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Abstract: The structural dynamic response reconstruction technology can extract unmeasured information from limited 
measured data， significantly impacting vibration control， load identification， parameter identification， fault diagnosis， 
and related fields. This paper proposes a dynamic response reconstruction method based on the Kalman filter， which 
simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions. The weighted 
least squares method determines the load weighting matrix for excitation identification， while the minimum variance 
unbiased estimation determines the Kalman filter gain. The excitation prediction Kalman filter is constructed through 
time， excitation， and measurement updates. Subsequently， the response at the target point is reconstructed using the 
state vector， observation matrix， and excitation influence matrix obtained through the excitation prediction Kalman filter 
algorithm. An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman 
filtering algorithm in modal space is derived. The proposed structural dynamic response reconstruction method 
evaluates the response reconstruction and the load identification performance under various load types and errors 
through simulation examples. Results demonstrate the accurate excitation identification under different load conditions 
and simultaneous reconstruction of target point responses， verifying the feasibility and reliability of the proposed method.
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0 Introduction 

Dynamic loads can greatly affect the safety and 
stability of structures［1］. Obtaining dynamic load da⁃
ta， especially from hard-to-measure and critical 
points， is essential for research and structural health 
monitoring［2］. Structural dynamic response recon⁃
struction technology can infer more unknown data 
from a limited number of measurement points， 
which to some extent compensates for the problem 
of insufficient measurement data［3］. Therefore， algo⁃
rithms that can simultaneously identify structural dy⁃
namic loads and reconstruct responses are crucial.

For structural design and optimization， the pre⁃
cise knowledge of dynamic load on structures is es⁃
sential. Jiang et al.［4］ proposed a novel dynamic load 
identification method that took into account un⁃
known initial conditions of structures which was 
based on the improved basis functions and the im ⁃
plicit Newmark- β method. Cui et al.［5］ introduced a 
convolutional neural network （CNN） for the recon⁃
struction of the interval of unknown load. Combin⁃
ing the interval analysis theory with the Taylor ex⁃
pansion， the upper and lower boundaries of the su⁃
pervised loads are obtained and used as training sam ⁃
ples. The trained CNN model can directly identifies 
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the boundaries of the unknown load interval. Yang 
et al.［6］ proposed a new method for dynamic load 
identification based on deep dilated convolutional 
neural network （DCNN）， which directly construct⁃
ed the inverse model between vibration response 
and excitation， avoiding solving model parameters. 
This method is based on Kalman filtering and is 
used to reconstruct the dynamic response of uncer⁃
tain structures in linear systems. Using classical Kal⁃
man filtering to process uncertain models requires 
obtaining specific excitation information. Li et al.［7］ 
introduced the extended Kalman filter（EKF） meth⁃
od combined with the least square estimation to 
identify the unknown load acting on the time-vary⁃
ing structure and realized the tracking of the structur⁃
al parameters of the time-varying system. Aucejo et 
al.［8］ explored the adaptability of the adaptive Kal⁃
man filter （AKF） in reconstructing mechanical 
sources， proposing a new state space representation 
of dynamic systems based on a generalized method. 
Under the augmented Kalman filter， using only the 
accelerometer signal may result in algorithm recogni⁃
tion divergence due to the unobservability and insuf⁃
ficient rank of the augmented matrix.

The method for reconstructing dynamic re⁃
sponses in uncertain structures within linear systems 
relies on Kalman filtering. While the classical Kal⁃
man filtering addresses uncertain models， obtaining 
specific excitation information is necessary. Li et 
al.［9］ derived the motion equation in absolute coordi⁃
nate system and then expanded the equation into 
modal space. In addition， the proposed method al⁃
lows for identifying earthquake ground motion using 
incomplete modal information and limited measure⁃
ments through the standard Kalman filter. Huang et 
al.［10］ proposed two generalized algorithms based on 
the generalized Kalman filtering under unknown in⁃
put （GKF-UI） for the identification of seismic 
ground excitation to multi-story and tall buildings， 
respectively. Naets et al.［11］ utilized an improved 
augmented Kalman filter algorithm based on mea⁃
surement to resolve prediction result divergence. 
Maes et al.［12］ introduced a joint input state estima⁃
tion （JISE） algorithm considering model-measure⁃
ment error correlation and time delay， along with a 
smoothing algorithm based on JISE， applied to actu⁃

