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Abstract: Different synthetic aperture radar （SAR） sensors vary significantly in resolution， polarization modes， and 
frequency bands， making it difficult to directly apply existing models to newly launched SAR satellites. These new 
systems require large amounts of labeled data for model retraining， but collecting sufficient data in a short time is often 
infeasible. To address this contradiction， this paper proposes a data generation and transfer framework， integrating a 
stable diffusion model with attention distillation， that leverages historical SAR data to synthesize training data tailored 
to the unique characteristics of new SAR systems. Specifically， we fine-tune the low-rank adaptation （LoRA） 
modules within the multimodal diffusion transformer （MM-DiT） architecture to enable class-controllable SAR image 
generation guided by textual prompts. To ensure that the generated images reflect the statistical properties and 
imaging characteristics of the target SAR system， we further introduce an attention distillation mechanism that 
transfers sensor-specific features， such as spatial texture， speckle distribution， and structural patterns， from real 
target-domain data to the generative model. Extensive experiments on multi-class aircraft target datasets from two real 
spaceborne SAR systems demonstrate the effectiveness of the proposed approach in alleviating data scarcity and 
supporting cross-sensor remote sensing applications.
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0 Introduction 

Synthetic aperture radar （SAR）， as an active 
microwave remote sensing technology， demon‑
strates significant advantages in the field of Earth ob‑
servation， owing to its all-weather， all-day imaging 
capabilities and its sensitivity to the unique electro‑
magnetic scattering characteristics of the Earth’s 
surface. However， SAR systems also have inherent 
limitations. On one hand， the exceptionally large 
volume of SAR data leads to high costs for data pro‑
cessing and analysis. On the other hand， the utiliza‑
tion rate of existing data is relatively low， which 
makes the analysis and application of data across dif‑
ferent platforms difficult［1］. This is primarily due to 
the differences in parameters among SAR sensors， 
such as imaging geometry， operating frequency， 

and polarization mode［2］.
In the context of deep learning methods increas‑

ingly dominating SAR image interpretation tasks， 
generative data augmentation has become a key ap‑
proach to alleviate the problem of limited labeled da‑
ta. Researchers have proposed various SAR data 
generation and augmentation strategies， including 
generative adversarial networks （GANs）［3］， diffu‑
sion models （DMs）［4］， and autoregressive models 
（ARs）［5］. Although these methods have enriched 
the technical approaches for SAR data augmentation 
to some extent， most are confined to expansion 
within single and homogeneous datasets［6］. These 
approaches fail to effectively utilize the rich seman‑
tic information contained in other sensors or data 
sources， thereby limiting the generalization capabili‑
ty and adaptability of SAR data augmentation tech‑

*Corresponding author，E-mail address： mafei@mail.buct.edu.cn.
How to cite this article: WU Xuanting， ZHANG Fan， MA Fei， et al. Cross-sensor SAR data generation using diffusion mod‑
els and feature migration［J］. Transactions of Nanjing University of Aeronautics and Astronautics， 2025,42(4)：509‑524.
http：//dx.doi.org/10.16356/j.1005‑1120.2025.04.007



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

niques to diverse scenarios［7］.
At the same time， with the continuous emer‑

gence of new-generation， high-resolution， and 
multi-mode spaceborne SAR systems， the problem 
of newly launched satellites being unable to accumu‑
late sufficient labeled data to support effective deep 
learning model training in their early mission phases 
has become increasingly significant［8］. This directly 
leads to a lag in the research and development of in‑
telligent interpretation algorithms for this new high-

quality data， preventing the full realization of its ap‑
plication potential. How to rapidly generate high-

quality， diverse training samples for new SAR sys‑
tems has become a pressing challenge that needs to 
be addressed.

