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Abstract: Existing icing detection technologies face challenges when applied to small and medium-sized aircraft， 
especially electric vertical take-off and landing （eVTOL） aircraft that meet the needs of low-altitude economic 
development. This study proposes a data-driven icing detection method based on rotor performance evolution. 
Through dry-air baseline tests and dynamic icing comparative experiments （wind speed 0—30 m/s， rotational speed 
0—3 000 r/min， collective pitch 0°—8° ） of a 0.6 m rotor in the FL-61 icing wind tunnel， a multi-source 
heterogeneous dataset containing motion parameters， aerodynamic parameters， and icing state identifiers is 
constructed. An innovative signal processing architecture combining adaptive Kalman filtering and moving average 
cascading is adopted. And a comparative study is conducted on the performance of support vector machine （SVM）， 
multilayer perceptron （MLP）， and random forest （RF） algorithms， achieving real-time identification of icing states in 
rotating components. Experimental results demonstrate that the method exhibits a minimum detection latency of 6.9 s 
and 96% overall accuracy in reserved test cases， featuring low-latency and low false-alarm， providing a sensor-free 
lightweight solution for light/vertical takeoff and landing aircraft.
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0 Introduction 

During flight， ice accretion on aircraft surfaces 
poses a significant threat to aviation safety. This is 
particularly critical to aircraft operating in cold re‑
gions. Ice formation on rotor blades or wing surfaces 
can lead to performance degradation， efficiency re‑
duction， and even system failures. The accumulated 
ice increases the aircraft’s weight and alters its aero‑
dynamic characteristics， resulting in reduced lift， in‑
creased drag， and compromised flight stability and 
controllability. Furthermore， ice accretion may dam ‑
age critical components and create potential risks to 
ground facilities and personnel. Airworthiness regu‑
lations stipulate that aircraft should either promptly 
exit the icing conditions or activate their anti-icing 

and de-icing systems （IPS） based on their environ‑
mental suitability when encountering such condi‑
tions［1］. Consequently， developing efficient and reli‑
able ice detection methodologies constitutes a cru‑
cial aspect of aviation safety assurance. The timely 
and accurate detection of aircraft icing status holds 
paramount importance for ensuring flight safety.

In recent years， significant progress has been 
made in aircraft icing detection research［2］ compared 
to traditional visual observation， obstruction， and 
radiation methods［3］. For instance， the fiber-optic 
ice sensor［4-5］， and the ultrasonic pulse-echo technol‑
ogy-based ice sensor［6-7］ have demonstrated excel‑
lent ice detection performance. Most of these stud‑
ies focus on improving existing hardware systems 
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for ice detection. Since light aircraft and unmanned 
aerial vehicles （UAVs） face challenges in installing 
complex anti-icing/de-icing systems due to weight 
restrictions and cost considerations， simplifying de‑
tection devices and enhancing their practicality have 
become particularly crucial［8-9］. An increasing num ‑
ber of studies are exploring data-driven ice detection 
systems based on variations in flight performance.

Wind turbine blades share operational similari‑
ties with rotating aircraft components， offering valu‑
able reference insights for icing detection research. 
Cheng［10］ and Wang［11］ proposed ice detection frame‑
works based on vibration signal spectral analysis and 
multi-source data fusion， respectively. Their mod‑
els demonstrated superior robustness in low-temper‑
ature， high-humidity environments. Ye et al.［12］ ad‑
vanced the methodology by employing machine 
learning algorithms to process multidimensional sen‑
sor data from turbines， achieving simultaneous de‑
tection of ice thickness and spatial distribution. Nota‑
bly， Kreutz et al.［13］ developed a non-contact solu‑
tion through RGB image analysis combined with 
convolutional neural network （CNN） for rotating 
blade icing detection， though such vision-based ap‑
proaches exhibited applicability constraints in high-

speed aircraft motion scenarios due to motion blur 
and dynamic resolution limitations.

In aircraft icing prediction， Yi et al.［14］ devel‑
oped a deep neural network-based model for ice 
shape prediction， establishing an end-to-end map‑
ping between ice geometry features and flight param ‑
eters. Qu et al.［15］ further proposed a generalized ic‑
ing prediction framework applicable to arbitrary air‑
foils， achieving prediction errors within 5% by in‑
corporating critical parameters such as boundary lay‑
er separation point location. Wang et al.［16］ intro‑
duced a neural network-based intelligent method for 
flight risk prediction under icing conditions， demon‑
strating acceleration approaching three orders of 
magnitude compared to computational flight dynam ‑
ics （CFD）. Through systematic literature analysis， 
Yu et al.［17］ concluded that current icing prediction 
technologies still face challenges in achieving high-

precision real-time dynamic forecasting. They em‑
phasized the substantial potential of data-driven ap‑

proaches， advocating the integration of real-time 
monitoring data to develop more refined and person‑
alized data-driven models.

Notably， practical aviation applications often 
prioritize rapid identification of critical aerodynamic 
parameters over full geometric reconstruction of ice 
shapes， offering a streamlined implementation path‑
way for engineering solutions.

