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Abstract: The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response 
to changes in the external environment of airborne radars. To overcome this limitation， a new approach is introduced， 
which is the variable projection order Ekblom norm-promoted adaptive algorithm （VPO-EPAA）. The method begins 
by examining the mean squared deviation （MSD） of the EPAA， deriving a formula for its MSD. Next， it compares 
the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for 
the current iteration. Furthermore， the algorithm’s computational complexity is analyzed theoretically. Simulation 
results from system identification and self-interference cancellation show that the proposed algorithm performs 
exceptionally well in airborne radar signal self-interference cancellation， even under various noise intensities and types 
of interference.
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0 Introduction 

Airborne radars play an important role in mod⁃
ern military and civilian applications， particularly in 
meteorological monitoring， aviation navigation， and 
target detection. Researchers have proposed self-in⁃
terference cancellation techniques to suppress inter⁃
ference between the signals emitted by airborne ra⁃
dar and the received echo signals， thereby improv⁃
ing the performance of airborne radar. Adaptive fil⁃
tering algorithms， with their fast and flexible charac⁃
teristics， have been widely applied in the field of 
self-interference cancellation for airborne radar［1-5］. 
Among these， the least mean square （LMS） algo⁃
rithm based on the minimum mean square error 
（MSE） criterion， as well as the normalised least 
mean square （NLMS） algorithm， which does not 

require extensive data training， have been particular⁃
ly favoured［6-8］. With the introduction of the affine 
projection （AP） algorithm， the significant progress 
has been made in improving convergence speed by 
reusing input signals［9］. In addition， the recursive 
least square （RLS） algorithm based on least square 
estimation utilises all observation data from the ini⁃
tial time to the current time through the filter， there⁃
by demonstrating stronger simulation capabilities for 
the coefficient vector of self-interference channels. It 
is widely used in self-interference cancellation tech⁃
nology for airborne radar signals［10］.

However， the performance of the above algo⁃
rithm deteriorates significantly under interference 
from complex environments such as high-intensity 
pulse noise signals. Therefore， they cannot be ap⁃
plied to airborne radar signal processing in complex 
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environments［11］. To improve the robustness of algo⁃
rithms in complex environments， some researchers 
have proposed the affine projection symbol （APS） 
algorithm by combining the cost functions of the 
symbolic algorithm （SA） and the AP algorithm， 
demonstrating superior pulse noise adaptability［12-15］. 
Recently， researchers have proposed the Ekblom 
promoted adaptive algorithm （EPAA） based on the 
Ekblom norm. This method enables the algorithm 
to maintain high robustness while keeping low com ⁃
putational complexity［16-17］. Additionally， the echo 
cancellation simulation environment of this algo⁃
rithm closely resembles the self-interference cancel⁃
lation environment［18-19］. Furthermore， researchers 
have proposed a variable step size （VSS） method 
based on the mean squared deviation （MSD） ap⁃
proach. This improvement enables the algorithm to 
achieve faster convergence while maintaining a low 
steady-state error level［20-21］.

However， the current self-interference cancella⁃
tion technology for airborne radars has high require⁃
ments for algorithm real-time performance and com ⁃
putational complexity［22-23］. Existing adaptive filter⁃
ing algorithms struggle to achieve a balance between 
steady-state error， robustness， and computational 
complexity， which hinders their application in air⁃
borne radar signal processing under complex envi⁃
ronmental conditions［24-26］.

This paper proposes a variable projection order 
EPAA （VPO-EPAA）. In each iteration of the algo⁃
rithm， the optimal projection order is determined by 
comparing the mean square deviation （MSD） val⁃
ues of several projection orders， enabling the algo⁃
rithm to maintain a fast convergence rate during the 
convergence phase and a low steady-state error dur⁃
ing the steady-state phase. The proposed algorithm 
effectively addresses the trade-off between conver⁃
gence speed and steady-state error while maintain⁃
ing the high robustness of the original algorithm， 
and it also reduces computational complexity. Simu⁃
lation results show that the algorithm performs ex⁃
cellently in self-interference elimination environ⁃
ments with different intensities and types of noise in⁃
terference， and is suitable for applications in the 
field of airborne radar signal processing.

