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Abstract: To tackle the instability fault diagnosis challenges in wide-speed-range supersonic inlets， this study 
proposes an inlet fault decision fusion diagnosis algorithm based on attention mechanism feature fusion， achieving 
efficient diagnosis of instability faults across wide-speed regimes. First， considering the requirement for wall pressure 
data extraction in mathematical modeling of wide-speed-range inlets， a supersonic inlet reference model is established 
for computational fluid dynamics （CFD） simulations. Second， leveraging data-driven modeling techniques and 
support vector machine （SVM） algorithms， a high-precision mathematical model covering wide-speed domains and 
incorporating instability mechanisms is rapidly developed using CFD-derived inlet wall pressure data. Subsequently， 
an inlet fault decision fusion diagnosis method is proposed. Pressure features are fused via attention mechanisms， 
followed by Dempster-Shafer （D-S） evidence theory-based decision fusion， which integrates advantages of multiple 
intelligent algorithms to overcome the limitations of single-signal diagnosis methods （low accuracy and constrained 
optimization potential）. The simulation results demonstrate the effectiveness of the data-driven wide-speed-range inlet 
model in achieving high precision and rapid convergence. In addition， the fusion diagnosis algorithm has been shown 
to attain over 95% accuracy in the detection of instability， indicating an improvement of more than 5% compared to 
the accuracy of other single fault diagnosis algorithms. This enhancement effectively eliminates the occurrence of 
missed or false diagnoses， while demonstrates robust performance under operational uncertainties.
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0 Introduction

The inlet， serving as a critical component of 
aeroengine propulsion systems， plays a pivotal role 
in ensuring aircraft system effectiveness and enhanc‑
ing overall maneuverability. To guarantee combus‑
tion stability and safe engine operation， the inlet 
must deliver airflow with three essential characteris‑
tics： High total pressure， minimal disturbances， 
and low mass flow fluctuations. This is a fundamen‑
tal design objective particularly crucial for superson‑
ic inlets that must operate reliably across wide-rang‑
ing flight conditions from static startup to supersonic 

regimes.
For inlet， there are two paramount perfor‑

mance metrics： Aerodynamic stability and thermo‑
dynamic efficiency. Fig.1［1］ illustrates typical perfor‑
mance curves of mixed-compression supersonic in‑
lets. The mass flow ratio （MFR）， defined as the ra‑
tio between actual through-flow mass and theoreti‑
cal maximum admissible mass flow， represents a 
key aerodynamic parameter in propulsion engineer‑
ing. Total pressure recovery （TPR）， quantified as 
the ratio of area-averaged total pressure at the en‑
gine face to freestream total pressure［2］， serves as a 
critical performance indicator for gasdynamic system 
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evaluation. Fig.1 clearly demonstrates that while the 
TPR exhibits gradual variations with changing 
MFR， a dramatic TPR transition occurs when 
MFR crosses the critical threshold， triggering in‑
stantaneous inlet instability. This abrupt aerodynam ‑

ic disturbance poses immediate threats to engine op‑
erational stability and safety. The transient nature of 
this phenomenon underscores the critical importance 
of precise inlet instability detection for reliable pro‑
pulsion system operation.

Since the 1950s， researchers have conducted 
systematic investigations into inlet instability phe‑
nomena. A seminal breakthrough occurred in 1984 
when Newsome［3］ pioneered numerical simulations 
of inlet instability using unsteady Navier-Stokes 
equations， which is a landmark achievement in com ‑
putational fluid dynamics （CFD）. Employing the 
implicit MacCormack scheme coupled with the Cebe‑
ci-Smith algebraic Reynolds‑averaged Navier‑Stokes 
equations （RANS） turbulence model， he success‑
fully resolved the Navier-Stokes equations to charac‑
terize instability features in external-compression in‑
lets. Shigematsu et al.［4］ advanced this work in 1990 
by implementing compressible Navier-Stokes equa‑
tions with the Baldwin-Lomax turbulence model， 
performing both two-dimensional and three-dimen‑
sional CFD analyses of ramjet inlets. Notably， his 
numerical predictions demonstrated excellent agree‑
ment with experimental data under static conditions.
The Kantrowitz starting criterion inspired Pan et al.
［5］ in 2016 to develop rapid theoretical estimations of 
inlet starting Mach numbers， while Cui et al.［6］ fo‑
cused on hysteresis effects and bifurcation phenome‑
na during inlet start/unstart transitions. By 2019， 
emerging theories［7］ had been established consensus 

assessment criteria for inlet instability， though cur‑
rent frameworks remain incomplete in explaining all 
observed phenomena. The contemporary surge theo‑
ry differentiates small surge （characterized by low-

amplitude high-frequency oscillations） from large 
surge （high-amplitude low-frequency perturbations） 
based on distinct amplitude-frequency-time signa‑
tures［8］. However， this dichotomy complicates anal‑
ysis of hybrid surge modes exhibiting overlapping 
characteristics， as conventional classification bound‑
aries become ambiguous.

The instability faults of supersonic inlets exhib‑
it extreme complexity， as reliance on a single char‑
acteristic parameter cannot authentically quantify 
fault severity， directly compromising accurate aero‑
dynamic assessment. In such intricate operational 
environments， multi-sensor data integration com ‑
bined with multi-feature fusion significantly enhanc‑
es diagnostic accuracy［9］. This sophisticated fault de‑
tection paradigm necessitates processing heteroge‑
neous sensor data from distributed measurement 
points to extract meaningful fault signatures. Infor‑
mation fusion architectures are systematically cate‑
gorized into three hierarchical levels： Data fusion 
（raw signal integration）， feature fusion （characteris‑

Fig.1　Intake operating conditions and performance curves[1]
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tic parameter synthesis）， and decision fusion （diag‑
nostic conclusion reconciliation）［10］. Feature fusion 
enables comprehensive fault analysis through intelli‑
gent information compression， achieving 85%—

92% data volume reduction while preserving more 
than 98% critical features， which is a vital advance‑
ment for real-time processing efficiency［11］. This 
methodology synergizes data fusion’s sensitivity ad‑
vantages with decision fusion’s interpretability 
strengths while mitigating their respective limita‑
tions［12］. He et al.［13］ developed a dual-scale residual 
network integrating multi-sensor fusion for railway 
bearing diagnostics （92.7% accuracy）. Kordestani 
et al.［14］ proposed an ordered weighted average oper‑
ator-based smart grid fault isolation technique， re‑
ducing diagnostic latency by 40%. Pan et al.［15］ es‑
tablished a real-time confidence evaluation frame‑
work leveraging sensor redundancy for localized/
global fault verification. The example above under‑
scores the vast potential of multi-source information 
integration to improve the efficiency of fault-detec‑
tion methods. By leveraging data from multiple 
channels， we not only enhance diagnostic accuracy 
but also bolster system robustness， enabling better 
adaptation to the complex and dynamic conditions 
encountered in real-world engineering applications.

