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Abstract: The production mode of manufacturing industry presents characteristics of multiple varieties， small-batch 
and personalization， leading to frequent disturbances in workshop. Traditional centralized scheduling methods are 
difficult to achieve efficient and real-time production management under dynamic disturbance. In order to improve the 
intelligence and adaptability of production scheduler， a novel distributed scheduling architecture is proposed， which 
has the ability to autonomously allocate tasks and handle disturbances. All production tasks are scheduled through 
autonomous collaboration and decision-making between intelligent machines. Firstly， the multi-agent technology is 
applied to build a self-organizing manufacturing system， enabling each machine to be equipped with the ability of 
active information interaction and joint-action execution. Secondly， various self-organizing collaboration strategies are 
designed to effectively facilitate cooperation and competition among multiple agents， thereby flexibly achieving global 
perception of environmental state. To ensure the adaptability and superiority of production decisions in dynamic 
environment， deep reinforcement learning is applied to build a smart production scheduler. Based on the perceived 
environment state， the scheduler intelligently generates the optimal production strategy to guide the task allocation 
and resource configuration. The feasibility and effectiveness of the proposed method are verified through three 
experimental scenarios using a discrete manufacturing workshop as the test bed. Compared to heuristic dispatching 
rules， the proposed method achieves an average performance improvement of 34.0% in three scenarios in terms of 
order tardiness. The proposed system can provide a new reference for the design of smart manufacturing systems.
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0 Introduction 

Affected by economic globalization， consum⁃
ers’ demand for products has significantly diversi⁃
fied， personalized and dynamic characteristics， and 
the update speed of product has accelerated. In order 
to meet customer needs and adapt to market competi⁃
tion， the manufacturer’s production mode has trans⁃
formed from large-batch assembly lines to small-
batch customized production［1］. In customized pro⁃
duction， manufacturing workshop needs to realize 
the flexible allocation of manufacturing resources 

and the rapid reconstruction of the production line［2］. 
There are various machine tools in the workshop， 
and machine tools can fulfill different multiple pro⁃
cessing technologies. The production tasks of work⁃
piece include a variety of operations. When the 
workpiece is assigned to different machines， the 
time and cost of each operation are not consistent. If 
the production task is not well matched with the ma⁃
chine tool， it will cause huge waste of resources in 
the workshop under customized production and may 
affect the delivery date of products. In workshop en⁃
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vironment， the types of orders， machines， and pro⁃
cessing status are diversified and complicated， mak⁃
ing it difficult for manual management to effectively 
control and allocate manufacturing resources.

In order to optimize the workshop production 
efficiency， the workshop scheduling has become an 
important research issue. The key of workshop 
scheduling is to rationally match and sort the produc⁃
tion tasks with manufacturing resources， and meet 
some overall optimization goals （e. g.， maximum 
completion time， minimum production cost， and 
minimum energy consumption）. In the field of work⁃
shop scheduling， job shop scheduling problem 
（JSP） is a classic NP-hard problem. JSP assumes 
that each type of operation for a workpiece can only 
be processed on a specific machine tool. However， 
in actual production， such assumptions are difficult 
to establish. At present， there are many types of ma⁃
chine tools in the workshop， and multiple machine 
tools are available for each operation to choose 
from. With the deepening of research， many flexible 
extensions of JSP have been developed. Among 
them， the flexible JSP （FJSP） is more in line with 
the characteristics of actual workshop. In FJSP， one 
type of operation can be processed on multiple ma⁃
chine tools. The advantage of deep reinforcement 
learning （DRL） algorithm is to optimize the sequen⁃
tial decision-making problem， and the DRL model 
can be trained and optimized without feeding the la⁃
beled data. The focus of this paper is to solve the 
FJSP， which can be described as a type of sequen⁃
tial decision-making problem.

