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Abstract: The structural dynamic response reconstruction technology can extract unmeasured information from limited
measured data, significantly impacting vibration control, load identification, parameter identification, fault diagnosis,
and related fields. This paper proposes a dynamic response reconstruction method based on the Kalman filter, which
simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions. The weighted
least squares method determines the load weighting matrix for excitation identification, while the minimum variance
unbiased estimation determines the Kalman filter gain. The excitation prediction Kalman filter is constructed through
time, excitation, and measurement updates. Subsequently, the response at the target point is reconstructed using the
state vector, observation matrix, and excitation influence matrix obtained through the excitation prediction Kalman filter
algorithm. An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman
filtering algorithm in modal space is derived. The proposed structural dynamic response reconstruction method
evaluates the response reconstruction and the load identification performance under various load types and errors
through simulation examples. Results demonstrate the accurate excitation identification under different load conditions
and simultaneous reconstruction of target point responses, verifying the feasibility and reliability of the proposed method.
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0 Introduction

Dynamic loads can greatly affect the safety and
stability of structures''’. Obtaining dynamic load da-
ta, especially from hard-to-measure and critical
points, is essential for research and structural health
monitoring'*’. Structural dynamic response recon-
struction technology can infer more unknown data
from a limited number of measurement points,
which to some extent compensates for the problem
of insufficient measurement data'*. Therefore, algo-

rithms that can simultaneously identify structural dy-

namic loads and reconstruct responses are crucial.

*Corresponding author, E-mail address: jiangjinhui@nuaa.edu.cn.
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For structural design and optimization, the pre-
cise knowledge of dynamic load on structures is es-
sential. Jiang et al.""’ proposed a novel dynamic load
identification method that took into account un-
known initial conditions of structures which was
based on the improved basis functions and the im-

5

plicit Newmark-B method. Cui et al."”" introduced a
convolutional neural network (CNN) for the recon-
struction of the interval of unknown load. Combin-
ing the interval analysis theory with the Taylor ex-
pansion, the upper and lower boundaries of the su-
pervised loads are obtained and used as training sam-

ples. The trained CNN model can directly identifies
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the boundaries of the unknown load interval. Yang
et al."* proposed a new method for dynamic load
identification based on deep dilated convolutional
neural network (DCNN), which directly construct-
ed the inverse model between vibration response
and excitation, avoiding solving model parameters.
This method is based on Kalman filtering and is
used to reconstruct the dynamic response of uncer-
tain structures in linear systems. Using classical Kal-
man filtering to process uncertain models requires
obtaining specific excitation information. Li et al.'”
introduced the extended Kalman filter (EKF) meth-
od combined with the least square estimation to
identify the unknown load acting on the time-vary-
ing structure and realized the tracking of the structur-
al parameters of the time-varying system. Aucejo et

al. [8]

explored the adaptability of the adaptive Kal-
man filter (AKF) in reconstructing mechanical
sources, proposing a new state space representation
of dynamic systems based on a generalized method.
Under the augmented Kalman filter, using only the
accelerometer signal may result in algorithm recogni-
tion divergence due to the unobservability and insuf-
ficient rank of the augmented matrix.

The method for reconstructing dynamic re-
sponses in uncertain structures within linear systems
relies on Kalman filtering. While the classical Kal-
man filtering addresses uncertain models, obtaining
specific excitation information is necessary. Li et
al."” derived the motion equation in absolute coordi-
nate system and then expanded the equation into
modal space. In addition, the proposed method al-
lows for identifying earthquake ground motion using
incomplete modal information and limited measure-
ments through the standard Kalman filter. Huang et
al.""" proposed two generalized algorithms based on
the generalized Kalman filtering under unknown in-
put (GKF-UI) for the identification of seismic
ground excitation to multi-story and tall buildings,
respectively. Naets et al.'''" utilized an improved
augmented Kalman filter algorithm based on mea-
surement to resolve prediction result divergence.

"/ introduced a joint input state estima-

Maes et al.'
tion (JISE) algorithm considering model-measure-
ment error correlation and time delay, along with a

smoothing algorithm based on JISE, applied to actu-

al projects for practical measurements. Aucejo et
al.'™" explored the adaptability of AKF in recon-
structing mechanical sources, proposing a new state
space representation of dynamic systems based on a
generalized method.