In a fault-fusion strategy， decision-level fusion 
is regarded as the highest-tier approach. It relies on 
the local outputs of individual sensor signals for fault 
detection. Although this method offers limited flexi‑
bility， it guarantees a very high degree of diagnostic 
accuracy［16］. The Dempster-Shafer （D-S） evidence the‑
ory provides mathematical rigor for multi-source deci‑
sion integration， initially proposed by Dempster［17］ 
through statistical evidence combination rules and 
formalized by Shafer［18］ via belief functions. Chen et 
al.［19］ used enhanced D-S theory to reduce aero-en‑
gine gas path false alarms by 30%. Although under‑
studied in inlet diagnostics， preliminary trials dem ‑
onstrate D-S theory’s potential for 93%—96% bal‑
anced effectiveness in instability diagnosis through 
conflict resolution （85% reduction） and adaptive 
weighting （confidence factors 0.6—1.2）. Current‑
ly， there are fewer studies on the application of D-S 
evidence theory for intake tract fault diagnosis， and 

the examples prove that its use for intake tract fault 
diagnosis has a greater potential to ensure that the 
level of decision-making remains highly balanced 
and effective. This study fuses multi-source informa‑
tion to improve the accuracy of fault diagnosis and 
enhance the robustness of the system. Meanwhile， 
applying the D-S evidence theory to the intake tract 
fault diagnosis study improves the model accuracy， 
solves the leakage judgement problem， and enhanc‑
es the robustness of the system compared to other 
previous single fault diagnosis methods.

This study focuses on wide-speed-range super‑
sonic inlets， and investigates diagnostic algorithms 
for typical instability faults. We propose an inlet 
fault decision fusion diagnostic algorithm based on 
attention mechanism feature fusion， achieving effi‑
cient diagnosis of instability faults in wide-speed-

range inlets. Compared with single fault diagnosis al‑
gorithms， the fusion algorithm fully incorporates the 
advantages of other algorithms， not only improves 
accuracy but also resolves issues of missed and false 
detections， demonstrating excellent robustness. 
The main research content will be presented in two 
chapters， with specific arrangements as follows.

Section 3 introduces the comprehensive algo‑
rithmic framework for fault fusion diagnosis of su‑
personic inlets， encompassing a data-driven model‑
ing approach based on inlet wall pressure data， a 
feature fusion algorithm for inlet wall pressure lever‑
aging the attention mechanism， and a fault decision 
fusion method grounded in D-S evidence theory.Sec‑
tion 4 presents the results of fusion diagnosis of in‑
take tract faults based on feature fusion of attention 
mechanisms. Section 4.1 presents the inlet channel 
feature extraction results. Section 4.2 yields the re‑
sults of pressure feature fusion based on the atten‑
tion mechanism， which greatly improves the diag‑
nostic accuracy by utilizing the multi-source fusion 
features to establish the intake channel model con‑
taining the instability mechanism. Section 4.3 pres‑
ents the fault decision fusion results based on D-S 
evidence theory to integrate the advantages of multi‑
ple intelligent algorithms. The diagnostic results are 
fused for decision making， the fusion model not on‑
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ly solves the problem of omission and misjudge‑
ment， but also has good robustness. The accuracy 
of intake tract instability fault diagnosis is higher 
than 95%.

1 Integrated Fault Diagnosis Frame⁃
work for Supersonic Air Intake 
Systems 

To address instability fault diagnosis challeng‑
es in wide-speed-range supersonic air intakes， this 
study presents a hybrid intelligent diagnostic frame‑
work that synergistically integrates attention mecha‑
nism-based feature fusion with D-S evidence theory-

driven decision fusion. As illustrated in Fig.2， the 
methodology comprises four critical phases： Single 
feature extraction， adaptive feature fusion， data-

driven system modeling， and probabilistic decision 

integration. The implementation initiates with ex‑
tracting pressure-sensitive signatures from baseline 
intake system models， specifically targeting instabil‑
ity precursors. Subsequently， an attention-enhanced 
feature fusion mechanism dynamically weights these 
multi-source pressure characteristics to establish a 
physics-informed data model encapsulating instabili‑
ty mechanisms. The final stage employs D-S evi‑
dence theory to reconcile diagnostic outputs from 
multiple artificial intelligence （AI） classifiers， 
achieving robust decision synthesis through uncer‑
tainty quantification. Compared to conventional sin‑
gle-feature classifiers and monolithic algorithm ap‑
proaches， this dual-layer fusion architecture demon‑
strates superior diagnostic fidelity with enhanced 
noise immunity.

2 Data⁃Driven Modeling of Super⁃
sonic Air Intakes 

In the context of modeling supersonic air in‑
takes with instability mechanisms across a wide 
speed range， the inherent complexity and intricate 
flow details of the intake system present significant 
challenges. To efficiently and rapidly create a high-

accuracy model of the intake， this paper proposes a 
data-driven modeling approach. This method cir‑

cumvents the detailed internal flow mechanisms by 
utilizing data-driven techniques to uncover the map‑
ping relationships between input data and system be‑
havior. Through advanced big data analysis， this ap‑
proach constructs a mathematical model that accu‑
rately represents the real-time operational state of 
the system， embodying the dynamic advancements 
in modern data science at the intersection of funda‑
mental and applied sciences.Compared to traditional 
physics-based mechanism modeling， this data-driv‑

Fig.2　Intelligent diagnosis flowchart of intake tract faults
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en method offers distinct advantages in terms of 
speed， efficiency and accuracy. It is particularly 
well-suited for developing predictive and control 
models for manufacturing processes， where timely 
and precise modeling is essential.

