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Recognition of Oscillatory Ships in Missile‑Borne SAR
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Abstract: An end-to-end recognition strategy is proposed for oscillatory ships in missile-borne synthetic aperture radar 
（SAR）， eliminating the need for image refocusing. Unlike conventional “focus-then-recognize” paradigm， the 
approach directly exploits oscillation-degraded SAR images for training and recognition， avoiding the unreliability of 
refocusing under complex imaging conditions. A multi-azimuth ship dataset under the “sea state five” condition is 
simulated， where ResNet-18 achieves a baseline accuracy of 66.66%， validating the feasibility of the end-to-end 
framework. By further incorporating a domain-adversarial neural network （DANN） to extract cross-azimuth invariant 
features， the recognition rate increases to 76.22%， demonstrating the potential of this strategy. The results indicate 
that， even with a non-optimal backbone， the end-to-end approach shows clear applicability in challenging scenarios， 
while offering a foundation for future performance gains with more advanced architectures.
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0 Introduction 

Ships serve as essential carriers in the global 
maritime transportation system， playing an irre‑
placeable strategic role in resource exploitation［1］， 
economic exchange［2］， and national security［3］. As 
marine development continues to grow in scope and 
depth， application scenarios such as maritime sur‑
veillance and tactical early warning place increasing 
demands on real-time and accurate ship target moni‑
toring［4-5］.

Imaging radar systems can acquire high-resolu‑
tion two-dimensional images of targets over long dis‑
tances， providing essential information for subse‑
quent target detection and recognition. To meet the 
specific demands of modern maritime missions， syn‑
thetic aperture radars （SARs） have become a key 
sensing modality for ship monitoring and recogni‑
tion， owing to their advantages of all-weather， all-
day imaging capabilities and high resolution［6-8］. Con‑
sequently， SAR image-based ship recognition tech‑
nologies have become a focus of research in the 

fields of marine remote sensing and maritime man‑
agement.

Motion is both the foundation of imaging and 
the root of its problems［9］. SAR systems acquire im ‑
ages based on the relative motion between the plat‑
form and the target. However， maritime ships expe‑
rience wave-induced， multi-degree-of-freedom mo‑
tions with strong nonlinearity， which cause signifi‑
cant interference with SAR imaging and result in se‑
vere defocusing. Under complex sea conditions， 
large-amplitude ship motions can lead to substantial 
image distortion， ultimately degrading recognition 
performance.

Many researchers have investigated the impact 
of ship oscillations on SAR imaging. Wang et al.［10］ 
systematically studied the spatially and temporally 
varying defocus characteristics induced by ship oscil‑
lation. Zhou et al.［11］ conducted quantitative analysis 
on the degradation of SAR image quality caused by 
ship oscillation. In terms of SAR image refocusing， 
Wang et al.［12］ proposed a three-dimensional refocus‑
ing method for oscillatory ships based on spatially 
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variant defocus characteristics， effectively enhanc‑
ing image quality and enabling ship recognition un‑
der severe defocus conditions. Guo et al.［13］ present‑
ed a coarse-to-fine refocusing approach for maneu‑
vering ship targets in spaceborne SAR， combining 
ISAR techniques with high-order spatial motion 
compensation to mitigate residual defocus and im ‑
prove image clarity. While these methods demon‑
strate considerable potential， refocusing remains 
highly challenging for ships undergoing complex mo‑
tions in missile-borne and large-squint SAR scenari‑
os. In the field of SAR image-based ship recogni‑
tion， most recent research has leveraged deep learn‑
ing methods. Zhang［14］ proposed a classification 
method based on multi-convolutional neural net‑
work fusion to address the low recognition accuracy 
of small and medium-sized ships； nevertheless， it 
does not fully account for the image degradation in‑
duced by ship oscillation and its potential constraints 
on recognition performance. Zhang et al.［15］ conduct‑
ed a systematic study on ship oscillation recognition 
from both real-valued and complex-valued perspec‑
tives and proposed an enhanced refocusing method 
to improve the recognition accuracy of oscillatory 
ship targets.

