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Abstract: This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence 
level of computerized numerical control （CNC） machining processes and improve tool utilization efficiency. 
Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to 
adapt to complex and dynamic machining environments. To address this， we implement real-time tool condition 
recognition by introducing deep learning technology. Aiming to the insufficient recognition accuracy， we propose a 
pyramid pooling-based vision Transformer network （P2ViT-Net） method for tool condition recognition. Using 
images as input effectively mitigates the issue of low-dimensional signal features. We enhance the vision Transformer 
（ViT） framework for image classification by developing the P2ViT model and adapt it to tool condition recognition. 
Experimental results demonstrate that our improved P2ViT model achieves 94.4% recognition accuracy， showing a 
10% improvement over conventional ViT and outperforming all comparative convolutional neural network models.
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0 Introduction 

Tool condition recognition technology holds sig⁃
nificant application value in modern manufacturing， 
particularly in enhancing machining accuracy， reduc⁃
ing cost， and extending tool life， where it plays an ir⁃
replaceable role. With the increasing complexity of 
machining processes， traditional manual inspection 
methods have struggled to meet the demands for effi⁃
ciency and precision. Consequently， machine learn⁃
ing and signal processing-based tool condition recog⁃
nition methods have gradually become a research hot⁃
spot［1-2］. By real-time monitoring and analyzing sig⁃
nals such as vibration， acoustic emission， and force 
during the cutting process， the wear degree of tools 
can be effectively predicted， thereby providing ro⁃
bust support for smart manufacturing.

Current research on tool condition recognition 

primarily focuses on data-driven methods， improve⁃
ments in deep learning techniques， multi-source in⁃
formation fusion， and real-time or online monitoring 
objectives. Most studies adopt data-driven approach⁃
es， utilizing image and sensor data to identify and 
predict tool wear conditions. Deep learning technolo⁃
gies， especially models like support vector regres⁃
sion （SVR）， Transformer， and ResNet， are wide⁃
ly employed to extract features of tool wear and per⁃
form predictions［3］. However， despite numerous 
valuable advancements in tool wear recognition， fur⁃
ther optimization of algorithms， diversification of da⁃
tasets， and enhancement of model adaptability un⁃
der varying working conditions are still required to 
improve practical applicability.

In recent years， regarding deep learning model 
fusion， Ullah et al.［4］ proposed a multi-scale feature 
fusion model， MSWDNet， combining dilated con⁃
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volution blocks and channel attention mechanisms. 
Trained on a dataset containing 3 351 images of 
wheat disease in Pakistani fields， the experimental 
results demonstrated that the model’s accuracy sig⁃
nificantly surpassed existing methods. Ablation stud⁃
ies confirmed the critical role of multi-scale feature 
fusion and attention mechanisms in improving dis⁃
ease detection precision. Ren et al.［5］ designed a BiL⁃
STM-BiGRU hybrid model， fusing multi-model 
prediction results using a covariance intersection al⁃
gorithm. By estimating variance through overlap⁃
ping data to optimize weight allocation， the model 
achieved improved prediction accuracy on the Bei⁃
jing meteorological dataset while outputting predic⁃
tion fluctuation ranges， offering an interpretable fu⁃
sion framework for complex time-series data analy⁃
sis. Shah et al.［6］ innovatively fused physical fea⁃
tures such as pitch， intensity， and spectral slope 
with log power spectrum features. Based on a convo⁃
lutional neural network （CNN） model tested on the 
TIMIT dataset， recognition accuracy was markedly 
enhanced. Experiments showed that the statistical 
feature fusion strategy outperformed raw sequence 
inputs， and robustness was further improved using 
majority voting. Haider et al.［7］ proposed a model in⁃
tegrating bidirectional long short-term memory 
（BiLSTM） and gated recurrent unit （GRU）， 
achieving high detection accuracy and low false 
alarm rates on the CIC-IDS 2018 dataset. Com⁃
pared to the CNN-LSTM baseline model， it re⁃
duced computational latency by 20% and memory 
consumption by 15%. Through hierarchical batch 
processing to balance data distribution， the model 
effectively identified diverse attacks like DDoS and 
brute-force， demonstrating the comprehensive per⁃
formance advantages of hybrid architectures in real-
time cloud security scenarios.