This paper consists of the following sections. 
Section 1 gives an overview of the existing base al⁃
gorithms. Section 2 explains in detail the derivation 
process and implementation of the proposed algo⁃
rithm in this paper. Section 3 compares and analyses 
the complexity of the algorithms. Section 4 carries 
out simulation experiments for the proposed algo⁃
rithm and several sets of comparison algorithms 
from various perspectives. Section 5 concludes the 
paper.

1 Basic Principles 

1. 1 Algorithm model　

The signals received by the receiver end of an 
airborne radar are typically composed of target echo 
signals， self-interference signals， and noise signals. 
To eliminate self-interference， a filter needs to be 
designed to separate the self-interference portion 
from the received signal using adaptive filtering tech⁃
nology［27-29］. This paper will use an improved adap⁃
tive filtering algorithm to simulate the self-interfer⁃
ence channel of airborne radar signals in order to ob⁃
tain the signals that need to be eliminated， facilitat⁃
ing subsequent precise cancellation processing. The 
desired signal simulated by the adaptive filtering al⁃
gorithm can be expressed as

d ( n ) = xT( n )w 0 + v' ( n ) (1)
where x（n）=[ x' ( n )，x' ( n - 1 )，⋯，x' ( n - L + 1 ) ]T 
is the input signal in the form of a vector， and L the 
total length of the system to be recognized and also 
the length of the adaptive filter； w0=［w1， w2，

⋯， wL］T is the weight vector of the self-interfer⁃
ence path to be simulated； and v'（n） the back⁃
ground noise. The error signal generated at each iter⁃
ation is obtained by

e' ( n ) = d ( n ) - y ( n ) = d ( n ) - xT( n )w ( n - 1)
   (2)

where y（n） denotes the output signal of each itera⁃
tion and w（n） the weight vector produced by each 
iteration. The ultimate goal of the algorithm is to 
make w（n） constantly approach w0 to achieve the 
simulation of the self-interference channel.

1. 2 EPAA implementation　

EPAA is a commonly used adaptive filtering al⁃
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gorithm. The algorithm is highly robust and suitable 
for acoustic echo cancellation and self-interference 
cancellation in airborne radar signals. The algorithm 
reuses the input data following a similar approach to 
affine projection. The cost function of this algorithm 
is defined using the Ekblom norm， shown as

JEPAA( n ) = 1
q ∑

i = 0

P - 1

( )e2( )n - i + m 2
q
2 (3)

where q is the tuning parameter； P the order of data 
reuse， also known as the projection order； and m 
the small regularization constant. The algorithm’s 
iterative formulation is derived through gradient de⁃
scent

w ( n ) = w ( n - 1) + μX ( n ) H ( n ) e ( n ) (4)
where input signal matrix is defined as X（n） =
[ x ( n )，x ( n - 1 )，⋯，x ( n - K + 1 ) ]T； The error 
signal in vector form is represented as e（n）=
[ e'( n )，e'( n - 1 )，⋯，e'( n - K + 1 ) ]T； The algo⁃
rithm’s step size is denoted by μ； and H（n） is a diag⁃
onal matrix with size of K×K， given by H（n）=
diag ［h（n）， h（n-1），⋯， h（n-K+1）］. Its diago⁃
nal elements are shown as

hk( n ) = ( e'2( n - k + 1) + m 2 )
q - 2

2

k = 1，2，⋯，K   （5)
When significant errors are caused by impul⁃

sive noise， hk（n） quickly decreases to reduce the in⁃
fluence of large error signals on the algorithm. This 
gives the algorithm strong robustness in complex en⁃
vironments.