Recognizing oscillatory ships in missile-borne 
SAR systems faces several challenges. Unlike air‑
borne and spaceborne platforms， missile-borne 
SAR presents additional difficulties. （1） There is a 
lack of publicly available and high-quality datasets. 
The high maneuverability and complex imaging ge‑
ometry of missile-borne platforms［16］， combined 
with military sensitivity and security issues， hinder 
the collection and sharing of real-scene data cover‑
ing diverse ship motions and attitude changes. Most 
existing public SAR datasets are limited to space‑
borne or airborne platforms， which significantly re‑
stricts the usefulness and generalization of data-driv‑
en approaches and deep learning models. （2） Large 
squint angles cause significant range-Doppler cou‑
pling and nonlinear imaging geometry. Coupled with 
defocusing due to target motion， oscillatory ships 
may experience notable geometric distortion under 
these conditions. （3） The short synthetic aperture 
time limits coherent integration， preventing the cap‑

ture of an entire oscillation cycle and leading to in‑
complete motion data， which increases variability 
within classes.

In addition， the continuously varying attitude of 
oscillatory ship targets causes image distortion and 
defocusing， which further complicates recogni‑
tion［10-11］. Moreover， due to the inherent azimuth sen‑
sitivity of SAR imaging［17］， targets of the same class 
may appear significantly different under varying ini‑
tial heading directions， leading to category confusion 
or recognition failure［18］. Conventional recognition 
methods usually depend on image refocusing as a 
preprocessing step. However， in the current applica‑
tion scenario， such refocusing is highly challenging 
and might even be ineffective. Additionally， in real-
world processing pipelines， the amount of informa‑
tion content can at most be preserved and cannot be 
increased； inappropriate preprocessing might cause 
the loss of discriminative features， thereby degrad‑
ing recognition performance. To explore a better pro‑
cessing approach， this study adopts an end-to-end 
strategy， enabling the network to automatically 
learn feature representations and effectively mitigate 
the information loss caused by manual preprocessing.

To address these challenges， a simulated datas‑
et of oscillatory ships was created by selecting three 
ship types and covering all heading directions. For 
recognition， the ResNet-18 network was initially 
used to run experiments on the simulated dataset， 
providing preliminary validation of the feasibility of 
the end-to-end strategy in this scenario. To further 
mitigate azimuth sensitivity， a domain adaptation 
strategy was introduced to enhance the cross-do‑
main generalization. Specifically， the domain-adver‑
sarial neural network （DANN） was integrated with 
ResNet-18 to form the overall architecture. The fea‑
sibility and limitations of the proposed scenario were 
analyzed through experiments， demonstrating the 
significant potential of the end-to-end strategy for 
performance improvement.

1 SAR Imaging Modeling 

1. 1 Ship oscillation　

The attitude disturbance of a ship under wave 
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action can be approximated as a three-degree-of-free‑
dom rigid-body rotation about its center of mass， 
namely pitch， roll， and yaw， as shown in Fig. 1. 
Under real sea states， these rotational motions are 
governed by a complex coupling of wave excitation， 
buoyant restoring forces， and added mass effects， 
making the motion modeling highly complex.

In imaging simulation studies， the angular dis‑
placement in each rotational degree of freedom can 
be approximated by a sinusoidal function［19］， and the 
instantaneous rotation angle of the ship at time t can 
thus be expressed as

θp ( t )= 1
2 A p sin ( )2π

T p
t + φ p (1)

θy ( t )= 1
2 A y sin ( )2π

T y
t + φ y (2)

θ r ( t )= 1
2 A r sin ( )2π

T r
t + φ r (3)

where θp ( t )， θy( t )，and θ r ( t ) are the rotating angles 
of the pitch， yaw， and roll， respectively； Ap，Ay，

and Ar the double amplitudes of the pitch， yaw， and 
roll， respectively； Tp，Ty，and T r the motion periods 
of the pitch， yaw， and roll， respectively； φ p，φ y，

and φ r the initial phase offsets of the pitch， yaw， 
and roll， respectively.