Inspired by these model fusion approaches， in 
the field of tool condition recognition， Yang et al.［8］ 
proposed a tool wear condition recognition method 
combining wavelet packet transform and a 1D 
CNN. This method uses wavelet packet decomposi⁃
tion to denoise spindle vibration signals and selects 
the energy features of each frequency band after de⁃
composition as inputs to the CNN， achieving accu⁃

rate identification of tool wear states. Experimental 
results showed that the proposed model significantly 
outperformed traditional BP neural networks， ener⁃
gy spectrogram-AlexNet， and LSTM models in rec⁃
ognition accuracy. Wei et al.［9］ addressed tool wear 
recognition under small-sample conditions by pro⁃
posing an innovative Inception-BiLSTM model. 
This method extracted time-frequency features of 
signals using continuous wavelet transform 
（CWT）， then employed an inception network for 
feature extraction， followed by global average pool⁃
ing for dimensionality reduction， and finally utilized 
BiLSTM for state recognition. Results indicated 
higher accuracy under limited data conditions. Han 
et al.［10］ introduced a tool wear recognition method 
based on an improved Hunter-Prey optimization 
（HPO） algorithm， variational mode decomposition 
（VMD）， and a GRU. By optimizing VMD layers 
and penalty factors via HPO， the signal decomposi⁃
tion effect was enhanced. After feature extraction 
and kernel principal component analysis （KPCA） 
for dimensionality reduction， the GRU network 
achieved state recognition. Experiments confirmed 
that the proposed model exhibited superior accura⁃
cy， efficiency， and generality compared to tradition⁃
al methods. Guo et al.［11］ proposed a tool wear rec⁃
ognition method using a stacked sparse denoising au⁃
toencoder （SSDAE）. By decomposing raw vibra⁃
tion signals into intrinsic mode functions （IMFs） 
and selecting optimal IMFs via Pearson correlation 
coefficients， the SSDAE adaptively extracted deep 
features for state recognition. Results demonstrated 
the method’s effectiveness in handling non-station⁃
ary vibration signals with strong generalization and 
reliability.

Pyramid pooling has been widely applied to 
computer vision for feature extraction［12］. Originat⁃
ing prior to the rapid development of deep CNNs， 
pyramid pooling was frequently used in natural 
scene recognition. He et al.［13］ integrated spatial pyr⁃
amid pooling into deep CNNs for image classifica⁃
tion and object detection. By introducing multi-scale 
pooling operations， they converted the final convolu⁃
tional feature maps into fixed-size representations 
through pooling at different levels， enhancing the 
model’s robustness and generalization. Zhao et 
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al.［14］ adapted pyramid pooling for semantic segmen⁃
tation. Unlike He et al.， they upsampled the pooled 
fixed-size features to the original dimensions and 
used them for prediction， validating pyramid pool⁃
ing’s effectiveness in dense prediction tasks.

Inspired by these studies， this paper proposes a 
fusion of pyramid pooling and Transformer to im ⁃
prove model robustness and generalization. By lever⁃
aging an image classification-based approach， the ac⁃
curacy of tool condition recognition is enhanced. 
The contributions of this paper are described as fol⁃
lows： （1） First， based on the fundamental princi⁃
ples of pyramid pooling and the complementary 
strengths of CNN and Transformer， the P2ViT 
model integrating pyramid pooling and Transformer 
is proposed. （2） Second， the improved P2ViT 
model incorporates a multi-level spatial pooling 
mechanism （pyramid pooling） into the vision Trans⁃
former framework. By constructing a hierarchical 
feature compression module， the model optimizes 
the self-attention computation topology while pre⁃
serving the multi-scale representation capability of 
the backbone network. Additionally， depthwise 
（DW） operations are embedded within the feed-for⁃
ward network （FFN） to enhance 2D local feature 
learning.

1 Data Description and Dataset 

1. 1 PHM2010 dataset description　

Tool wear has long been a critical research top⁃

ic in the mechanical field. Over decades of develop⁃
ment， standardized research protocols have been es⁃
tablished， particularly with the widespread adoption 
of the PHM2010 （Product Health Management So⁃
ciety 2010） dataset［15］ by scholars globally. This 
study also employs the publicly available PHM2010 
dataset as the primary data source based on the fol⁃
lowing considerations. （1） The dataset is extensive⁃
ly utilized in the industry due to its high reliability， 
diverse data types， and strong interpretability. （2） 
Its frequent use in numerous journal articles ensures 
that experimental results in this study are highly 
comparable， which helps highlight the innovative 
contributions of our proposed learning model and fa⁃
cilitates further research by scholars in related fields.

The dataset is collected using a Roders 
TechRFM760 high-speed CNC milling machine， 
equipped with a 6 mm solid carbide ball-end milling 
tool. The tool operates at a spindle speed of 
10 400 r/min and a feed rate of 1 555 mm/min. The 
schematic diagram of the original data acquisition 
setup is illustrated in Fig.1.