From the literature review， heuristic algo⁃
rithms （e.g.， PSO［3］， GA［4-6］）， game theory［7］， and 
priority dispatching rules［8］ have been investigated 
to solve the FJSP. Heuristic algorithms obtain the 
optimal or near optimal solution to the scheduling 
problem through population iteration and search 
strategy. However， they are faced with the problem 
of rescheduling when encountering unpredictable 
events， which will take up a lot of computing time 
and lead to poor real-time performance. It is hard to 
handle dynamic events where lots of real-time deci⁃
sions are needed to be made quickly. Priority dis⁃
patching rules have good generalization and adapt⁃

ability in solving various kinds of scheduling prob⁃
lems and handling unpredictable events， while the 
quality of the obtained solutions is not good. After 
training， the DRL model can be reused to obtain 
high-quality solutions in a short computing time. 
When dealing with abnormal events， the DRL mod⁃
el has good generalization， and its accuracy is close 
to that of meta-heuristic algorithm［9］. To sum up， 
compared with traditional methods， DRL has the 
advantages of fast response speed， accurate deci⁃
sion-making， online learning， and strong generaliza⁃
tion in solving FJSP. Therefore， DRL is chosen as 
the decision-making strategy of the proposed sys⁃
tem. The comparison of different methods in solving 
FJSP are shown in Table 1.

In addition， previous research has mostly fo⁃
cused on centralized scheduling architecture. All 
scheduling decision results need to be requested 
from the central server. This will the non-real-time 
nature of the decision-making process， which is not 
conducive to dealing with dynamic events in the 
workshop. The research contributions of this paper 
are as follows.

（1） A distributed scheduling architecture based 
on multi-agent technology is proposed to effectively 
organize and manage various manufacturing resourc⁃
es. This architecture promotes interaction between 
machine tools in the workshop， enabling intelligent 
machines to autonomously generate optimal produc⁃
tion strategies to adapt to environmental changes.

（2） An innovative collaborative decision-mak⁃
ing mechanism for multi-agent manufacturing sys⁃
tem is proposed， where all scheduling decisions are 
made near physical devices， enhancing the system’s 
self-organizing ability and effectively completing dy⁃

Table 1　Advantages of DRL in solving FJSP compared 
with traditional methods

Method

Speed of response
Quality of solution
Generalization of 

model

Heuristic 
algorithms

Slow
Good

Poor

Priority 
dispatching rules

Fast
Poor

Good

DRL[10⁃12]

Fast
Good

Good
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namic scheduling of small-batch and multi-variety 
order tasks.

1 System Architecture 

In smart workshops， manufacturing equipment 
supports digital and networked functions， and its 
manufacturing data can be obtained in real-time. 
However， there are information islands between 
manufacturing equipment， and there is a lack of ac⁃
tive information exchange between them. During 
the production process， order schedule can only be 
passively adjusted to meet changing customer de⁃
mands. In Industry 4.0， self-organizing capacity is a 
key indicator for evaluating the intelligence of manu⁃
facturing system［13］. In self-organizing manufactur⁃
ing systems， various machines can autonomously 
carry out task division and action collaboration， 
thereby efficiently completing high-volume-multiple-

variety order tasks. By embedding industrial person⁃
al computers into devices， manufacturing equip⁃
ment can be intelligently transformed and upgraded 
to possess environmental awareness， data analysis， 
and information exchange capabilities.

The overall architecture of multi-agent manu⁃
facturing system is proposed as shown in Fig.1. In 
multi-agent manufacturing system， each of equip⁃
ment， workpiece， and function module is construct⁃
ed as an agent［14-17］， including job agent （AJ）， ma⁃

chine agent （AM）， AS/RS agent （AAS/RS）， and lo⁃
gistics agent （AAGV）. AAS/RS represents the ware⁃
house and is responsible for managing raw materials 
and finished products. The key function of AAS/RS is 
to receive and manage personalized orders issued by 
the cloud platform， and sort these tasks according to 
the urgency rating to form a task scheduling queue. 
The logistics system is responsible for the transfer 
of raw materials and work-in-process between differ⁃
ent stations， and is composed of multiple automated 
guided vehicle（AGV）. AAGV represents the function⁃
al abstraction of the logistics system， which is used 
to receive transportation requests from other agents 
and generate transportation schemes. Once the start 
and destination of transportation task are deter⁃
mined， AAGV can intelligently choose the most suit⁃
able AGV to carry out the transportation operation 
of the workpiece. AJ records the processing process 
information and key information （e. g.， the turning 
process is processed on Machine 1） of WIP through 
RFID tags. Among them， AM is the key element of 
multi-agent manufacturing system， and it is the 
main executor of production tasks and the main initi⁃
ator of collaborative requests. AM is not only respon⁃
sible for information interaction with equipment enti⁃
ties， but also for monitoring and controlling the exe⁃
cution of machining tasks. For example， controlling 
the robot to grab workpieces from buffer zone to 

Fig.1　Overall architecture of multi-agent manufacturing system
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workbench， as well as reading the processing prog⁃
ress of tasks and the workload of the machine. For 
other agents， AM is the main participant in the coop⁃
eration and competition process of completing pro⁃
duction tasks.