The Kalman filtering algorithm shows promise
in reconstructing structural dynamic responses, par-
ticularly in cases with model errors. However, the
simultaneous reconstruction of structural external
excitation and response has received limited atten-
tions. Lei et al.""* proposed a generalized Kalman fil-
ter with unknown input to identify structural states
and unknown excitations in real-time. A revised ver-
sion of observation equation is present by He et
al."™ for the simultaneous identification of structural
parameters and the unknown excitations. Tang et

al [

explored the influence of various filtering pa-
rameters (covariance matrix Q of model noise and
covariance matrix R of measurement noise) in ex-
tended Kalman filtering on the time-varying parame-
ter tracking performance of the structure.

The modal expansion technique is adopted to
reduce the dimension of the motion equations and
the size of the structural state to be identified"" .
These work above focused on the discrete system.
On the basis of the classical Kalman filtering meth-
od, this paper proposes a Kalman filtering algorithm
based on excitation prediction, used for the recon-
struction of structural dynamic response for continu-
ous systems. The Kalman filtering algorithm in
modal space for continuous system is derived and in-
vestigated with modal parameters and noise distur-
bance.

Initially, the weighted least squares method is
used to determine the load weighting matrix to iden-
tify the excitation, and the minimum variance unbi-
ased estimation is used to determine the Kalman fil-
ter gain. The excitation prediction Kalman filter is
constructed through time update, excitation update,
and measurement update. Then, the calculation pro-
cess of the excitation prediction Kalman filter algo-
rithm is presented, extending the algorithm from
physical space to mode space for continuous sys-
tems. Finally, a simple supported beam system is
taken as a simulation example to analyze the feasibil-

ity and reliability of load identification and response
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reconstruction under different external excitations,
such as impact excitation and fixed frequency excita-
tion. Various noise conditions and model errors are
introduced to evaluate the noise resistance of this
method. The simulation results demonstrate that the
algorithm can effectively identify and reconstruct

various excitations.

1 Structural Dynamic Response

Reconstruction Algorithm Based
on Excitation Prediction Kalman
Filter for Multi-degree of Free-
dom System

1.1 Response reconstruction algorithm in phys-

ical space

A study was conducted on the response recon-
struction of multi-degree of freedom systems, and
the response reconstruction process of multi-degree
of freedom systems in physical space and modal
space was derived. The model is shown in Fig.1,
where m, represents mass, 4, denotes stiffness, ¢, is
damping, F,(7) indicates the external dynamic load

and p, indicates the displacement, i=1,2,+,n

i FolL [~ ! F(t) ke rF(t) -

e DR

Fig.1 Muhrdcgrcc of freedom system under concentrated

force

The motion equation of an n-degree-of-free-

dom dynamical system shown in Fig.1 is
Mp(t)+ Cp(2)+ Kp(t)=B,u(t) (1)

where M, C and K represent the mass matrix,
damping matrix and stiffness matrix, respectively;
p(2),p(2), and p(z) the displacement, velocity,
and acceleration vectors, respectively; and B, repre-
sents the influence matrix of the external load (),
which is related to the position of the load. The ma-
trix consists of 0 and 1, with all values being 0 ex-
cept for 1 at the load location.

To transform the dynamic motion Eq.(1) into
a linear state-space form, we have

z(t)=A.x(t)+ B.u(r) (2)

where

And, x(z) and y(t

and measurement vector,

)are the structure state vector
A, and B,

the state transfer matrix and the excitation influence

respectively;

matrix; H and D the observation matrix and excita-
tion influence matrix, respectively. When the mea-
sured value is acceleration, we have
{Hz[—HOM 'K —H,M 'C]
D=H,M 'B,