For convenience we will refer to the old exist‑
ing satellite payloads as SAR1， and the new satel‑
lite payloads launched will be referred to as SAR2. 
As illustrated in Fig.1， images of the same target ac‑
quired by different SAR payloads exhibit significant 
visual discrepancies， posing a great challenge to the 
direct， cross-platform utilization of data. In Fig.1， 
the red lines represent the training process and the 
red downward arrow represents a decline. To ad‑
dress the aforementioned challenges， the paper pro‑
poses a new framework that combines diffusion 
models and attention distillation techniques. This 
framework leverages the powerful image generation 
capabilities of diffusion models and the advantages 
of attention distillation in handling domain differenc‑

es to achieve knowledge extrapolation from exist‑
ing， abundant SAR1 data sources to SAR2 with 
scarce data， thereby generating high-quality SAR 
images that possess the imaging characteristics of 
SAR2. Fig.2 shows structural differences between 
the proposed approach and existing methods， in 
which the red and blue lines represent the training 
and inference processes， respectively； “I2I GAN” 
and “T2I DM” stands for image-to-image genera‑
tive adversarial network and text-to-image diffusion 
model， respectively. Fig.2 highlights the key meth‑
odological shift from direct image-to-image （I2I） 
translation used in existing methods to the proposed 
two-stage framework， which decouples content gen‑
eration from style transfer. While previous GAN 
methods rely on image-to-image generation， they 
can only generate SAR2 images from existing 
SAR1 image counterparts. Our method， by extract‑
ing SAR1 images， is able to generate an unlimited 
amount of content and requires only a small number 
of SAR2 images as feature guidance.

The core innovations of this paper are as fol‑
lows：

（1） We introduce a novel technical paradigm in 
the field of remote sensing image generation that fus‑
es a large-scale text-to-image model with an atten‑
tion distillation feature transfer method. This ap‑
proach guides image generation using textual infor‑
mation and then， through attention feature transfer， 

Fig.1　Classification accuracy degradation due to cross-sen‑
sor domain gaps 

Fig.2　Differences between the proposed method and exist‑
ing methods
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injects the unique imaging style and physical statisti‑
cal properties of the target sensor into the generated 
content. This unique combination， which decouples 

“content” and “style”， effectively enables efficient， 
high-fidelity data transfer from a data-abundant satel‑
lite to a data-scarce satellite under unpaired condi‑
tions. This framework provides a viable method for 
enhancing the data diversity and availability for new 
SAR systems.

（2） To strengthen the learning of SAR’s phys‑
ical characteristics， we have modified the attention 
distillation mechanism. This is achieved by introduc‑
ing a speckle statistical loss and a frequency domain 
loss to constrain the properties of the SAR images.

（3） To empirically validate the effectiveness of 
the proposed method， we construct a heterogeneous 
dataset containing aircraft targets from two real 
spaceborne SAR sensors. Experimental results dem ‑
onstrate that the proposed framework possesses 
cross-domain generation capabilities.

1 Related Works 

1. 1 Optical⁃SAR conversion methods　

To address the issue of SAR data scarcity， an 
important research direction involves generating 
SAR imagery from the vast amount of available opti‑
cal remote sensing imagery， a process known as op‑
tical-to-SAR conversion. This technical approach is 
primarily dominated by two categories of meth‑
ods［9］. Early research employed sophisticated convo‑
lutional neural network （CNN） architectures to es‑
tablish a non-linear mapping between optical and 
SAR images at the feature level， such as using 
multi-branch networks or heterogeneous Siamese 
networks for feature fusion［10］. To overcome the reli‑
ance of supervised learning methods on large num ‑
bers of registered image pairs， subsequent research 
shifted towards GANs， particularly image-to-image 
translation models like CycleGAN［11］ and Pix2pix［12］. 
For instance， Fu et al.［13］ designed a multi-stage cas‑
caded GAN framework to improve the quality of op‑
tical-to-SAR conversion.

Despite providing a pathway for data augmenta‑
tion， the optical-to-SAR conversion approach has 

fundamental bottlenecks. The imaging mechanisms 
of optical and SAR sensors are fundamentally differ‑
ent， in which the former captures the spectral reflec‑
tance of ground objects， while the latter reflects geo‑
metric structure and dielectric properties. This sig‑
nificant modality gap makes it extremely difficult for 
models to generate SAR images with realistic physi‑
cal characteristics. For example， physical phenome‑
na crucial for SAR target recognition， such as speck‑
le noise， layover， shadow， and specific scattering 
center intensities， are often distorted. Furthermore， 
the reliance of CNN methods on paired data［14］ and 
the inherent problems of GANs， such as training in‑
stability and susceptibility to mode collapse［1］， also 
limit practical value of this approach.