As shown in Fig.1， the internal structure of 
agent consists of communication layer， adapter lay⁃
er and intelligent analysis layer. The role of com⁃
munication layer is to interact with other agents 
through the Internet of Things and obtain the latest 
operation status data of other machines. The role of 
the analysis layer is to analyze and process the con⁃
tent of the acquired information during collaboration 
process， and produce decision results to control the 
implementation of production activities. The role of 
adaptation layer is to support agent to collect manu⁃
facturing data through different communication pro⁃
tocol interfaces and send control instructions to the 
machine based on the decision results.

The analysis layer of AAS/RS and AM is deployed 
with intelligent decision-making module， called AI 
scheduler， which is used to generate scheduling de⁃
cision after multi-agent negotiation. According to 
the perceived manufacturing status information and 
task information， AI scheduler can intelligently se⁃
lect appropriate machines to perform tasks.

The scheduling goal of multi-agent manufactur⁃
ing system is to efficiently， flexibly， and intelligent⁃
ly complete multi-batch and multi-variety produc⁃
tion tasks through negotiation and competition 
among multiple equipment agents. When the cus⁃
tomer submits personalized order， the AS/RS 
agent decomposes the order into multiple tasks. 
These tasks are scheduled sequentially in queue or⁃
der. At the same time， the negotiation process be⁃
tween agents will be triggered. The negotiation 
mechanism enables the equipment agent to observe 
the working status and ability of other manufactur⁃
ing equipment in real time， and to obtain the state 
features of workshop environment. Then， AI sched⁃
uler selects appropriate machine tool to perform pro⁃
duction tasks based on state features. In addition， 
AAGV assigns an AGV to transfer the workpiece to 
be processed from current station to target station. 
Different agents continue to cooperate and compete 

until all tasks are completed.

2 Problem Formulation 

In this paper， the application of multi-agent 
manufacturing system is to solve the dynamic job 
shop scheduling problem （DJSP） in flexible produc⁃
tion processes. In DJSP， there are some jobs J =
{ j1，j2，…，jN } that need to be assigned to different 
machines for processing. Each job contains multiple 
operations that need to be processed ， and the 
processing capabilities and nominal operating 
time required for each operation are inconsistent. 
Correspondingly， there are M machines M t =
{ M 1，M 2，…，M M } available to be requested. Each 
operation O i，j of j⁃i can be processed on a set of ma⁃
chine tools M c = { M i，1，M i，2，…，M i，x }. Meanwhile， 
the arrival time of jobs in the manufacturing system 
is unpredictable and dynamic. This further enhances 
the complexity of DJSP， which is a typical NP-hard 
problem. The optimization objective is to allocate 
the waiting manufacturing tasks to suitable ma⁃
chines at the scheduling time t to minimize the order 
tardiness. In this paper， the optimization objective is 
presented in the form of a reward function to opti⁃
mize the decision model of AI scheduler， which is 
elaborated in detail in Section 3.3.

The constraints of the DJSP model are as fol⁃
lows

st i,j + xi,j,m × ti,j,m ≤ et i,j (1)
et i,j ≤ st i,j + 1     j = 1,2,⋯,hi - 1 (2)

∑
m = 1

M

xi,j,m = 1     i = 1,2,⋯,N ; j ∈ hi (3)

where xi，j，m is the decision variable， representing 
whether the operation O i，j is assigned to machine 
M m for processing； st i，j and et i，j are the start and end 
processing times of operation O i，j， respectively； 
ti，j，m is the actual processing time of operation O i，j on 
machine M m，and hi the set of all operations of Job i. 
Eqs.（1） and （2） ensure that the subsequent operation 
of a workpiece can only begin after the previous op⁃
eration is completed. Eq.（3） represents that at a cer⁃
tain moment， each operation of the workpiece can 
only be processed by one machine tool.
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3 Algorithm Design 

This section introduces the key algorithms， 
including self-organizing collaboration and adaptive 
decision-making methods. Self-organizing collabora⁃
tion section elaborates how multiple agents can col⁃
laborate and compete during workshop operations. 
Adaptive decision-making section explains how to 
generate the optimal scheduling strategy under dy⁃
namic environment.