To transform the physical model into a mathe‑
matical formulation， a local coordinate system is es‑
tablished concerning the ship’s body axes to de‑
scribe its absolute motion. As shown in Fig.1， the 
origin is set at the center of the keel， with the longi‑
tudinal axis defined as the x-axis， the transverse ax‑
is as the y-axis， and the vertical axis as the z-axis. 
In this local frame， ( X P，Y P，ZP ) denotes the posi‑

tion of a scattering point P on the ship. Using a ro‑
tating matrix， its coordinates in the global coordi‑
nate system can be expressed as ( xP，yP，zP )，shown 
as
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where the rotating matrix Rot is derived through the 
ordered multiplication of yaw， pitch and row［20］. 
The individual roll oscillation matrices Roty， Rotp， 
and Rot r can be expressed as

Rot = Rotr ·Rotp ·Roty (5)
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1. 2 Echo signal in missile‑borne SAR　

In the missile-borne SAR imaging model， the 
radar platform is assumed to fly at a constant alti‑
tude with a constant velocity and fixed flight direc‑
tion. The transmitted signal is a linear frequency 
modulated （LFM） pulse， whose two-dimensional 
time-domain expression is given by［9］

S t ( τ,t )= rect é
ë
ê
êê
ê τ

T p

ù

û
úúúú expìí

î
j2π ( fc t + 1

2 Kτ 2)üýþ (9)

where fc is the carrier frequency， T p the pulse dura‑
tion， and K the chirp rate. t and τ denote the azi‑
muth slow time and range fast time， respectively. 
After reflection and down conversion at the receiv‑
er， the echo phase can be written as

ϕ r ( τ,t )= exp ( )-j 4πfc R s

c
exp

é
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újπK ( )τ - 2R 2

s

c
 (10)

where R s is the one-way slant range. Denoting the 
radar platform coordinates as ( x r，y r，z r )， R s be‑
tween a scattering point P on the ship and the radar 
can be expressed as
R s ( τ )= ( x r - xp )2 +( y r - yp )2 +( z r - zp )2   (11)

Fig.1　Ship oscillation model
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Ship oscillation induces scattering point dis‑
placement， causing slant range R s deviation. It intro‑
duces phase errors in the echo described by 
Eq.（11）， leading to matched filter mismatch and 
image defocusing， thereby degrading recognition 
performance.

2 Dataset Construction 

To construct a remote sensing image dataset 
for ship recognition tasks， three representative ship 
types are chosen and named Class A， Class B， and 
Class C in this paper. These ships share certain simi‑
larities in size and shape， allowing for a more objec‑
tive assessment of recognition algorithm perfor‑
mance.

To simulate ship oscillation， a relatively harsh 
sea state， sea state five， is selected. For oscillation 
amplitude and period parameters， typical values in 
Table 1 are used as means， with random sampling 
within specified ranges to enhance data diversity 
and realism. The initial azimuth angle for each ship 
class is uniformly distributed over 0°—360° to cap‑
ture imaging variations across different heading di‑

rections. Some sample examples are shown in 
Fig.2.

The fidelity of simulations is essential for any 
study. However， due to the scarcity of publicly 
available real-world data for this scenario， it re‑
mains difficult to quantitatively compare simulated 
and measured samples. To improve the realism of 
the simulation， the ship’s structure was modeled 
with electromagnetic software to generate the radar 
cross-section （RCS） data. Motion imaging simula‑
tions were then conducted based on typical ship mo‑
tion parameters from Ref.［19］. During imaging， 
the ship’s attitude was recorded at 0.06 ms inter‑
vals， generating SAR images that closely match the 
actual results. The back projection （BP） algorithm 
was employed for imaging simulation. For each ship 
type， 360 SAR image samples were generated， to‑
taling 1 080 samples.

3 Recognition of Oscillatory Ships 
in ResNet‑18 

3. 1 ResNet‑18 network architecture　

ResNet introduces residual connections that ef‑
fectively alleviate gradient vanishing and perfor‑

mance degradation in deeper networks， enabling sta‑
ble deep feature learning and prime recognition per‑
formance［21］. Compared to deeper ResNet variants， 
ResNet-18 feature fewer parameters and lower com ‑
putational cost， offering enhanced training stability 
and robustness against overfitting in SAR image sce‑
narios with limited samples and significant target 

Table 1　Oscillation parameters at sea state 5[19]

Level

Sea state five

Motion
Pitch
Yaw
Roll

Amplitude/(°)
3.4
3.8

38.4

Period/s
6.7

14.2
12.2

Fig.2　Sample examples from the dataset
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scale variations. Its shallower structure also pre‑
serves low-level texture and contour details， which 
is critical for recognizing targets with blurred struc‑
tures and indistinct edges in SAR imagery. More‑
over， it has demonstrated solid performance in pre‑
vious SAR image recognition studies. Hence， 
ResNet-18 is selected as the backbone network in 
this paper.

