their simulations.

3 Some Applications 

This section presents several applications of 
the diffuse-interface IBM in simulating complex 
moving boundary problems， showcasing its excep⁃
tional performance.

3. 1 Case 1： Flow around a flapping dragonfly　

The first application primarily demonstrates the 
advantages of IBM in handling complex moving 
boundary problems. Simulating the flow around flap⁃
ping insects presents significant challenges for con⁃
ventional body-fitted mesh methods due to the intri⁃
cate interactions between the wings and the body. 
The dynamic motion of the wings makes generating 
body-fitted meshes particularly difficult. However， 
the diffuse-interface IBM effectively addresses this 
issue by utilizing a fixed Cartesian mesh. Wu and 

Fig.13　Instantaneous Q-isosurface of wake flows for the 
flow past a circular cylinder at Re = 3 900[61]

Red circles: results of Yan et al.[61]

Solid green line: results of Kravchenko et al.[83]

Solid blue line: results of Parnaudeau et al.[84]

Fig.12　 Comparison of the mean velocity profiles at three 
locations in the wake of a circular cylinder at Re = 
3 900
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Shu［86］ and Yang et al.［87］ employed the boundary 
condition-enforced IBM to simulate the flow around 
a flapping dragonfly. They used a simplified dragon⁃
fly model consisting of a stationary body and two 
pairs of wings （forewings and hindwings）， as illus⁃
trated in Fig.14［87］. In their simulation， the wings 
undergo sinusoidal pitching-rolling motions， and the 
Reynolds number is set to 500， based on the span 
length of the forewing.

Fig.15 presents the 3D vortical structures sur⁃
rounding the flapping dragonfly at different stages of 
motion［86］ . At Stages A and B， the wings reach 
their extreme pitching positions and balanced rolling 
positions， generating dominant tip and wake vorti⁃
ces. At Stages C and D， the wings are at their bal⁃
anced pitching positions and extreme rolling posi⁃
tions， where detached leading-edge vortices become 
visible on the wing surface. The strength of these 
vortices increases closer to the wingtip. The evolu⁃
tion of force coefficients in the x‑， y‑， and 
z‑directions for the forewings is displayed in Fig.16. 
The figure plots the force coefficients for an individ⁃

ual forewing as well as the combined force coeffi⁃
cients for both wings. Due to the dragonfly’s sym⁃
metry about the y = 0 plane， the force coefficients 
in the x‑ and z‑directions are identical for both fore⁃
wings， while those in the y‑direction are opposite. 
This numerical example highlights the capability of 
the diffuse-interface IBM in accurately capturing the 
complex flow structures around flapping-wing in⁃

Fig.14　Illustration of a simplified dragonfly model[87]

Fig.15　3D vortical structures for the flow around a flapping 
dragonfly at different stages[86]

 Results from Wu and Shu [86]: triangles for forewing 1, squares 
for forewing 2, and circles for both forewings combined; 
 Results from Yang et al. [87]: solid red line for forewing 1, 
green dashed line for forewing 2, and blue dashed-dotted line 
for both forewings combined
Fig.16　Force coefficients for the forewings in the flow 

around a flapping dragonfly
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sects， demonstrating its potential for simulating bio-

inspired aerodynamics.

3. 2 Case 2： Freely falling disk　

The second application highlights the advantag⁃
es of IBM in addressing fluid⁃structure interaction 
（FSI） problems. The freely falling disk problem is a 
classic FSI case characterized by complex dynamic 
behavior. Wang et al.［88］ incorporated the boundary 
condition-enforced IBM［33］ into a moving Cartesian 
frame to effectively simulate the 3D motion of a free⁃
ly falling disk in an unbounded domain. The moving 
Cartesian mesh is assigned the same translational ve⁃
locity as the falling disk， allowing the method to 
handle freely moving objects in an infinite domain. 
Additionally， IBM eliminates the need for the te⁃
dious re-meshing process required in conventional 
arbitrary Lagrangian-Eulerian （ALE） approaches.