3. 1 Self‑organizing collaboration among multi‑
ple agents　

Collaborative intelligence is a key feature of 
self-organizing manufacturing system［18-20］. In self-or⁃
ganizing manufacturing system， various machines 
perform cooperation and competition through negoti⁃
ation mechanisms to efficiently complete task alloca⁃
tion and execution. In this paper， the contract net⁃
work protocol is applied to design a multi-agent ne⁃
gotiation mechanism to guide self-organizing collab⁃
oration among multiple agents. The collaborative 
behavior occurs between machine agent and logis⁃
tics agent， as well as between different machine 
agents. When a workpiece needs to be transported 
between stations， cooperative behavior between ma⁃
chine agent and logistics agent is required. The pro⁃
duction task of a workpiece usually consists of differ⁃
ent types of operations， requiring cooperation be⁃
tween machine agents to complete the production 
task. The competitive behavior occurs between ma⁃
chine agents with the same function. For example， 
when a “milling” task needs to be scheduled， ma⁃
chine agents with machining capability compete 
with each other through negotiation mechanisms， 
and ultimately the most suitable machine is selected 
to perform the processing task by AI scheduler 
based on performance metrics. There are three 
types of scheduling events （i. e. operation comple⁃
tion， urgent job insertion， and machine failure） that 
can trigger self-organizing collaboration among mul⁃
tiple agents. Among them， “operation completion” 
is a routine production event， while the rest are dis⁃
ruptive production events.

When the scheduling event is “operation com ⁃
pletion”， machine agent AM2 that has completed the 

operation task needs to allocate a new machine tool 
for processing the next operation of the workpiece 
（i.e.， Job 1）， as shown in Figs.2 and 3. Firstly， it 
is necessary to check whether all operations of Job 1 
have been completed. If completed， AM2 will send a 
transportation request to the logistics agent AAGV. 
Then， AAGV assigns an optimal AGV to transport 
the workpiece to the finished product warehouse. 
Otherwise， AM2 obtains the attribute information of 
the next operation （i. e.， operation type， expected 
completion time， and order urgency） by identifying 
the code of RFID tags， encapsulates the informa⁃
tion into a task-announcement， and initiates a new 
round of negotiation requests to the available ma⁃
chine agents. After receiving the bidding request， 
machine agents analyze the content of the task-an⁃
nouncement， obtain the operation attributes of the 
workpiece to be scheduled， and evaluate the task.

The process of task evaluation is divided into 
two parts. The first part is the preliminary evalua⁃
tion， whose result determines whether the machine 
agent will participate in this round of bidding. Based 
on the remaining buffer length and health status， it 
is evaluated whether the machine tool is suitable for 
receiving a new task under current situation. If the 
buffer is full or machine tool breaks down， the re⁃
sult of task evaluation is that the machine tool is not 
suitable for undertaking a new task， and the corre⁃
sponding machine agent will not participate in the 
bidding. The second one is performance evaluation， 
in which the machine agent participating in the bid⁃
ding measures the performance of completing the 
production task based on the workload and process⁃
ing capacity of the machine tool and its buffer occu⁃
pancy. The final evaluation result is encapsulated in⁃
to a bidding document and fed back to the bid initia⁃
tor. As shown in Figs. 2 and 3， the evaluation re⁃
sults show that AM1 and AM3 decide to participate in 
the bidding， while AMm decides to refuse the bid⁃
ding. AM1 and AM3 measure the performance of com ⁃
pleting the task based on machine tools’ production 
capacity， and encapsulate the evaluation result into 
a bidding document and feed it back to AM2.