al projects for practical measurements. Aucejo et 
al.［13］ explored the adaptability of AKF in recon⁃
structing mechanical sources， proposing a new state 
space representation of dynamic systems based on a 
generalized method.

The Kalman filtering algorithm shows promise 
in reconstructing structural dynamic responses， par⁃
ticularly in cases with model errors. However， the 
simultaneous reconstruction of structural external 
excitation and response has received limited atten⁃
tions. Lei et al.［14］ proposed a generalized Kalman fil⁃
ter with unknown input to identify structural states 
and unknown excitations in real-time. A revised ver⁃
sion of observation equation is present by He et 
al.［15］ for the simultaneous identification of structural 
parameters and the unknown excitations. Tang et 
al.［16］ explored the influence of various filtering pa⁃
rameters （covariance matrix Q of model noise and 
covariance matrix R of measurement noise） in ex⁃
tended Kalman filtering on the time-varying parame⁃
ter tracking performance of the structure.

The modal expansion technique is adopted to 
reduce the dimension of the motion equations and 
the size of the structural state to be identified［17-18］.
These work above focused on the discrete system. 
On the basis of the classical Kalman filtering meth⁃
od， this paper proposes a Kalman filtering algorithm 
based on excitation prediction， used for the recon⁃
struction of structural dynamic response for continu⁃
ous systems. The Kalman filtering algorithm in 
modal space for continuous system is derived and in⁃
vestigated with modal parameters and noise distur⁃
bance.

Initially， the weighted least squares method is 
used to determine the load weighting matrix to iden⁃
tify the excitation， and the minimum variance unbi⁃
ased estimation is used to determine the Kalman fil⁃
ter gain. The excitation prediction Kalman filter is 
constructed through time update， excitation update， 
and measurement update. Then， the calculation pro⁃
cess of the excitation prediction Kalman filter algo⁃
rithm is presented， extending the algorithm from 
physical space to mode space for continuous sys⁃
tems. Finally， a simple supported beam system is 
taken as a simulation example to analyze the feasibil⁃
ity and reliability of load identification and response 
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reconstruction under different external excitations， 
such as impact excitation and fixed frequency excita⁃
tion. Various noise conditions and model errors are 
introduced to evaluate the noise resistance of this 
method. The simulation results demonstrate that the 
algorithm can effectively identify and reconstruct 
various excitations.

1 Structural Dynamic Response 
Reconstruction Algorithm Based 
on Excitation Prediction Kalman 
Filter for Multi‑degree of Free‑
dom System 

1. 1 Response reconstruction algorithm in phys‑
ical space　

A study was conducted on the response recon⁃
struction of multi⁃degree of freedom systems， and 
the response reconstruction process of multi⁃degree 
of freedom systems in physical space and modal 
space was derived. The model is shown in Fig.1， 
where mi represents mass， ki denotes stiffness， ci is 
damping， Fi ( t ) indicates the external dynamic load 
and pi indicates the displacement， i=1，2，…，n.

The motion equation of an n-degree-of-free⁃
dom dynamical system shown in Fig.1 is

Mp̈ ( t )+ Cṗ ( t )+ Kp ( t )= B uu ( t ) (1)
where M，C and K represent the mass matrix， 
damping matrix and stiffness matrix， respectively；
p ( t )，ṗ ( t )， and  p̈ ( t ) the displacement， velocity， 
and acceleration vectors， respectively； and B u repre⁃
sents the influence matrix of the external load u ( t )， 
which is related to the position of the load. The ma⁃
trix consists of 0 and 1， with all values being 0 ex⁃
cept for 1 at the load location.