Wang et al.［88］ studied the fluttering motion of a 
disk with an aspect ratio Ar = 1/4， initially re⁃
leased with a tilt angle of 0.2 rad， as illustrated in 
Fig.17（a）. Here， Ar represents the ratio of the disk 
thickness to its diameter. The Reynolds number is 
set to 240， which is defined based on the disk diame⁃
ter and its average terminal falling velocity. This 
motion is essentially 2D and can be quantitatively 
characterized by four properties： The Strouhal num⁃
ber （St）， maximum lateral displacement （Δx）， 
maximum inclination angle （θmax）， and the phase dif⁃
ference （Δψ） between the x‑velocity and the inclina⁃
tion angle. Fig.17（b） further illustrates the instanta⁃
neous vortex structures， revealing a series of sym ⁃
metric hairpin vortices shed into the wake as the 
disk oscillates from side to side. Table 3 presents a 
comparison of these properties with experimental da⁃
ta［89］ and previous numerical solutions［90］， demon⁃
strating the strong agreement between the results of 
Wang et al.［88］ and experimental observations. Addi⁃
tionally， Wang et al.［88］ examined different falling 
modes of a disk with Ar = 0， which was theoreti⁃
cally regarded as a flat cylinder with zero thickness. 
Two representative falling modes and their corre⁃
sponding instantaneous vortex structures are shown 
in Fig.18［88］， including tumbling and spiral motions. 
The left figures show sequences of 3D positions and 
orientations， while the right figures depict 3D vor⁃

tex structures. These numerical experiments high⁃
light the superior performance of the diffuse-inter⁃
face IBM in handling complex FSI problems.

Fig.18　Two motion modes of a freely falling disk with 
Ar = 0 [88]

Table 3 Comparison of four properties for a freely fall⁃
ing disk with Ar = 1/4 

Properties
Fernandes et al.[89] (Exp.)

Shenoy and Kleinstreuer[90]

Wang et al.[88]

St

0.122
0.171
0.133

Δx

0.15
0.159
0.154

θmax/(°)
22.72
27.51
24.69

Δψ/(°)

195.3
-

191.8

Fig.17　Motion of a freely falling disk with Ar =1/4 at 
Re =240[88]
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3. 3 Case 3： Self⁃propulsion of flapping wing　

The final application demonstrates the use of 
IBM in more practical engineering problems. Flap⁃
ping-wing-based propulsion is widely observed in na⁃
ture， exemplified by the swimming of fish and the 
flight of birds. To gain deeper insights into the self-
propulsion mechanism of flapping wings， Lin et al.
［91］ numerically investigated the hydrodynamic be⁃
havior of an unconstrained flapping foil using the 
boundary condition-enforced IBM［33］. Their simula⁃
tions employed a simplified pitching foil model， as 
illustrated in Fig. 19［91］. Here， c and b denote the 
chord length and thickness of the foil， respectively. 
The foil undergoes a pitching motion θ ( t ) =
θm sin ( 2πft ) with its pivot fixed at x/c = 0.05， 
where f and θm represent the pitching frequency and 
amplitude. The Reynolds number， defined based on 
the chord length， is set to 200.

In their simulations， the unconstrained pitching 
foil achieves self-propulsion in the longitudinal direc⁃
tion while passively oscillating laterally. During this 
self-propelled motion， the pivot point moves down⁃
ward as the foil pitches upward， and vice versa. 
Consequently， the leading-edge vortex （LEV） ro⁃
tates in the same direction as the trailing-edge vor⁃
tex （TEV）， as clearly observed in Fig.20［91］， 
which depicts the instantaneous vorticity contours. 
Lin et al.［91］ analyzed the effects of various parame⁃
ters on the self-propulsion of the pitching foil， in⁃
cluding the pitching frequency f， pitching amplitude 
θm， mass ratio m̄ = m/m f （where m f is the fluid 
mass with the equivalent area of the foil）， and thick⁃
ness-to-chord ratio b/c. Fig.21 indicates that the 
mean longitudinal speed ūx of the pitching foil 
increases significantly with higher pitching ampli⁃