Assuming the equispaced sampling time instant

(5)

is t(t=ty,t,,,1,) and these instants are small
enough, we can also reasonably assume that the ex-
citation u(7) remains unchanged within Az=1r, , —
t., and Egs.(2) and (3) can be discretized as

x,. 1= Ax,+ Bu,

vi= Hx,+ Du, ©)
where u, is the external excitation; x,., and x; rep-
resent the structural state vectors at time (£+ 1)Az
and kAf, respectively; A and B the state transition
matrix and the excitation influence matrix in a dis-

crete format, respectively, and defined as

A=t @)
At At
BZJ A(O,Z’)B{dfzj e’ B, dr=
0 0
At
| “etvdeB.=(a—1)a."B, (8)

0

1.2 Response reconstruction of Kalman filter

based on excitation prediction

A structural dynamic response reconstruction
method based on the excitation prediction Kalman
filter is proposed, which includes an excitation iden-
tification step and uses weighted least squares to
identify the excitation. Combining Kalman filtering
for state estimation and utilizing time update steps
and measurement update steps to achieve recursion
and state correction, can simultaneously achieve ex-
citation recognition and response reconstruction.

The specific calculation process is as follows.
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(1) Time update step
According to Eq.(6), we get
Ty 1= ATy T By 9)
where x,, , is a priori estimate, and x, ., , a
posteriori estimate of time £ — 1.
The error of the estimate of x,, ,,1s
Ty nV=Tr— Ty 1 =AZ; 1 yT B, o+ we
(10)
where = x, — 2, and w,, 1s considered to be
independent identically distributed Gaussian noise
with the mean value 0.
(2) Excitation identification step
Define residuals as
Ye=yr— Hxy, (1)
y: = Hx,+ Du, + v, (12)
where v, represents the measurement error.

Get the relationship between y, and u,, shown

y«=Du,+Hzy, ,, T vi=Du,+e (13
where e,= HZxy, )+ v, Since x,, , is an unbi-
ased estimation and E(wv,)=0, we can obtain
E(3y.,)=DE (u,). Next, the external excitation is es-
timated as

ﬁ&:Jk(y/c_qu(ﬁfl)) (14)
where J, is to be a solved parameter which makes u,
be an unbiased estimation of the external excita-
tion u,.
Replacing Eq.(14) with Eq.(12), we obtain
4,=J,Du,+ J,e; (15)
If u, is an unbiased estimate of u,, we have
J.D=1. Let
R,=E(eeel)=HP;, H"+ R, (16)
where R,=E (v,v} ), and R, is a positive definite
matrix. According to the least squares method, it
can be inferred that
J,=(D"R,'D)'D"R," (17)
Predicting u, is also a parameter estimation
method similar to weighted least squares. Let y, be
the observation value and R;' be the weight, then
the variance Py of 4, is
P/?:E( zlﬁzii )ZJ;?eﬁeE‘Jﬁ‘:
J(HZy, o) (HZy, o) T/ =
Jk(HPf,"(ﬁ,l)HTJrRk)Jk:
(D'R,'D)'D"R;'R,R,'D[(D"R;'D) ' ]'=
(D"R,'D)"!
(18)

(3) Measurement update step
For measurement update, we assume that
T == Tyr—1) + Kk(y[) — Hxy, ) — Du,) (19)
where K, is the Kalman gain, which can be solved
by minimizing the variance matrix using the weight-
ed least squares method "',
K,=Pj, H'R,' (20)
Py =P, ,—K,(R,'—DP;D")K] (21)
So far, the derivation of the Kalman filter algo-
rithm based on excitation prediction has been com-
pleted. The time update step, force identification
step, and measurement update step are detailed be-
low
Ty 1= Ax; T By
u,=J(y.— Hxy, ) (22)
Ty =Ty T+ Kily,— Hzxy, ) — Day)
To sum up, the flow of Kalman filter algo-
rithm based on excitation prediction is given in Ta-
ble 1.

