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Abstract: In recent years， the development of domestic commercial synthetic aperture radar （SAR） is in full swing， 
with multiple commercial SAR satellites in orbit， showing great potential in disaster monitoring， natural resource 
management and deformation observation. Fucheng-1 is the first C-band commercial SAR satellite for interferometric 
SAR （InSAR） service developed by Spacety China， which marks the gradual maturity of China’s remote sensing 
data service. Based on the raw data collected by Fucheng-1， this paper firstly introduces the range-Doppler algorithm 
（RDA）， then illustrates the parameter estimation method on the basis of fractional Fourier transform （FrFT） to 
realize the accurate estimation of azimuth chirp rate， which effectively improves imaging quality. Finally， the L1-norm 
regularization based sparse imaging method is utilized to reconstruct images from down-sampled data. Experimental 
results show that the sparse imaging algorithm can accurately reconstruct the down-sampled Fucheng-1 data and 
suppress sidelobes and clutter.
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0 Introduction 

Fucheng-1（Fig.1） is a C-band commercial syn‑
thetic aperture radar （SAR） satellite produced by 
Spacety China， which was launched from Jiu Quan 
Satellite Launch Center （Gansu Province， China） 
in June 2023. It can operate at stripmap， spotlight， 
scan and terrain observation by progressive scans 
（TOPS） mode with the maximum resolution of 0.5 
m. Compared with previously launched satellites 
（Chaohu-1 and HISEA-1）， Fucheng-1 provides in‑
terferometric SAR （InSAR） service［1］， which can 
realize millimeter-level deformation monitoring of 
the ground surface. Partial basic parameters of the 
Fucheng-1 satellite are shown in Table 1.

Many scholars have conducted research on the 

Fig.1　Fucheng-1 satellite

Table 1　Parameters of Fucheng⁃1 satellite

Parameter
Frequency/GHz

The maximum bandwidth/MHz
Altitude/km

Mass/kg
Inclination/(°)
Repeat time/d

Imaging width (stripmap)/km

Value
5.4
300
505
300
97.3
11
25
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data collected by Fucheng-1， and most of them fo‑
cus on its interference ability. Feng et al.［2］ used 
Fucheng-1 SAR images to analyze mining-induced 
subsidence in Karamay by InSAR Stacking and dif‑
ferential InSAR. Wu et al.［3］ evaluated the surface de‑
formation monitoring capabilities of Fucheng-1 satel‑
lite based on InSAR technique. Chang et al.［4］ ana‑
lyzed the deformation process of the landslide based 
on the SAR images， and showed more accurate 
monitoring results with a higher maximum detect‑
able deformation gradient （MDDG） when com‑
pared to Sentinel-1. Xiao et al.［5］ compared the defor‑
mation measurement capability of Lutan-1， 
Fucheng-1， and Hongtu-1. Liu et al.［6］ detected 
thermal expansion and stress-induced deformations 
of towers under varying temperatures on the basis of 
differential interferograms from both ascending and 
descending Fucheng-1 data.

Sparse imaging algorithm is a technology to 
achieve efficient data acquisition and high-quality im‑
age reconstruction based on sparse signal character‑
istics， and its development process is closely related 
to the breakthrough of compressed sensing （CS） 
theory. The theory indicates a signal which is sup‑
posed to be compressible by a known transform can 
be accurately reconstructed with fewer measure‑
ments［7］. Hence， sparse SAR has great potential in 
achieving high-resolution and wide swath SAR im ‑
aging. In 2007， Baraniuk et al.［8］ firstly introduced 
CS in the field of radar imaging and demonstrated 
its feasibility through simulation experiments. Her‑
man et al.［9］ proposed a method for sparse recon‑
struction of incoherent pulse signals using CS tech‑
nology in 2008. In 2010， Potter et al.［10］ conducted a 
comprehensive review of sparse SAR imaging and 
applied CS regularization methods to different radar 
fields. In 2012， Zeng et al.［11］ proposed a novel im ‑
aging method based on L1/2 regularization to recon‑
struct the scattering field， which optimizes a qua‑
dratic error term of the SAR observation process sub‑
ject to the interested scene sparsity. Çetin et al.［12］ 
provided an overview of CS based SAR imaging al‑
gorithms and emphasized their development pros‑
pects in various SAR application fields in 2014. In 
2018， Ramdani et al.［13］ improved SAR imaging 

methods based on CS theory by applying linear 
equations for system modeling and reconstructing 
sparse signals by a base tracking algorithm.