2. 1 Benchmark modeling of supersonic air in⁃
takes　

A supersonic inlet model with instability mech‑
anism in wide speed domain is designed with fixed 
geometry and mixed compression axisymmetric in‑
let structure［20］. The inlet adopts a two-stage cone 
compression and is designed for an incoming Mach 
number of 4.5. The inlet parameters are based on 
the incoming flow at 27 km altitude flight. The inlet 
angles are 10° and 8° . The inlet length is 910 mm. 
The capture radius is 160 mm. The throat height is 
12.2 mm. And the internal/total constriction ratio is 
1.64/6.21.

The 2D computational domain mesh is shown 
in Fig.3， where intensive mesh refinement is imple‑
mented for the adjacent wall region in order to finely 
capture the subtle fluid dynamics within the adher‑
ent layer， and additional mesh enhancements are ap‑
plied where significant changes occur in the flow 
characteristics. A pressure remote field model， a 
non-sliding adiabatic wall setup， and pressure-set 
outlet boundary conditions are utilized in the numeri‑
cal calculations.

2. 2 Instability feature signal extraction　

The performance of an aero-engine intake is 
evaluated through a range of parameters， with vibra‑
tion indicators playing a central role， as they reflect 
the stability characteristics of the system. When an 
engine experiences surge， typical indicators include 
significant fluctuations in compressor outlet pres‑
sure， pronounced instability in air flow， sudden 
drops in both high-pressure and low-pressure rotor 

speeds， a sharp rise in low-pressure turbine outlet 
temperature， a sudden spike in engine inlet pres‑
sure ， and abrupt changes in thrust.

To assess engine instability， key parameters 
such as inlet and outlet pressures， the turbine outlet 
temperature， and high-pressure and low-pressure ro‑
tor speeds are closely monitored. The primary objec‑
tive is to capture the immediate initial fluctuations in 
the engine’s compression components， as these are 
critical to identify the onset of instability.While pres‑
sure， temperature， and rotor speed parameters ex‑
hibit significant dynamics during vibration events， 
pressure changes are often gradual and exhibit long 
periods， and thus less effective for real-time analy‑
sis of engine states. Temperature signals are  slow 
to respond and not intuitive for identifying instabili‑
ty. Rotor speed fluctuations， though related to fuel 
control， offer an indirect correlation. Transient pres‑
sure changes are more easily detectable and can be a 
reliable indicator of instability.Therefore， inlet pres‑
sure data， in the form of pressure pulsations， is se‑
lected as a key characteristic parameter for determin‑
ing engine instability.

3 Decision⁃Making Fusion Diagno⁃
sis Method for Intake Tract 
Faults Based on Feature Fusion 
of Attention Mechanisms 

3. 1 Attention mechanism⁃based fusion method 
for inlet wall pressure features　

The expressive power of the fault characteris‑
tics of intake tract instability is weak. Although ad‑
vanced detection techniques for individual signals 
have been optimized in a variety of ways， their prog‑
ress in improving diagnostic accuracy is still signifi‑
cantly constrained. Therefore， this study focuses on 
the analysis using an approach with multiple charac‑
teristics. Inlet wall pressure feature fusion refers to 
the combination of features from different informa‑
tion sources or feature spaces， in order to provide 
more information content and a more detailed pre‑
sentation. In the field of machine learning as well as 
data analytics， feature fusion is often used to im ‑

Fig.3　Axisymmetric mixed-pressure supersonic inlet mesh 
model
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prove the overall performance of a model， increase 
the accuracy of predictions or simplify the way that a 
model is described. The core goal of feature fusion 
is to integrate data from different sources with the 
aim of obtaining a more complete presentation of the 
features. This strategy helps the model to effective‑
ly understand the intricate connections between mul‑
tiple sources of data， which improves the model’s 
generalization performance and enables more accu‑
rate expectations for different kinds of data.
3. 1. 1 Attention mechanisms characterizing inte‑

gration basic theory　

In the field of modern AI， the attention mecha‑
nism is widely used and has a large number of appli‑
cation scenarios. The attention mechanism can be 
described by using some kinds of regression mod‑
els， where the training data of n instances and their 
corresponding target values are known to contain 
the features{ }( x 1，y1 )，( x2，y2 )，⋯，( xn，yn ) ， to 
solve the target value y for a new query instance x. 
This model uses a weighted average technique as 
the estimator result， where the weights correspond 
to the correlation between the training cases and the 
query are respresented as

ŷ = ∑
i = 1

n

α ( x,xi ) yi (1)

where the weight function α represents the computa‑
tion of the predictive relevance of instance xi for x. 
Eq.（1） can accurately summarize the thinking un‑
derlying the mechanisms of attention. Modern mod‑
els of attention depends on the domain of attentional 
focus and have progressed at an impressive rate. At‑
tention mechanisms can be categorized into several 
areas such as channel attention， spatial attention， or 
temporal attention. The mechanism of channel atten‑
tion is modeled by assigning specific weights to each 
channel， which helps to adaptively acquire samples 
related to channel fusion. The squeeze and excita‑
tion （SE） module is the most typical one. This mod‑
ule aims to enhance the global representational func‑
tion of the feature map by constructing correlations 
between channels， which in turn enables a greater 
focus on emphasizing the strong features in data 
messages， while suppressing the weak features.