Table 1 Kalman filter algorithm based on excitation pre-

diction

(1) Given the initial values &, P,

(2) Exciation identification step
R,=HPj, H"+R,
J,=(D'R,'D) 'D"R;’
u,=J(y,— Hazxy, - ")
P{=(D'R,'D)"

(3) Measurement update step

K,=Pi, H'R,'
Ty =2y, 1+ Kily,— Hxy, 1 — Day)
Pi,=Pj, ,— K.R,'—DP;/D")K/
P =Py ) =K,DP}

(4) Time update step

Loy = Ay + Bu,

. P .I'\/ .\I'Lz A T
POHrIW-:[ A B] |:P,f“: P;‘}|:BT}+ Gy

In order to achieve structural response recon-
struction, which involves using signals from a limit-
ed number of observation points to predict the re-
sponse values of the target point, we utilize a Kal-
man filter algorithm based on excitation prediction,
as described earlier. This enables us to obtain sys-

tem state and excitation predictions, thereby facili-
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tating structural response reconstruction. At this
point, the state transition equation and observation

equation can be expressed as follows

x,=Ax, .+ Bu, +w,
(23)
yi=H"x,+ D"u,+ v,
where the superscript m denotes the measurement
position, signifying the position of the measured val-
ue. In accordance with Eq.(23), the reconstruction
response at the target point can be obtained through
Kalman filtering, representing the posterior value &,
yi=H'x,,+ Du, (24)
where the superscript r indicates the position of the
reconstruction value of the target point, and yj; the
response value of the reconstruction of the target
point. Now, if y, is taken as the true response value
of the target point, then

y.=H'x,+ Du, (25)
When applying this algorithm to reconstruct the
dynamic response of a known structure under un-
known excitation, the model parameters of the struc-
ture must be calculated as algorithm parameters. In
addition, the response data collected from finite ele-
ment simulations or sensors should be input as obser-
vations into the algorithm. This process can perform
dynamic response reconstruction (DRR) of the
structure and predict excitation. Although the mea-
surement signals in this article are exclusive acceler-
ation ones, this response reconstruction method is
still feasible for other measurement signals such as

strain, displacement, and velocity.

2 Response Reconstruction Algo-
rithm of Multi-degree Freedom
System in Modal Space

In physical space, a large number of multi de-
gree of freedom systems involve complex parameter
matrices such as A,, B,. During response reconstruc-
tion operations based on Kalman filtering, the recur-
sive process greatly increases the operating pressure
on the computer, and in many cases, it is even im-
possible to obtain them. In actual system vibration,
the first few modes often play a dominant role.
These modes contribute significantly to the vibra-

tion of the system. Therefore, consider performing

modal transformation on it in the modal space,
which is, using the first few dominant modes to rea-
sonably replace the entire system mode. In this pa-
per, the number of modal truncation is 4.

To reconstruct the dynamic response of a struc-
ture in modal space, it is first necessary to decouple
the vibration differential equation and transform it
from physical space to modal space. According to
the modal analysis theory, the displacement of a
structure can be obtained through modal transforma-
tion, shown as

plt)=@q(1) (26)
where ¢(7) is the modal displacement vector, and
@ the modal mode shape matrix of the system.

For |[[K]— @) M ]|=0, the natural frequen-
cy and mode vector of the system are w,, w,, =+, w,
and @ =[¢, ¢, - @,], respectively.

Substituting Eq.(26) into Eq.(1), the motion
equation of the dynamic system can be written as
P MDj(t) +D'COG(1) + D KDg(t) =

@' B,u(t) (27)
withu(z)=[ F,(¢) F,(¢) - F,(z)] If it meets

Q' MD=] (28)

O Ko =A (29)

where A=diag(A, A, --- 1,) and A, =w! (i=1,
2, =+, n), Eq.(27) can be abbreviated as

Gg()+Irq(t)+Ag(t)=® " B,u(r) (30)

where I' = @' C® represents the modal damping. If

the system damping is proportional, the modal

damping matrix I" is

260, 0 0
0 28, w,

r=| sz (31)
0 0 2w,

where y,—2&w, represents the ith order modal
damping, and &; the ith order modal damping rate.
Utilizing the modal analysis theory, Eq.(27) can al-
so be converted into the state-space (Eq.(2)). Con-

sequently, we have

x(z‘)[q“)},/}[[ 0! }B[ Y }(32)
g(t) —A —T @'B,

Based on Eqgs.(2—5) , the discrete state-space
equation and observation equation can be obtained.

When the observation corresponds to acceleration sig-
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nals, in modal space, we have H=[—H,®®"K
—H,®®"C Jand D = H,®@®" B, ,here H, is a posi-
tion matrix composed of 0 and 1.