2 VPO‑EPAA and Its Implementa‑
tion 

Conventional EPAA belongs to acoustic echo 
cancellation algorithms， which use scenarios and 
self-interference cancellation of airborne radar sig⁃
nals similar to those in scenarios. However， if the 
original environment’s speech signals are replaced 
with wider bandwidth airborne radar signals， and 
noise signals of different intensities or types are add⁃
ed to simulate complex environments， the steady-

state error of the algorithm will increase， and its per⁃
formance will be significantly reduced. To enable 
the algorithm to achieve a lower steady-state error 
and a faster convergence speed while maintaining 

low computational complexity， and to make it more 
suitable for radar signal processing scenarios， this 
paper introduces a variable projection order mecha⁃
nism based on the original algorithm. This mecha⁃
nism allows the algorithm to utilise more input sig⁃
nals in the initial stage to accelerate convergence， 
while using fewer input signals in the later steady-

state stage to minimise steady-state error. Addition⁃
ally， as the number of input signals used decreases， 
the computational complexity also gradually decreas⁃
es.

This section will first study the MSD of the en⁃
tire EPAA and obtain its calculation formula. 
Then， by comparing the MSD of two EPAAs with 
different projection orders， a switching mechanism 
for the EPAA projection order will be proposed.

The difference between the weight vector gen⁃
erated by each iteration of the algorithm and the de⁃
sired weight vector can be defined by

w͂ ( n ) = w 0 - w ( n ) (6)
Combining Eq.（4） yields
w͂ ( n ) = w͂ ( n - 1) - μX ( n ) H ( n ) e ( n ) (7)

To eliminate the influence of w0 on the algo⁃
rithm， the following formula is introduced as

Φ ( n ) = I- μX ( n ) H ( n ) X T( n ) (8)
Substituting Eq.（8） into Eq.（7） yields

w͂ ( n ) =Φ ( n ) w͂ ( n - 1) - μX ( n ) H ( n ) v ( n )   (9)
According to the definition of the autocorrela⁃

tion matrix， when the iteration number is n， the 
MSD of the algorithm can be calculated as
MSD ( n ) = E [ w͂ ( n ) w͂T( n ) ] ≡ Tr ( P ( n ) ) = p ( n )

(10)
where E and Tr belong to the expectation operator 
and trace operator， respectively. Assume that the 
noise signal v（n） and the weight error vector from 
the previous iteration are statistically independent 
and follow the same distribution. The autocorrela⁃
tion matrix of the weight error vector can be set as

P ( n ) = E [ w͂ ( n ) w͂T( n ) ] (11)
Substituting Eq.（9） into Eq.（11） yields
P ( n ) =Φ ( n ) P ( n - 1)ΦT( n ) + D ( n ) (12)
D ( n ) = σ 2

v μ2X ( n ) H ( n ) H T( n ) X T( n ) (13)
Combining Eq.（10） and Eq.（12）， the MSD of 

the algorithm can be expressed as
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p ( n ) = Tr (ΦT( n )Φ ( n ) P ( n - 1) ) + Tr ( D ( n ) )
(14)

As n approaches infinity， the weight vector pa⁃
rameters of the algorithm should be approximately 
equal to the parameters of the system to be simulat⁃
ed， and the error should be approximately zero. 
Combining Eqs.（11， 13， 14）， the following limit 
can be obtained

lim
n → +∞

p ( n ) = σ 2
v μ2Tr [ X ( n ) H ( n ) H T( n ) X T( n ) ]

(15)
Next， the projection order switching mecha⁃

nism of this paper will be described. This mecha⁃
nism selects a projection order scheme with a lower 
MSD value by comparing the p（n） values of two 
EPAAs with different projection orders. The weight 
vector update formula of the algorithm proposed in 
this paper can be written as

w ( n ) =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

w ( )n - 1 + μX 1( )n H 1( )n e1( )n

p1( )n + 1 ≤ p2( )n + 1
w ( )n - 1 + μX 2( )n H 2( )n e2( )n

p1( )n + 1 > p2( )n + 1

(16)

where p1（n+1） and p2（n+1） are the current esti⁃
mates of MSD values of EPAA with orders K1 and 
K2， respectively； X1（n） and X2（n） the input matri⁃
ces corresponding to the EPAA with different or⁃
ders K1 and K2. Here， K1 > K2 is set， which means 
that the EPAA with projection order K1 has a faster 
convergence speed， while the EPAA with projec⁃
tion order K2 has a lower steady-state error.