To transform the dynamic motion Eq.（1） into 
a linear state-space form， we have

ẋ ( t )= A c x ( t )+ B cu ( t ) (2)

y ( t )= Hx ( t )+ Du ( t ) (3)
where
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And， x ( t ) and y ( t )are the structure state vector 
and measurement vector， respectively； A c and B c 
the state transfer matrix and the excitation influence 
matrix； H and D the observation matrix and excita⁃
tion influence matrix， respectively. When the mea⁃
sured value is acceleration， we have

ì
í
î

H= [ ]-H 0M-1K -H 0M-1C

D= H 0M-1B u

(5)

Assuming the equispaced sampling time instant 
is t ( t = t0，t1，⋯，tk ) and these instants are small 
enough， we can also reasonably assume that the ex⁃
citation u ( t ) remains unchanged within Δt = tk + 1 -
tk， and Eqs.（2） and （3） can be discretized as

ì
í
î

x k + 1 = Ax k + Bu k

y k = Hx k + Du k
(6)

where u k is the external excitation； x k + 1 and x k rep⁃
resent the structural state vectors at time ( k + 1 ) Δt 
and kΔt， respectively； A and B  the state transition 
matrix and the excitation influence matrix in a dis⁃
crete format， respectively， and defined as

A= eA c Δt (7)

B=∫
0

Δt

A( 0,τ ) B c dτ =∫
0

Δt

eA c τB c dτ =

∫
0

Δt

eA c τ dτB c = ( A- I ) A-1
c B c (8)

1. 2 Response reconstruction of Kalman filter 
based on excitation prediction　

A structural dynamic response reconstruction 
method based on the excitation prediction Kalman 
filter is proposed， which includes an excitation iden⁃
tification step and uses weighted least squares to 
identify the excitation. Combining Kalman filtering 
for state estimation and utilizing time update steps 
and measurement update steps to achieve recursion 
and state correction， can simultaneously achieve ex⁃
citation recognition and response reconstruction.

The specific calculation process is as follows.

Fig.1　Multi⁃degree of freedom system under concentrated 
force
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（1） Time update step
According to Eq.（6）， we get

x k|( k - 1 ) = Ax ( k - 1 )|( k - 1 ) + Bû k - 1 (9)
where x k | ( k - 1 ) is a priori estimate， and x ( k - 1 ) | ( k - 1 ) a 
posteriori estimate of time k - 1.

The error of the estimate of x k | ( k - 1 ) is
x͂ k|( k- 1 )≡x k -x k|( k- 1 )=Ax͂ ( k- 1 )|( k- 1 )+Bu͂ k- 1 +w k- 1

(10)
where x͂ k|k ≡ x k - x k|k，and w k - 1 is considered to be 
independent identically distributed Gaussian noise 
with the mean value 0.

（2） Excitation identification step
Define residuals as

y͂ k ≡ y k - Hx k|( k - 1 ) (11)
y k = Hx k + Du k +v k (12)

where v k represents the measurement error.
Get the relationship between y͂ k and u k，shown 

as
y͂ k = Du k + Hx͂ k|( k - 1 ) + v k = Du k + ek (13)

where ek =Hx͂ k|( k - 1 ) + v k. Since x k | ( k - 1 ) is an unbi⁃
ased estimation and E ( v k )= 0， we can obtain 
E ( y͂ k )=DE ( u k ). Next， the external excitation is es⁃
timated as

û k = J k ( y k - Hx k|( k - 1 ) ) (14)
where J k is to be a solved parameter which makes û k 
be an unbiased estimation of the external excita⁃
tion u k.