The ResNet-18 architecture in Table 2［21］ con‑
sists of four residual stages， each containing two 3×
3 convolutions followed by batch normalization and 
ReLU for better nonlinearity and stability. It starts 
with a 7×7 convolution and max pooling， then 
moves through progressively deeper layers to ex‑
tract multi-scale features. It concludes with global 
average pooling and a fully connected layer （FC） 
for recognition. FC-C denotes FC with the output 
dimension of C.

3. 2 Model training　

The dataset was randomly split into training， 
validation， and test sets in an 8∶1∶1 ratio. ResNet-
18 served as the backbone network and was trained 
for 800 epochs. Model performance was tracked 
through validation accuracy and training loss. As 
shown in Fig.3， the recognition accuracy steadily 
improves as training continues. Although there was 
instability in the early stages， the performance even‑
tually converged to about 65% after sufficient train‑
ing. Fig.4 shows a consistent decrease in loss， high‑
lighting the effectiveness of continued training. Af‑
ter 500 epochs， the loss curve begins to level off， in‑
dicating convergence.

3. 3 Model evaluation　

Table 3 gives the per-class recognition accura‑
cy and the corresponding confusion matrices. The 
model attains an overall accuracy of 66.66%.

Analysis of the results reveals marked class-

wise imbalance and randomness in recognition rates. 
Under the “sea state five” condition， the pro‑
nounced ship oscillation induces strong SAR defo‑
cus and structural distortion， sharply reducing both 
feature extraction effectiveness and feature expres‑
siveness. Therefore， under more challenging sea 
states， the performance of existing recognition 
schemes may degrade significantly or even collapse 
entirely. Nevertheless， on the present dataset， 
ResNet-18 exhibits a degree of recognition capabili‑
ty and maintains an acceptable accuracy level， pre‑
liminarily demonstrating the feasibility of the end-to-

end strategy.

Table 2　Architecture of the ResNet‑18 network[21]

Module
Conv 1

Max pooling

Conv 2

Conv 3

Conv 4

Conv 5

Average pooling
FC‑C

Softmax

Output size
64×128×128

64×64×64

64×64×64

128×32×32

256×16×16

512×8×8

512×1×1
C×1
C×1

Parameter
7×7 conv

3×3 max pool
é
ë
êêêê

ù
û
úúúú3 × 3 conv

3 × 3 conv
× 2

é
ë
êêêê

ù
û
úúúú3 × 3 conv

3 × 3 conv
× 2

é
ë
êêêê

ù
û
úúúú3 × 3 conv

3 × 3 conv
× 2

é
ë
êêêê

ù
û
úúúú3 × 3 conv

3 × 3 conv
× 2

2×2
C
C

Stride
2×2
2×2

1×1

2×2

2×2

2×2

1×1

Fig.3　Validation accuracy during training

Fig.4　Training loss during training

Table 3　Recognition accuracy and confusion matrix of 
ResNet‑18

Class

A
B
C

Confusion matrix
Class A

28
4
4

Class B
0

19
5

Class C
8

13
25

Recognition 
accuracy/%

77.78
52.78
69.44
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4 Recognition of Oscillatory Ships 
in Domain Adaptive 

4. 1 Domain adaptation strategy　

This study uses an end-to-end recognition strat‑
egy that avoids complex image refocusing or prepro‑
cessing. However， distortions and significant azi‑
muth sensitivity still exist in SAR imagery. To alle‑
viate the azimuth sensitivity issue， transfer learning 
is applied in hopes of improving recognition accura‑
cy in this challenging scenario.

Dataset analysis indicates that， in missile-

borne SAR large squint-angle imaging， ship oscilla‑
tions induce pronounced defocus and distortion. 
Variations in initial heading directions further alter 
target orientation and introduce diverse distortions， 
resulting in substantial intra-class variability. This 

variability impedes effective feature sharing and re‑
duces model robustness and generalization. To en‑
hance recognition， the model must extract class-con‑
sistent representations across azimuths while reduc‑
ing azimuth-induced discrepancies.