The content of a bidding document is as fol⁃
lows： B = opid，macid，workoad，test . Here， opid de⁃
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Fig.2　Self-organizing collaborative process between agents

Fig.3　Cooperation and competition between equipment agents in the case of operation completion
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notes the operation index of the workpiece to be 
scheduled， macid the index of the machine agent par⁃
ticipating in the bidding， workoad the working time 
required for the remaining tasks of the machine， and 
test the processing time required for the machine to 
complete the operation task.

The AI scheduler of AM2 selects the most suit⁃
able machine agent （i. e.， AM1） to perform the task 
based on the performance metrics of bidding docu⁃
ments. Once the bidding is completed， AM1 initiates 
a request to AAGV for transporting the workpiece. Ac⁃
cording to task requirements， the appropriate AGV 
is automatically chosen by AAGV and transports the 
workpiece to the buffer of M1， and the awaiting 
task list of AM1 is updated subsequently. Then， AM1 
continues to execute the unfinished tasks in se⁃
quence.

3. 2 Rapid response strategy for dynamic dis‑
turbance events　

Urgent job insertion， and machine failure are 
common disturbance events in manufacturing work⁃

shops. It is necessary for manufacturing system to 
respond and handle disturbance events quickly， oth⁃
erwise it will reduce overall production efficiency. In 
this article， a rapid response strategy is designed for 
various disturbance events.

When the scheduling event is “machine fail⁃
ure”， the process of cooperation and competition be⁃
tween equipment agents is shown in Fig.4. In this 
situation， machine agent AM2 checks whether there 
are any unprocessed operations in its task list. If the 
task list is empty， AM2 enters the standby mode and 
cannot participate in the negotiation process until 
Machine M2 resumes operation. Otherwise， AM2 ini⁃
tiates a negotiation operation to schedule unpro⁃
cessed tasks in sequence. First， AM2 obtains the at⁃
tribute information of the pending operation， encap⁃
sulates the information into a task-announcement 
and sends it to available machine agents. Upon re⁃
ceiving the task-announcement， all participator 
agents （i. e.， AM1， AM3， and AMm） extract and ana⁃
lyze the production task contained in it， and evalu⁃

Fig.4　Cooperation and competition between equipment agents in the case of machine failure
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ate the task based on the machine tool’s processing 
capacity， and the number of remaining buffers. Ac⁃
cording to the evaluation results， the machine 
agents （i.e.， AM1， AM3， and AMm） decide whether to 
participate in the bidding. As shown in Fig.4， the 
evaluation results show that AM1， AM3， and AMm de⁃
cide to participate in the bidding. AM1， AM3， and 
AMm measure the performance of completing the pro⁃
duction task based on the workload， processing ca⁃
pacity， and buffer occupancy of corresponding ma⁃
chine tools， and encapsulate the evaluation results 
into bidding documents and feed them back to AM2. 
AM2 receives bidding documents within the specified 
time window. The AI scheduler of AM2 selects the 
most suitable machine agent （i. e.， AM3） to perform 
the task based on the performance metrics in the bid⁃
ding documents. AM3 initiates a request to AAGV for 
transporting the workpiece between stations. Ac⁃
cording to transportation requirements， the appropri⁃
ate AGV is automatically chosen by AAGV. The se⁃
lected AGV transports the workpiece to the buffer 
of machine M3， and the task list of AM3 is updated 
subsequently. Then， AM3 executes the unfinished 
tasks in the task list in sequence.

When the scheduling event is “urgent job inser⁃
tion”， the process of cooperation and competition 
between equipment agents is shown in Fig.5. Due to 
high urgency of the scheduled workpiece， it has the 
highest priority. Firstly， AAS/RS obtains the first oper⁃
ation attributes of the workpiece and initiates a nego⁃
tiation request to available machine agents. The ob⁃
tained attribute information is encapsulated into a 
task-announcement and sent to the machine agents 
（i. e.， AM1， AM2， AM3， and AMm）. Machine agents 
conduct task analysis and evaluation based on their 
own health status and processing capabilities， and 
provide feedback on the evaluation results to AAS/RS 
in the form of bidding document. AAS/RS merely re⁃
ceives the bidding documents within the predeter⁃
mined time window. Then， the AI scheduler of 
AAS/RS makes decisions for machine selection based 
on the performance metrics. As shown in Fig.5， Ma⁃
chine M2 is selected to perform production tasks. Fi⁃
nally， AAS/RS collaborates with AAGV to transport the 
workpieces to the buffer of M2 and update its await⁃
ing task list. When M2 completes the first operation 
of the workpiece， its next process task is executed 
in a multi-agent collaborative manner， as shown in 
Fig.3.