According to Eq.（14）， the equations for calcu⁃
lating p1（n+1） and p2（n+1） in each iteration of 
EPAA are

p1( n + 1) = Tr (ΦT
1 ( n )Φ 1( n ) P 1( n ) ) +

Tr ( D 1( n ) ) (17)
p2( n + 1) = Tr (ΦT

2 ( n )Φ 2( n ) P 2( n ) ) +
Tr ( D 2( n ) ) (18)

Then， the equation for determining the MSD 
in the next iteration of the algorithm is

p ( n + 1)=
ì
í
î

ïï
ïï

p1( )n + 1     p1( )n + 1 ≤ p2( )n + 1
p2( )n + 1     p1( )n + 1 > p2( )n + 1

   (19)

The iterative running processes of the VPO-

EPAA algorithm proposed in this paper are as fol⁃
lows.

（1） Initialization： w ( 0 ) = [ 0，0，⋯，0] T

1 × L
，

p1( 0 ) = p2( 0 ) = p ( 0 ) = 1，σ 2
v = 10-3. Parameters： 

μ， L， m， q， K1， K2.
（2） Calculate p（n+1） for two different projec⁃

tion orders when computing the current iteration of 
EPAA.

（3） Select a K value that minimises the p（n+
1） value as the projection order for the current itera⁃
tion of the algorithm.

（4） Update the value of p（n+1） in the next it⁃
eration of the algorithm as shown in Eq.（19）.

In terms of steady-state analysis， the step size 
range that allows EPAA to converge normally has 
been obtained using the energy conservation meth⁃
od［17］， shown as

0 < μ < 2m 2 - q

Kλmax( )R
(20)

R= E [ x ( n ) xT( n ) ] (21)
According to Eq.（19）， the projection order K 

of the algorithm will eventually stabilise at a pre-set 
smaller value （in most cases， 1）. Therefore， the 
step size range of the algorithm proposed in this 
paper can be updated to

0 < μ < 2m 2 - q

Kmin λmax( )R
(22)

From Eq.（22）， it can be seen that when deter⁃
mining the maximum value of the step size of the al⁃
gorithm proposed in this paper， the size of the pre-

set smaller projection order Kmin should be consid⁃
ered.

3 Computational Complexity Anal‑
ysis

This section compares the computational com ⁃
plexity of the proposed algorithm with that of other 
similar algorithms， such as affine projection algo⁃
rithm （APA）， affine projection symbol algorithm 
（APSA）， VPO-APA［30］ ， EPAA， VPO-propor⁃
tionate afine projection algorithm （VPO-PAPA）［30］， 
and VPO⁃EPAA. Table 1 presents a comparison of 
the number of multiplications and additions required 
per iteration for these algorithms. In Table 1， Kn re⁃
prents the variable projection order.
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As can be seen from Table 1， the improve⁃
ment in algorithm performance is likely achieved at 
the cost of increased computational complexity. The 
computational complexity of the proposed algorithm 
is intuitively higher than that of APSA and the origi⁃
nal EPAA. However， due to the use of the VPO 
method， the projection order （Kn） in the proposed 
algorithm quickly becomes 1 and remains stable in 
most cases. In contrast， several comparison algo⁃
rithms with fixed projection orders have computa⁃
tional complexity that is definitely greater than that 

of the proposed algorithm when the number of itera⁃
tions is sufficiently large. Therefore， although the 
proposed algorithm increases the computational load 
of calculating two MSDs compared to the original al⁃
gorithm， its computational complexity is still lower 
than that of several similar algorithms. Thus， due to 
the introduction of the VPO method， the proposed 
algorithm has significant potential for application in 
airborne radar signal self-interference cancellation 
technology due to its lower computational complexi⁃
ty.