Based on this observation， a domain adaptation 
strategy is employed. The dataset is divided into a 
labeled source domain and an unlabeled target do‑
main via random azimuth-based splitting. Discrimi‑
native features are learned from the source domain 
through supervised learning， while adversarial learn‑
ing aligns feature distributions across domains to ex‑
tract domain-invariant representations［22］. This ap‑
proach enhances recognition accuracy for unseen azi‑
muths and enables effective classification of target 
domain samples. ResNet-18 is adopted as the back‑
bone network and integrated into the DANN archi‑
tecture. The complete framework is shown in Fig.5.

4. 2 DANN network architecture　

DANN is a classic domain adaptation frame‑
work［23］ widely applied in cross-domain image classi‑
fication， medical imaging， speech recognition， and 
sentiment analysis［24］. As shown in Fig.5， the archi‑
tecture comprises three key components： Feature 
extractor， label predictor， and domain classifier.

The feature extractor captures high-level fea‑

tures to distinguish ship categories. The label predic‑
tor， a supervised subnetwork of fully connected lay‑
ers， takes these features and predicts categories for 
source-domain samples， providing supervision. 
Training involves forward propagation， loss evalua‑
tion， gradient backpropagation， and parameter up‑
dates via Adam optimizer for robust source domain 
performance. The domain classifier processes fea‑
tures through fully connected layers with nonlinear 

Fig.5　DANN-based ResNet-18 framework
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activations to make domain predictions， serving as 
the core of adversarial learning.

A gradient reversal layer （GRL） is inserted be‑
tween the extractor and classifier to reverse gradi‑
ents during backpropagation， enabling the extractor 
to generate domain-agnostic features and align fea‑
ture distributions. To balance early classification 
with later domain adaptation， a dynamic coefficient 
alpha is integrated into the GRL， gradually increas‑
ing from 0 to 1 following a sigmoid schedule. This 
allows the model to initially focus on classification 
and then shift to domain alignment， enhancing train‑
ing stability and effectiveness.

4. 3 Model training and result analysis　

In this study， an unsupervised domain adapta‑
tion method was employed. The target domain data 
were treated as samples with unknown categories， 
and their labels were not used during training. This 
approach guarantees that improvements in classifica‑
tion performance truly reflect the model’s ability to 
generalize， rather than label leakage. It also simu‑
lates a real-world scenario in which the target domain 
remains unlabeled， a situation frequently encoun‑
tered in missile-borne SAR applications， where the 
acquisition of labeled data is often costly or infeasible.

The dataset was randomly split into source and 
target domains in an 8∶2 ratio. The model was 
trained for 800 epochs. To monitor convergence and 
assess recognition performance on both domains， 
class-wise recognition accuracy on the target domain 
was recorded at each epoch. Analysis of the results 
shows fluctuating performance in the early training 
phases. As training continues， recognition accuracy 
gradually stabilizes. The results suggest that the 
model’s performance converges after about 400 ep‑
ochs， with the overall recognition rate settling at 
around 77%. Once stabilized， the target-domain rec‑
ognition accuracy averages 76.22%.

The legends in Fig.6 are as follows： Target do‑
main-All， Target domain-Class A， Target domain-

Class B， and Target domain-Class C， which respec‑
tively represent the recognition accuracy variations 
during training for all target domain samples， and tar‑
get domain ships of Class A， Class B， and Class C.

In this study， the discrepancy in total sample 
counts between Tables 3 and 4 is due to the dataset 
partitioning strategy， which depends on the network 
architecture. For ResNet-18， a validation subset 
was used during training， resulting in 108 images in 
the test set （Table 3）. Conversely， the DANN net‑
work did not require a validation set， and 216 imag‑
es were used for evaluation （Table 4）. The confu‑
sion matrix and per-class recognition rates from a 
representative epoch of the DANN network are 
shown in Table 4.

The results indicate that domain adaptation sig‑
nificantly improves target-domain recognition， as 
well as convergence speed and training stability. 
This benefit comes from using unlabeled target data 
in adversarial training， which guides the model to‑
ward learning transferable， class-discriminative fea‑
tures and makes better use of labeled source data. 
However， its effectiveness might decrease in more 
challenging conditions. Overall， the efficacy and ap‑
plicability of DANN in this scenario are confirmed， 
further demonstrating the feasibility and potential of 
the end-to-end strategy in this application， based on 
the ResNet-18 backbone.