1. 2 Dataset　

Tool condition recognition is a classification 
problem. As mentioned earlier， tool wear under⁃
goes three stages： Initial wear， normal wear， and 
severe wear. Therefore， category labels need to be 
assigned to each data sample before training. In this 
study， the labels for initial wear， normal wear， and 

Fig.1　Schematic diagram of tool signal data acquisition
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severe wear are set as “ initial” “normal”， and “se⁃
vere”， respectively. The dataset includes wear val⁃
ues for three tools， corresponding to datasets C1， 
C4， and C6. Each tool has three flute wear values： 
flute_1， flute_2， and flute_3. Wei et al.［16］ em⁃
ployed the expectation-maximization （EM） algo⁃
rithm［17］ to determine the wear labels for each ma⁃
chining pass of the three tools， as shown in Table 1. 
The classification principle involves taking the aver⁃
age wear value of the three flutes for each tool as its 
overall wear value， and then using EM clustering to 
identify the machining pass intervals corresponding 
to each wear stage. The training-to-testing ratio is 
set at 7∶3.

The creation process of the tool condition im ⁃
age classification dataset is shown in Fig.2. The one-

dimensional time-series signals are converted into 
two-dimensional time-frequency images using 
CWT. The time-frequency characteristics provide 
instantaneous changes of tool signals during the mill⁃
ing process， enabling the model to capture more de⁃
tailed data features， which improves the recognition 
accuracy to some extent and supports non-offline 
tool condition monitoring. In this study， the CWT 
uses the cgau8 wavelet basis function with a scale 
range of 1─256. The sampling frequency is 50 kHz， 

and the signal length is 5 000 points. For C1， C4 
and C6， a total of 237 918 image datasets are creat⁃
ed and divided into a training set （214 128 images） 
and a test set （23 790 images） in a ratio of 9∶1.

2 Methodology 

2. 1 Pyramid pooling　

The principle of pyramid pooling is illustrated 
in Fig.3. For feature inputs of arbitrary sizes， the 
process involves three key steps， with the operation⁃
al procedure detailed in Fig.4. Assuming the input 
image has a channel depth of 256， the first stage per⁃
forms global pooling to generate a 1×256 feature 
vector. In the second stage， the feature matrix is di⁃
vided into 2×2 grid cells， and local pooling is ap⁃
plied to each sub-region， producing four 256-dimen⁃
sional vectors. The final stage employs a 4×4 grid 
division to extract 16 local feature vectors. By con⁃
catenating the pooled results from these three spatial 
scales， a final feature of dimension 5 376 （（1+4+
16）×256 = 21×256） is constructed. As evident 
from the pooling mechanism， the whole operation is 

Fig.2　Flowchart of dataset creation process

Fig.3　Pyramid pooling schematic diagram

Fig.4　Schematic diagram of three-step pyramid pooling pro⁃
cess

Table 1　Wear state classification in PHM2010 dataset

Dataset
C1
C4
C6

Initial wear
1—47

1—135
1—81

Normal wear
48—146

136—204
82—188

Severe wear
147—315
205—315
189—315
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entirely independent of the input dimensions， and al⁃
ways yields a fixed-channel output （21 channels）. 
This enables the theoretical capability to process in⁃
put images of any arbitrary size.

Inspired by the application of pyramid pooling 
in CNN architectures， this paper proposes to inte⁃
grate the concept of pyramid pooling into the vision 
Transformer （ViT） backbone network. By embed⁃
ding pyramid pooling into the basic pooling attention 
module of the ViT architecture， we achieve both se⁃
quence length reduction and enhanced learning of ro⁃
bust contextual feature representations.

2. 2 Vision Transformer　

Vision Transformer originates from the se⁃
quence modeling Transformer architecture. Its core 
mechanism relies on multi-head self-attention （MH⁃
SA） to establish global interaction networks among 
input elements. This architecture first demonstrates 
the effectiveness of self-attention-based sequence 
modeling in natural language processing， particular⁃
ly achieving dynamic capture of non-local dependen⁃
cies in machine translation tasks. Given the need for 
modeling long-range feature relationships in comput⁃
er vision tasks， researchers attempt to adapt this ar⁃
chitecture to image processing. However， since 
standard Transformer operations are designed for 
one-dimensional sequential data， directly processing 
two-dimensional image matrices presents dimension⁃
al compatibility challenges. This necessitates feature 
reorganization to map spatial pixels into processable 
sequential representations. By employing CNNs to 
extract 2D representations， which are then flattened 
and fed into the Transformer， image classification 
tasks can be effectively addressed.