Although sparse SAR imaging theory has 
made significant progress， the problem of large com ‑
putational complexity still needs to be addressed 
when processing large-scale data. In 2012， Zhang et 
al.［14］ proposed a sparse SAR imaging azimuth dis‑
tance decoupling algorithm based on Lq norm regu‑
larization. Compared to traditional observation ma‑
trix-based algorithms， this algorithm applies simula‑
tion operators to directly perform sparse recovery in 
the data domain， solving the problem of high com ‑
putational complexity in sparse SAR imaging and 
providing new possibilities for large-scale sparse re‑
construction. In 2014， Yang et al.［15］ introduced the 
matrix completion （MC） theory into SAR imaging， 
which eliminates the need to design complex mea‑
surement matrices for CS based imaging algorithms. 
In 2015， Zhang et al.［16］ proposed a SAR moving 
target imaging algorithm based on sparse signal pro‑
cessing， which solves the phase error problem 
through phase recovery theory and achieves high-

precision imaging. In 2018， Rouabah et al.［17］ pro‑
posed a matching tracking algorithm， which could 
find sparse representations during compression and 
reconstruction processes. In 2020， Bi et al.［18］ pro‑
posed a real-time sparse SAR imaging method， 
which effectively reduced the computational com ‑
plexity， making real-time large-scale scene sparse 
reconstruction possible. In 2022， Xu et al.［19］ com‑
bined the sparse inverse SAR （ISAR） imaging algo‑
rithm with a structured low-rank approach and ap‑
plied the alternative direction method of multipliers 
（ADMMs） to effectively reduce the computational 
complexity. In 2023， Kang et al.［20］ proposed an in‑
cremental SAR imaging approach based on the esti‑
mation of sensing dictionary matrix in the pursuit of 
sparsity. In 2024， Song et al.［21］ presented a convolu‑
tional reweighted model based on structured sparsity 
features， which adaptively updated the imaging sup‑
port set during the iteration process， aiming to reduce 
the data storage pressure. In 2025， Zhou et al.［22］ put 
forward a deep equilibrium sparse SAR imaging 
method for compound regularization （CR-DEQ-
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SAR）， which could directly compute fixed points 
using analytical methods while maintaining constant 
memory requirements. In the same year， Kang et 
al.［23］ proposed a novel approach based on an approx‑
imate version of an Omega-K algorithm without the 
Stolt interpolation， and the entire process could be 
efficiently carried out by a rapid matrix-vector multi‑
plication operations. Among them， the sparse imag‑
ing method based on echo simulation operator has 
advantages in reducing complexity and improving 
calculation speed. In this paper， we apply the L1-

norm regularization based sparse imaging algorithm 
to raw data collected by Fucheng-1， thus demon‑
strating the effectiveness of the sparse imaging meth‑
od based on echo simulation operator in real data.

In addition to SAR imaging methods， it is nec‑
essary to consider the influences caused by other is‑
sues. For example， SAR platform often deviate 
from the expected trajectory， which leads to azi‑
muth phase error［24］. Azimuth phase error can lead 
to false target， defocus， and distortion in SAR im ‑
ages. Among them， the quadratic phase error 
（QPE） has the greatest influence on imaging quali‑
ty［25］. The SAR autofocus technology is an effective 
means to overcome these problems by estimating 
and compensating phase error based on collected 
echo［26］. Map drift algorithm （MDA） can stably and 
efficiently retrieve the linear deformation rate of the 
surface， and is especially suitable for solving the 
scene where the traditional InSAR technology fails 
due to incoherence and atmospheric effects［27］. 
Phase gradient autofocus （PGA） utilizes the charac‑
teristics of strong scattering points in the image to 
estimate the derivative of the phase error and com ‑
pensate the error after integration［28］. The energy of 
a linear frequency modulation （LFM） signal can be 
optimally concentrated after being processed by the 
fractional Fourier transform （FrFT） at its optimal 
order［29］. On this basis， FrFT has been introduced 
to SAR autofocus in recent years. In 2022， Li et 
al.［30］ used a joint FrFT-WVD method to resist in‑
terference for bistatic forward-looking SAR system， 
especially for ship targets. In 2022， a 2-D-FrFT-

based single-channel video-SAR imaging method 
was proposed to achieve well focused of moving tar‑

gets［31］. Therefore， the parameter estimation meth‑
od based on FrFT has giant potential in SAR field.