1. 2 SAR⁃SAR conversion methods　

To avoid the problem of physical distortion in 
cross-modality conversion， a more direct approach 
is to perform data extrapolation within the SAR mo‑
dality itself， known as SAR-to-SAR conversion. 
This direction is also primarily driven by various 
generative models. GAN-based methods， such as 
CycleGAN， CUT［15］ and StarGAN［16］， have be‑
come the mainstream choice for achieving style 
transfer between different SAR sensors due to their 
ability to handle unpaired data. For example， Pan et 
al.［17］ successfully used CycleGAN to perform con‑
version between TerraSAR-X and Sentinel-1 data， 
enhancing the performance of downstream tasks. 
Meanwhile， autoregressive models， an emerging 
paradigm， draw on the success of large language 
models， generating images through “next-token pre‑
diction”. Studies like SimpleAR［18］ have demonstrat‑
ed their advantages in training stability and scalabili‑
ty， offering potential for high-fidelity， controllable 
generation.

However， these SAR-to-SAR methods also 
have their limitations. On one hand， the adversarial 
training process of GANs is unstable， and the cycle-

consistency loss they rely on， being an indirect con‑
straint， may distort or lose critical electromagnetic 
scattering features in the SAR images during the 
conversion process. On the other hand， the technol‑
ogy of AR models in the visual generation domain is 
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not yet mature. Studies such as Selftok［19］ have 
pointed out that the visual tokenization paradigm on 
which current AR models depend has fundamental 
flaws and is not a true autoregressive structure， 
which limits the model’s inference capabilities. At 
the same time， its token-by-token generation charac‑
teristic leads to unacceptable inference latency. 
While parallelization studies like PAR［20］ can accel‑
erate the process， they do not fundamentally solve 
the problem.

In recent years， diffusion models have become 
the latest technical benchmark， surpassing GANs 
due to their excellent generation quality and stable 
training process， and have been successfully vali‑
dated in the field of SAR image generation. The re‑
search by Qosja et al. clearly indicates that in both 
qualitative and quantitative comparisons， a stan‑
dard DDPM significantly outperforms various 
GAN methods in SAR image synthesis tasks［21］. 
To further enhance realism， researchers have ex‑
plored different approaches. For example， Qosja et 
al.［21］ also verified that pre-training on large-scale 
unlabeled clutter data can effectively improve the 
quality of subsequent target generation. Diffu‑
SAR［22］， in contrast， approaches the problem from 
physical characteristics of SAR images， emphasiz‑
ing the importance of high-frequency （HF） compo‑
nents and significantly improving the quality of gen‑
erated images by introducing a frequency condition‑
ing module.

Although diffusion models have achieved great 
success in single-domain SAR image generation， 
there remain clear gaps and challenges in applying 
them to the more complex tasks of cross-sensor data 
extrapolation. Existing research has focused on gen‑
erating high-fidelity samples within single， homoge‑
neous datasets， and their model designs lack an ef‑
fective mechanism specifically built for cross-do‑
main style transfer that can decouple content and 
style. Furthermore， there is currently no mature so‑
lution for how to use the complex， high-dimensional 
imaging features of another SAR sensor as a precise 
condition to guide the generation process of a diffu‑
sion model. For instance， while DiffDet4SAR［23］ us‑
es the diffusion paradigm， its objective is object de‑

tection rather than style transfer. These challenges 
are core problems that this research work aims to 
solve.

2 Methods 

To address the challenges of data scarcity for 
new SAR sensors and imaging differences across 
sensors， this paper proposes a generative frame‑
work based on “content-style” decoupling. This par‑
adigm conceptually separates the physical structure 
of a scene （content） from the unique imaging signa‑
ture of a specific sensor， which includes its speckle 
statistics and resolution-dependent textures （style）. 
This decoupled design allows each stage to focus on 
a single， well-defined objective， permitting the 
adoption of the most advanced and suitable tech‑
niques for each sub-task： controllable content gener‑
ation and high-fidelity feature transfer. Consequent‑
ly， this approach achieves precision in feature migra‑
tion under an unpaired setting while ensuring con‑
tent controllability， thereby effectively solving the 
challenge of cross-sensor data extrapolation.