For instance， Mckillip［18］ proposed an indirect 
ice detection method by measuring changes in air‑
craft performance-related parameters. Deiler et al.［19］ 
developed a novel robust ice detection method for 
early detection of ice-related performance degrada‑
tion through flight data analysis of commercial air‑
craft， and their experimental validation demonstrat‑
ed its significant potential in providing pilots with 
aircraft icing status. The methodology proposed by 
Caliskan et al.［20］ integrated neural networks （NN） 
with the extended Kalman filter （EKF）， achieving 
precise identification of icing conditions across vari‑
ous flight phases through analysis of simulated flight 
datasets from F-16 and A340 aircraft. This hybrid 
algorithm significantly enhances icing detection accu‑
racy while substantially reducing system complexi‑
ty， demonstrating particular suitability for aircraft 
platforms not equipped with conventional anti-icing/
de-icing systems. The optimization-based approach 
leveraging existing system functionalities validates 
the technical feasibility of establishing an efficient 
detection framework without requiring additional 
hardware installations. However， it should be noted 
that the 48 000 training/validation/test datasets em ‑
ployed in the study were entirely generated through 
numerical simulations. Although the sheer volume 
of data and high-dimensional parameter characteris‑
tics ensure model reliability， they may potentially 
constrain its application potential in rapid-iteration， 
cost-sensitive engineering scenarios. Yue et al.［21］ 
implemented long short-term memory （LSTM） 
neural networks for ice severity detection， which 
demonstrated that prolonged post-icing observation 
duration correlated with reduced prediction error in 
ice severity classification. Their findings indicated 
that at a 7 s detection window， over 90% of datas‑
ets exhibited detection error rates below 2%. As the 
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study primarily focused on ice severity assessment 
through data， with model accuracy as the sole evalu‑
ation metric， critical operational factors such as ic‑
ing detection latency were not addressed in the 
methodology.

This paper proposes a novel aircraft icing detec‑
tion methodology based on rotating component per‑
formance variation. This research establishes an ice 
identification framework through rotor aerodynamic 
characteristic evolution analysis. Its pivotal break‑
through lies in eliminating the stringent weight/
space requirements imposed by traditional physical 
ice detectors and the dependence on massive datas‑
ets inherent to existing data-driven approaches. A 
dedicated rotor test rig is constructed in an icing 
wind tunnel to systematically acquire dynamic per‑
formance data under both dry-air and ice-accretion 
conditions. A lightweight machine learning algo‑
rithm specifically optimized for small-sample scenar‑
ios is employed for modeling analysis. Repeated val‑
idation trials and partitioned test dataset evaluations 
demonstrate that this approach hocds detection accu‑
racy while substantially reducing data requirements. 
This characteristic renders the method particularly 
suitable for conceptual verification phases of novel 
aircraft configurations， and engineering develop‑
ment scenarios under resource-constrained environ‑
ments typical of small-medium enterprises. The 
methodology achieves an improved equilibrium be‑
tween cost-effectiveness and engineering applicabili‑
ty， providing a novel technical pathway to enhance 
operational safety for light aircraft and unmanned 
aerial systems.

1 Experimental Setup 

1. 1 Wind tunnel description　

The tests are carried out in the FL-61 icing 
wind tunnel of Aerodynamic Research Institute， 
Aviation Industry Corporation of China. As shown 
in Fig.1［22］， the FL-61 facility is a closed loop cir‑
cuit refrigerated wind tunnel with a test section size 
of 0.6 m×0.6 m×2.7 m， driven by a 5 200 kW 
main compressor and a 2 500 kW auxiliary compres‑
sor. This facility could simulate the altitude effect 

on ice accretion up to 7 000 m. The maximum wind 
speed achievable in the test section is up to 240 m/
s. Airflow refrigeration is obtained via a heat ex‑
changer located upstream of the third corner. The 
minimum temperature achievable is -40 ℃. The ac‑
curacy is ±2 ℃ when the temperature is below 
-30 ℃ and ±0.5 ℃ when it ranges from -30 ℃ to 
5 ℃. The cloud uniformity of the test section is with‑
in ±20%. The tunnel is equipped with a thermo‑
electric de-icing supply and hot-air de-icing system 
supply， which makes it suitable for ice protection 
system tests［23-24］.

The cloud control accuracy and uniformity of 
the FL-61 icing wind tunnel are calibrated and test‑
ed in accordance with SAE ARP 5905［25］. Its spray 
system can create cloud conditions that meet the me‑
dian volume diameter （MVD） and liquid water con‑
tent （LWC） requirements specified in Appendix C 
of FAR Part 25［1］. Specifically， located at the stable 
section of the FL-61 wind tunnel， the spray system 
is positioned approximately 8 m away from the test 
section. It has been determined that the droplets gen‑
erated by this system and conveyed to the test sec‑
tion are present in a supercooled condition.

The wind tunnel is equipped with multiple test 
sections. To accommodate the spatial requirements 
for rotating component icing experiments， this 
study selects the open test section. Specifically， the 
original 0.6 m×0.6 m×2.7 m test section is extract‑
ed from the plenum chamber of the wind tunnel 
while retaining its corresponding nozzle and second 
throat. A support structure for the test article is in‑
stalled at the original test section location.

According to flow-field calibration tests of the 
FL-61 icing wind tunnel， under conditions of Ma < 
0.25 and the standard atmospheric pressure， the 
core flow velocity uniformity region in the open test 
section covers a wide range. The Mach number fluc‑
tuation within the stream-wise model zone （from 

Fig.1　FL-61 icing wind tunnel[22]
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100 mm to 1 350 mm downstream of the nozzle ex‑
it） remains within ±0.002， satisfying experimental 
requirements. Following the methodology estab‑
lished by Xu et al.［26］， the maximum dimensions and 
motion range of the test model are constrained to en‑
sure stable and reliable experimental conditions 
while maintaining operational safety.