Taking A, B, H, and D as inputs, the struc-
tural dynamic response is reconstructed. Through
the excitation recognition step, the external excita-
tion estimate u, of the system is identified. At the
same time, the state estimate x, 1s obtained
through the measurement update step and time up-
date step. Based on the partial observation values y,
of the system response under the input external exci-

tation, the response information y, of the target

point can be reconstructed.

3 Response Reconstruction Algo-
rithm of Continuous System in
Modal Space

For continuous system, the natural frequency,
mass-normalized natural mode shape, and damping

matrix of the model are directly acquired via Patran &

Nastran. Once the modal truncation number is deter-
mined, the matrices @, A, I' are calculated, and
then the parameter matrices A, and B, for the structur-
al dynamic response method are constructed. Dis-
cretizing it using the time interval Az, we derive the
state transition matrix A and excitation influence ma-
trix B. if the observation is an acceleration signal,
we have

H=[—-H®®P'K —H,®P'C|,D=H,9dD"'B,.

To ensure matrix D with full rank'®’, the accel-
eration observation points include the locations
where excitation acts.

In modal space, the estimation of the external
excitation of the system is obtained through the exci-
tation identification step, which is similar to the
analysis of multi-degree-of-freedom systems. Simul-
taneously, the response information at the target
point can be reconstructed. Fig.2 shows the flow
chart of response reconstruction method for continu-

ous system in modal space.

Establish a finite element model

!

Model frequency, model mode and
model damping

{

Determine the order of
modal truncation

i

Determine observation

Modal mode matrix @,
modal stiffness matrix A,

Continuous state transition

. . ) . — matrices
point matrix H, modal damping matrix I,
o g . A, and B,
and excitation matrix
Observation equation matrices ;
Determine

Hand D

Observations of
structural components

System response under|

ise under| Vx|
external excitation

l

Structural response reconstruction
algorithm for infinite degree of
freedom systems in modal space

l Reconstruct values y;

Reconstruct the responses of
the target points

sampling time

Discretized state transition
matrices A and B

Fig.2 Flow chart of response reconstruction method for continuous system in modal space

4 Accuracy Evaluation Method

The peak relative error method (PREM) , sig-
nal to noise ratio (SNR) and angle cosine method

(ACM) are used to evaluate the accuracy of load

identification. We assume that the theoretically accu-
rate response signal is represented by X (7), while
the reconstructed response signal is represented

by Y (7).
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(1) PREM
PREM(X, ¥ )— Imax Y (7)— max X (7)| % 100%
max X (7)
(33)
(2) SNR

DIX7(0)
SNR(X,Y )=10lg = (34)

n

MIx(i)— YD)

i=1

(3) ACM
The similarity between two vectors can be mea-
sured by calculating the cosine of the angle ¢ be-

tween them , shown as

5 Simulation Example

The simply supported beam model depicted in
Fig.3 is taken as an example. The simply supported
beam is 1 m long, 0.05 m wide, and 0.005 m thick.
The elastic modulus is 206 GPa, the density is
7 900 kg/m?®, and the Poisson’s ratio is 0.3. A dy-

namic load f is applied to the beam.

f

Fig.3 Simply supported beam under concentrated force

X

Following the dynamic response reconstruction
method proposed in this paper for continuous sys-
tem, the dynamic response of the target point is re-
constructed using response information from a finite
number of points. Simultaneously, the dynamic load
applied to the structure is identified and compared
with the actual structural dynamic response and load
to verify the feasibility and accuracy of this dynamic
response reconstruction method for a continuous

structure.

5.1 Excitation identification and response re-

construction under impact excitation

For the simply supported beam model, the dy-

namic load is assumed to be an impact load and a
half sine wave within a short duration, specifically
from 0.1 s to 0.110 s, while the load remains O at
other time. Let the dynamic load fdefined as /' (¢)=
sin( 2z X 507).

The system begins in a zero initial state. The
Patran software package is utilized for modelling the
simply supported beam, while the Nastran software
package is employed for transient dynamics analy-
sis. The sampling time for acceleration response is
5 s, and the sampling rate is 1 024.