4 Simulation Results 

In the simulation phase， the optimal values for 
key fixed parameters of the proposed algorithm will 
be determined initially. After that， the algorithm 
will be evaluated against several similar methods， 
as discussed earlier， through simulations in two sce⁃
narios： System identification and airborne radar sig⁃
nal self-interference cancellation. The self-interfer⁃
ence cancellation scenario includes self-interference 
paths and airborne radar input signals that are affect⁃
ed by multipath propagation， which is a key focus in 
the upcoming simulations. Unless stated otherwise， 
the performance of the algorithm will be assessed us⁃
ing the normalised mean square deviation （NMSD） 
metric， shown as

NMSD = 10 lg ( w 0 - w ( )n
2

2

 w 0
2

2
) (23)

A smaller difference between the system’s 
weight vector w0 and the weight vector w（n） simu⁃
lated by the algorithm results in a lower final 
NMSD value， indicating better algorithm perfor⁃
mance. The algorithm’s convergence speed can also 
be evaluated by the rate at which the NMSD de⁃

creases. Unless stated otherwise， all simulation ex⁃
periments use a 30 dB Gaussian white noise input. 
Typically， the presented simulation curves are aver⁃
aged from 200 independent experiments.

4. 1 Algorithm parameter selection and theoret‑
ical verification　

The simulation setup for selecting algorithm pa⁃
rameters is the same as that for system identifica⁃
tion. Therefore， the configuration of the system 
identification environment is detailed in this section. 
The length of the system and filter are both set to 
L=20. The input signal in this experiment is an au⁃
toregressive （AR） signal， generated from a Gauss⁃
ian white noise signal using an AR training model. 
The autoregressive model used in this study is de⁃
fined as

G ( z ) = 1 + 0.5z-1 + 0.81z-2

1 - 0.59z-1 + 0.4z-2 (24)

where variable z is the complex quantity that repre⁃
sents the signal in the frequency domain， while G（z） 
the transfer function of the autoregressive model.

In this section， the exhaustive approach will be 
applied to select two crucial parameters， μ and q， 
for the algorithm. The parameters will be paired in 

Table 1　Computational complexity analysis of different algorithms

Algorithm
APA

APSA
VPO⁃APA

EPAA
VPO⁃PAPA
VPO⁃EPAA

Multiplication
(K2+2K) L+K3+K

(K+2) L+1
(K 2

n +2Kn+1) L+K 3
n +Kn+18

2KL+3K
(K 2

n +2Kn+4) L+K 3
n +Kn+18

2KnL+3Kn+22

Addition
(K2+2K) L+K3+K2−K

(2K+1) L
(K 2

n +2Kn) L+K 3
n +K 2

n -Kn+10
2KL+K

(K 2
n +2Kn+1) L+K 3

n +K 2
n -Kn+11

2KnL+Kn+4
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increasing order of their values. Simulation experi⁃
ments will be performed for each combination， and 
the optimal values will be identified by comparing 
the steady-state errors at equivalent convergence 
speeds.

In the simulation experiments， the maximum 
projection order for the algorithm using the VPO 
method was set to 16， with a minimum of 1. The 
system elements to be identified were randomly gen⁃
erated within the range of − 1 to 1， with a sparsity 
of 1/10. The remaining parameters of the proposed 
algorithm were configured according to Ref.［30］， 
with a regularization parameter of m=0.3. The algo⁃
rithm was executed for 1 500 iterations， and pulse 
noise with an α-stable distribution was introduced. It 
is crucial to note that parameters outside the experi⁃
mental range may impact performance evaluation. If 
the step size μ is too small， it may not be possible to 
reach a steady state value within a given number of 
iterations， while if the step size is too large， the al⁃
gorithm may fail to converge. A small value for pa⁃
rameter q reduces the algorithm’s adaptability， 
whereas a large value may excessively amplify the 
effect of errors. The results for the parameter selec⁃
tion of the proposed algorithm are shown in Fig.1.

As can be clearly seen from Fig.1， when μ =
0.050 and q=0.7， the algorithm achieves the lowest 
steady-state error at the same convergence rate as 
other parameter combinations. Therefore， these val⁃

ues are selected as the parameter values for subse⁃
quent experiments. Additionally， to assess the com ⁃
patibility of the VPO method with the algorithm pro⁃
posed in this paper， the optimal parameter values 
mentioned above are used as a reference to plot the 
variation curve of the projection order K throughout 
the entire simulation experiment. Since this value is 
an integer， the results of a single simulation experi⁃
ment can more intuitively reflect its changes and sta⁃
bility. The simulation results of a single experiment 
are shown in Fig.2.