1. 2 Rotor test rig of 0. 6 m　

The rotor test rig comprises a spindle tilting 
system， spindle power/force measurement system， 
spindle transmission system， and rotor control sys‑
tem （Fig.2）. The spindle tilting system employs a 
motor-driven reducer and worm gear mechanism to 
adjust the rotor spindle’s inclination angle. Mounted 
on the fixed end of a six-component balance serving 
as the structural support， this system interfaces with 
the balance as a critical load-bearing boundary. The 
spindle power/force measurement system integrates 
a spindle motor， a torque sensor， and a tachometer. 
The spindle transmission system consists of a drive 
shaft， bearing housing， and slip rings， installed on 
the floating end of the six-component balance via 
torque-balance diaphragm couplings. This assembly 
supports the combined weight and lift of the rotor 
hub， blades， and control system. The rotor control 
system features a swash-plate assembly， pitch push-

rod components， and two synchronized electric cyl‑
inders for collective pitch adjustment.

The rig accommodates a 0.6 m diameter rotor 
（expandable to 1.2 m） with an adjustable collective 
pitch which is designed primarily for icing wind tun‑
nel testing. A rigid hub with an internally integrated 
pitch adjustment mechanism enhances operational 
reliability in icing conditions while maintaining 

strong scalability in rotating component configura‑
tions. All subsystems incorporate protective designs 
for sustained low-temperature/high-humidity opera‑
tion， with critical areas receiving specialized sealing 
to prevent meltwater infiltration during anti/de-icing 
tests.

Key design specifications： （1）Aerodynamic 
configuration： NACA 23012 airfoil， 0.6 m rotor di‑
ameter （expandable to 1.2 m）， four blades， maxi‑
mum design speed 3 000 r/min； （2） tilt capability： 
Continuous spindle tilt adjustment （-90°—+5°） to 
support propeller testing requirements； （3） pitch 
range： Collective pitch adjustable from -2° to 
+12° ； （4） instrumentation： Integrated force/
torque measurement and blade anti-icing test capa‑
bilities.

Deployed in the FL-61 wind tunnel open test 
section， this rig enables icing and electrothermal an‑
ti/de-icing tests on rotating components （rotors， 
propellers， tilt-rotors， etc.）， capturing pre/post-ic‑
ing spindle load characteristics and torque data. 
Ground tests confirm tilt/pitch repeatability <0.1°， 
speed control accuracy <0.1%， and vibration-free 
operation across the entire revolutions per minute 
（RMP） envelope.

2 Rotor Icing Performance Varia⁃
tion Tests 

This study establishes a multi-source heteroge‑
neous data fusion-based rotor icing feature acquisi‑
tion system with the following technical implementa‑
tion pathway： A rotor test rig is installed in the FL-

61 icing wind tunnel open test section to obtain rotor 
performance evolution data through dry-air baseline 
tests and dynamic icing comparative experiments. 
The data acquisition system employs a distributed 
architecture design， maintaining real-time communi‑
cation with the rotor control unit， FL-61 wind tun‑
nel measurement/control system， and spray system 
to synchronously collect three groups of critical pa‑
rameters： （1） Rotor motion parameters （command‑
ed/actual rotational speed， pitch angle， tilt angle， 
output torque）； （2） aerodynamic environment pa‑
rameters （velocity， total temperature， total pres‑

Fig.2　Schematic of rotor test rig configuration
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sure）； （3） icing state identification parameters 
（spray system activation status represented by Bool‑
ean 0/1 values for non-icing/icing conditions）.

Notably， high-precision clock synchronization 
technology is implemented to achieve temporal 
alignment between wind tunnel spray valve opera‑
tions and rotor platform status parameters， thereby 
constructing physically meaningful supervised learn‑
ing labels that provide a reliable data foundation for 
subsequent machine learning-based icing detection 
algorithm development.

The rotor icing performance test procedure de‑
signed in this study is as follows：

（1） Install the rotor test rig in the open test sec‑
tion of the FL-61 icing wind tunnel； after leveling， 
perform operational status inspection and evaluation 
of the test rig； calibrate the tilt angle and collective 
pitch angle.

（2） Inspect the surface condition of rotor 
blades； remove surface contaminants and foreign ob‑
jects.

（3） Start the main compressor of the wind tun‑
nel； adjust the wind speed to the target value and 
maintain stability.

（4） Activate the rotor test rig control system； 
adjust the rotor to the predetermined tilt angle and 
the collective pitch angle through the servo motor 
control system； start the main motor and gradually 
increase the rotational speed to the set value.

（5） After the spray system reaches a stable 
working state， activate the spray system and auto‑
matically control its on/off operation according to 
the predetermined sequence.

（6） After the test， open the wind tunnel cham ‑
ber； record the ice shape characteristics on the rotor 
surface； collect icing data.

Safety constraint is that limited by the test rig 
design， the rotor rotational speed must be reset to 
zero before adjusting the tilt angle and the collective 
pitch angle.

The test conditions are sets as shown in 
Table 1.