Fig.20　 Instantaneous vorticity contours for the pitching 
foil[91]

Fig.21　Variation of the mean longitudinal speed ūx with dif⁃
ferent parameters[91]

Fig.19　Schematic diagram of a simplified pitching foil 
model[91]
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tudes θm， higher pitching frequencies f， or larger 
mass ratios m̄［91］. However， an increase in the thick⁃
ness-to-chord ratio b/c results in a reduction in the 
longitudinal speed ūx.

Similar to the freely falling disk problem， simu⁃
lating the self-propulsion of a flapping wing poses 
significant challenges for conventional body-fitted 
methods due to the necessity of continuous re-mesh⁃
ing. By employing the diffuse-interface IBM， Lin et 
al.［91］ successfully simulated the self-propelled flap⁃
ping foil and investigated its hydrodynamic behav⁃
ior， demonstrating the excellent capability of diffuse-

interface IBM in handling complex moving bound⁃
ary problems.

4 Conclusions and Outlook 

The diffuse-interface IBM has gained signifi⁃
cant popularity over the past decades due to its ex⁃
ceptional capability in simulating flows around com ⁃
plex geometries and moving boundaries， demon⁃
strating its broad applicability across various fields， 
including aerospace， marine engineering， and bio⁃
logical flow studies. A key advantage of this method 
is its simplicity， making it easy to understand， im⁃
plement， and seamlessly integrate into various flow 
solvers to address diverse flow problems. Over 
years of development， numerous variants have 
emerged， extending their applicability from isother⁃
mal to thermal flows and from laminar to turbulent 
flows. Moreover， the method effectively handles 
both Dirichlet and Neumann boundary conditions. 
This paper presents several variants of the diffuse-in⁃
terface IBM and showcases selected applications， 
with a particular focus on the contributions of the au⁃
thors’ group.

Despite its advantages， a primary limitation of 
the diffuse-interface IBM arises in high Reynolds 
number flows， where a thin boundary layer forms. 
Since Cartesian meshes cannot be refined in the 
wall-normal direction for curved immersed boundar⁃
ies， accurately resolving the near-wall region re⁃
mains a challenge. The incorporation of wall models 
offers a promising strategy to mitigate this issue. 
However， the smooth interpolation function used to 

couple the flow field with the boundary complicates 
the implementation of these models. Research in 
this area remains relatively limited， highlighting the 
need for further investigation.
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扩散界面浸入边界法及其应用进展

杨鲤铭 1， 舒 昌 1，2， 杜银杰 1， 吴 杰 1， 王 岩 1

（1.南京航空航天大学航空学院, 南京  210016, 中国； 2.新加坡国立大学机械工程系, 新加坡  117576, 新加坡）

摘要：扩散界面浸入边界法（Immersed boundary method， IBM）在模拟复杂几何外形与运动边界的流动问题中已

展现出卓越的数值性能。该方法在固定的笛卡尔网格上求解流场，同时将固体边界离散为一系列浸入于流场中

的拉格朗日点。边界条件通过在动量方程中引入力项予以实现，浸入边界与流体域之间的耦合则通过插值过程

完成。近年来，扩散界面 IBM 受到了广泛关注，并发展出多种变体，已成功应用于从等温流到热流、从层流到湍

流以及从复杂几何外形绕流到流固耦合等多类问题的模拟中。本文首先简要介绍扩散界面 IBM 的基本原理，随

后重点回顾作者团队近年来在该领域的研究进展，最后通过若干复杂动边界问题的应用实例展示该方法优异的

数值模拟能力与广泛的适用性。

关键词：浸入边界法；扩散界面；动边界；不可压缩流；湍流
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