Replacing Eq.（14） with Eq.（12）， we obtain
û k = J kDu k + J kek (15)

If û k is an unbiased estimate of u k， we have 
J kD= I. Let

R͂ k ≡ E ( ekeT
k )= HP x

k|( k - 1 )H T + R k (16)
where R k ≡ E ( v kvT

k )， and R͂ k is a positive definite 
matrix. According to the least squares method， it 
can be inferred that

J k = ( DT R͂-1
k D )-1DT R͂-1

k (17)
Predicting u k is also a parameter estimation 

method similar to weighted least squares. Let y͂ k be 
the observation value and R͂-1

k  be the weight， then 
the variance P u

k  of u͂ k is
P u

k =E ( u͂ k u͂T
k )=J kekeT

k J T
k =

J k ( Hx͂ k|( k-1 )+v k ) ( Hx͂ k|( k-1 )+v k )T J T
k =

J k ( HP x
k|( k-1 )H T+R k ) J k=

( DT R͂-1
k D )-1DT R͂-1

k R͂ k R͂-1
k D [ ( DT R͂-1

k D )-1 ]T=
( DT R͂-1

k D )-1

(18)

（3） Measurement update step
For measurement update， we assume that
x k|k = x k|( k - 1 ) + K k ( y k - Hx k|( k - 1 ) - Dû k ) (19)

where K k is the Kalman gain， which can be solved 
by minimizing the variance matrix using the weight⁃
ed least squares method［19］.

K k = P x
k|( k - 1 )H T R͂-1

k (20)
P x

k|k = P x
k|( k - 1 ) - K k ( R͂-1

k - DP u
k DT ) K T

k (21)
So far， the derivation of the Kalman filter algo⁃

rithm based on excitation prediction has been com ⁃
pleted. The time update step， force identification 
step， and measurement update step are detailed be⁃
low
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x k|( k - 1 ) = Ax ( k - 1 )|( k - 1 ) + Bû k - 1

û k = J k ( y k - Hx k|( k - 1 ) )
x k|k = x k|( k - 1 ) + K k ( y k - Hx k|( k - 1 ) - Dû k )

(22)

To sum up， the flow of Kalman filter algo⁃
rithm based on excitation prediction is given in Ta⁃
ble 1.

In order to achieve structural response recon⁃
struction， which involves using signals from a limit⁃
ed number of observation points to predict the re⁃
sponse values of the target point， we utilize a Kal⁃
man filter algorithm based on excitation prediction， 
as described earlier. This enables us to obtain sys⁃
tem state and excitation predictions， thereby facili⁃

Table 1　Kalman filter algorithm based on excitation pre‑
diction

(1) Given the initial values x0| - 1，P x
0| - 1

(2) Exciation identification step
R͂ k = HP x

k|( k - 1 )H
T + R k

J k = ( DT R͂-1
k D )-1DT R͂-1

k
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tating structural response reconstruction. At this 
point， the state transition equation and observation 
equation can be expressed as follows

ì
í
î

x k = Ax k - 1 + Bu k - 1 + w k - 1

ym
k = H m x k + Dmu k + v k

(23)

where the superscript m denotes the measurement 
position， signifying the position of the measured val⁃
ue. In accordance with Eq.（23）， the reconstruction 
response at the target point can be obtained through 
Kalman filtering， representing the posterior value x k|k

y r
k = H r x k | k + D r û k (24)

where the superscript r indicates the position of the 
reconstruction value of the target point， and y r

k the 
response value of the reconstruction of the target 
point. Now， if y k is taken as the true response value 
of the target point， then

y k = H r x k + D r û k (25)
When applying this algorithm to reconstruct the 

dynamic response of a known structure under un⁃
known excitation， the model parameters of the struc⁃
ture must be calculated as algorithm parameters. In 
addition， the response data collected from finite ele⁃
ment simulations or sensors should be input as obser⁃
vations into the algorithm. This process can perform 
dynamic response reconstruction （DRR） of the 
structure and predict excitation. Although the mea⁃
surement signals in this article are exclusive acceler⁃
ation ones， this response reconstruction method is 
still feasible for other measurement signals such as 
strain， displacement， and velocity.