Cases 1—5 are dry air baseline tests. The 
spray system remains closed throughout each test. 
By adjusting parameters including the wind speed 
（0—30 m/s）， the tilt angle （-6°—0°）， the collec‑

tive pitch angle （0—8°）， and the rotational speed 
（0—3 000 r/min）， the system investigates the sen‑
sitivity of rotor aerodynamic parameters to multivari‑
ate inputs.

Table 1　Rotor icing performance test matrix

Case

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Velocity/
（m·s-1）

0
0

10
30

0—30
30
30
30
30
30
30
30
30
30
30
30

Temperature/
℃

-8.6
-8.6
-6
>0

-8.4
-8.6
-8.6
-8.6
-8.6
-7.5
-7
-7

-7.7
-7.5
-7.3
-7.3

Tilt angle/
（°）
-6
-6
-6
-6

-6—0
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6

Pitch angle/
（°）

8
8
8
8

0—8
8
8
8
8
8
8
8
8
8
8
8

Rotational speed/
(r·min-1）

0—1 000
2 000—3 000

0—2 700
2 000

1 600—2 500
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 000
2 200
2 200
2 500

Spray duration/s

—

—

—

—

—

600
600
600
300
300
120
120
120
120
120
120
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Cases 6—16 are icing tests and repeatability 
tests. Multiple baseline tests （primarily with a vary‑
ing rotational speed） are conducted using the dry air 
test method before each spray. The spray system op‑
erates in partial nozzle mode （36/121 nozzles acti‑
vated）. The water pressure is set to 100 kPa and the 
air pressure to 160 kPa. Cloud parameters estimated 
based on previous spray system control studies［14］ 
are MVD = 21 μm and LWC = 1.2 g/m³.

3 Data Preprocessing and Analysis

3. 1 Data preprocessing　

This study develops a systematic six-stage data 
preprocessing framework （Fig.3）. The system 
achieves feature enhancement and data optimization 
through multi-dimensional signal processing， effec‑
tively addressing critical challenges in rotor icing de‑
tection tasks including noise interference， insuffi‑
cient feature representation， and sample imbalance.

This structured data preprocessing workflow 
comprises six key technical stages.

（1） Data cleaning & feature extraction： Manu‑
al data analysis removes invalid or low-quality data. 
Through physical mechanism-based analysis of ro‑
tor performance variations before/after icing， m key 
feature parameters （e.g.， wind speed， torque， rota‑
tional speed） are extracted to construct feature ma‑
trix X ∈ R n × m， with corresponding icing state labels 
y ∈ { 0，1 }n from system outputs， establishing a su‑
pervised learning benchmark.

（2） Signal smoothing： The high-frequency 
noise in sensor measurements is eliminated using 

sliding window moving average filter （MAF） or 
Kalman filter （KF）［27］.

MAF is expressed as
-
xt = 1

N ∑
i = t - N + 1

t

x i (1)

where N is the window width.
The KF is a recursive algorithm that eliminates 

the need for historical data storage while dynamical‑
ly quantifying state uncertainties through covariance 
matrices. It achieves optimal measurement estima‑
tion by fusing predictions from system models with 
actual sensor measurements through weighted aver‑
aging—A process that inherently suppresses sto‑
chastic noise. The weighting coefficients governing 
this fusion are determined by the process noise cova‑
riance Q and measurement noise covariance R. Spe‑
cifically， an increased Q prioritizes trust in real-time 
measurements， whereas a higher R favors model-
based predictions.

（3） Dynamic feature construction： Consider‑
ing limited sample size， temporal dynamic character‑
istics are enhanced through differential rate features 
without complex time-series algorithms

∆xt = xt - xt - ∆t (2)
where ∆t is the time interval . This doubles feature 
dimensions， generating augmented matrix X '∈ R n × 2m 
containing original features and first-order differenc‑
es.

（4） Data standardization： Z-score normaliza‑
tion eliminates unit discrepancies

z = x - μ
σ

(3)

where μ and σ denote the training set mean and the 
standard deviation， respectively. Standardization pa‑
rameters are persistently stored to ensure the consis‑
tency across testing， real-time icing detection， and 
training phases.

（5） Sample balancing： This step is implement‑
ed via the improved random resampling algorithm. 
Let n1 and n0 represent positive/negative sample 
counts， respectively， with the balancing constraint

min ( | n1 - ( n0 + δ ) | ) (4)
Setting δ = 0， and the final balanced dataset 

maximizes sample retention while maintaining posi‑
tive/negative ratio at strict 1∶1.

Fig.3　Six-stage data preprocessing framework
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（6） Dataset construction： Temporal correla‑
tions are eliminated through random permutation， 
splitting data into 8∶2 training-test sets. This parti‑
tioning strategy， validated by K-fold cross-valida‑
tion， ensures independence of data distributions.

3. 2 Support vector machine　

Support vector machine （SVM） is a super‑
vised learning algorithm based on statistical learning 
theory. Its core principle involves constructing opti‑
mal hyper-planes or hyper-surfaces to achieve data 
classification or regression. For linearly separable 
problems， SVM enhances model generalization ca‑
pability by maximizing the classification margin， 
i. e.， the minimum distance between two classes of 
samples to the hyperplane. For nonlinear problems， 
kernel functions， e.g.， Gaussian kernel， polynomial 
kernel， are employed to map original features into 
high-dimensional spaces for linear separability. 
SVM demonstrates superior performance in small-
sample and high-dimensional data scenarios while ef‑
fectively mitigating overfitting.