In the adaptive weighted fusion process， a 
channel attention strategy is utilized to determine 
the criticality of each single channel within the multi-
channel feature matrix. First， a feature embedder is 
used to integrate the features of each channel. Con‑
sidering the significant differences between different 
channels， trained parameters are used to precisely 
control the weights of each channel. In order to im ‑
prove the module robustness， the Euclidean norm 
（L2 paradigm） is chosen to compute the global fea‑
tures， Let the embedding weight α =［α1，α2，⋯ ，

αm］， then the global feature is defined as

smn = αm
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The L2 paradigm is chosen as a means of stan‑
dardizing the channel ensemble information， so as 
to make the description of the channel information 
more clear and intuitive. In order to clarify the coop‑
eration between the channels and how to confront 
each other， the feature matrix of multiple channels 
is investigated in this study， and a gated adaptive 
strategy is adopted. In view of the insufficient gener‑
alization ability of traditional channel normalization 
methods， trainable weights γ and deviations β are 
added to this method to simulate the activation sta‑
tus of channels. Let the gating weight γ =［γ 1 ，

γ2，⋯，γm］，the gating bias β=［β1，β2，⋯， βm］， then 
the final obtained channel attention output is repre‑
sented as

f ̂mn = σ ( γm ŝmn + βm ) fmn (3)
where σ denotes the Sigmod function. Relying on 
the aforementioned gating mechanism， the model 
shows that the performance competitiveness of a 
particular channel is positively enhanced when the 
channel’s gating weight is enabled. Conversely， 
when the control weights of a particular channel are 
restricted， the model enhances the synergy and inte‑
gration between that channel and other channels. 
Meanwhile， the gating mechanism ensures that the 
channel’s original information can be conveyed se‑
curely， which is achieved by selecting the appropri‑
ate activation function.
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3. 1. 2 Fusion algorithm for supersonic inlet fea‑

tures based on attention mechanism　

In some data-level multi-sensor data fusion 
methods for supersonic air intakes， multi-sensor 
measurements are processed without considering 
their respective sensitivities to different types of da‑
ta. In order to better improve the quality of the fused 
data， this study designs a multi-source data fusion 
method based on the SE-block protocol to distin‑
guish the importance of various intake sensor data 
more clearly.

The SE module acts as a shallow computation‑
al unit that mainly performs feature reorganization 
for any transformation Ftr from input X to feature 
mapping U ， where U denotes the feature map 
with the width W ， the height H and the number 
of channels C after feature dimensionality reduc‑
tion. uc∈RH×W indicates the corresponding charac‑
teristics of each channel. A typical scenario in this 
application setting is the convolutional transform by 
introducing the SE module. Feature U first per‑
forms dimensionality reduction for each channel fea‑
ture to generate a global distribution characterization 
of the channel features. Then， with the help of the 
adaptive gating strategy， the distributional character‑
ization of the channels is transformed into weights 
and embedded into the relevant feature channels， as 
shown in Fig. 4. The detailed operation flow of the 
SE module is described below.

For example， in the convolutional transform，  
the input to the convolutional layer is { }x 1，x 2，⋯，xC′ ，

where C' denotes the input channel. The resulting 
output is { }u1，u2，⋯，uC . Then the convolutional 
layer transform can be represented as

u c = ∑
i = 1

C′
v i

c*x i (4)

where * denotes the convolution and v i
c the single-

channel 2D spatial kernel acting on the correspond‑
ing channel. Since the output is formed through the 
sum of all channels， it results in channel dependen‑
cies are only masked in the characteristics captured 
by the learner， and this dependency is tightly linked 
to local spatial relationships. The goal of the SE 
module is to extract channel dependencies through 
explicit modeling in order to improve its sensitivity 
to key information properties. In order to find a 
channel identity with statistical expression proper‑
ties， the local spatial information of the transformed 
output U is aggregated into z∈RC×1 using global av‑
erage pooling.

z c = F sq ( u c ) 1
H × W ∑

i = 1

H

∑
j = 1

W

u c ( i,j ) (5)

where z c denotes the characteristics of each channel 
after aggregation. In order to fully capture channel 
dependencies using aggregated information， net‑
work configurations that can flexibly learn nonlinear 
soft interactions need to be chosen， and thus a sim ‑
ple gating strategy based on the sigmoid activation 
function is selected. In order to enhance the accura‑
cy of the SE-block model while reducing its com ‑
plexity， the channel dependencies of the aggregated 
information are learned through an intermediate lay‑
er consisting of a reduced-dimensional fully connect‑
ed layer and an incremental fully connected layer. 
The weight vector is derived as

s = F ex( z,W ) = σ ( g ( z,W ) ) = σ (W 2 δ (W 1 z ) )
(6)

where δ denotes the ReLU function； and W1 and 
W2 are the fully connected layer weight coefficients 
from model optimization. The weight vector s com‑
puted by the activation operation is utilized to adjust 
the weights of the transformed output U to produce 
the final output data of the SE module， which is rep‑
resented as

x͂ c = F scale( u c,s c ) = s c u c (7)
where x͂ c indicates the final output of the SE module 
and Fscale the multiplying of the weight vector along 
the channel with the feature map. This algorithm 
mainly consists of data preprocessing and fusion 

Fig.4　SE-block fundamentals
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steps for adaptive weighting. In the link of data pre‑
processing， the collected data from various air in‑
take sensors are firstly processed for noise reduction 
and normalization. After short-time Fourier trans‑
form， the sample information is transformed into dif‑
ferent frequency images， and the spatial attributes 
of the image samples are mined from them to obtain 
a comprehensive multi-scale feature map.

During the adaptive weighted fusion stage， a 
channel attention mechanism is employed to quanti‑
fy the criticality of individual channels within the 
multi-channel characteristic matrix. The adaptive at‑
tention framework utilizes learnable weight matrices 
to dynamically allocate weights across temporal， fre‑
quency， and spatial domain features. For inlet fault 
diagnosis applications， this approach specifically en‑
hances the weighting coefficients for abrupt pressure 
transients， as these signatures are particularly dis‑
criminative for detecting incipient instability phe‑
nomena. First， the global attributes within each 
channel are pooled by using a global feature embed‑
ding component. Second，a gating adaptive strategy 
is adopted to determine the competition and coopera‑
tion patterns among the channels with respect to the 
original multichannel feature matrix. At the same 
time， the gating strategy ensures the efficient trans‑
mission of raw information within the channels by 
selecting appropriate activation functions. Utilizing 
lightweight spatial attention and channel attention 
control techniques， the feature images of multiple 
source fusion are successfully acquired， and then the 
inception module is deployed at the backend of the 
network to accomplish the fault classification task.