As shown in Figs.1 and 2， the change curve of 
the K value clearly reflects the convergence of the 
proposed algorithm. At the beginning of the itera⁃
tion， the projection order of the algorithm remains 
at the set maximum value of 16. As convergence oc⁃
curs， the projection order of the algorithm changes 
from 16 to 1 and remains stable. The results of this 
experiment indicate that the VPO method is highly 
compatible with the algorithm proposed in this paper.

Additionally， to confirm the accuracy of the der⁃
ivation results from the VPO method， the current 
NMSD value from Eq.（14） was compared with the 
steady-state NMSD estimate from Eq.（15） through 
simulation experiments. The simulation results for 
K=1 are displayed in Fig.3.

With each iteration， the two curves nearly 
align at the same value. Thus， the p（n） value pro⁃
posed in this study effectively predicts the algo⁃
rithm’s NMSD.

Fig.1　Performance of the algorithm proposed in this paper 
for different parameter combinations with a system 
sparsity of 1/10 (Adding impulse noise [1.9, 0, 
0.003, 0])

Fig.2　Simulated variation curve of the projection order K 
with a system sparsity of 1/10 (Adding impulse noise 
 [1.9, 0, 0.003, 0])
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4. 2 System identification simulation　

Before performing the formal self-interference 
cancellation simulations， system identification tests 
must be conducted in different environments to en⁃
sure proper filter initialization. In this section， the al⁃
gorithm presented in this paper is simulated and 
compared with the five algorithms discussed in the 
complexity analysis section. These algorithms are 
applicable in the same environments. To assess the 
algorithm’s tracking performance， the simulation al⁃
so includes system identification experiments in non-

smooth conditions. For the system identification ex⁃
periments， 1 500 iterations are carried out in smooth 
environments， while 9 000 iterations are executed 
in non-smooth environments. In non-smooth envi⁃
ronments， the initial sparsity is 1/10， the sparsity 
becomes 1/2 at 3 000 iterations and the system be⁃
comes non-sparse at 6 000 iterations. For APA， the 
projection order is set to K=8 with a step size of 
μ =0.05， and for APSA， the same values of K=8 
and μ =0.05 are applied. In VPO-APA， the step 
size is μ=0.5， and the forgetting factor is set to χ=
a=0.999. The other parameters match those used 
in this study. In EPAA， μ =0.012， the regulariza⁃
tion parameter is m=0.2， and the tuning parameter 
is q=0.7. In VPO-PAPA， the forgetting factor is 
χ =a=0.999 9， the tuning parameter is β = − 0.5， 
and the other settings are consistent with the pro⁃
posed algorithm. The results of the system identifi⁃
cation experiments in both smooth and non-smooth 
environments are given below.

Figs.4 and 5 show the system identification in 
smooth and non-smooth environments with the spar⁃

sity of 1/10 and with added impulse noise ［1.8， 0， 
0.003， 0］. As shown in Figs. 4 and 5， basic algo⁃
rithms like APA and APSA perform poorly under 
pulse noise interference. The improved VPO-APA 
shows slightly lower steady-state error than EPAA 
but has slower convergence. Both VPO-PAPA with 
a proportional matrix and the proposed algorithm 
outperform others， as their cost function characteris⁃
tics or enhanced techniques are more suitable for 
self-interference cancellation. The proposed algo⁃
rithm， combining VPO with the Ekblom norm’s ro⁃
bustness， demonstrates exceptional performance. In 
simulations of non-stationary environments， the sys⁃
tem sparsity significantly impacts algorithm perfor⁃
mance. VPO-PAPA with a proportional matrix and 
the proposed algorithm degrade as the system shifts 
from sparse to non-sparse， while the reference base⁃
line is less affected. However， due to the flexibility 
of VPO and the Ekblom norm， the proposed algo⁃
rithm maintains the lowest steady-state error and ex⁃

Fig.5　System identification in non-smooth environments 
with an initial sparsity of 1/10 (Adding impulse noise 
[1.8, 0, 0.003, 0])

Fig.4　System identification in a smooth environment with a 
sparsity of 1/10 （Adding impulse noise [1.8, 0, 
0.003, 0]）

Fig.3　Comparison of the current p(n) value of the algorithm 
with the estimated NMSD value
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hibits excellent tracking and fast convergence after 
abrupt system changes.