Theoretically， the Transformer has no limita⁃
tion on memory length， with its greatest advantage 
being parallel processing capability. The self-atten⁃
tion mechanism is the core component of the Trans⁃
former， enabling the model to consider information 
from other positions in the sequence when process⁃
ing the output at a given position. As illustrated in 
Fig.5， the self-attention mechanism operates as fol⁃
lows： The input vectors x1 and x2 are first mapped 
to higher-dimensional representations a1 and a2 

through embedding. These embeddings are then 
transformed by shared weight matrices Wq， Wk， 
and Wv to generate corresponding query （q）， key 
（k）， and value （v） vectors， where the same weight 
matrices are applied to all input embeddings. The 
computation of q， k， and v follows Eq.（1）， where 
each query vector q is matched against all key vec⁃
tors k， while v represents the meaningful informa⁃
tion extracted from the original embeddings. Lever⁃
aging the parallel processing capability of Trans⁃
former， the column vectors of embeddings can be 
concatenated into matrices and multiplied by Wq， 
Wk， and Wv to obtain q1， q2， k1， k2， v1， v2， which 
are then concatenated to form the complete query 
（Q）， key （K）， and value （V） matrices. The 
matching process between Q and K is demonstrated 
in Fig.6 and calculated according to Eq.（2）. The re⁃
sulting attention scores α are normalized through 
softmax operation to produce the final attention 
weights α̂， which determine the relative importance 
of each value vector. The higher weights， the more 
attention is paid. The computation of the weighted 
value matrix V follows Eq.（3） and is illustrated in 
Fig. 7. The MHSA mechanism extends this princi⁃
ple by computing multiple sets of Q， K， and V ma⁃
trices in parallel， each capturing different aspects of 
the input information. Each attention head learns dis⁃
tinct subspace representations， and their outputs are 
concatenated before undergoing a final linear trans⁃
formation to produce the combined result. Addition⁃
ally， the Transformer incorporates positional encod⁃
ing to prevent potential errors that might arise from 
positional variations among input elements.

Fig.5　Schematic diagram of self-attention mechanism prin⁃
ciples
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α̂1,i × vi

b2 = ∑
i

α̂2,i × vi

…

(3)

Attention (Q,K,V )= softmax ( )QK T

dk

V (4)

The architecture of the ViT model is illustrated 
in Fig.8. An input image is divided into multiple 
patches， which are fed into the linear projection of 
flattened patches layer to obtain corresponding vec⁃
tors， referred to as tokens. A new classification to⁃
ken is prepended to these tokens， with positional en⁃
codings assigned as 0， 1， 2， etc. These tokens are 
then processed through the Transformer encoder 

layers and the multi-layer perceptron head （MLP 
Head） module to generate the final classification 
output［18］. The MLP Head consists of a linear （fully 
connected） layer， followed by a tanh activation 
function and another linear layer. The linear projec⁃
tion of flattened patches layer， designed for stan⁃
dard Transformer modules， requires token sequenc⁃
es as input （i. e.， a 2D matrix of dimensions 
［num_token， token_dim］）. In practical implementa⁃
tion， this can be achieved using a convolutional lay⁃
er. For instance， ViT-B/16 employs convolutional 
kernels of 16×16 with a stride of 16 and 768 ker⁃
nels. Prior to being fed into the Transformer encod⁃
er， both the classification token and positional en⁃
codings， which are trainable parameters， must be 
incorporated.

Fig.6　Schematic diagram of query-key matching process

Fig.8　Schematic architecture diagram of ViT

Fig.7　Schematic diagram of value computation process
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The architecture of the Transformer encoder 
layer is shown in Fig.9， where the Transformer en⁃
coder block is stacked L times sequentially. The pro⁃
cessing flow is as follows： The input first passes 
through a normalization layer， then undergoes multi-
head attention computation， followed by a dropout 
layer. The output from dropout is then added to the 
original input （residual connection）. Before being 
processed by the MLP block （shown in Fig.10） and 
dropout operation， this sum subsequently passes 
through another normalization layer， with the final 
result again obtained through residual addition.