Let D s = { x i，ci } represent the large， annotated 
dataset from SAR1， where x i is a SAR image and 
ci = { SAR    Image，Class } is its corresponding textu‑

al description. Let D t = { x sty } be the scarce， unla‑
beled dataset from SAR2， which a single reference 
image x sty serves as the ground truth for the target 
imaging characteristics we aim to replicate.

2. 1 Overall framework　

This framework operates in two distinct stages. 
It first utilizes a text-to-image （T2I） diffusion mod‑
el to generate target content with precise semantic 
and structural control based on textual prompts. 
Subsequently， through a novel optimization process 
founded on attention distillation， it precisely trans‑
fers the unique imaging characteristics of the target 
sensor， such as its speckle statistics， textural pat‑
terns， and radiometric response， onto this content 
base， ensuring high-fidelity style emulation in an un‑
paired setting. Its overall workflow is illustrated in 
Fig.3， in which the red and gray lines represent the 
training and inference processes， respectively.
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SAR parameter-guided content generation uti‑
lizes a large amount of data from SAR1， along with 
its corresponding text information and key imaging 
parameters， to perform parameter-efficient fine-tun‑
ing on a stable diffusion 3.5 model［24］ using Lo‑
RA［25］. Once trained， this model is capable of gener‑
ating content-controllable SAR images based on 
new text prompts.

The migration of SAR characteristics fusing 
platform parameters takes the “content base” gener‑
ated in the first stage as a structural reference and re‑
quires only a small amount of data from SAR2 as 
the style target. Through a feature transfer method 
based on attention distillation［26］， the unique imag‑
ing characteristics of SAR2 are precisely injected in‑
to the content base， ultimately completing the cross-

domain SAR image extrapolation.

2. 2 SAR parameter⁃guided content genera⁃
tion　

The objective of this stage is to efficiently and 
controllably generate a “content base” that con‑
forms to the physical structure of SAR scenes by uti‑
lizing text prompts. The workflow of the generation 
part of this framework is illustrated in Fig.4， in 
which the red and gray lines represent the training 
and inference processes， respectively. LoRA-fine-

tuned multimodal diffusion transformer （MM-DiT） 
enables diffusion-based synthesis constrained by 
SAR parameters and text conditions.

The core of this stage is the adoption of an ad‑
vanced T2I generative model， which serves as the 
foundation for subsequent LoRA fine-tuning. We 
choose to model our approach on the technology 

used in stable diffusion 3.5. The overall generation 
process is designed to progressively transform a ran‑
dom noise vector into a high-fidelity image under 
the guidance of a text prompt.

The entire process begins by sampling a pure 
Gaussian noise vector z1 in the latent space. Subse‑
quently， the model employs an iterative reverse de‑
noising process， using a numerical ordinary differen‑
tial equation （ODE） solver to advance step-by-step 
from timestep t=1 towards t=0. At each timestep 
t， the MM-DiT network takes the current noisy la‑
tent variable z t， the embedding of the timestep e t， 
and a pre-encoded text condition c as input. Its task 
is to predict the noise contained within z t. This pre‑
dicted noise ε is then used to compute the next， less 
noisy latent variable z t - Δt. After a preset number of 

Fig.4　SAR parameter-guided content generation part of the 
proposed approach

Fig.3　Framework for cross-sensor SAR data generation

513



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

iterative steps， the process ultimately yields a latent 
representation z0 that contains all the information of 
the target image. Finally， z0 is fed into the decoder 
of a pre-trained variational autoencoder （VAE）， 
which reconstructs it from the latent space into the 
final full-pixel image. This model， based on the rec‑
tified flow （RF）［27］ and MM-DiT architecture， dem‑
onstrates strong performance in both generation 
quality and text comprehension.