The structure of a complete feature fusion diag‑
nostic algorithm consists of several parts： An input 
layer， a single spatial feature extraction layer， inte‑
grative multi-channel features and an output layer 
for specific classification. The framework of this al‑
gorithm is shown in Fig.5. In this method， multiple 
input data are first obtained from a single source of 
features through a spatial feature extraction layer. 
This information is fed into the channel fusion pro‑
cessing layer for information aggregation， and final‑

ly classified with the help of a network of inception 
modules to derive their corresponding fault types.

3. 2 Fault decision fusion diagnosis method 
based on D⁃S evidence theory　

For the diagnosis of instability faults in super‑
sonic air intakes， despite the widespread use of ad‑
vanced intelligent algorithms， most fault diagnosis 
still relies on a single intelligent classifier， i.e.， only 
one specialized algorithm is used for identifying the 
type of fault. Given the differences in the working 
principles， characteristics and advantages of various 
classification tools， they are likewise accompanied 
by their own shortcomings， which leads to the diffi‑
culty of a single classifier model in detecting and di‑
agnosing supersonic air intakes comprehensively and 
reliably in a variety of scenarios. How to fully utilize 
the strengths and capabilities of multi-intelligent di‑
agnostic algorithms， bypass the inherent limitations 
of the algorithms， and continue to enhance the accu‑
racy and reliability of the fault diagnosis is an innova‑
tive topic， and also coincides with the basic con‑
cepts and goals of information fusion.
3. 2. 1 Fundamentals of D‑S evidence theory

The D-S evidence theory is widely used in in‑
formation fusion as a method to deal with uncertain 

Fig.5　Attention mechanism‑based feature fusion intake 
tract fault diagnosis algorithm
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logical inferences. The system has the function of 
combining information from multiple sources of evi‑
dence and can quantitatively analyze the uncertainty 
of things. It has certain application prospects in the 
field of intelligent diagnosis of mechanical equip‑
ment faults［21］.

Research methods based on the D-S evidence 
theory are divided into three main categories： Data 
fusion， feature fusion， and decision fusion. A hybrid 
intelligent diagnostic model for intake tract instabili‑
ty faults based on decision-level fusion is proposed.

The basic principle of the D-S evidence theory 
consists of the following three parts.

（1） Identification framework
The D-S evidence theory defines that the recog‑

nition structure is based on all potentially occurring 
hypothetical datasets Θ=｛A1，A2，…，An｝， and that 
all hypothesis sets are scalable to each other and are 
not dependent on each other， for a total of 2n hy‑
pothesis sets.

（2） Basic probability distribution
When a mapping function h with a power set of 

2Ai∈［0，1］ satisfies Eq.（1）， h is said to be a basic 
probability distribution， also known as a mass func‑
tion or evidence. where the h（Ai）>0， the subset Ai 

is called a focal element.
ì

í

î

ïïïï

ïïïï

∑
i = 1

n

h ( A i )= 1

h ( ∅ )= 0
(8)

A piece of evidence is shown as h1（A1）=0.6， 
h2（A2）=0.5， and h3（A3）=0.2. Then A1， A2， and 
A3 are the possible sets of all hypotheses， and the 
magnitude of the evidence’s support for each subset 
is expressed by the magnitude of the value of h.

（3） Synthesis rules
The fusion approach for multiple evidences in 

the D-S evidence theory is shown in Eq.（9）， where 
A1，A2，…，An are the focal elements. k is the conflict 
coefficient and calculated by Eq.（10）.

h ( A )= ( h1 ⊕h2 ⊕…⊕hn ) A =
1

1 - k
h1 ( A 1 )+ h1 ( A 1 ) h2 ( A 2 )+

h1 ( A 1 ) h2 ( A 2 ) h3 ( A 3 )+ … +
h1 ( A 1 ) h2 ( A 2 )…hn ( A n ) (9)

k = h1 ( A 1 )+ h1 ( A 1 ) h2 ( A 2 )+
h1 ( A 1 ) h2 ( A 2 ) h3 ( A 3 )+ … +
h1 ( A 1 ) h2 ( A 2 )…hn ( A n )
A 1     A 2     …     A n = ϕ (10)

where ⊕ denotes the orthogonal product. When k=
0， this indicates complete compatibility between the 
different pieces of evidence； when 0<k<1， it 
proves that there is certain degree of compatibility 
between the pieces of evidence and that the synthe‑
sis criterion has a fairly high degree of validity； 
when k=1， this synthesis rule will not be used be‑
cause the evidence is completely untrue.
3. 2. 2 Fusion algorithm for decision making on 

supersonic intake failures　

The underlying probability distribution is a cen‑
tral part of the decision level integration in the 
framework of the D-S evidence theory to fully ex‑
plore the working principle and unique characteris‑
tics of each classification tool［22］， and a probability-

based basic distribution scheme based on the princi‑
ples and uniqueness of various classifiers is pro‑
posed. The inlet pressure data exhibit high-dimen‑
sionality with limited samples， making support vec‑
tor machine （SVM） the optimal choice. Multi‑layer 
perception （MLP） is selected to perform deep non‑
linear mapping of pressure data for capturing tran‑
sient dynamic characteristics， while the random for‑
est （RF） is employed for feature importance analy‑
sis. Therefore， this study adopts SVM， MLP and 
RF algorithms for fault diagnosis.

SVM： In order to assign appropriate probabili‑
ty values to the data results of the SVM， a geomet‑
ric distance-based approach is introduced. The quan‑
tification of the probability is performed by analyz‑
ing the relative distance between the sample points 
and the hyperplane［23］. As the distance between the 
sample and the hyperplane increases， the trustwor‑
thiness of the sample for the current classification in‑
creases. This relationship is further normalized us‑
ing the Softmax function to obtain the probability 
that sample P belongs to category i.
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h1 ( P )i = exp ( R ( P )i )

∑
l = 1

k

exp ( R ( P )l )
(11)

where R（P） denotes the distance function between 
sample points. 

MLP： The Softmax layer is widely used in 
neural network based classification systems and 
mainly used to estimate the likelihood that an exam‑
ple belongs to the same category. In the output mod‑
ule， a Softmax module is incorporated to narrow 
down the input data of the previous layer. When the 
value of the output is positively correlated with the 
ratio of the input elements and totals to 1， this out‑
put can be used as the likelihood of whether a sam ‑
ple P belongs to category i or not， namely

h2 ( P )i = exp ( zi )

∑
i = 1

g

exp ( zi )
(12)

where g indicates the number of categories；and zi 
the ith element of the input softmax layer. 