Fig.5　Cooperation and competition between equipment agents in the case of urgent job insertion
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3. 3 Adaptive decision‑making method for dy‑
namic scheduling　

In the process of self-organizing collaboration， 
machine agents can perceive the working status of 
other machines and obtain on-site manufacturing da⁃
ta. Their internal AI scheduler then generates the 
optimal production strategy based on environmental 
status. The decision generation is a key issue during 
self-organizing production processes， that is， multi-
task dynamic scheduling problem.

The scheduling problem can be modelled as a 
Markov decision process［6］. In this paper， DRL is 
used to solve the DJSP， that is， the assignment of 
jobs to machines in a dynamic environment. In DRL 
models， state features， optional actions and reward 
functions are key factors for successful implementa⁃
tion. State features S = { st，t ∈ T } are an accurate 

representation of environment and the key basis for 
AI schedulers to make decisions. The factors that af⁃
fect the task allocation need to be considered when 
designing the state features of workshop environ⁃
ment. The assignment of jobs to machines has a di⁃
rect relationship with the information of jobs and 
available machines. If one operation needs to be 
scheduled， it is necessary to investigate the opera⁃
tion attributes of the job （i. e.， operation type， ex⁃
pected completion time， and order urgency） and the 
working status of available machines （i.e.， machine 
type， processing speed， energy consumption， occu⁃
pation time， and buffer occupancy）. Based on attri⁃
bute information of the job and machines， the AI 
scheduler can intelligently make an optimal schedul⁃
ing decision to complete the task allocation， as 
shown in Fig.6， where DQN represents the deep Q-

network.

Thus， the state st = { s job，smac } of workshop en⁃
vironment consists of the task attributes of jobs and 
the performance attributes of available machines. 
s job = { sot，snp，sou } includes operation type， nominal 
processing time， and order urgency. smac =
{ smt，soc，sbo } includes machine type， occupation 
time， and buffer occupancy. The action space A =
{ at，t ∈ T } consists of all optional machines at =
{ ai，i ∈ M t } in shop floor， where M t denotes the col⁃
lection of machines. The production action ai is to 
select a machine M i to perform the task to be sched⁃
uled. The reward function R corresponds to the opti⁃
mization objective of scheduling problem. As shown 
in Eq.（4）， the reward function represents the differ⁃

ence between estimated completion time T͂ i，j and ac⁃
tual completion time Ti，j for operation O i，j. The 
completion time represents actual machining time 
consumed by one operation task. If T͂ i，j is greater 
than Ti，j， the reward value will be multiplied by an 
amplification factor， making the incentive for posi⁃
tive rewards higher. On the contrary， the reward val⁃
ue will be divided by a reduction factor， weakening 
the suppression of the reverse reward. The above 
process can be expressed as

R =
ì
í
î

ïïïï

ïïïï

( )T͂ i,j - Ti,j × εmax T͂ i,j > Ti,j

( )T͂ i,j - Ti,j /εmin T͂ i,j ≤ Ti,j

(4)

The operation process of task scheduling intelli⁃
gent decision method based on DQN algorithm is 

Fig.6　Running process of DQN-based adaptive scheduling method
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shown in Table 2. The core of the proposed method 
is the DQN algorithm， and its complexity typically 
involves two aspects， including time and spatial 
complexity. The calculation of complexity depends 
on the algorithm network structure， environmental 
characteristics， and problem size. The time com ⁃
plexity of the proposed algorithm includes the for⁃
ward and backward propagation time of the neural 
network， which is typically expressed as O （T×
P）. Here T is the number of iterations and P the to⁃
tal number of parameters in the neural network.

Neural network parameters and experience re⁃
play memory are applied to estimate the spatial com ⁃
plexity of the proposed algorithm from a general per⁃
spective. Assuming that the neural network has L 
layers， each layer has N neurons， and the size of ex⁃
perience replay is M. Therefore， the approximate 

estimation of the spatial complexity is：
（1） The spatial complexity of neural network 

parameters： O（L×N2） （the connections of each 
layer of neurons are fully connected）.