Unlike traditional denoising diffusion probabi‑
listic models （DDPMs）， RF is an emerging genera‑
tive model paradigm that directly constructs a map‑
ping from a noise distribution to a data distribution 
via an ODE. It connects noise from a standard nor‑
mal distribution， ε∼ N ( 0，I ) and real data x 0 with a 
straight-line path in the latent space. Any point 
along this path can be parameterized as

z t = ( 1 - t ) x 0 + tε (1)
where t is the timestep. This straight-line trajecto‑
ry， compared to the curved paths of traditional diffu‑
sion models， theoretically possesses superior prop‑
erties， enabling a more efficient and stable sampling 
process.

The model’s training objective is to learn a ve‑
locity field vΘ， but in practice， this process is typi‑
cally reparameterized into a network εΘ that predicts 
the noise ε. Its simplified training objective can be 
expressed as a weighted mean squared error loss 
function

L = Et,x0,c,ε
é
ëw ( t ) εΘ( )z t,t,c - ε

2

2
ù
û (2)

where c is the conditional information such as text， 
and w ( t ) a loss weight related to the timestep. By 
optimizing this objective， the model εΘ learns to pre‑
dict the original noise ε from any given noise-cor‑
rupted sample z t.

MM-DiT is the core architecture of the model 
εΘ. Its core innovation is a dual-stream design that 
uses two separate sets of weights to process image 
and text tokens independently. Within each block of 
the transformer， these two token sequences are con‑
catenated to share a single attention mechanism， 
which enables a bidirectional flow of information be‑
tween the modalities. This architecture significantly 
improves the model’s text comprehension， typogra‑

phy， and spatial reasoning， leading to higher-quality 
image generation that surpasses previous transform ‑
er-based backbones. The core workflow of MM-

DiT is illustrated in Fig.5.

The input SAR image is first passed through 
the encoder of a VAE and compressed into a low-di‑
mensional latent representation x 0. Subsequently， 
following the rectified flow formula described 
above， noise is added to obtain z t. To be compatible 
with the Transformer architecture， z t is divided into 
N img patch tokens and linearly projected into a se‑
quence T img.The input text prompt c is processed by 
multiple pre-trained and frozen text encoders to ex‑
tract its semantic information， which is then differ‑
entiated into two forms of embeddings： A pooled vec‑
tor for global guidance， cvec， and a token sequence 
containing detailed context， c ctxt. The timestep t is 
converted into an embedding vector， e t， through 
methods such as sinusoidal positional encoding.

Fig.5　The core working principle of MM-DiT from accept‑
ing external SAR parameters in the form of text and 
random noise to inferring an image
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MM-DiT discards the cross-attention mecha‑
nism found in traditional U-Nets， instead designing 
separate sets of Transformer weights for the image 
and text modalities. The input data is processed by 
d stacked MM-DiT blocks. Within each processing 
block of MM-DiT， the image token sequence T img 
and the text token sequence c ctxt are concatenated 
along the sequence dimension to form a unified in‑
put sequence T in. Concurrently， the global text vec‑
tor cvec and the timestep embedding e t are fed into a 
small multi-layer perceptron （MLP） to generate the 
scaling parameters γ and shifting parameters β for 
the adaptive layer normalization （AdaLN）.

T in = Concat (T img,c ctxt ) (3)

( γ,β ) = MLP ( Concat ( cvec,e t ) ) (4)
Before the concatenated token sequence T in is 

fed into the self-attention layer， its image and text 
portions are first processed by two separate linear 
projection layers. The two sets of processed tokens 
are then re-concatenated and input into a shared self-
attention layer， shown as

T ′img,T ′txt = Linearimg(T in_img ),Lineartxt(T in_txt ) (5)

Attn out = SelfAttn (Linearqkv( Concat (T ′img,T ′txt ) ) )(6)

This design allows information to interact bidi‑
rectionally between the feature streams of the image 
and text modalities， greatly enhancing the model’s 
comprehension of complex text prompts.

The output of the attention layer Attn out， is 
added to the input T in through a residual connection. 
The image and text portions are then separated and 
processed separately by two independent feed-for‑
ward networks （FFNs）， shown as

T res = Attn out + T in (7)
T img_ffn,T txt_ffn = FFNimg(T res_img ),FFNtxt(T res_txt ) (8)

Finally， they are again added to their respec‑
tive inputs， completing the process of one MM-DiT 
block.