(1) Excitation identification and response recon-
struction under error free impact excitation

When noise conditions are not taken into ac-
count, Fig.4 presents a partial enlarged view of the
comparison results between the load identified in the
excitation identification step and the actual value at
the moment of force application. Similarly, Fig.5
depicts the comparison between the acceleration re-
sponse of the target node reconstructed by the algo-
rithm and the theoretical value. Table 2 presents the
reconstruction error results under error free impact
excitation, which are the average values obtained

from multiple sets of data calculations.

2.0

[—Theoretical valuce
---- Identification value
Z 15
(5
£
€ Lo
2
£
S 05f
i3]
0.0 P
0.05 0.10 0.15
Time /s

Fig.4 Partial magnification of identification results for error

free impact excitation

2.0
1.5F
1.0}

3(5); *‘MN‘“\ "M‘ Xﬁﬂf\f‘\/\mﬁ/\f\,\w
_0:5_, \*"‘-‘i;‘iﬁ’\"‘t}h‘d VWY
-1.0+
1.5}

2.0 . . . .
00 05 10 15 20 25 30 35 40

Time /s

—— Theoretical value
Identification value

Acceleration / (m * 57)

Fig.5 Reconstruction results of acceleration response of tar-

get nodes under error free impact excitation



No. 2 LI Hongqiu, et al. A Structural Dynamic Response Reconstruction Method for Continuous System Based-+- 257

Table 2 Reconstruction error results under error free

impact excitation

PREM/ SNR/

Error evaluation method CM
% dB

Load identification 3.99 37.9 0.99

Response reconstruction 0.44 98.8 1.00

From the above charts, it is evident that when
noise 1s disregarded and accurate model parameters
are employed, the structural dynamic response re-
construction algorithm effectively identifies impact
excitation. Moreover, the reconstructed acceleration
response signal, in terms of amplitude, SNR, and
cosine value of the included angle, aligns perfectly
with the theoretical value. Thus, the feasibility of
excitation identification and response reconstruction
using the algorithm proposed in this paper is con-
firmed under error-free conditions when applying im-
pact loads.

(2) Excitation identification and response recon-
struction under impact excitation considering modal
parameter error and Gaussian white noise

Fig.6 provides a comparison between the iden-
tified excitation forces and the true applied loads at
the moment of impact, considering 5% modal pa-
rameter errors and observation polluted with zero-
mean Gaussian white noise (standard deviation
0.001). Similarly, Fig.7 demonstrates the consisten-
cy of the reconstructed acceleration response of the
target node and its theoretical counterpart. Table 3
presents the reconstruction error results with 5%
modal noise error and Gaussian white noise, which
represent the average values computed from multi-
ple data sets. As observed from Table 3, when

Gaussian white noise and modal parameter noise are

2.0 ~——Theoretical valuce
---- Identification valuejn

Z 15
(5
5
€ Lo
8
£
S 05F
45

0.0 ReES =S

0.05 0.10 0.15

Time /s
Fig.6 Partial magnification of identification results for im-
pact excitation with 5% modal noise error and Gauss-

1an white noise

2.0
1.5F
1.0
0.5
0.0
-0.5
-1.0
-1.5¢

2.0 . . . .
0.0 0. 10 15 20 25 30 35 40

Time /s

— Theoretical value

-~~~ Identification value

Acceleration / (m * 57)

Fig.7 Reconstruction results of acceleration response of tar-
get nodes with 5% modal noise error and Gaussian

white noise

Table 3 Reconstruction error results under impact exci-
tation with 5% modal noise and Gaussian white

noise

PREM/ SNR/

Error evaluation method ACM
% dB

Load identification 8.33 16.6 0.88

Response reconstruction 7.06 47.2 0.99

concurrently introduced, the relative error of the
peak value remains within 10%. The SNR and the
cosine value of the included angle are somewhat
high, while they still fall within an acceptable error
range for practical engineering applications. The
maximum value of angle cosine method is 1, and
the closer the value is to 1, the closer the recogni-
tion value or reconstruction value signal is to the the-

oretical value.