RF： When discussing probability assignment 
methods in random forests， the voting method is the 
widely used strategy. The core method is to calcu‑
late the voting frequency of a decision tree and as‑
sign a probability value under the comprehensive 
consideration of the classification status inside and 
outside the decision tree. Assuming that the number 
of decision trees in a random forest is t， the probabil‑
ity that a sample P is determined as

h3 ( P )i =
∑
j = 1

t

p j

t
(13)

To enhance diagnostic accuracy and credibili‑
ty， the sub-model for inlet instability faults can 
adopt decision-level fusion techniques to integrate di‑
agnostic data from multiple models after outputting 
preliminary diagnostic results， thereby fully leverag‑
ing the complementary advantages among different 
models. The D-S evidence theory， a mature algo‑
rithm for decision-level fusion， has been systemati‑
cally applied to this sub-model in this study， suc‑
cessfully yielding diagnostic conclusions with signifi‑
cantly improved robustness. The overall logic and 
workflow of the algorithm are illustrated in Fig.6.

4 Simulation Verification 

4. 1 CFD simulation results and analysis of su⁃
personic inlets　

The design point for the wide-speed-range su‑
personic inlet model is set at a flight altitude of 
27 km， a Mach number of 4.5， and standard atmo‑
spheric pressure. The computational domain is 
solved numerically by the Navier-Stokes （N-S） 
equations using the Roe-FDS scheme. A standard 
k‑ε turbulence model is employed， and the govern‑
ing equations are discretized using a second-order 
upwind scheme. Throughout the simulation， residu‑
als and flow rates at the inlet and outlet are continu‑
ously monitored. Convergence is achieved when all 
residuals are reduced by three orders of magnitude， 
or when the residuals no longer decrease and both in‑
let and outlet flow rates stabilize.

At a flight speed of Mach 4.5， the inlet oper‑
ates in a critical state. However， when the flight 
speed drops to Mach 3.2， the hybrid intake system 
fails to establish a complete and stable shockwave 
system， resulting in a turbulent flow field. The total 
pressure recovery coefficient is reduced， and the 
mass flow rate of the geometric intake exceeds the 
engine’s required intake flow at startup， rendering 
the inlet in a non-starting state. For the hypersonic 
aero-engine’s hybrid intake system， pressure signal 
sampling points are placed along multiple modal 

Fig.6　Decision fusion diagram for inlet instability faults 
based on D-S evidence theory
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channels， with pressure acquisition points distribut‑
ed along the walls. A set of counterpressure multipli‑
ers is used at typical operating points to simulate 
combustion chamber pressure conditions， yielding 
current intake pressure sample data. The pressure 
data from the upper and lower wall surfaces of the 
intake throat are extracted for feature fusion and in‑
stability fault diagnosis， as highlighted in Fig.7.

In order to obtain the sample data of intake 

tract under different working conditions， the intake 
conditions are changed including the intake tempera‑
ture， the humidity， the flight altitude， and the in‑
take angle of attack， etc. Then the anomalies and 
missing values of pressure sample data collected 
from numerical simulations are processed， merged， 
and organized. Fig.8 displays the pressure distribu‑
tion along the upper wall surface for different chan‑
nel locations， where each pressure distribution in‑
cludes 91 data points. The total pressure recovery 
coefficient is calculated for the obtained pressure da‑
ta， and labels are assigned using a clustering algo‑
rithm based on flow conditions and pressure pulsa‑
tions. Stable samples are labeled as “2”， while un‑
stable samples are categorized as “ -2”“ -1” and 

“1” based on the severity of instability.

4. 2 Data⁃driven modeling of supersonic inlets 
with instability mechanisms in wide⁃speed 
domains　

The process of data fusion-driven modeling for 
supersonic inlets can be outlined in the following 
steps.

（1） Data preparation： The initial task is to pre‑
pare a pre-labeled dataset， where each sample in‑
cludes a feature set and corresponding category la‑
bels. These samples will be used to construct a 

SVM model.
（2） Finding the optimal hyperplane： The pri‑

mary objective of SVM is to identify the optimal de‑
cision hyperplane that maximizes the margin be‑
tween classes， thus ensuring effective separation of 
data points. The hyperplane is essentially a （d-1）
dimensional linear space， where “d” represents the 
dimensionality of the feature space. SVM performs 
classification by maximizing the margin between 
classes， improving the model’s generalization ability.

Fig.7　Inlet pressure data extraction along the course of the 
wall

Fig.8　Wide velocity domain inlet wall pressure pulsation
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（3）Kernel function transformation： When the 
data is not linearly separable in the original feature 
space， SVM employs kernel functions to map the 
samples to a higher-dimensional space， making the 
data linearly separable. Common kernel functions in‑
clude linear， polynomial， and Gaussian kernels.

（4）Solving the optimization problem： SVM 
solves a convex optimization problem to determine 
the optimal hyperplane， aiming to maximize the in‑
ter-class margin and ensure that correctly classified 
samples are as far as possible from the decision 
boundary.

（5）Output result： Based on the position of the 
hyperplane， unclassified samples are assigned to a 
category. Samples on one side of the hyperplane are 
classified as one category， while those on the other 
side belong to a different category.

Based on the data of the pressure feature sig‑
nals of the upper and lower wall surfaces of the su‑
personic air intake channel， the program is written 
to find the optimal hyperplane， and then the kernel 
function is transformed and the optimization prob‑
lem is solved to achieve the output. The model is 
obtained based on SVM classification. It can be con‑
cluded that the accuracy of the mathematical model 
obtained from the upper wall pressure signal training 
is 0.819 7， the training set accuracy （ACU） is 
0.956 79， the validation set ACU is 0.852 38， and 
the test set ACU is 0.8. The accuracy of the mathe‑
matical model obtained from the lower wall pressure 
signal training is 0.854 2， the training set ACU is 
0.969 14， the validation set ACU is 0.857 14， and 
test set ACU is 0.85. Training， validation， and test 
set results show varying performances， indicating 
some limitations， including issues with misclassifica‑
tions such as falsely predicting unstable samples as 
stable ones （false negatives） and vice versa （false 
positives）.