2. 3 P2ViT‑Net　

2. 3. 1 Network structure design　

Pyramid pooling has been extensively utilized 
in various scene understanding tasks and has been 
cooperatively employed with CNNs［19-20］. However， 
existing studies predominantly apply pyramid pool⁃
ing to CNN backbone networks for extracting glob⁃
al and contextual information， often focusing on 
specific tasks［21］. This paper introduces a cross-mod⁃
al architecture optimization method based on hierar⁃

chical feature aggregation， aiming to integrate 
multi-level spatial pooling mechanisms （pyramid 
pooling） into the vision Transformer framework. 
By developing hierarchical feature compression 
modules， the proposed approach optimizes the self-
attention computation topology while preserving 
the backbone network’s multi-scale representation⁃
al capacity. In practical implementation， spatial res⁃
olution reduction is employed to effectively control 
the computational complexity of MHSA， while 
cross-receptive-field contextual correlation net⁃
works are established to dynamically harmonize lo⁃
cal details with global semantics. The enhanced 
model， designated as P2ViT-Net （Pyramid 
pooling⁃based vision Transformer network）， is 
structurally depicted in Fig.11. The input under⁃
goes pooling-based MHSA processing， after which 
the output is combined with residual connections 
and normalized via LayerNorm. Following the con⁃
ventional Transformer block design， a FFN is se⁃
quentially appended for feature projection， succeed⁃
ed by another residual connection and LayerNorm 
operation. The mathematical formulation of this 
workflow is expressed as follows

ì
í
î

ïï
ïï

X att = LayerNorm ( X+ P⁃MHSA ( X ) )
X out = LayerNorm ( X att + FFN ( X att ) )

(5)

where X， X att and X out represent the input， the MH⁃
SA output， and the Transformer block output， re⁃
spectively； P-MHSA （Pooling-based MHSA） de⁃
notes the pooling-based multi-head self-attention 
mechanism.

Fig.9　Schematic framework diagram of Transformer encoder

Fig.10　Schematic diagram of MLP block architecture

Fig.11　Simplified architecture diagram of P2ViT model
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2. 3. 2 Pooling⁃based multi⁃head attention mech⁃

anism

The design of P⁃MHSA is illustrated in 
Fig.12， where the input X is reshaped into a 2D spa⁃
tial format and processed through multiple average 
pooling layers with different pooling ratios to gener⁃
ate pyramid feature maps. The calculation formula 
is as follows

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

P 1 = AvgPool1 ( X )
P 2 = AvgPool2 ( X )

⋮
P n = AvgPooln ( X )

(6)

where P1， P2，…， Pn represent the generated pyra⁃
mid feature maps； n denotes the number of pooling 
layers. This paper selects n = 4， which will be de⁃
tailed in Section 2.3.3. Furthermore， these pyramid 
feature maps need to be fed into depthwise convolu⁃
tional layers for relative position encoding， as ex⁃
pressed in the following formula

P enc
i = DWConv ( P i )+ P i  i = 1,2,⋯,n (7)

where DWConv（·） represents a depthwise convolu⁃
tion operation with a 3×3 kernel size and P enc

i  the 
processed Pi after incorporating relative position en⁃
coding. These enhanced pyramid feature maps are 
subsequently flattened and concatenated， as formu⁃
lated below

P= LayerNorm ( Concat ( P enc
1 ,P enc

2 ,…,P enc
n ) ) (8)

In the MHSA mechanism， the query， the key， 
and the value tensors are denoted as Q， K， and V， 
respectively. The conventional computation formula 

is expressed as follows
(Q,K,V )= ( XW q,XW k,XW v ) (9)

When using the approach described in Eq.（8）， 
if the pooling ratio is sufficiently large， the resulting 
P can form a shorter sequence than the original input 
X. Furthermore， P inherently captures both preced⁃
ing and succeeding feature information from X. This 
enables P to effectively substitute for X in MHSA 
computations， leading to the modified formulation， 
as shown below

(Q,K,V )= ( XW q,PW k,PW v ) (10)
where Wq， Wk， and Wv represent the weight matri⁃
ces for the linear transformations that generate the 
query （Q）， the key （K）， and the value （V） ten⁃
sors， respectively. These Q， K， and V tensors are 
then fed into the attention module to compute the at⁃
tention weights A， as expressed by the following 
formula

A= Softmax ( )Q× K T

dK

× V (11)

where dK denotes the channel dimension of K and 
dK  the approximate normalization operation.

2. 3. 3 Deep embedded feature enhancement ar⁃

chitecture　

This paper proposes a deeply embedded fea⁃
ture enhancement architecture that breaks through 
the conventional paradigm of using pyramid pooling 
as an independent module. Unlike traditional ap⁃
proaches that treat hierarchical feature aggregation 
mechanisms as back-end enhancement modules， 
our solution deeply integrates them into the core pro⁃
cessing pipeline of the ViT architecture. This en⁃
ables the network to simultaneously perform multi-
scale context modeling during the fundamental fea⁃
ture extraction stage， thereby enhancing its learning 
capacity. Furthermore， the keys （K） and the values 
（V） incorporate highly abstracted multi-scale infor⁃
mation， endowing the P-MHSA with superior capa⁃
bility in modeling global contextual dependencies. 
This proves particularly effective for scene under⁃
standing， making P-MHSA theoretically more effi⁃
cient than conventional MHSA. Regarding computa⁃
tional complexity， as shown in Eq.（6）， multiple 
pooling operations are employed to generate pyra⁃Fig.12　Schematic diagram of P-MHSA design
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mid feature maps. The computational overhead of 
these pyramid pooling operations is negligible， be⁃
ing merely O ( NC )， where N and C represent the 
sequence length and the  feature dimension， respec⁃
tively. The total computational complexity for com ⁃
puting the sub-attention is