This paper is organized as follows. Section 1 in‑
troduces the range-Doppler algorithm （RDA）. Sec‑
tion 2 demonstrates a parameter estimation method 
based on FrFT， and the imaging results are also giv‑
en. Section 3 presents the L1 sparse imaging algo‑
rithm based on RDA， and the reconstructed results 
of data collected by Fucheng-1 under the condition 
of 75% random down sampling are also presented. 
Finally， conclusions are reported in Section 4.

1 The Range⁃Doppler Algorithm 

Since the data storage of Fucheng-1 satellite is 
based on committee on earth observation satellites 
（CEOS） structure， we can extract the complex 
echo data of interest area and key parameters of aux‑
iliary processing from raw data files. Then， the fo‑
cused imaging results can be obtained by appropriate 
imaging algorithm.

RDA was firstly put forward in 1976 to handle 
the data collected by SEASAT SAR， and then pro‑
cess the first airborne SAR image in 1979［32］. The al‑
gorithm decomposes two-dimensional processing in‑
to two one-dimensional operations， thus achieving 
the efficient modular processing， and it is still wide‑
ly used. RDA can be divided into three steps， in‑
cluding range compression， range cell migration cor‑
rection and azimuth compression.

1. 1 Range compression　

In the range direction， the pulse compression 
technology is used to compress the linear frequency 
modulation （LFM） signal transmitted by radar into 
narrow pulses， which can significantly improve the 
resolution in the range direction and effectively sup‑
press noise interference. The required frequency do‑
main filter is

H ra = rect ( )- f r

|| K r T
⋅ exp ( )-jπ f 2

r

K r
(1)

where f r is range frequency， K r range chirp rate， 
and T pulse duration. After the multiplication of the 
data in range-Doppler domain with the filter H ra， the 
chirp signal is compressed into narrow pulses.
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1. 2 Range cell migration correction　

Range migration is a phenomenon that the tar‑
get echo changes with time in range direction and az‑
imuth direction due to the relative motion between 
radar and target in SAR imaging. An effective solu‑
tion is to apply interpolation processing correction in 
range-Doppler domain based on sinc function.

The range migration momentum to be correct‑
ed is

ΔR = λ2 R ( η ) f 2
η

8V 2
r

(2)

where λ is signal wavelength， fη  azimuth frequen‑
cy， R ( η ) slant range， and V r  effective radar veloci‑
ty. After the interpolation， the distance migration 
curve is corrected to the same distance unit.

1. 3 Azimuth compression　

Similar to range compression， the azimuth res‑
olution is improved by focusing the data with 
matched filter， which can be expressed as

H az = exp ( )-jπ f 2
η

K a
(3)

where K a is azimuth chirp rate. The azimuth chirp 
rate varying with the distance in the front side view 
can be generally calculated by

K a = - 2V 2
r

λR ( η )
(4)

The focused image can be obtained after com ‑
pleting the above three steps.

2 FrFT Based Parameter Estimation

Due to issues such as orbit error and attitude 
deviation in spaceborne SAR， the azimuth chirp 
rate calculated by Eq.（4） is not accurate enough to 
correct quadratic phase error， resulting in defocus‑
ing. In this part， we introduce a parameter estima‑
tion method based on FrFT to attain accurate azi‑
muth chirp rate.

The fractional Fourier transform opens up a 
new fractional domain between the time domain and 
the frequency domain， which can effectively analyze 
non-stationary signals and linear time-varying sys‑
tems， and the chirp signal is a typical non-stationary 
signal. The characteristic function definition of 

FrFT is
F α[ ]ϕn ( t ) = e-jnα ϕn ( u ) (5)

where F α is FrFT operator with rotation angle α，

α = π
2 p the angle of rotation， and p the order.

Under the FrFT with specific parameters， the 
chirp signal becomes a pulse function， making it 
easy to detect. The following describes the process 
of azimuth chirp rate estimation based on FrFT.

2. 1 Range block and intensity point estima⁃
tion　

Considering the range-variant characteristics of 
azimuth chirp rate， it is necessary to block the 
echo data of the large scene in the range direction， 
so as to process each block separately and obtain 
the azimuth chirp rate estimation value in the range 
unit.