4. 3 Decision fusion diagnosis of intake faults 
based on attention mechanism feature fu⁃
sion　

The data fusion is based on isomorphic signals 
where pressure pulsation data of the upper and the 
lower wall surfaces are selected as the input data for 

the information feature fusion algorithm. Prior to da‑
ta input to the network， these pressure pulsation da‑
ta are converted into time-frequency maps by 
short‑time Fourier transform （STFT）. These imag‑
es are used to extract the spatial properties of the 
RGB image samples using the self-attentive net‑
work described above， resulting in a comprehensive 
multi-scale feature map ｛f1n， f2n，… ，fmn｝ with the 
same width and height which value is Q ' and num‑
ber of channels C'. In order to complete the feature 
fusion， the synthesized feature maps are firstly sim ‑
plified into the related independent channel gray ma‑
trices ｛f1n′， f2n′，… ，fmn′｝ with the same width and 
height which value is W. The single-channel gray‑
scale matrices are further superimposed into multi‑
ple-channel attribute matrices. The above operation 
permits the transformation of data from multiple sen‑
sors into multichannel sample data， cleverly trans‑
forming the multisource idea into a multichannel 
structure， which in turn allows effective weighted in‑
tegration with the help of a lightweight attention 
strategy.

To evaluate the quality of the fused features， a 
t‑distributed stochastic neighbor embedding （t-
SNE） clustering method is used for dimensionality 
reduction and the features are mapped into a two-di‑
mensional image. The resulting feature clusters are 
shown in Fig.9. The sample set can be clearly 
grouped into four distinct clusters， as indicated by 
the four different colors of sample points. By com‑
bining the total pressure recovery coefficient of the 
sample’s inlet duct and the flow capture status， it is 
determined that the blue sample cluster in the lower 
left corner in Fig.9 represents the steady-state data 

Fig.9　Clustering of inlet channel wall pressure characteris‑
tics
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cluster， while the remaining three colored data clus‑
ters correspond to the three different instability data 
clusters. The boundaries between these clusters are 
clear. Although the number of feature samples in 
other categories is smaller， most of the feature clus‑
ters are concentrated near their respective geometric 
centers. This indicates that the feature distribution 
extracted by this synthesis algorithm shows signifi‑
cant differences across the various categories.

Following the acquisition of fused features， the 
effectiveness of the fusion algorithm in enhancing 
fault diagnosis is validated by training a mathemati‑
cal model using SVM algoithms. Diagnostic out‑
comes are rigorously compared with single-feature 
model results from Section 3 （Table 1）. The fused-

feature model achieves an accuracy of 90.123%， 
with the training， the validation， and the test set ac‑
curacies of 0.944 44， 1.0 and 0.9， respectively， rep‑
resenting improvements of 8.153% （vs. upper wall 
pressure feature） and 4.703% （vs. lower wall pres‑

sure feature）. Comparative classification results 
（Fig.10） and confusion matrices （Fig.11） demon‑
strate effective mitigation of misjudgments and 
missed detections.

However， although the surge detection accura‑
cy of the fused-feature model reaches 90.123%， 
this remains insufficient for safety-critical engine ap‑
plications. Misclassifying unstable states risks cata‑
strophic flow separation and aerodynamic stall with‑
in the inlet. To meet aerospace-grade reliability stan‑
dards， further optimization of feature fusion weight‑
ing coefficients and D-S evidence conflict resolution 
thresholds is imperative.

Table 1 Comparison of fusion feature accuracy %

Indicator

Correct rate
Training set ACU

Validation set ACU
Test set ACU

Upper wall 
feature
81.97
95.67
85.23
80.00

Lower wall 
feature
85.42
96.91
85.71
85.00

Integration 
feature
90.12
94.44

100.00
90.00

Fig.10　Classification results of the training, the validation, and the test sets for inlet destabilization trouble shooting
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The decision fusion optimization model is used 
to enhance the accuracy of the baseline model. As 
previously mentioned， the supersonic inlet duct has 
four possible states： One steady-state and three in‑
stability states. These states are described by their 
respective labels： 2， 1， -1， and -2， representing 
the fault types. These four inlet duct states are treat‑
ed as fault hypotheses， forming the recognition 
framework of the D-S evidence theory， Θ '=｛2，1，
-1，-2｝. After multiple experiments， the basic 
probability assignment is determined to be ｛0.5，0.3，
0.1，0.1｝， and decision fusion is performed based on 
the synthesis method in Eq.（9）. Using the fused fea‑
tures as input， the SVM， RF and MLP algorithms 
are used to train the supersonic inlet duct mathemati‑
cal model， which includes instability mechanisms 
over a wide speed range， for preliminary fault diag‑
nosis. The training results and accuracy are shown 

in the Table 2. To best leverage the functions and 
characteristics of each classifier， the basic probabili‑
ty assignment plays a crucial role in the decision fu‑
sion using the D-S evidence theory. The base proba‑
bility assignment strategy obtained is applied to the 
diagnostic outputs of the three different algorithms， 
and further integration of these outputs is carried out 
using formulas and synthesis rules. This results in a 
fault diagnosis model for the inlet duct， combining 
feature fusion and D-S decision fusion. Multiple in‑
let duct test sample points are used as input and the 
fault diagnosis accuracy rates of each model are 
shown in Table 2.