To evaluate algorithm robustness in challeng⁃
ing environments， systematic identification simula⁃
tions will be conducted at varying pulse noise levels. 
Two sets of experiments will be performed under 
consistent conditions， with increasing pulse noise in⁃
tensities and the results are given below.

Figs.6 and 7 show the system identification for 
different impulse noise intensities with the system of 
1/10 and with different impulse noises. The simula⁃
tion results in Figs.6 and 7 show that all algorithms 
are affected by increasing pulse noise intensity. EP⁃
AA outperforms VPO-APA under strong pulse 
noise due to the high robustness of the Ekblom 
norm. The proposed algorithm， combining advan⁃
tages from several comparison algorithms， main⁃
tains the lowest steady-state error and shows the 
strongest robustness under strong pulse noise.

In conclusion， the proposed algorithm demon⁃
strates superior performance in system identification.

4. 3 Self‑interference cancellation simulation　

In this section， the performance of the algo⁃
rithm proposed in this paper will be simulated and 
evaluated in the context of self-interference cancella⁃
tion of airborne radar signals. Fig.8 illustrates the ap⁃
plication model for self-interference cancellation of 
airborne radar signals. The radar transmitter emits 
signals， part of which mix with external noise， cre⁃
ating self-interference signals re-received by a receiv⁃
er on the aircraft. The path from transmission to re⁃
ception is the self-interference channel. Adaptive fil⁃
tering algorithms model this channel using known 
data， enabling accurate self-interference signal esti⁃
mation and cancellation. Aircraft motion and envi⁃
ronmental changes can cause sudden variations in 
the channel’s impulse response.

The self-interference channel impulse response 
for simulating multipath propagation effects in air⁃
borne radar signals is shown in Fig.9.

The self-interference channel length is 128， 
with fluctuating amplitudes and multiple peaks that 
decrease and stabilize. This characteristic reflects 
the actual situation where self-interference signals 
are collected at different time after being reflected 

Fig.7　System identification for different impulse noise in⁃
tensities with a system sparsity of 1/10(Adding im⁃
pulse noise [1.2, 0, 0.003, 0])

Fig.6　System identification for different impulse noise in⁃
tensities with a system sparsity of 1/10(Adding im⁃
pulse noise [1.6, 0, 0.003, 0])

Fig.8　Self-interference cancellation scene model

Fig.9　Impulse response of self-interference channel

504



No. 4 LI Haorui, et al. Variable Projection Order Adaptive Filtering Algorithm for Self-interference…

through different paths. Furthermore， the parameter 
design of the channel to be simulated also reflects 
the sparsity of the operating environment of airborne 
radar signals. In addition， frequency-modulated con⁃
tinuous wave （FMCW） with a sampling frequency 
of 150 MHz is used as the input signal. This signal 
has high continuity and low transmission power， 
and is a commonly used type of airborne radar sig⁃
nal. The FMCW signal waveform used in this paper 
is shown in Fig.10.

Next， simulation experiments will be conduct⁃
ed using several sets of noise inputs of different in⁃
tensities and types in a non-stationary environment. 
In non-smooth environments， the system multiplies 
the impulse response by − 1 at 1.5×105 iterations. 
The parameter settings for all algorithms are the 
same as those used in the system identification simu⁃
lation experiments. First， self-interference cancella⁃
tion experiments were conducted in both steady and 
non-steady environments. The simulation results 
are shown in Figs.11 and 12.

As illustrated in Figs.11 and 12， due to the non-

stationary characteristics of self-interference chan⁃
nels， all algorithms showed performance fluctua⁃
tions to varying extents after convergence. The per⁃
formance variations align with the outcomes of the 
system identification experiments. As shown in 
Fig.12， when the parameters of the channel to be 
simulated undergo sudden changes， the weight vec⁃
tor of the filter will be reset. Nevertheless， the new 
algorithm consistently achieved the lowest steady-

state error， faster convergence， and higher tracking 
capability， highlighting its robustness in this envi⁃
ronment.