2 Response Reconstruction Algo‑
rithm of Multi‑degree Freedom 
System in Modal Space 

In physical space， a large number of multi de⁃
gree of freedom systems involve complex parameter 
matrices such as A c，B c. During response reconstruc⁃
tion operations based on Kalman filtering， the recur⁃
sive process greatly increases the operating pressure 
on the computer， and in many cases， it is even im ⁃
possible to obtain them. In actual system vibration， 
the first few modes often play a dominant role. 
These modes contribute significantly to the vibra⁃
tion of the system. Therefore， consider performing 

modal transformation on it in the modal space， 
which is， using the first few dominant modes to rea⁃
sonably replace the entire system mode. In this pa⁃
per， the number of modal truncation is 4.

To reconstruct the dynamic response of a struc⁃
ture in modal space， it is first necessary to decouple 
the vibration differential equation and transform it 
from physical space to modal space. According to  
the modal analysis theory， the displacement of a 
structure can be obtained through modal transforma⁃
tion， shown as

p ( t )=Φq ( t ) (26)
where q ( t ) is the modal displacement vector， and 
Φ the modal mode shape matrix of the system.

For | [ K ] - ω 2
n[M ] |= 0， the natural frequen⁃

cy and mode vector of the system are ω 1，ω 2，…，ωn 
and Φ= [φ 1   φ 2   ⋯   φ n ]， respectively.

Substituting Eq.（26） into Eq.（1）， the motion 
equation of the dynamic system can be written as
ΦTMΦq̈ ( t ) +ΦTCΦq̇ ( t ) +ΦTKΦq ( t ) =

 ΦT B uu ( t ) (27)
with u ( t )=[ F 1 ( t )   F 2 ( t )   ⋯   F n ( t ) ]. If it meets

ΦTMΦ= I (28)
ΦTKΦ= Λ (29)

where Λ=diag ( λ1 λ2 … λn） and λi = ω 2
i  （i=1， 

2， …， n）， Eq.（27） can be abbreviated as
q̈ ( t )+ Γq̇ ( t )+ Λq ( t )=ΦT B uu ( t ) (30)

where Γ=ΦTCΦ represents the modal damping. If 
the system damping is proportional， the modal 
damping matrix Γ is

Γ=
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where γi=2ξi ωi represents the ith order modal 
damping， and ξi  the ith order modal damping rate. 
Utilizing  the modal analysis theory， Eq.（27） can al⁃
so be converted into the state-space （Eq.（2））. Con⁃
sequently， we have
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 (32)

Based on Eqs.（2—5）， the discrete state-space 
equation and observation equation can be obtained. 
When the observation corresponds to acceleration sig⁃
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nals， in modal space， we have H=[-H 0ΦΦTK  
-H 0ΦΦTC ] and D= H 0ΦΦT B u，here H 0 is a posi⁃
tion matrix composed of 0 and 1.

Taking A， B， H， and D as inputs， the struc⁃
tural dynamic response is reconstructed. Through 
the excitation recognition step， the external excita⁃
tion estimate û k of the system is identified. At the 
same time， the state estimate x k|k is obtained 
through the measurement update step and time up⁃
date step. Based on the partial observation values yk 
of the system response under the input external exci⁃
tation， the response information y r

k of the target 
point can be reconstructed.

3 Response Reconstruction Algo‑
rithm of Continuous System in 
Modal Space 

For continuous system， the natural frequency， 
mass-normalized natural mode shape， and damping 
matrix of the model are directly acquired via Patran & 

Nastran. Once the modal truncation number is deter⁃
mined， the matrices Φ， Λ， Γ are calculated， and 
then the parameter matrices A c and B c for the structur⁃
al dynamic response method are constructed. Dis⁃
cretizing it using the time interval Δt， we derive the 
state transition matrix A and excitation influence ma⁃
trix B. if the observation is an acceleration signal， 
we have
H=[-H 0ΦΦTK -H 0ΦΦT C ],D=H 0ΦΦT B u.