Furthermore， obvious limitations are present. 
DANN heavily relies on the target domain distribu‑
tion： Its adversarial loss promotes feature represen‑

Fig.6　Recognition accuracy under sea state five conditions

Table 4　Recognition accuracy and confusion matrix of 
DANN

Class

A
B
C

Confusion matrix
Class A

58
3

12

Class B
11
56
10

Class C
3

13
50

Recognition 
accuracy/%

80.55
77.77
69.44
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tations closely aligned with the target data， so the 
resulting model achieves high accuracy only within 
that target domain or similar distributions. When 
test data differ significantly from the target distribu‑
tion， the model’s effectiveness drops substantially. 
Therefore， although domain adversarial training can 
greatly enhance recognition in a specific domain， its 
wider applicability remains limited and needs further 
improvement.

It should be noted that no direct comparison 
with existing state-of-the-art recognition algorithms 
was performed. However， a few of the prior studies 
have specifically targeted this application scenario， 
which is characterized by multi-azimuth sensitivity 
and scattering distortions under large squint angles. 
Moreover， this work aims to experimentally vali‑
date the feasibility of end-to-end recognition and its 
potential performance gains in complex imaging con‑
ditions. ResNet-18 was selected as the baseline net‑
work due to its strong performance in prior SAR tar‑
get recognition studies， providing a reference for im ‑
provements and enabling a more objective and prac‑
tical assessment of performance gains. Future work 
will systematically compare newly available algo‑
rithms with the proposed method to achieve compre‑
hensive cross-method evaluation and further verify 
the applicability of end-to-end recognition in com ‑
plex SAR scenarios.

5 Conclusions 

This paper focuses on the recognition of oscilla‑
tory ships in missile-borne SAR imagery，i.e.，a sce‑
nario marked by significant azimuth sensitivity and 
notable image distortion and defocus caused by tar‑
get oscillation. To directly address these challeng‑
es， we propose an end-to-end recognition frame‑
work that skips traditional preprocessing methods 
such as image refocusing or deblurring， thereby test‑
ing the viability of data-driven approaches in chal‑
lenging imaging conditions.

Firstly， a comprehensive SAR dataset cover‑
ing a full range of ship heading directions has been 
created. This dataset captures the azimuth-induced 
appearance variability inherent to missile-borne 

SAR， effectively simulating the recognition chal‑
lenges encountered in real-world deployments. Our 
observations reveal that， under large squint angles， 
The ship oscillation leads to severe defocus and dis‑
tortion. Moreover， variations in initial ship heading 
induce distinct geometric deformations， resulting in 
substantial intra-class appearance differences for the 
same target.

Regarding recognition performance， an end-to-

end strategy was implemented， directly excluding 
complex image preprocessing procedures. Initial ex‑
periments employing ResNet-18 under the “sea 
state five” condition revealed considerable perfor‑
mance declines， highlighting the challenges of ship 
recognition in scenarios involving severe motion-in‑
duced image distortions， while also demonstrating 
the feasibility of the end-to-end strategy. To coun‑
teract the azimuth sensitivity， DANN was subse‑
quently integrated with the ResNet-18 feature ex‑
traction module. Through adversarial learning， the 
model acquired class-discriminative yet heading-in‑
variant feature representations， resulting in a nota‑
ble 9.56% improvement in recognition accuracy. 
This progress substantiates the effectiveness of 
transfer learning methods， particularly domain-ad‑
versarial techniques， in alleviating appearance varia‑
tions caused by significant heading changes in mis‑
sile-borne SAR imagery， thereby confirming the 
practicality and potential of the end-to-end strategy 
for recognition in complex SAR imaging conditions.

Lastly， this study reveals that while the 
DANN-based strategy significantly improves cross-

heading recognition， its effectiveness is highly do‑
main-dependent. The learned features exhibit strong 
correlation with the target domain data， which lim‑
its generalization when the test domain deviates sub‑
stantially from the training distribution. These find‑
ings emphasize the need for more robust domain ad‑
aptation strategies in real-world SAR recognition 
tasks. Overall， the end-to-end recognition strategy 
shows significant potential for performance gains 
and practical application， with future integration of 
more advanced network architectures expected to 
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boost recognition results even more.

References
［1］ KALUZA P， KÖLZSCH A， GASTNER M T， 

et al. The complex network of global cargo ship move‑
ments［J］. Journal of the Royal Society Interface， 
2010， 7（48）： 1093-1103.