This study selects SVM primarily for two rea‑
sons.

（1） Limited data availability： Experimental da‑
ta are obtained from a small number of wind tunnel 
tests， resulting in a limited sample size. Through 
the structural risk minimization principle， SVM op‑
timize models in small-sample scenarios by fully le‑
veraging limited data to extract classification bound‑
aries， thereby avoiding underfitting or overfitting 
caused by insufficient data.

（2） Feature separability： Experimental results 
reveal significant feature differences between icing 
conditions and normal operating conditions. Specifi‑
cally， post-icing torque variation rates of rotating 
components under undisturbed conditions exhibit 
distinct patterns compared to normal flight states 
and rotational speed transition phases. SVM effi‑
ciently captures such nonlinearly separable features 
through kernel tricks， constructing robust classifica‑
tion decision boundaries.

The classifier is implemented using the SVC 
class from Python’s scikit-learn library［28］， with the 
radial basis function （RBF） kernel to balance model 

complexity and classification performance.
The implementation involves solving the fol‑

lowing primal optimization problem

min
w,b

 12 |w |2 + C ∑
i = 1

n

ξi (5)

subject to
yi(w ⋅ ϕ ( x i ) + b ) ≥ 1 - ξi

ξi ≥ 0;    i = 1,2,…,n
(6)

where w is the weight vector determining the hyper‑
plane orientation； b the bias term controlling the hy‑
perplane’s offset from the origin； C the penalty pa‑
rameter balancing margin size and support vector 
count； ξi the slack variable allowing classification er‑
ror； x i the feature vector mapped via kernel func‑
tion； and yi ∈ {+1，-1 } the class label of sample x i.

To handle nonlinearly separable data， SVC 
employs kernel functions K ( x i，x j ) for high-dimen‑
sional mapping. This study uses the RBF kernel

K ( x i,x j ) = exp ( - γ|x i - x j |2 ) (7)
By introducing Lagrange multipliers αi， the pri‑

mal problem is transformed into the dual problem

max
α

 ∑
i = 1

n

αi - 1
2 ∑

i,j = 1

n

yi yj αi αj K ( )x i,x j (8)

subject to

0 ≤ αi ≤ C,  ∑
i = 1

n

αi yi = 0 (9)

After solving for αi， the weight vector and bias 
term are computed as

ì

í

î

ïïïï

ïïïï

w= ∑
i = 1

n

αi yi ϕ ( )x i

b = yi - w ⋅ ϕ ( )x i

(10)

for support vectors.

3. 3 Random forest　

Random forest（RF）［29］ is an ensemble learning-

based supervised algorithm that enhances classifica‑
tion performance by combining multiple decision 
trees. For binary classification tasks， each decision 
tree independently classifies samples， and the final 
prediction is determined through a “majority voting” 
mechanism （i.e.， the class with the highest votes is 
selected as the result）. Its core principles include 
sample perturbation （bootstrap sampling） and fea‑
ture perturbation （random selection of feature sub‑
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sets）， which reduce over-fitting risks in individual 
trees while improving model generalization.

The core splitting criteria in RF rely on two im ‑
purity metrics： The Gini index and information 
gain. These metrics quantify the purity variation of 
data before and after node splitting， thereby guiding 
optimal feature selection during decision tree con‑
struction.

The Gini index evaluates node impurity by 
measuring the dispersion of class distribution. Its 
principle proclaims that if all samples in a node be‑
long to a single class （ideal purity）， the Gini index 
reaches its minimum value of 0. Conversely， it at‑
tains the maximum value when class distributions 
are uniform. The mathematical definition is

G ( t ) = 1 - ∑
i = 1

M ( )N i
( )t

N ( )t

2

(11)

where M denotes the total number of classes （M=2 
for binary classification）； N ( )t  the total number of 
samples in node t； and N i

( )t  the count of class i sam‑
ples in node t. During feature selection， the algo‑
rithm prioritizes splits that maximize the weighted 
reduction in Gini impurity across child nodes.

Information gain utilizes Shannon entropy to as‑
sess feature importance by measuring the reduction 
in system disorder after splitting. The entropy is de‑
fined as

H ( t ) = -∑
i = 1

M ( )N i
( )t

N ( )t
log2( N i

( )t

N ( )t ) (12)

Information gain is calculated as the difference 
between the parent node entropy and the weighted 
sum of child node entropies

IG ( S,A ) =H ( S ) - ∑
k = 1

K N ( )Sk

N ( )S
H ( Sk ) (13)

where S denotes the parent node sample set； A the 
candidate feature for splitting； K the number of split‑
ting branches for feature A； and Sk corresponds to 
the sample set of the kth child node. Higher informa‑
tion gain values indicate greater discriminative pow ‑
er of feature A for class separation.

3. 4 Multilayer perceptron　

The multilayer perceptron （MLP）［30］ is a feed‑
forward neural network architecture capable of learn‑
ing complex nonlinear decision boundaries for binary 

classification tasks. It stacks multiple fully connect‑
ed layers， including an input layer， one or more hid‑
den layers with activation functions， and an output 
layer. For binary classification， the output layer typi‑
cally uses a single neuron with a sigmoid activation 
function to map predictions to probabilistic outputs 
within ［0，1］. Training involves optimizing weights 
and biases through backpropagation to minimize 
cross-entropy loss， enabling the model to capture hi‑
erarchical feature representations.