To ensure matrix D with full rank［20］， the accel⁃
eration observation points include the locations 
where excitation acts.

In modal space，the estimation of the external 
excitation of the system is obtained through the exci⁃
tation identification step， which is similar to the 
analysis of multi-degree-of-freedom systems. Simul⁃
taneously， the response information at the target 
point can be reconstructed. Fig.2 shows the flow 
chart of response reconstruction method for continu⁃
ous system in modal space.

4 Accuracy Evaluation Method 

The peak relative error method （PREM）， sig⁃
nal to noise ratio （SNR） and angle cosine method 
（ACM） are used to evaluate the accuracy of load 

identification. We assume that the theoretically accu⁃

rate response signal is represented by X ( i )， while 

the reconstructed response signal is represented 

by Y ( i ).

Fig.2　Flow chart of response reconstruction method for continuous system in modal space
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（1） PREM

PREM ( X,Y )= | maxY ( i )- max X ( i ) |
max X ( i )

× 100%

(33)
（2） SNR

SNR ( X,Y )= 10 lg
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（3） ACM
The similarity between two vectors can be mea⁃

sured by calculating the cosine of the angle θ be⁃
tween them，shown as

s ( X,Y )= cos θ =
∑
i = 1

n

X ( i )Y ( i )

∑
i = 1

n

X 2 ( i )∑
i = 1

n

Y 2 ( i )
(35)

5 Simulation Example 

The simply supported beam model depicted in 
Fig.3 is taken as an example. The simply supported 
beam is 1 m long， 0.05 m wide， and 0.005 m thick. 
The elastic modulus is 206 GPa， the density is 
7 900 kg/m³， and the Poisson’s ratio is 0.3. A dy⁃
namic load f  is applied to the beam.

Following the dynamic response reconstruction 
method proposed in this paper for continuous sys⁃
tem， the dynamic response of the target point is re⁃
constructed using response information from a finite 
number of points. Simultaneously， the dynamic load 
applied to the structure is identified and compared 
with the actual structural dynamic response and load 
to verify the feasibility and accuracy of this dynamic 
response reconstruction method for a continuous 
structure.

5. 1 Excitation identification and response re‑
construction under impact excitation　

For the simply supported beam model， the dy⁃

namic load is assumed to be an impact load and a 
half sine wave within a short duration， specifically 
from 0.1 s to 0.110 s， while the load remains 0 at 
other time. Let the dynamic load f defined as f ( t )=
sin ( 2π × 50t ).

The system begins in a zero initial state. The 
Patran software package is utilized for modelling the 
simply supported beam， while the Nastran software 
package is employed for transient dynamics analy⁃
sis. The sampling time for acceleration response is 
5 s， and the sampling rate is 1 024.

(1) Excitation identification and response recon⁃
struction under error free impact excitation　

When noise conditions are not taken into ac⁃
count， Fig.4 presents a partial enlarged view of the 
comparison results between the load identified in the 
excitation identification step and the actual value at 
the moment of force application. Similarly， Fig.5 
depicts the comparison between the acceleration re⁃
sponse of the target node reconstructed by the algo⁃
rithm and the theoretical value. Table 2 presents the 
reconstruction error results under error free impact 
excitation， which are the average values obtained 
from multiple sets of data calculations.

Fig.4　Partial magnification of identification results for error 
free impact excitation

Fig.5　Reconstruction results of acceleration response of tar⁃
get nodes under error free impact excitation

Fig.3　Simply supported beam under concentrated force
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From the above charts， it is evident that when 
noise is disregarded and accurate model parameters 
are employed， the structural dynamic response re⁃
construction algorithm effectively identifies impact 
excitation. Moreover， the reconstructed acceleration 
response signal， in terms of amplitude， SNR， and 
cosine value of the included angle， aligns perfectly 
with the theoretical value. Thus， the feasibility of 
excitation identification and response reconstruction 
using the algorithm proposed in this paper is con⁃
firmed under error-free conditions when applying im ⁃
pact loads.