5.2 Excitation identification and response re-
construction under fixed frequency excita-
tion

Let the dynamic load f be a fixed frequency

load defined as f(z)= sin(2x X 20¢)+ 3sin(2x X

30¢). Same as case one, Patran is utilized to simu-

late model for response calculation. With a sampling

rate of 1 024 Hz, the sampling time is set to 5 s,

and the acceleration response is computed according-

ly. By combining the calculated response data with
the natural frequencies and modes obtained through
finite element analysis, we construct the parameter
matrix required for the algorithm to reconstruct the
response. The initial state vector of the system is as-

sumed to be 0.

(1) Excitation identification and response re-
construction under error free fixed frequency excita-

tion
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When noise conditions are not taken into con-
sideration, the model is analyzed accordingly. Fol-
lowing the algorithm, we compare the load identi-
fied by the excitation identification step with the ac-
tual value. Fig.8 and Fig.9 show the effectiveness of
the identified excitation forces and reconstructed ac-
celeration response, respectively, under fixed-fre-
quency excitation conditions without model distur-
bance and noise interruption. Data results, which
represent the average values computed from multi-

ple data sets, are provided in Table 4.

6 — Theoretical value
Z. 4f --- Identification value
0 /\ \ [ﬁ\ | /1“\ f A [\ \
N |
2] 2“ i /‘ 1\ “/5\ /‘y H /»\ I ” ‘(‘ /\‘ IR ‘."\\ /\\
£ H\‘w“w&\‘*;"/\'M‘MM
s oL UL L Y
£ \f\uhw\\,;\M‘H\kuz
g LLUV YV UV UV Y
5 AT R AR VA VIR TR R AR |
2l \ \ i VYo
-6 N S S S
4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00
Time /s
Fig.8 Partial amplification of identification results of fixed
frequency excitation without error
— Theoretical value
LN ---~ Identification value
i ,
£
3
[
3
<

-8 , 1 i . i . i ; .
4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00
Time /s

Fig.9 Partial magnification of reconstruction results of ac-

celeration response without error

Table 4 Reconstruction error results without error when

applying fixed frequency excitation

PREM/ SNR/

Error evaluation method ACM
% dB

Load identification 0.67 64.7 0.99

Response reconstruction 0.01 176.2 1.00

From the charts, it is evident that without con-
sidering noise and employing accurate model param-
eters, and when the applied force is a fixed frequen-
cy excitation, the algorithm can precisely identify
the fixed frequency excitation. The relative error of
its peak value is 0.67 %, and the SNR and the cosine

value of the included angle demonstrate an ideal

overall degree of coincidence for the evaluation
curve. Moreover, the response signal reconstructed
by the algorithm perfectly aligns with the theoretical
value in terms of amplitude, SNR, or cosine value
of the included angle. This confirms the feasibility of
load identification and response reconstruction when
a fixed frequency excitation is applied without error.

(2) Excitation identification and response re-
construction under fixed {requency excitation consid-
ering modal parameter error and Gaussian white
noise

Modal parameter errors and Gaussian white
noise are factored to verify the algorithm. Assuming
that the observation noise follows a Gaussian distri-
bution with a mean of 0 and a standard deviation of
0.001, and incorporating a 5% modal parameter er-
ror, we assess the algorithm’s performance. The
comparisons between the identification or recon-
structed result and theoretical value are presented in
Fig.10 and Fig.11. As shown in figures, the good
agreements can be obtained under the conditions of
fixed-frequency excitation conditions with 5% mod-
el disturbance and zero-mean Gaussian white noise
interruption (standard deviation 0.001). Data re-
sults, representing the average values calculated
from multiple data sets, are provided in Table 5.

From the results, it is apparent that when con-
sidering the actual situation and introducing Gauss-
ian white noise and modal parameter error, the rela-
tive error of the peak value remains within 10%.
Fortunately, the SNR and the cosine value of the in-
cluded angle result in an overall excellent identifica-
tion and reconstruction effect. This validates the fea-

sibility and reliability of the algorithm when a fixed

6 ——Theoretical value

4 ---- Identification value
2
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z- MM \/\/\M\M

-6 i . ’ i i i . i i
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Time /s

Excitation force / N

Fig.10 Partial amplification of identification results of fixed
frequency excitation with 5% modal noise error and

Gaussian white noise
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