T out = T img_ffn + T res_img,T txt_ffn + T res_txt (9)
After being deeply processed by d MM-DiT 

blocks， the model only extracts the token portion 
corresponding to the image， T out_img. This part of the 
sequence， after passing through an unpatching and 

linear projection layer， yields the final predicted 
noise， shown as

ε̂= Linearfinal( Unpatchify (T out_i ) ) (10)
where the predicted noise ε̂ is the single output of 
the entire εΘ model. During the inference， ε̂ is used 
to guide the reverse denoising process to progres‑
sively generate the final image.

LoRA is a parameter-efficient fine-tuning tech‑
nique that adapts large models to new tasks with 
minimal computational overhead. It achieves this by 
injecting trainable low-rank matrices into specific 
layers of a pre-trained model to approximate the ef‑
fect of full parameter fine-tuning.

In the implementation of LoRA， for a pre-

trained model’s original weight matrix W 0， its state 
is kept frozen throughout the fine-tuning process and 
does not participate in gradient updates. The weight 
update， ΔW， is approximated by the product of two 
much smaller low-rank matrices， A and B， where 
the rank r is far lower than the primitive dimension 
d and k. Therefore， the weight update can be repre‑
sented as

ΔW= BA (11)
During the training， only matrices A and B are 

trainable parameters. In the forward pass， for a giv‑
en input vector x， the final output h of a LoRA-

adapted layer is the sum of the output from the origi‑
nal pre-trained path and the output from the low-

rank adaptation path， which is shown as
h=W 0 x+ BAx (12)

This design enables effective adjustment of the 
model’s behavior without altering the original mod‑
el’s architecture or parameter count. In our frame‑
work， we apply LoRA adapters to the core of the 
SD3.5 model’s MM-DiT architecture： the self-at‑
tention and cross-attention modules. A standard at‑
tention layer maps an input token sequence T to 
Query， Key， and Value using three separate linear 
projection matrices. Our fine-tuning strategy is to 
freeze the original weight and introduce separate， 
trainable low-rank adapters for each. Therefore， af‑
ter LoRA fine-tuning， the effective weight of each 
projection matrix in the attention module is com ‑
posed of the original weight W i plus its correspond‑
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ing low-rank update B iA i， which can be uniformly 
expressed as

W i ′=W i + B iA i     i ∈ {Q,K,V } (13)
By training only these low-rank matrices， 

which represent a minimal fraction of the total mod‑
el parameters， we can precisely adjust how the mod‑
el attends to and combines image and text features 
during the generation process. This targeted adapta‑
tion strategy concentrates limited training resources 
specifically on the self-attention and cross-attention 
blocks within the MM-DiT， which are the compo‑
nents most influential for semantic and structural 
modeling. This method thereby achieves highly effi‑
cient model fine-tuning， drastically reducing training 
time and memory requirements while yielding a 
small， portable adapter for the base model that can 
be easily deployed.

2. 3 Migration of SAR characteristics fusing 
platform parameters　

The second stage of this framework， migra‑
tion of SAR characteristics fusing platform parame‑
ters， transfers the unique imaging characteristics 
from a single， unpaired SAR image of the target 
sensor onto the content base. The attention distilla‑
tion method used in this framework is illustrated in 
Fig.6， in which the red， blue， and purple lines rep‑
resent the training process， the inference process of 
the latent space， and the loss calculation process， 
respectively.

The self-attention layers of the pre-trained U-

Net in a diffusion model capture rich， multi-scale vi‑

sual features that collectively define an image’s 
“style”. In the attention distillation process， a real 

SAR image from the target sensor is first encoded 
as z sty

z sty = E ( I ) (14)
In each optimization step， we simultaneously 

feed the image code to be optimized，zopt， and the 
style reference code， z sty  ， into the pre-trained U-

Net and extract features from its self-attention lay‑
ers. In specific layers of the network， we compute 
two attention outputs： Ideal style output A ideal and 
current style output A current.