(2) Excitation identification and response recon⁃
struction under impact excitation considering modal 
parameter error and Gaussian white noise　

Fig.6 provides a comparison between the iden⁃
tified excitation forces and the true applied loads at 
the moment of impact， considering 5% modal pa⁃
rameter errors and observation polluted with zero-

mean Gaussian white noise （standard deviation 
0.001）. Similarly， Fig.7 demonstrates the consisten⁃
cy of the reconstructed acceleration response of the 
target node and its theoretical counterpart. Table 3 
presents the reconstruction error results with 5% 
modal noise error and Gaussian white noise， which 
represent the average values computed from multi⁃
ple data sets. As observed from Table 3， when 
Gaussian white noise and modal parameter noise are 

concurrently introduced， the relative error of the 
peak value remains within 10%. The SNR and the 
cosine value of the included angle are somewhat 
high， while they still fall within an acceptable error 
range for practical engineering applications. The 
maximum value of angle cosine method is 1， and 
the closer the value is to 1， the closer the recogni⁃
tion value or reconstruction value signal is to the the⁃
oretical value.

5. 2 Excitation identification and response re‑
construction under fixed frequency excita‑
tion　

Let the dynamic load f be a fixed frequency 
load defined as f ( t )= sin ( 2π × 20t )+ 3sin ( 2π ×
30t ). Same as case one， Patran is utilized to simu⁃
late model for response calculation. With a sampling 
rate of 1 024 Hz， the sampling time is set to 5 s， 
and the acceleration response is computed according⁃
ly. By combining the calculated response data with 
the natural frequencies and modes obtained through 
finite element analysis， we construct the parameter 
matrix required for the algorithm to reconstruct the 
response. The initial state vector of the system is as⁃
sumed to be 0.

（1） Excitation identification and response re⁃
construction under error free fixed frequency excita⁃
tion　

Table 3　Reconstruction error results under impact exci‑
tation with 5% modal noise and Gaussian white 
noise

Error evaluation method

Load identification
Response reconstruction

PREM/
%

8.33
7.06

SNR/
dB

16.6
47.2

ACM

0.88
0.99

Fig.7　Reconstruction results of acceleration response of tar⁃
get nodes with 5% modal noise error and Gaussian 
white noise

Table 2　Reconstruction error results under error free 
impact excitation

Error evaluation method

Load identification
Response reconstruction

PREM/
%

3.99
0.44

SNR/
dB

37.9
98.8

ACM

0.99
1.00

Fig.6　Partial magnification of identification results for im ⁃
pact excitation with 5% modal noise error and Gauss⁃
ian white noise
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When noise conditions are not taken into con⁃
sideration， the model is analyzed accordingly. Fol⁃
lowing the algorithm， we compare the load identi⁃
fied by the excitation identification step with the ac⁃
tual value. Fig.8 and Fig.9 show the effectiveness of 
the identified excitation forces and reconstructed ac⁃
celeration response， respectively， under fixed-fre⁃
quency excitation conditions without model distur⁃
bance and noise interruption. Data results， which 
represent the average values computed from multi⁃
ple data sets， are provided in Table 4.

From the charts， it is evident that without con⁃
sidering noise and employing accurate model param ⁃
eters， and when the applied force is a fixed frequen⁃
cy excitation， the algorithm can precisely identify 
the fixed frequency excitation. The relative error of 
its peak value is 0.67%， and the SNR and the cosine 
value of the included angle demonstrate an ideal 

overall degree of coincidence for the evaluation 
curve. Moreover， the response signal reconstructed 
by the algorithm perfectly aligns with the theoretical 
value in terms of amplitude， SNR， or cosine value 
of the included angle. This confirms the feasibility of 
load identification and response reconstruction when 
a fixed frequency excitation is applied without error.