（2） The spatial complexity of experience re⁃
play memory： O（M×S）， where S is the size of the 
space occupied by each experience （state， action， 
reward， next state）.

4 Experimental Verification 

As shown in Fig.7， a manufacturing workshop 
test bed is used as the experimental environment 
and includes three lathes， three millers and three 
drillers. The test bed has the capability to handle a 
variety of operation technologies， including turning， 
milling， and drilling. Each machine has different at⁃
tribute values in terms of machining speed. Two ro⁃
bots are used to grab workpieces between buffer and 
workbench. Each machine has four buffer units for 
the placement of workpieces. The logistics system 
consists of two AGVs for transporting material and 
work-in-progress between workstations. The order 
management system constantly receives orders from 
customers and breaks them down into production 
task queues to be sent to the scheduling system.

There are three types of jobs that can be han⁃
dled by the test bed. Type 1 consists of two opera⁃
tions： turning and milling. Type 2 consists of two 
operations： milling and drilling. Type 3 consists of 
three operations： turning， milling， and drilling. 
The warehouse is applied to store raw materials and 
finished products， and to initialize the RFID tag in⁃
formation adhered to the workpiece， and the RFID 
tag is responsible for recording and tracking the man⁃
ufacturing process of workpiece.

Fig.7　Layout of manufacturing workshop

Table 2　DQN‑based decision‑making method

Algorithm 1： DQN⁃based scheduling method
(1）

（2）
（3）

（4）
（5）
（6）
（7）
（8）
（9）

（10）

（11）

（12）

（13）

（14）

（15）

（16）

Initialize the experience replay memory and workshop 
environment
Initialize the Q⁃value function Q with random weights θ
Initialize the target Q⁃value function Q' with random 
weights θ
for episode=1, M do

Observe the initial state s of workshop environment
for step=1, T do

AI scheduler selects a random action with probability ε
Otherwise, select at = argmaxa Q ( st,a; θ )
Perform the action at, that is, assign machine at to per⁃
form the processing task
Observe rewards rt and new state st + 1 after state
 transition
Store scheduling data ( st,at,rt,st + 1 ) in the experience 
memory
Randomly sample scheduling data from experience 
memory
Calculate evaluation value 

yi =
ì
í
î

ïï

ïï

rt                             st + 1 is the termination status
rt + γ × max

at + 1

 Q ( )st + 1,at + 1; θ '       Otherwise

Apply ( yi - Q ( st,at; θ ) )
2
 as loss function to train neu⁃

ral network parameters
Update the parameters of neural network every C step 
θ ← θ '
Continue until all tasks are scheduled
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In this case， machine agent is used to obtain 
the working status of other agents and the character⁃
istics of workshop environment through self-organiz⁃
ing collaboration mechanisms， ultimately support⁃
ing AI scheduler to generate production strategies. 
The internal of AI scheduler is a deep learning mod⁃
el consisting of a three-layer neural network struc⁃
ture with the following parameter settings： an input 
layer of 31 neurons， a hidden layer of 200 neurons 
and an output layer of nine neurons. The specific val⁃
ues of εmax and εmin are set to 10 and 5， respectively. 
In the experiment， a customer order consisting of 
20 different types of workpieces is randomly generat⁃
ed and fed into the order management system. To 
simulate the event of urgent order disturbance， two 
new orders arrive at 50 s and 100 s respectively dur⁃
ing the scheduling process. To verify the effective⁃
ness of the proposed method， three cases are de⁃
signed in the experimental section： N20U0， 
N20U10， and N20U10U10. N20U0 indicates that a 
customer order consisting of 20 different types of 
workpieces arrives at the initial time and there are 
no urgent orders. N20U10 indicates that a customer 
order consisting of 20 workpieces arrives at the ini⁃
tial time， and an urgent order consisting of ten work⁃
pieces arrives at 50 s. N20U10U10 indicates that a 
customer order consisting of 20 workpieces arrives 
at the initial time， an urgent order consisting of ten 
workpieces arrives at 50 s， and another urgent or⁃
der consisting of ten workpieces arrives at 100 s. 
The training curve of the DRL-based scheduler is 
shown in Fig.8 and eventually converges at 402， 
demonstrating the learning feasibility of the proposed 
method.