［2］ HOFFMANN J， WILMSMEIER G， LUN Y H V. 
Connecting the world through global shipping net‑
works［J］. Journal of Shipping and Trade， 2017， 2： 
1-4.

［3］ XU M， PAN Q， XIA H， et al. Estimating interna‑
tional trade status of countries from global liner ship‑
ping networks［J］. Royal Society Open Science， 
2020， 7（10）： 200386.

［4］ TIWARI S P， CHATURVEDI S K， ADHIKARY 
S， et al. Automatized marine vessel monitoring from 
Sentinel-1 data using convolution neural network［C］//
Proceedings of the 2021 IEEE International Geoscience 
and Remote Sensing Symposium IGARSS. ［S. l.］： 
IEEE， 2021.

［5］ SOLDI G， GAGLIONE D， FORTI N， et al. Space-

based global maritime surveillance. Part Ⅰ ： Satellite 
technologies［J］. IEEE Aerospace and Electronic Sys‑
tems Magazine， 2021， 36（9）： 8-28.

［6］ ZHANG M， CHEN Y， LYU X， et al. Synthetic aper‑
ture radar ship detection in complex scenes based on 
multifeature fusion network［J］. Journal of Applied Re‑
mote Sensing， 2023， 17（1）： 016511.

［7］ MARGARIT G， BARBA MILANÉS J A， TABAS‑
CO A. Operational ship monitoring system based on 
synthetic aperture radar processing［J］. Remote Sens‑
ing， 2009， 1（3）： 375-392.

［8］ RIZAEV I G， KARAKUŞ O， HOGAN S J， et al. 
Modeling and SAR imaging of the sea surface： A re‑
view of the state-of-the-art with simulations［J］. IS‑
PRS Journal of Photogrammetry and Remote Sens‑
ing， 2022， 187： 120-140.

［9］ CUMMING I G， WONG F H. Digital processing of 
synthetic aperture radar data［J］. Boston： Artech 
House， 2005.

［10］ WANG J， LENG X， SUN Z， et al. Study of space /
time varying defocus characteristics of complex mov‑
ing ship targets in SAR imaging［J］. Systems Engi‑
neering and Electronics， 2024， 46（7）： 2237-2255.

［11］ ZHOU B， QI X， ZHANG J， et al. Effect of six-DOF 
rotation of ship target on SAR imaging［J］. IEEE Jour‑
nal of Selected Topics in Applied Earth Observations 
and Remote Sensing， 2021， 14（5）： 1621-1634.

［12］ WANG J， LENG X， SUN Z， et al. Refocusing 

swing ships in SAR imagery based on spatial-variant 
defocusing property［J］. Remote Sensing， 2023， 15
（12）： 3159.

［13］ GUO J， YANG W， CHEN J， et al. Refocusing of 
moving ship targets in SAR images with long synthetic 
aperture time［C］//Proceedings of the IGARSS 2022 
IEEE International Geoscience and Remote Sensing 
Symposium. ［S.l.］： IEEE， 2022.

［14］ ZHANG Xiao. Research on ship detection and classifi‑
cation in SAR images［D］. Harbin： Harbin Institute of 
Technology， 2020. （in Chinese）

［15］ ZHANG Yun， HUA Qinglong， JIANG Yicheng， et 
al. Recognition of 3D oscillatory ship targets based on 
mixed complex-valued convolutional neural net‑
work［J］. Acta Electronica Sinica， 2022， 50（5）： 
1042-1049. （in Chinese）

［16］ BAO M， ZHOU S， XING M. Processing missile-

borne SAR data by using cartesian factorized back pro‑
jection algorithm integrated with data-driven motion 
compensation［J］. Remote Sensing， 2021， 13（8）： 1462.

［17］ GE J， WANG C， ZHANG B， et al. Azimuth sensi‑
tive object detection of high-resolution SAR images in 
complex scenes by using a spatial orientation attention 
enhancement network［J］. Remote Sensing， 2022， 14
（9）： 2198.

［18］ DING B， WEN G， HUANG X， et al. Target recogni‑
tion in SAR images by exploiting the azimuth sensitivi‑
ty［J］. Remote Sensing Letters， 2017， 8（8）： 821-830.

［19］ WEHNER D R. High resolution radar［M］. Nor‑
wood， MA： Artech House， 1987.