（2） Excitation identification and response re⁃
construction under fixed frequency excitation consid⁃
ering modal parameter error and Gaussian white 
noise

Modal parameter errors and Gaussian white 
noise are factored to verify the algorithm. Assuming 
that the observation noise follows a Gaussian distri⁃
bution with a mean of 0 and a standard deviation of 
0.001， and incorporating a 5% modal parameter er⁃
ror， we assess the algorithm’s performance. The 
comparisons between the identification or recon⁃
structed result and theoretical value are presented in 
Fig.10 and Fig.11. As shown in figures， the good 
agreements can be obtained under the conditions of 
fixed-frequency excitation conditions with 5% mod⁃
el disturbance and zero-mean Gaussian white noise 
interruption （standard deviation 0.001）. Data re⁃
sults， representing the average values calculated 
from multiple data sets， are provided in Table 5.

From the results， it is apparent that when con⁃
sidering the actual situation and introducing Gauss⁃
ian white noise and modal parameter error， the rela⁃
tive error of the peak value remains within 10%. 
Fortunately， the SNR and the cosine value of the in⁃
cluded angle result in an overall excellent identifica⁃
tion and reconstruction effect. This validates the fea⁃
sibility and reliability of the algorithm when a fixed 

Fig.10　Partial amplification of identification results of fixed 
frequency excitation with 5% modal noise error and 
Gaussian white noise

Fig.8　Partial amplification of identification results of fixed 
frequency excitation without error

Fig.9　Partial magnification of reconstruction results of ac⁃
celeration response without error

Table 4　Reconstruction error results without error when 
applying fixed frequency excitation

Error evaluation method

Load identification
Response reconstruction

PREM/
%

0.67
0.01

SNR/
dB

64.7
176.2

ACM

0.99
1.00
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frequency excitation is applied to continuous system 
in a practical scenario.

6 Conclusions 

A response reconstruction method based on ex⁃
citation prediction Kalman filter was proposed， and 
the Kalman method based on excitation prediction 
was derived. The response reconstruction method 
was also derived using acceleration response signals. 
Extending the algorithm from physical space to 
mode space for multi-degree freedom system and 
continuous system. A simply supported beam sys⁃
tem is taken as a simulation example to analyze the 
feasibility and reliability of load identification and re⁃
sponse reconstruction under different external excita⁃
tions， such as impact excitation and fixed frequency 
excitation. Various noise conditions and model er⁃
rors are introduced to evaluate the noise resistance 
of this method. The simulation results demonstrate 
that the algorithm can effectively identify the excita⁃
tion and reconstruct various excitations.
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基于卡尔曼滤波的连续系统结构动响应重构方法

李鸿秋 1， 姜金辉 2， MOHAMED M Shadi3

（1.金陵科技学院机电工程学院，南京 211169，中国； 2.南京航空航天大学航空航天结构力学及控制全国重点实

验室, 南京 210016, 中国； 3.赫瑞⁃瓦特大学基础设施与环境研究所，爱丁堡   EH14 4AS，英国）

摘要：从有限的测量数据中重构未测量位置的结构动响应信息，对振动控制、载荷识别、参数识别和故障诊断等领

域具有重要意义。本文提出了一种基于卡尔曼滤波器的动态响应重建方法，该方法在识别外部激励的同时重建未

测量位置的动态响应。采用加权最小二乘法确定载荷加权矩阵来识别激励，利用最小方差无偏估计确定卡尔曼滤

波器增益。通过时间、激励和测量更新构建激励预测卡尔曼滤波，基于激励预测卡尔曼滤波算法获得的状态向量、

观测矩阵和激励影响矩阵用于重建目标点处的响应，并推导了一种在模态空间中使用激励预测卡尔曼滤波重建连

续系统响应的算法。仿真算例验证了不同载荷类型和误差下的响应重建和载荷识别效果。结果表明，在不同载荷

工况条件下，所提出的算法能够准确辨识激励和重构目标点动响应，证明了该算法的可行性和可靠性。

关键词：动载荷识别；结构响应重建；激励识别；卡尔曼滤波器；连续系统
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