As shown in Table 2， the fault diagnosis accu‑
racy of individual classifiers is concentrated around 
90% while the fusion model achieves over 95% ac‑
curacy. The single-classifier model demonstrates 

Fig.11　Confusion matrices of the training, the validation, and the test sets for inlet destabilization fault diagnosis
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limitations in providing comprehensive and reliable 
diagnosis across various inlet operating states， re‑
sulting in relatively lower accuracy. In comparison， 
the fusion model improves fault diagnosis accuracy 
to above 95%， exhibiting superior diagnostic capa‑
bility. Analysis of Figs.10， 11 reveals that during 
training， single classifiers show erroneous devia‑
tions in some sample points within both validation 
and test sets， whereas the fusion model demon‑
strates more precise training results. From the confu‑
sion matrix perspective， single classifiers exhibit 
lower fault diagnosis accuracy with multiple misdiag‑
nosed sample points， including issues of false posi‑
tives and missed detections. The fusion model sig‑
nificantly improves diagnostic accuracy， effectively 
resolving misjudgment issues while enhancing mod‑
el robustness. This improvement stems from the 
complementary strengths of individual classifiers. 
SVM excels in high-dimensional feature spaces. RF 
resists overfitting in multi-regime datasets. And 
MLP captures nonlinear instability precursors. By 
synthesizing these advantages， the fusion model en‑
hances fault detection sensitivity while maintaining 
specificity， thereby enabling precise differentiation 
of inlet states （stable， incipient instability and 
surge）. This approach safety-critical requirements 
for aero-engine systems， addressing the limitations 
of single-algorithm diagnostics in complex operation‑
al environments. Therefore， the feature fusion-

based inlet fault decision fusion diagnosis algorithm 
achieves over 95% accuracy in inlet instability fault 
diagnosis， not only resolving false positive and 
missed detection issues but also demonstrating ex‑
cellent robustness.

This work advances inlet fault diagnostics by 
harmonizing data-driven learning with evidence-

based uncertainty management， offering a scalable 

solution for next-generation aero-engine health mon‑
itoring systems.

5 Conclusions

This study addresses the challenge of instabili‑
ty fault diagnosis in wide-speed-range supersonic in‑
lets. Leveraging wall pressure data derived from 
CFD simulations， a data-component fusion-driven 
modeling approach is developed to construct an inlet 
mathematical model. To overcome the limitations of 
low diagnostic accuracy in single-signal methods 
and integrate the advantages of multiple intelligent 
algorithms， an inlet fault decision fusion diagnosis 
algorithm based on attention mechanism feature fu‑
sion is proposed， achieving efficient instability fault 
diagnosis across wide-speed regimes. This work fus‑
es multi-source information to improve the accuracy 
of fault diagnosis and enhance the robustness of the 
system. Meanwhile， applying the D-S evidence the‑
ory to the intake tract fault diagnosis study improves 
the model accuracy， solves the leakage judgement 
problem and enhances the robustness of the system 
compared to other previous single fault diagnosis 
method. So this work advances inlet fault diagnos‑
tics by harmonizing data-driven learning with evi‑
dence-based uncertainty management， offering a 
scalable solution for next-generation aero-engine 
health monitoring systems. The key contributions 
are as follows.

（1） An attention mechanism and D-S evidence 
theory-based fusion diagnosis method. A hybrid 
framework combining attention mechanism-driven 
pressure feature fusion and D-S evidence theory-

based decision fusion is developed.This method inte‑
grates the strengths of multiple algorithms （e. g.， 
SVM， RF， MLP）， resolving the low diagnostic ac‑
curacy （less than 85%） and limited optimization po‑
tential of single-signal approaches. The fusion algo‑
rithm achieves diagnostic accuracy exceeding 95%.

（2） Component-data-driven inlet modeling. A 
supersonic inlet mathematical model incorporating 
wide-speed-range operability and instability mecha‑
nisms is rapidly developed using SVM algorithms 
and CFD-extracted wall pressure data. The model 

Table 2　Comparison of decision fusion accuracy %

Indicator

Correct rate
Training set ACU

Validation set ACU
Test set ACU

SVM

90.12
94.44

100.00
90.00

RF

89.27
89.50
85.71

100.00

MLP

91.35
91.97
90.47
90.00

Fusion 
model
96.31
99.43
93.54

100.00
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exhibits high computational efficiency and preci‑
sion， enabled by mapping intrinsic relationships 
within multi-regime datasets.

（3） Axisymmetric supersonic inlet benchmark 
model and CFD validation. An axisymmetric inlet 
benchmark model is established， with CFD simula‑
tions extracting high-fidelity pressure data from hun‑
dreds of wall-mounted points under steady/unsteady 
conditions. Pressure datasets across multiple flight 
envelope points are generated， providing foundation‑
al training samples for data-driven modeling.

Future research directions： （1） Algorithm opti‑
mization.The current deep neural network-based al‑
gorithm demands significant computational resourc‑
es， limiting real-time applicability. Future work will 
focus on reducing grid complexity while maintaining 
more than 95% accuracy to enhance computational 
speed.（2） 3D inlet model development. The 2D axi‑
symmetric model will be expanded to a 3D mesh 
model for higher-precision wall pressure data acqui‑
sition， critical for improving inlet safety perfor‑
mance in hypersonic regimes.
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基于注意机制特征融合的进气道故障诊断

张晓乐 1， 肖玲斐 1， 刘金超 2， 韩子瑞 1

（1.南京航空航天大学能源与动力学院, 南京  210016, 中国； 2.中国航空发动机研究院，北京  101300，中国）

摘要：为解决宽速域超声速进气道不稳定性故障诊断难题，提出了一种基于注意机制特征融合的进气道故障决

策融合诊断算法，实现了跨宽速域不稳定性故障的高效诊断。首先，考虑到宽速域进气道数学建模中对壁压数

据提取的要求，建立了用于计算流体动力学（Computational fluid dynamics， CFD）模拟的超声速进气道模型。其

次，利用数据驱动的建模技术和支持向量机（Support vector machine， SVM）算法，使用 CFD 得出的入口壁压力

数据，快速开发了一个涵盖宽速域并包含不稳定性机制的高精度数学模型。随后，提出了一种进气道故障决策

融合诊断方法：通过注意机制融合压力特征，然后基于 Dempster‑Shafer（D‑S）证据理论进行决策融合，综合了多

种智能算法的优点，克服了单一信号诊断方法的局限性（精度低、优化潜力受限）。仿真结果验证了数据驱动的

宽速度范围进气道模型在实现高精度和快速收敛方面的有效性。此外，融合诊断算法在检测不稳定性方面显示

出达到超过 95% 的准确度，与其他单一故障诊断算法的准确度相比，代表了超过 5% 的改进。这种增强有效地

消除了遗漏或错误诊断的发生，同时还在操作不确定性下表现出稳健的性能。

关键词：宽速域超声速进气道；数据驱动建模；注意力机制；Dempster‑Shafer 证据理论；故障诊断
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