Ο ( P⁃MHSA )= ( N + 2M ) C 2 + 2NMC (12)
where M represents the concatenated sequence 
length of all pooled features， with default pooling ra⁃
tios set to ［12， 16， 20， 24］.

FFN serves as a crucial component in Trans⁃
formers for feature enhancement. Conventional 
Transformers typically employ MLPs as their FFN 
and rely entirely on attention mechanisms to capture 
dependencies between pixels. Although this archi⁃
tecture demonstrates relatively high efficiency， it 
shows limited effectiveness in learning 2D local fea⁃
tures， which plays a vital role in scene understand⁃
ing. To address this limitation， inspired by existing 
CNNs， this paper integrates depthwise convolution 
into the FFN. This enhancement enables the im ⁃
proved model to simultaneously inherit the Trans⁃
former’s capability for long-range dependency mod⁃
eling while incorporating the advantages of CNNs in 
capturing 2D local patterns. Specifically， we adopt 
the inverted residual block （IRB） proposed in Mo⁃
bileNetV2［22］ as the FFN structure.

To adapt IRB for ViT， the input sequence Xatt 
is first reshaped into a 2D feature map X I

att， as fol⁃
lows

X I
att = Seq2 Image ( X att ) (13)

where Seq2Image（·） denotes the function that re⁃
shapes a 1D sequence into a 2D feature map. For 
the input X I

att， the IRB can be directly used as fol⁃

lows
ì
í
î

X 1
IRB = Act ( X I

att W 1
IRB )

X out
IRB = Act ( DWConv ( X 1

IRB ) )W 2
IRB

(14)

where W 1
IRB and W 2

IRB represent the weight matrices 
of the 1×1 convolutional layers； Act denotes the 
nonlinear activation function and W out

IRB the output 
feature map from the IRB. Since W out

IRB is a 2D spa⁃
tial feature map， it ultimately needs to be trans⁃
formed back into a 1D sequence representation， as 
expressed as

X S
IRB = Image 2Seq ( X out

IRB ) (15)
where Image2Seq（·） denotes the operation that re⁃
shapes a 2D feature map back into a 1D sequence. 
The final output X S

IRB corresponds to the FFN out⁃
put and maintains identical dimensions with Xatt.

In summary， the improved P2ViT model pro⁃
posed in this paper is illustrated in Fig.13. The input 
consists of three-channel RGB color images. P2ViT 
first partitions each image into ( H/4 )×( H/4 ) 
patches， with each patch flattened into 48 elements 
（4×4×3）. These flattened patches are then pro⁃
cessed by a patch embedding module composed of a 
linear projection layer， followed by the addition of 
learnable positional encodings. The patch embed⁃
ding module expands the feature dimension from 48 
to C1. Subsequently， the features pass through the 
proposed pyramid-pooling ViT blocks. The entire 
network is divided into four stages， with feature di⁃
mensions denoted as Ci （i=1，2，3，4）. Between ev⁃
ery two stages， groups of 2×2 patches are concate⁃
nated and linearly projected， transforming the fea⁃
ture dimension from 4×Ci to Ci+1 （i=1，2，3）. 
Through this approach， the four stages progressive⁃

Fig.13　Schematic diagram of the proposed P2ViT model architecture
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ly achieve scales of （H/4）×（H/4）， ( H/8 )×
( H/8 )， ( H/16 )×( H/16 ) and ( H/32 )×( H/32 )， 
respectively. From these stages， four distinct fea⁃
ture representations （B1， B2， B3， B4） are generated. 
While only B4 is utilized for final image classification 
prediction， all pyramid features remain available for 
downstream scene understanding tasks.