After range block， we can estimate the azimuth 
chirp rate of each range block. Firstly， perform an 
FrFT with angle α on the azimuthal signals x ( η ) 
containing strong scattering points in each distance 
block data

u ( k )= F α[ ]x ( η ) (6)
Subsequently， using the entropy of the fraction‑

al Fourier domain signal u ( k ) as the objective func‑
tion， the optimal FrFT rotation angle can be ob‑
tained through gradient descent. The entropy of 
u ( k ) is

I ( α )= ∑
k = 1

N u* ( k ) u ( k )
S

ln S
u* ( k ) u ( k )

(7)

where S = ∑
k = 1

N

u* ( k ) u ( k ) is the energy of u ( k ). The 

rotation angle α( n ) of the nth iteration is updated to

α( n + 1 ) = α( n ) - γ( n ) ⋅ ∂I ( α( n ) )
∂α( n )

(8)

where γ( n ) is the update step size determined by the 
Armijo criterion.

The specific contents of key steps are as fol‑
lows. The concrete expression of FrFT operator 
with rotation angle α is

F α = Kα ( t,u )= ∑
n = 0

N - 1

exp(-jnα ) ⋅ H n,1 ( u ) ⋅ H n,1 ( t ) 

(9)
where H n，σ ( x ) is a Hermite-Gaussian function of or‑
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der n and variance σ

H n,σ ( x )= 1
2n n! π σ

⋅ hn ( )x
σ

⋅ exp ( )- x2

2σ 2 (10)

where hn ( )x
σ

 is Hermite polynomial of order n. In 

Eq.（9） the variance σ is 1.
The operator F α can be decomposed into fea‑

tures， which is expressed as
F α = VDV H (11)

where V is Hermite-Gaussian function matrix and D 
eigenvalue diagonal matrix， expressed as

D= diag { }e0,e-jα,e-j2α,…,e-j( N - 1 ) α (12)
In order to get the update of rotation angle α( n )， 

it is necessary to get the first derivative of I ( α ) to 
α， which can be expressed as

∂I ( α )
∂α

= - 1
S ∑

k = 1

N ì
í
î

ü
ý
þ

∂p ( k )
∂α

ln p ( k )+ ∂p ( k )
∂α

(13)

where p ( k )= u* ( k ) u ( k ). The first derivative of p 
to α is

∂p
∂α

= (VQDV H x )* ∘ (VDV H x )+

(VDV H x )* ∘ (VQDV H x ) (14)
where Q= diag { }0，-j1，-j2，…，-j( N - 1 ) . The 
FrFT rotation angle α is updated to

α = α - γ( n ) ⋅ ∂I ( α )
∂α

(15)

The Armijo criterion is a stopping condition of 
one-dimensional search. Under the given constants 
β ∈ ( 0，1 ) and σ ∈ ( 0，0.5 )， let the step factor 
γ = β m，where m is the smallest nonnegative integer 
satisfying

I ( α + β m d ) ≤ I ( α )+ σβ m g T d (16)
where d represents the descending direction of the 
function at iteration point α， and g T the negative di‑
rection of the objective function gradient.

2. 2 Doppler rate error calculation and linear 
fitting　

After obtaining the updated rotation angle α， it 
is necessary to calculate the Doppler frequency mod‑
ulation error. The corresponding relationship be‑
tween the chirp rate K and the rotation angle α of 
FrFT is

K = -cot ( α/2 ) (17)
With the method of discrete scaling normaliza‑

tion， the estimated value of the corresponding Dop‑
pler frequency modulation error is

ΔK a = - cot α
N a

⋅ PRF2 (18)

where N a is azimuth sampling points and PRF pulse 
repetition frequency.

The estimated azimuth chirp rate is linearly fit‑
ted by random sample consensus （RANSAC） algo‑
rithm， and the azimuth matched filter is updated to

H ( n )
az = exp ( )-j π

K̂ a

f 2
η (19)

where K̂ a is the estimated azimuth chirp rate ob‑
tained by fitting the RANSAC algorithm.

Based on the above steps， a more accurate azi‑
muth chirp rate can be obtained to improve the imag‑
ing quality.

2. 3 Experimental results　

In this paper， we select one scene data as an 
example， which is collected by Fucheng-1 satellite 
in Sanmen Bay， China， on April 11th， 2024. Main 
parameters of the selected scene are shown in Ta‑
ble 2.