［20］ ARDAKANI H A， BRIDGES T J. Review of the 3-

2-1 euler angles： A yaw-pitch-roll sequence［EB/OL］. 
（2025-03-04）. http：//personalpages. surrey. ac. uk/t. 
bridges/SLOSH/3-2-1-Eulerangles. pdf.

［21］ HE K， ZHANG X， REN S， et al. Deep residual 
learning for image recognition［C］//Proceedings of the 
IEEE Conference on Computer Vision and Pattern 
Recognition. ［S.l.］： IEEE， 2016.

［22］ LI J J， YU Z Q， DU Z K， et al. A comprehensive sur‑
vey on source-free domain adaptation［J］. IEEE Trans‑
actions on Pattern Analysis and Machine Intelligence， 
2024， 46（8）： 5743-5762.

［23］ GANIN Y， USTINOVA E， AJAKAN H， et al. Do‑
main adversarial training of neural networks［J］. Journal 
of Machine Learning Research， 2016， 17（59）： 1-35.

［24］ CAI X， WU Z， ZHONG K， et al. Unsupervised 
cross-lingual speech emotion recognition using domain 
adversarial neural network［C］//Proceedings of the 
2021 12th International Symposium on Chinese Spo‑

485



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

ken Language Processing （ISCSLP）. ［S. l.］：IEEE， 
2021.

Authors 
The first author Prof. SUN Bing received his B.S. and Ph.
D. degrees from Beihang University， Beijing， China， in 
2003 and 2008， respectively. He became a Lecturer， after 
finishing his postdoctoral research， Beihang University， in 
2010. He was a visiting scholar with The University of Tex‑
as-Pan American， Edinburg， TX， USA， from November 
2013 to November 2014. He has been a professor with Bei‑
hang University since 2025. His research interests include 
synthetic aperture radar top-level design and simulation， sig‑
nal processing and quality evaluation， and pattern recognition.
The corresponding author Dr. MEN Zhirong received the 
B. S. and Ph. D. degrees from Beihang University， Beijing， 
China， in 2014 and 2018， respectively. From 2018 to 2020， 
he became a postdoctoral researcher at School of Electronic 
and Information Engineering， Beihang University. He was a 
visiting scholar at School of Mathematics and Statistics， Uni‑

versity of Sheffield， UK， from 2019 to 2020. He is currently 
an associate professor at Beihang University. His research in‑
terests include advanced microwave imaging radar systems， 
imaging signal processing， and ionospheric effect analysis 
and mitigation.

Author contributions Prof. SUN Bing conceptualized the 
study， provided the research process， and revised the 
manuscript. Miss. YANG Ziyue conducted the literature 
review， compiled the models， performed the analysis， 
interpreted the results， and wrote the manuscript. Mr. ZHI 

Yihang contributed to data processing and assisted in the 
analysis. Mr. LIU Yanqing helped improve the experimental 
design and participated in the revision of the manuscript. Dr. 
MEN Zhirong provided guidance on SAR imaging 
methodologies and offered critical revisions to enhance the 
technical accuracy of the manuscript. All authors commented 
on the manuscript draft and approved the submission.

Competing interests The authors declare no competing 
interests.

（Production Editor：SUN Jing）

弹载 SAR图像晃动舰船识别

孙 兵， 杨子悦， 植一航， 刘艳青， 门志荣
（北京航空航天大学电子信息工程学院, 北京 100191, 中国）

摘要：提出了一种面向弹载合成孔径雷达（Synthetic aperture radar， SAR）晃动舰船的端到端识别方法。不同于

传统的“先聚焦再识别”范式，所提方法直接利用散焦畸变的  SAR 图像进行训练与识别，从而避免复杂成像条件

下再聚焦过程的复杂性与不可靠性。本文构建了 5 级海况条件下的多方位舰船数据集，基线实验结果表明，

ResNet‑18 模型能够实现 66.66% 的识别精度，验证了端到端框架的可行性。在此基础上，引入领域对抗神经网

络（Domain‑adversarial neural network，DANN）以提取方位不变特征，识别率提升至 76.22%，验证了端到端框架

的识别性能提升潜力。实验结果表明，即便所采用的主干网络并非最优，端到端方法在该应用场景下仍能展现

出良好的适用性，为结合更先进的网络结构以进一步提升端到端策略的识别性能奠定基础。

关键词：合成孔径雷达；晃动舰船识别；端到端；域自适应
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