Given the input features x， the output of the 
lth hidden layer is computed as

h( )l = σ (W ( )l h( )l - 1 + b( )l ) (14)
where W ( )l  and b( )l  are the weight matrix and bias 
vector of layer l， respectively； and σ denotes a non‑
linear activation function （e. g.， ReLU for hidden 
layers）.

The final prediction ŷ is generated via the sig‑
moid activation

ŷ = σ (W ( )L h( )L - 1 + b( )L ), σ ( z ) = 1
1 + e-z

(15)

where ŷ represents the estimated probability of the 
positive class.

Binary cross-entropy loss measures prediction 
error

L= - 1
N ∑

i = 1

N

[ ]yi ln ŷ i + ( )1 - yi ln ( )1 - ŷ i (16)

where yi ∈ { 0，1 } is the true label and ŷ i the predict‑
ed probability.

3. 5 Hyperparameter optimization　

In the field of machine learning model optimiza‑
tion， the random search has gained significant atten‑
tion as an efficient automated hyperparameter opti‑
mization method. Compared with the traditional grid 
search， this approach employs a probability distribu‑
tion-based sampling mechanism in parameter space， 
which significantly enhances computational efficien‑
cy while maintaining optimization effectiveness. 
The core principle involves uniform distribution 
sampling of hyperparameter combinations， effective‑
ly circumventing the curse of dimensionality encoun‑
tered by grid search in high-dimensional spaces. Em‑
pirical studies by Bergstra et al.［31］ demonstrate that 
when the objective function exhibits low effective di‑
mensionality characteristics， random search can 
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identify superior solutions with 95% probability 
within 60 iterations compared to 500 iterations of 
the grid search. This method proves particular ad‑
vantages for hyperparameter optimization in com ‑
plex models such as neural networks， with theoreti‑
cal bounds on convergence speed proven to exhibit 
sublinear relationships with parameter space dimen‑
sionality.

This study employs the random search algo‑
rithm to systematically optimize the hyperparameter 
spaces of three distinct models， SVM， RF， and 
MLP. We construct uniform distribution sampling 
spaces for each model’s critical hyperparameters， 
including kernel coefficients and penalty factors for 
SVM， tree depth and feature sampling rates for 
RF， as well as hidden layer configurations and acti‑
vation functions for MLP. By setting 50 search itera‑
tions with five-fold cross-validation accuracy as the 
optimization objective， the automated parameter 
tuning is implemented through Randomized‑
SearchCV module from Python’s scikit-learn li‑
brary［28］.

3. 6 Quantitative evaluation framework　

To systematically optimize model hyperparam ‑
eter configurations and comprehensively evaluate 

the performance differences among multiple classifi‑
cation algorithms， including RF， SVM， and MLP， 
this study establishes a quantitative evaluation 
framework for binary classification problems. By 
employing the confusion matrix （Table 2） as the 
core analytical tool and integrating a multi-dimen‑
sional evaluation index system derived from it， en‑
compassing values of accuracy， precision， recall， 
F1-score， receiver operating characteristic （ROC） 
curves， and area under curve （AUC） （Table 3）， 
the framework effectively reveals distinct character‑
istics of different models in terms of feature recogni‑
tion， class discrimination， and error type distribu‑
tion. This methodological approach provides robust 
data support for model selection and optimization.

Given the stringent requirements for aviation ic‑
ing detectors to achieve both low false positive rates 
（FPR） and low false negative rates （FNR）， this 
study systematically evaluates three core metrics for 
icing state detection： Precision， recall， and F1-

score. Notably， the F1-score is selected as the ob‑
jective function for automatic hyperparameter opti‑
mization， as it effectively balances the trade-off be‑
tween precision and recall， thereby mitigating detec‑
tion bias caused by single-metric optimization. Fur‑

Table 2　Confusion matrix

Confusion matrix

True positive(TP)

False positive(FP)

True negative(TN)

False negative(FN)

Definition
Number of positive samples correctly 
predicted as positive
Number of negative samples incorrect‑
ly predicted as positive (Type Ⅰ error)
Number of negative samples correctly 
predicted as negative
Number of positive samples incorrectly 
predicted as negative (Type Ⅱ error)

Table 3　Evaluation index system

Evaluation 
index

Accuracy

Precision

Recall

F1‑score

ROC 
curve

AUC

Formula

TP + TN
TP + TN + FP + FN

TP
TP + FP

TP
TP + FN

2 ⋅ Precision ⋅ Recall
Precision + Recall

Plot of TPR (y‑axis) vs. FPR (x‑axis) across 
thresholds

Area under the ROC curve

Meaning

Proportion of all correct predictions

Proportion of true positives among predicted positives (reduces FP)

Proportion of true positives correctly identified (reduces FN)

Harmonic mean of precision and recall, balancing both

Visualizes model’s ability to distinguish classes at various thresholds

Quantifies overall class separation ability; higher values indicate bet‑
ter performance
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thermore， to ensure real-time responsiveness of in-

flight icing warning systems， this research innova‑
tively proposes the “ icing detection latency” metric， 
defined as the time difference between the actual 
physical icing onset moment and the algorithm’s 
first valid detection moment. This latency metric is 
integrated into a multi-dimensional performance 
evaluation framework， establishing a novel para‑
digm that combines reliability and timeliness for the 
design of detection algorithms in aviation safety-criti‑
cal systems.