Fig.2 shows the azimuth chirp rate of whole 
raw data calculated by Eq.（4） and estimated by 
FrFT， respectively. Fig.3 shows the imaging re‑
sults based on two kinds of azimuth chirp rate. In 
Fig.2， the calculated azimuth chirp rate is higher 
than the estimated one，as the variation of the slant 
range is small compared with the overall slant 
range， it seems close to linear variation， but the dif‑
ference between them is not a constant. Fig.3 shows 
partially imaging results， and it can be clearly seen 
that the imaging result employing an estimated azi‑
muth chirp rate has better focusing effects.

To clearly show the focusing quality when ap‑
plying the estimated azimuth chirp rate， we com‑

Table 2　Main parameters of the selected scene

Parameter
Bandwidth/MHz

Range sampling frequency/MHz
Pulse duration/μs

PRF/Hz
Velocity/(m⋅s-1)

Value
200
240
26.8
4 105
7 611
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pare the azimuth response functions with different 
chirp rates， as shown in Fig.4， and the selected 
point is marked in Fig.3（a）. It can be seen that the 
result produced by the estimated parameter main‑
tains an ideal azimuth resolution.

Furthermore， in order to measure the imaging 
quality of the presented image， the concepts of im ‑
age entropy and image contrast are introduced.

Image entropy is an important index to mea‑
sure the complexity and uncertainty of an image. 
For SAR images with the size of m×n， where m is 
the number of azimuth points and n the number of 
range points， let I（i，j） represent the intensity of the 
point， where i and j represent azimuth and range 
sampling point index， respectively， and the image 
entropy can be expressed as

H = -∑
i = 1

m

∑
j = 1

n || I ( i,j )
2

D
ln ( )|| I ( i,j )

2

D
(20)

where D = ∑
i = 1

m

∑
j = 1

n

|| I ( i，j )
2
 denotes the total energy 

of image. Low image entropy corresponds to well fo‑
cusing.

The image contrast is used to quantify the dif‑
ference of scattering intensity in the interest area. 
Because of the multiplicative speckle noise in SAR 
images， traditional contrast calculation methods 
（such as directly calculating variance） may not be 
applicable. We adopt the coefficient of variation 
（CV） method to make the comparison， which can 
be expressed as

CV = σ
μ

(21)

where σ is the standard deviation of the selected ar‑
ea， and μ the mean value. A high CV value indi‑
cates high quality of the image. The entropy and 
contrast of two images shown in Fig.3 are calculated 
in Table 3. As shown， Fig.3（b） has lower entropy 
and higher contrast when compared with Fig.3（a）， 
which indicates its better image quality.

In order to further demonstrate the imaging re‑
sults， we extract a large-scale data to process. The 
imaging result is shown in Fig.5.

Table 3　Entropy and contrast of images

Figure
Fig.3(a)
Fig.3(b)

Entropy
0.296 9
0.293 2

Contrast
6.096 1
8.822 0

Fig.2　Two kinds of azimuth chirp rate varying with slant 
range

Fig.4　Azimuth response function with different azimuth 
chirp rates

Fig.3　Imaging results using different chirp rates
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3 Sparse SAR Imaging 

3. 1 L1⁃norm regularization based sparse imag⁃
ing　

In the sparse SAR system， sparse signal pro‑
cessing methods can utilize the sparse prior informa‑
tion of the scene， break through the theoretical limi‑
tations of traditional algorithms， and achieve signifi‑
cant improvements in data volume and resolution.

Assuming that two equally sized complex do‑
main matrices X and Y， representing the backscat‑
tered coefficient of the surveillance region and echo 
data， respectively. Then the approximated observa‑
tion based sparse SAR imaging model can be ex‑
pressed as［33］

Y= Θ a H ( X )Θ r + N (22)
where Θ a and Θ r are the down-sampling matrices in 
the azimuth and range directions， respectively； N is 
the system thermal noise， and H (⋅) the inverse imag‑
ing operators of MF-based algorithm expressed as

H ( X )= M -1
ra ( C-1 ( M -1

az ( X ) ) ) (23)
where M -1

ra  and M -1
az  denote the inverse operations 

of range and azimuth compression， respectively； 
and C-1 is the inverse process of range cell migra‑
tion correction.

For the model in Eq.（22）， the considered 
scene can be reconstructed by solving the L1-norm 
regularization problem as

X̂= arg min
X
{ } Y- Θ a H ( X )Θ r

2

F
+ β  X

1
 (24)

where X̂ is the reconstructed image of a 2-D consid‑
ered scene， and β the regularization parameter.