Five different methods are used to compare per⁃

formance on three test cases， namely shortest queue 
（SQ）， shortest processing time （SPT）， shortest re⁃
maining （SR） processing time， Random and the pro⁃
posed method. The cumulative tardiness time is used 
to evaluate the performance of the scheduling re⁃

sults， which is calculated as ∑
i ∈ N，j ∈ hi

( )T͂ i，j - Ti，j .

Experimental results obtained by five different 
methods are shown in Figs.（9—11）. In the N20U0 
case， the proposed method achieves the best perfor⁃
mance， while SQ， SPT， SR and Random achieve 
95.5%， 22.4%， 93.3% and 97.3% performance， 
respectively. In the N20U10 case， the proposed 
method achieves the best performance， while SQ， 
SPT， SR and Random achieve 92.0%， 6.5%， 
91.9% and 72.6% performance， respectively. In 
the N20U10U10 case， the proposed method 
achieves the best performance， while SQ， SPT， 

Fig.8　Training curve of DRL-based scheduler Fig.11　Comparison of scheduling results in 20U10U10

Fig.10　Comparison of scheduling results in N20U10

Fig.9　Comparison of scheduling results in N20U0
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SR and Random achieve 94.8%， 1.7%， 95.5% and 
28.0% performance， respectively. In summary， 
compared to four rule-based methods， the proposed 
method achieves the best performance in terms of to⁃
tal tardiness time， and its advantages are more pro⁃
nounced under the interference of urgent order 
events. The proposed method has strong scalability 
in actual large-scale manufacturing systems. Due to 
the self-organizing nature of multi-agent manufactur⁃
ing system， other machines can be easily and flexi⁃
bly added. As the number of machines increases， 
the scheduling performance advantage of the pro⁃
posed method will become more apparent.

5 Conclusions 

In order to improve the organizational efficien⁃
cy and restructuring flexibility of manufacturing 
workshops under customized production mode， this 
paper proposes a self-organizing manufacturing sys⁃
tem based on multi-agent technology and deep rein⁃
forcement learning methods. In self-organizing man⁃
ufacturing systems， each machine is modeled as an 
agent with intelligent analysis and information ex⁃
change capabilities， and can autonomously collabo⁃
rate with other machines under dynamic disturbanc⁃
es. At a decision-making moment， each machine 
agent can perceive environmental features and inde⁃
pendently generate the optimal production strategy. 
Ultimately， the allocation of all production tasks 
and the response to dynamic events are well 
achieved in a self-organizing form.

In future work， industrial knowledge should be 
incorporated into the scheduling decision-making 
process of manufacturing systems. In addition， nov⁃
el multi-agent models and reinforcement learning 
methods deserve to be considered for the design of 
self-organizing manufacturing systems.
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考虑动态扰动的自组织制造系统调度优化与自适应决策方法

张 毅， 乔森雨， 殷磊磊， 孙 权， 谢富鹏
（南京工程学院自动化学院, 南京 211167, 中国）

摘要：制造业生产模式呈现出多品种、小批量和个性化的特点，导致车间扰动频发。传统的集中式调度方法难以

在动态扰动下实现高效实时的生产管理。为提升生产调度的智能性和适应性，提出新型分布式调度架构，赋予

制造系统自主任务分配与扰动处理能力。此架构下，生产任务通过智能机器间自主协作与决策得以高效调度。

首先，利用多智能体技术构建自组织制造系统，使每台机器都具备主动信息交互和联合行动执行的能力。其次，

设计多类型自组织协作策略，促进了多个主体之间自主协商交互，实现对全局环境状态的感知。为确保在动态

环境中生产决策的适应性和优越性，采用深度强化学习来构建智能调度器，基于实时环境状态智能地生成最优

生产策略，以指导任务分配和资源配置。最后以离散制造车间为试验台，通过 3 种场景验证所提出方法的可行性

和有效性。与启发式调度规则相比，在订单按期交付方面，提出方法在 3 种场景下的平均性能提高了 34.0%。所

提出的自组织制造模式可为智能制造系统的设计提供新的参考。

关键词：智能制造；自适应调度；自组织制造系统；强化学习
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