To evaluate model effectiveness， one test run 
is randomly reserved as an independent test set to 
validate the model’s generalization capability on un‑
seen data. Through this methodology， the SVM 
model achieves high-precision classification under 
small-sample conditions， providing a reliable theo‑
retical foundation for icing state detection.

4 Results and Discussion 

Experimental observations reveal that under 
specific test conditions， the rotor surface demon‑
strates typical mix ice accretion characteristics influ‑
enced by blade geometric scale effects. Notably， the 
ice morphology exhibits a pronounced gradient dis‑
tribution along the spanwise direction： The tip re‑
gion （0—1 chord length from blade tip） predomi‑
nantly features glaze ice formation， while the root 
region （3—4 chord lengths from blade tip） displays 
characteristic rime ice morphology. The ice thick‑
ness distribution along both spanwise and chordwise 
directions shows marked gradient characteristics， 
with the growth rate demonstrating nonlinear attenu‑
ation when the distance from the blade tip is less 
than 50 mm.

Comparative analysis of different spray dura‑
tions （300 s/ 600 s） indicates quantitative variations 
in ice thickness magnitudes while maintaining con‑
sistent spatial distribution patterns. Through contin‑
uous monitoring of ice surface morphology evolu‑
tion， it can be inferred that no ice shedding phenom ‑
ena are observed during the experimental process. 
This consistency in spatial distribution characteris‑
tics across varying exposure times suggests stable 

ice accretion mechanisms under the tested paramet‑
ric conditions.

Torque， as a critical parameter characterizing 
the dynamic characteristics of rotor systems， exhib‑
its significant dynamic response features under icing 
conditions. Fig.4 reveals the coupling relationships 
between torque parameters and rotor operational pa‑
rameters （rotational speed， collective pitch angle， 
and tilt angle） through experimental data from Case 
5. The test results demonstrate that during flight at‑
titude adjustments，the collective pitch angle and ro‑
tational speed modifications exert dominant influ‑
ence on torque variations， while the tilt angle chang‑
es show limited impact. Notably， torque fluctua‑
tions induced by operational commands manifest im ‑
mediate response characteristics， whereas ice accu‑
mulation effects produce gradual evolution of torque 
changes. This temporal contrast between command-

driven and ice-induced torque variations is clearly 
demonstrated in the time-domain analysis presented 
in Fig.5.

Fig.4　Torque variations induced by rotational speed, tilt 
angle, and collective pitch angle adjustments in Case 5

Fig.5　Torque changes following spray activation
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This study employs supervised learning meth‑
ods to develop a predictive model， achieving equiva‑
lent characterization of the complex physical pro‑
cesses in rotor icing through feature engineering. 
Distinct from traditional mechanism-based modeling 
approaches， the proposed algorithm constructs a fea‑
ture space： By introducing an adaptive weight allo‑
cation mechanism， it transforms the nonlinear rela‑
tionships between rotor dynamic parameters and ic‑
ing processes into quantifiable feature parameter 
combinations. During the data preprocessing phase 
（as detailed in Section 3）， a stratified random sam ‑
pling strategy is implemented for dataset partition‑
ing， with Case 13 reserved as an independent valida‑
tion set for real-time performance testing.

4. 1 Signal smoothing　

This study reveals the comprehensive advan‑
tages of various filtering schemes through multi-di‑
mensional comparative analysis （Fig.6）. The stand‑
alone KF demonstrates robust performance in ampli‑
tude fluctuation suppression. Although the MAF 
achieves comparable visual smoothness to KF， it in‑
curs dynamic feature detail loss. The cascaded filter‑
ing scheme （KF+MAF） optimizes data smooth‑
ness metrics， but exhibits more pronounced dynam ‑
ic hysteresis compared to the standalone MAF ap‑
proach.

Preliminary theoretical analysis suggests that 
standalone KF or MAF schemes exhibit potential 
advantages in temporal tracking metrics. However， 
empirical analysis of the predictive model reveals 
critical paradoxical phenomena （Fig.7）. Although 
single-filter configurations enhance temporal track‑

ing capability， they induce systematic degradation in 
model prediction efficacy， specifically manifesting a 
statistically significant increase in a false alarm rate.

Through systematic evaluation， this research 
establishes an optimized hybrid filtering architec‑
ture： A KF core with process noise covariance Q=
0.001 and measurement noise covariance R=0.3， 
complemented by a secondary VAF with 40-sample 
window size. This configuration achieves optimal 
balance between data fidelity and prediction reliabili‑
ty.

4. 2 Hyperparameter optimization analysis　

Through automated hyperparameter optimiza‑
tion via random search， three classical machine 
learning models obtains domain-adapted optimal 
configurations. For MLP， the architecture employs 
a dual hidden-layer topology （20，10） with tanh acti‑
vation， achieving optimized nonlinear representation 
through intermediate-dimensional hierarchical fea‑
ture extraction. The L2 regularization coefficient α=
0.009 8 and batch size 128 establish stability control 
in gradient updates. The RF configuration embodies 
deep ensemble learning strategy， where 450 deci‑
sion trees with a maximum depth of 17 construct 
high-complexity feature interaction space， while dy‑
namic sample splitting thresholds （min_sam‑
ples_split=0.325， min_samples_leaf=0.1） enable 
precise overfitting control. The SVM parameters 
demonstrate strong regularization characteristics. 
The significantly elevated penalty coefficient C=
21.83 indicates strict suppression of classification er‑
rors， combined with RBF kernel （γ =1.56） en‑
abling optimal hyperplane construction in high-di‑
mensional feature space.