For solving the problem shown by Eq.（24）， 

this paper lists the iterative soft thresholding （IST） 
algorithm detailed in Table 4， where k denotes the 
sparsity level， || ⋅

k + 1
 the （k+1）th maximum ele‑

ment， and R (⋅) the thresholding functions expressed 
as

R ( x )=ì
í
î

sign ( x ) ( || x - βμ ) || x ≥ βμ

0 otherwise
  (25)

where μ influences the convergence speed.

3. 2 Experimental results　

Based on the algorithm shown in Table 4， we 
select partially echo data to show its effect. The ex‑
periments are implemented in MATLAB version 
R2021a and on a computer with Intel（R） Xeon（R） 
Silver 4210R CPU 2.40/2.39 GHz two processors 
and an NVIDIA GeForce RTX 3080 GPU. In the 
experiment， the running times of MF method from 
100% samples， MF method from 75% samples and 
L1-norm regularization based sparse imaging method 
from 75% samples within 5 iterations are 16.62， 
16.13， and 170.01 s （Fig.6），respectively， which is 
consistent with the analysis of computational com ‑
plexity in Ref.［34］.

Fig.6 shows the recovered images of scenes by 
MF from 100% samples， MF from 75% samples 
and L1-norm regularization based sparse imaging 
from 75% samples. The image contrasts of Fig.6 
are shown in Table 5. It is obvious to see that the 
image reconstructed by sparse algorithm has higher 

Fig.5　Large-scale imaging result
Table 4　IST algorithm

Algorithm

Input:

Initial:

Repeat:
（1）
（2）
（3）
（4）
（5）
（6）

Output:

IST iterative procedure
2‑D echo data Y

Down‑sampling matrices Θ a,Θ r

Error threshold ε
Iterative parameter μ

Maximum number of iterations Imax

Image X ( 0 ) = 0
While i ≤ Imax and Residual > ε

W ( i ) = Y- Θ a H ( X )Θ r

ΔX ( i ) = H (ΘT
a H ( X )ΘT

r )
β ( i ) = || X ( i ) + μΔX ( i )

k + 1
/μ

X ( i + 1 ) = R ( X ( i ) + μΔX ( i ) )
Residual = X ( i + 1 ) - ΔX ( i )

F

i=i+1
end

Reconstructed sparse image X̂= X ( i )
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image contrast， indicating lower sidelobes and clut‑
ter interference.

4 Conclusions 

We apply the RDA and the parameter estima‑
tion method based on FrFT to process Fucheng-1 
raw data， and then the sparse imaging algorithm is 
utilized to reconstruct images from down-sampled 
data. In the first， the theory of RDA is briefly ex‑
plained. Then we introduce the parameter estima‑
tion method based on FrFT to attain accurate azi‑
muth chirp rate. Finally， we introduce the L1-norm 
regularization based sparse imaging algorithm. Ex‑
perimental results show that the estimated parame‑
ter leads to better focusing effects of Fucheng-1 da‑
ta. Besides， the sparse imaging algorithm can accu‑

rately reconstruct the down-sampled Fucheng-1 da‑
ta and suppress sidelobes and clutter.
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涪城一号 SAR卫星高分辨率稀疏成像及多普勒参数估计

蔡辅轩 1，2， 朱子逸 1，2， 宋宇凡 1，2， 毕 辉 1，2

（1.南京航空航天大学电子与信息工程学院，南京 211106, 中国； 2.南京航空航天大学雷达成像与微波光子学教

育部重点实验室， 南京 211106， 中国）

摘要：近年来国内商用合成孔径雷达（Synthetic aperture radar， SAR）发展迅速，有多颗商用 SAR 卫星已经在轨

运行，且在灾害监测、自然资源管理和形变观测等方面显示出巨大潜力。涪城一号是中国天仪研究院研制的第

一颗提供干涉 SAR （InSAR）服务的 C 波段商用 SAR 卫星，这标志着中国遥感数据服务逐步走向成熟。本文对

涪城一号采集的原始数据进行研究，首先对距离‑多普勒算法进行介绍；然后阐述基于分数阶傅里叶变换的参数

估计原理，实现了方位调频率的精确估计，从而有效提高了成像质量；最后，利用基于 L1 范数正则化的稀疏成像

方法从降采样数据中重建图像。实验结果表明，该稀疏成像算法能够准确重构欠采样的涪城一号数据，并抑制

旁瓣和杂波。

关键词：涪城一号；合成孔径雷达；稀疏合成孔径雷达成像；参数估计

496