3 Results and Discussion 

3. 1 Experimental setup and evaluation met‑
rics　

The training parameter configurations are de⁃
tailed in Table 2， with a batch size of 64， learning 
rate of 0.000 2， 100 training epochs， CrossEntropy⁃ 
Loss function， Adam optimizer， and a training-to-

test set ratio of 9∶1. The accuracy of the best-per⁃
forming model is computed and saved after each ep⁃
och. For model evaluation， precision （P）， recall 
（R）， specificity （S）， and F1-score are employed as 
metrics， all derived from the confusion matrix val⁃
ues shown in Table 3. The computational formulas 
for precision， recall， specificity， and F1-score are as 
follows

P = TP
TP + FP (16)

R = TP
TP + FN (17)

S = TN
TN + FN (18)

F 1 = 2 × P × R
P + R

(19)

3. 2 Analysis of experimental results　

The confusion matrix of the proposed P2ViT 

model， obtained through training， is shown in 
Fig.14. The diagonal values in the matrix represent 
the number of samples where the model’s predic⁃
tions exactly match the true labels， with darker 
shades indicating higher counts. The diagonal values 
in the confusion matrix are 6 339 （initial wear）， 
6 205 （normal wear）， and 9 923 （severe wear）， 
demonstrating that the model achieves the highest 
recognition accuracy for severe wear states （darkest 
color）， followed by initial wear and normal wear， 
all exhibiting peak identification rates. As detailed in 
Table 4， all four evaluation metrics exceed 90%. 
The F1-scores surpass 90%， indicating strong com ⁃
prehensive performance of the enhanced P2ViT in 
tool condition monitoring. Similarly， precision， re⁃
call， and specificity metrics also exceed 90%， with 
the overall accuracy reaching 94.4%. These results 
confirm that the improved model delivers stable 
overall performance and notable effectiveness across 
all evaluation criteria. It is noteworthy that among 
the three states of tool wear， the normal wear stage 
exhibits relatively lower performance metrics （accu⁃
racy， precision， recall， and F1-score） due to dis⁃
criminative ambiguity in transitional state identifica⁃

Fig.14　Confusion matrix of the enhanced model’s training 
results

Table 4　Experimental values of performance evaluation 
metrics

Label
Initial

Normal
Severe

Average

P
0.940
0.934
0.954
0.943

R
0.961
0.895
0.967
0.941

S
0.976
0.974
0.965
0.972

F1

0.950
0.914
0.960
0.941

Accuracy

0.944

Sample
Train：

203 710
Val：

22 618

Table 2　Training parameter configuration

Batch 
size
64

Learning 
rate

0.000 2

Epoch

100

Loss function

CrossEntropyLoss

Optimizer

Adam

Split

0.1

Table 3　Fundamentals of the classification confusion 
matrix

True label

Positive
Negative

Prediction result
Positive

TP (True positive)
FP (False positive)

Negative
FN (False negative)
TN (True negative)
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tion. This occurs because the sample characteristics 
during normal wear represent an intermediate phase 
between initial wear and severe wear， creating over⁃
lapping feature distributions that challenge precise 
classification.

Fig.15 visualizes the convergence process of 
the training loss （Train_loss） and validation accura⁃
cy （Val_acc） during P2ViT model training. Since 
the training process reaches convergence after 30 ep⁃

ochs， Fig.15 displays data from the first 30 epochs 
to clearly illustrate parameter variations. The 
train_loss curve demonstrates a gradual decline to⁃
ward a minimal steady-state value， quantifying the 
discrepancy between predictions and ground-truth 
labels while driving parameter optimization. This 
metric reflects the model’s average loss on the 
training set and indicates its fitting performance at 
each epoch. Notably， the enhanced model exhibits 
stable convergence behavior in tool condition recog⁃
nition tasks. Val_acc represents classification accu⁃
racy on the validation set， which progressively in⁃
creases with training epochs and ultimately converg⁃
es to a high value （94.4%）. This trend confirms the 
model’s successful learning of discriminative fea⁃
tures and continuous improvement in recognition ac⁃
curacy.

This section conducts performance compari⁃
sons between various CNNs and the proposed en⁃
hanced model to objectively demonstrate the im ⁃
provement in recognition accuracy. The bench⁃
marked models include AlexNet［23］ ， VGG［24］ ， 
GoogLeNet［25］， ResNet［26］， MobileNet［27］， Shuf⁃
fleNet［28］， ViT， and the proposed P2ViT model. 
Fig.16 presents the training confusion matrices for 
these different models. In each matrix， the darkest 
coloration appears along the main diagonal corre⁃
sponding to respective labels， indicating successful 
identification of tool wear states by each CNN. In 
each confusion matrix， the deepest color intensity 

Fig.15　Training loss and validation accuracy during P2ViT 
training process (Epoch=30)

Fig.16　Confusion matrices of training results for different deep CNN models
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along the main diagonal positions corresponds to 
their respective labels， demonstrating that all CNNs 
successfully identify tool wear states. The color gra⁃
dient reflects recognition confidence levels， with 
darker hues indicating higher classification certainty. 
Fig.17 presents a radar chart of performance metrics 
derived from these confusion matrices， which visual⁃
ly compares the operational parameters across three 
wear states （initial， normal， severe） under different 
model architectures， along with their ensemble aver⁃
ages.