Fig.6　Prediction performance without dynamic feature con‑
sideration

Fig.7　Icing detection performance using standalone KF 
schemes
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Table 4 systematically compares the perfor‑
mance of MLP， RF， and SVM models on four core 
classification metrics （precision， recall， F1-score， 
and accuracy） when tested with optimized hyperpa‑
rameters on a reserved test dataset containing 
11 981 samples. MLP and SVM exhibit statistical 
equivalence across all four metrics， with both mod‑
els achieving comprehensive performance metrics 
surpassing the 0.97 threshold， demonstrating signifi‑
cantly superior performance relative to the RF mod‑
el. The RF model shows notable deficiencies in re‑
call （0.77） and F1-score （0.86）， indicating inade‑
quate feature capture for positive class samples in its 
learning mechanism.

4. 3 Icing detection performance　

To systematically replicate real-world flight 
conditions， particularly sudden icing meteorological 
encounters during single-flight operations as previ‑
ously established， this study reserves Case 13 as fi‑
nal validation data. As illustrated in Fig.8， all mod‑
els demonstrate initial alert suppression at 250.3 s 
flight time when spray initiation occurs under simu‑
lated icing conditions. As detailed in Fig.9， the 
SVM methodology detects icing formation and trig‑
gers alerts 6.9 s post-initiation， followed by MLP 
detection with 0.1 s later. Notably， the RF ap‑
proach exhibits a critical 40 s latency in proper re‑
sponse activation. This renders it operationally unac‑
ceptable.

Under current sample size constraints and data 
processing protocols， SVM and MLP demonstrate 
statistical equivalence in engineering applicability， 
maintaining low algorithmic response latencies and 
false-positive rates that satisfy aviation safety thresh‑
olds. Conversely， RF’s performance metrics signifi‑
cantly underperform operational requirements， es‑
tablishing its impracticality for real-time aircraft ic‑
ing detection systems.

5 Conclusions 

This study develops a data-driven rotor icing 
detection method based on FL-61 wind tunnel rotor 
icing performance variation tests， achieving effec‑
tive identification and analysis of rotor icing charac‑
teristics. The main conclusions are as follows.

（1） The icing detection method based on rotat‑
ing component performance parameter variations 
demonstrates engineering feasibility， with experi‑
mental validation confirming the physical rationality 
of this technical approach.

（2） Under limited sample conditions， SVM 
and MLP exhibit excellent prediction performance 
with minimal resource consumption， meeting real-
time monitoring requirements for rotating compo‑
nent icing. Conversely， RF is unacceptable.

（3） Independent test sample verification shows 
the method maintains prediction latency under 7 s， 
with overall test cycle prediction accuracy exceeding 
96%.

It should be noted that the current research is 
limited by experimental conditions， and the opera‑
tional coverage and the sample size of the dataset re‑
quire enhancement. Subsequent work will expand 
data dimensions through multi-condition wind tun‑

Fig.9　Icing detection latency during icing cloud encounters

Fig.8　Final icing detection performance comparison

Table 4　Classification metrics tested with optimized hy⁃
perparameters

Model
MLP
RF

SVM

Precision
0.98
0.96
0.97

Recall
0.97
0.77
0.97

F1‑score
0.97
0.86
0.97

Accuracy
0.973 3
0.870 2
0.971 1

223



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

nel tests combined with numerical simulations.
This improvement will significantly enhance 

the engineering applicability of this technology in 
lightweight and vertical takeoff and landing aircraft 
icing protection systems.
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基于旋翼性能变化的飞机结冰探测方法研究

吴 渊 1，2， 朱东宇 1， 许岭松 1， 于 雷 1

（1.中航工业空气动力研究院辽宁省飞行器防除冰重点实验室，沈阳  110034，中国； 
2.南京航空航天大学航空学院，南京  210016，中国）

摘要：现有的结冰探测技术在应用于中小型飞行器，特别是适应低空经济发展需求的电动垂直起降飞机时，难以

同时满足载重限制和适应飞行姿态变化的需求，无法精准、高效地完成结冰探测任务。本研究提出一种基于旋

翼性能变化的数据驱动结冰探测方法，通过 FL‑61 结冰风洞中 0.6 m 旋翼的干空气基准测试与动态结冰对比实

验（风速 0~30 m/s，转速 0~3 000 r/min，桨距角 0°~8°），构建了包含运动参数、气动参数与结冰状态标识的多源

异构数据集。创新性地采用自适应卡尔曼滤波与移动平均级联的信号处理架构，对比研究支持向量机、多层感

知器和随机森林等多种算法的性能，实现了旋转部件结冰状态的实时辨识。试验研究表明：该方法在保留测试

案例中展现出最低 6.9 s 的检测延迟与 96% 的整体准确率，具有低延迟低误报率等特点，为轻型/垂直起降航空

器提供了无需额外传感器的轻量化解决方案。

关键词：旋翼；螺旋桨；飞机结冰；结冰探测；机器学习；支持向量机；多层感知机
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