In addition， two sets of self-interference cancel⁃
lation simulation experiments with colour noise 
were conducted. The colour noise signal was gener⁃
ated from a Gaussian white noise signal with a mean 
of 0 and a variance of 1， and then passed through a 
first-order filter with a pole located at 0.9. Its wave⁃
form is shown in Fig.13.

Fig.11　Self-interference cancellation simulation of six algo⁃
rithms in a stationary environment(Adding impulse 
noise [1.4, 0, 0.003, 0])

Fig.10　FMCW signal waveform

Fig.12　Self-interference cancellation simulation of six algo⁃
rithms in a non-stationary environment (Adding im⁃
pulse noise [1.4, 0, 0.003, 0])

Fig.13　Colour noise signal
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In the initial experiment， colour noise was ap⁃
plied before the abrupt change in simulated channel 
parameters. This noise was combined with 30 dB 
Gaussian white noise to create the background input 
noise. In these environments， the system multiplie 
the impulse response by − 1 at 1.5×105 iterations. 
After the channel parameters changed suddenly， on⁃
ly Gaussian white noise remained. In the second ex⁃
periment， colour noise was again used before the pa⁃
rameter change. After the change， pulse noise re⁃
placed the input noise. The results from both experi⁃
ments are presented in Figs.14 and 15.

The experimental results above indicate that 
the power spectral density characteristics of colour 
noise lead to a performance decline in most algo⁃
rithms. Overall， the results resemble those ob⁃

served under strong pulse noise conditions. All ex⁃
periments highlight the robustness of the VPO meth⁃
od and the cost function of the proposed algorithm. 
In conclusion， the algorithm shows outstanding per⁃
formance in complex environments with different 
types and levels of noise interference， suggesting its 
significant potential for self-interference cancellation 
in airborne radar applications.

5 Conclusions 

This paper proposes VPO-EPAA to address 
the limitations of airborne radar signal self-interfer⁃
ence elimination algorithms in terms of environmen⁃
tal adaptability. The algorithm incorporates a VPO 
mechanism utilizing the MSD method， improving 
the trade-off between convergence speed and steady-

state error， while also reducing computational com ⁃
plexity. Simulation results confirm that the proposed 
algorithm provides the faster convergence， the low⁃
er steady-state error， and the enhanced tracking abil⁃
ity， along with improved robustness against both 
strong pulse noise and colour noise. Comparison 
with existing algorithms shows that the proposed al⁃
gorithm outperforms several current solutions in 
self-interference cancellation applications in multiple 
areas. But simulation tests show that the perfor⁃
mance of the algorithm deteriorates under strong in⁃
terference noise conditions. Future research will fo⁃
cus on optimising the cost function of the algorithm 
to improve its robustness in the operational environ⁃
ment of airborne radars.
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可变投影阶数的自适应滤波算法在机载雷达中的

自干扰对消应用

李浩瑞 1， 高 颖 1， 郭鑫宇 2， 欧世峰 1

（1.烟台大学物理与电子信息学院，烟台 264005，中国； 
2.吉林大学仪器科学与电气工程学院地球信息探测仪器教育部重点实验室，长春 130000，中国）

摘要：具有固定投影阶数的自适应滤波算法无法根据机载雷达外部环境的变化调整其性能。为克服这一局限

性，本文提出了一种可变投影阶数的 Ekblom 范数促进自适应算法（Variable projection order Ekblom norm⁃pro⁃
moted adaptive algorithm， VPO⁃EPAA）。该方法首先分析原 EPAA 的均方偏差（Mean squared deviation， MSD），

并推导出其 MSD 的计算公式。通过比较 EPAA 在两种不同投影阶数下的 MSD，选择使 MSD 最小的投影阶数

作为当前迭代的算法参数。此外，本文也对新算法的计算复杂度进行了理论分析。系统辨识与自干扰对消实验

的仿真结果表明，本文所提算法在机载雷达信号自干扰对消方面表现优异，即使在不同强度和类型的噪声干扰

下也能发挥较高性能。

关键词：自适应滤波算法；机载雷达；可变投影阶数；均方偏差；自干扰对消

508