The specific values of evaluation metrics are 
obtained through the confusion matrix， with the ac⁃
curacy rates of eight distinct models illustrated in 
Fig.18. A dashed line serves as the demarcation， 

where the left side represents the recognition perfor⁃
mance of deep CNNs， while the right side displays 
the improved image classification models based on 
Transformer architecture. Regarding the Transform ⁃
er-enhanced models， the proposed model demon⁃
strates a significant accuracy improvement of 10%. 
Although the enhancement appears relatively mod⁃
est （0.4%） when compared with the highest-accura⁃
cy model among deep convolutional neural net⁃
works， it ultimately achieves the superior overall ac⁃
curacy among all benchmarked models. Consequent⁃
ly， the experimental results substantiate that the 
proposed P2ViT model exhibits robust recognition 
capability in tool wear image identification.

Fig.19 presents the variation processes of 
train_loss and val_acc during the training phase of dif⁃
ferent models for tool condition recognition. While 
all methodologies exhibit similar trend patterns， the 

Fig.17　Comparative radar chart of performance metrics 
across different deep CNN models

Fig.18　Comparative classification accuracies of tool wear 
state recognition across different deep CNNs
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proposed P2ViT model outperforms others in both 
metrics， manifesting the lowest training loss value 
and the highest validation accuracy among various 
deep CNN architectures.

4 Conclusions 

This paper proposes an improved P2ViT-Net 
recognition model to address the limitations of tradi⁃
tional feature extraction methods in tool condition 
monitoring. The enhanced P2ViT-Net achieves 
94.4% recognition accuracy on the PHM2010 datas⁃
et， representing a 10% improvement over conven⁃
tional ViT. First， one-dimensional time-series sig⁃
nals are converted into two-dimensional time-fre⁃
quency images through continuous wavelet trans⁃
form to enhance feature representation capability. 
Second， a pyramid pooling module is introduced in⁃
to the ViT architecture to improve the model’s abili⁃
ty to capture tool wear details through multi-scale 
feature fusion. Meanwhile， DW optimization is em ⁃
bedded in the FFN layers to enhance local feature in⁃
teraction and improve 2D local feature learning. Ex⁃

perimental results demonstrate significant improve⁃
ments compared with traditional CNN models 
（AlexNet， VGG， GoogLeNet， ResNet， Mo⁃
bileNet， ShuffleNet） and ViT， validating the effec⁃
tiveness of the global attention mechanism and 
multi-scale feature fusion. This confirms the relative 
advantages of the improved model in tool condition 
recognition. However， the current methodology ex⁃
hibits insufficient sensitivity in detecting geometric 
anomalies of cutting tools （e. g.， edge chipping）. 
Future work will focus on employing advanced de⁃
fect detection methodologies to conduct in-depth in⁃
vestigations of tool wear patterns under such abrupt 
geometric variations.
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基于金字塔池化的视觉 Transformer在刀具状态识别上的应用

郑 堃 1， 李永林 1， 顾新艳 1， 丁志颖 1， 朱海华 2

（1.南京工程学院交通工程学院，南京  211167，中国； 2.南京航空航天大学机电学院，南京  210016，中国）

摘要：基于数据驱动的方法，围绕刀具状态识别展开深入研究，旨在提升数控加工过程的智能化水平，提高刀具

使用效率。传统的刀具监测方法依赖于经验或有限的数学模型，难以适应复杂、多变的加工环境。为此，引入深

度学习技术，实现刀具实时状态识别。针对刀具状态识别准确率不足的问题，提出了基于金字塔池化的视觉

Transformer 网络（Pyramid pooling⁃based vision Transformer network，P2ViT⁃Net）的刀具状态识别方法。使用图

像作为输入，缓解信号特征维度低的问题。改进了基于视觉 Transformer（Vision Transformer， ViT）模型用于图

像分类的 P2ViT 模型，并将其应用在刀具状态识别上。实验结果表明，改进的 P2ViT 模型刀具状态识别准确率

达 94.4%，较传统 ViT 准确率提高 10%，且均高于对比的卷积神经网络模型。

关键词：刀具状态识别；Transformer；金字塔池化；深度卷积神经网络
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