A ideal is computed using Q opt from zopt and the 
K sty and V sty from z sty. If zopt possesses the features 
of z sty， its attention output would be

A ideal = SelfAttn (Q opt,K sty,V sty ) (15)
A current is computed using Q opt， K opt， and V opt 

from zopt   itself， representing the current stylistic 
state of zopt ， shown as

A current = SelfAttn (Q opt,K opt,V opt ) (16)
We design four loss functions to better transfer 

the characteristics of SAR2 onto the content map of 
SAR1. The AD loss is used to calculate the style 
gap between the style map and the content map； the 
content loss is used to maintain the content features 
of the original SAR1 image； and the speckle statisti‑
cal loss and frequency loss are used from the per‑
spective of physical characteristics to assist in fine-

tuning the physical feature migration of the SAR im ‑
age.

The AD loss LAD is the core of attention distil‑
lation feature transfer， distilling visual elements by 
re-aggregating features within the self-attention 
mechanism. The AD loss is defined as the sum of 
the L1 distance between these two outputs across all 
selected layers， shown as

LAD = ||A ideal - A current ||1 (17)
We define content loss L cnt similarly to AD 

loss， also based on the self-attention mechanism， 
fully leveraging the diffusion model’s advantage of 
deep understanding of images. Specifically， by cal‑
culating the L1 loss between the target query Q opt 
and the reference query Q cnt， we obtain the content 
loss as

Fig.6　Migration of SAR characteristics fusing platform pa‑
rameters module
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L cnt = ||Q opt - Q cnt ||1 (18)
To replicate SAR-specific characteristics， we 

develope a targeted strategy for selecting the U-Net’s 
self-attention layers for distillation. We simultane‑
ously select layers from both the deeper and shallow ‑
er stages of the U-Net. Deeper layers capture macro‑
scopic structure and semantic layout， ensuring the 
target’s overall contour remains stable. Shallower， 
higher-resolution layers are sensitive to local tex‑
tures， edges， and noise， enabling the replication of 
the target sensor’s unique speckle distribution， tex‑
tural details， and scattering sidelobes. By perform ‑
ing distillation at these different depths， our method 
synergistically transfers both the macro-structure 
and micro-texture of the target SAR sensor， gener‑
ating highly realistic extrapolated data.

While attention distillation can effectively cap‑
ture and replicate the multi-scale visual features of a 
target sensor’s images， this matching occurs primar‑
ily in the deep feature space and does not explicitly 
guarantee that the generated images adhere to the 
underlying physical and statistical laws of SAR im ‑
aging. To address this issue， we introduce two con‑
straint terms based on SAR physical priors.

Speckle noise is a core statistical characteristic 
of SAR images［28］. Therefore， to ensure statistical 
fidelity， we introduce a speckle statistical loss that 
aligns the speckle intensity of the generated and ref‑
erence images by matching their equivalent number 
of looks （ENL）［29］. ENL is a classic metric for mea‑
suring speckle intensity in homogeneous regions of 
an image， which is defined as

ENL = μ2

σ 2 (19)

where μ represents the image mean and σ the image 
standard deviation. In each optimization step， we 
randomly select M patches of size N×N from the 
homogeneous background regions of the reference 
image x sty. We select M corresponding patches from 
the image being optimized， x opt. We then compute 
the average ENL values for both sets of patches and 
define the speckle statistical loss as the L1 distance 
between them.

L sp = - -- -----ENL ( )x opt - - -- -----ENL ( )x style
1

(20)

By incorporating L sp into the total loss func‑
tion， we directly guide the optimization process to 
ensure that the speckle fluctuations in the generated 
image are statistically consistent with the target sen‑
sor’s real data.

Studies like DiffuSAR have shown that the HF 
components of SAR images are crucial for replicat‑
ing their scattering details. Therefore， our method 
introduces a frequency domain loss to align the ener‑
gy distribution in the high-frequency components of 
the generated and reference images. In each optimi‑
zation step， we apply a 2D fast Fourier Transform 
to both the current generated image x opt   and the ref‑
erence image x sty   to obtain their frequency spectra. 
We then define an annular high-pass filter mask， 
M HF， which has a value of 0 at the center and 1 in 
the surrounding regions. The frequency domain loss 
is defined as the L1 distance between their high-fre‑
quency components， shown as

L f = F ( )x opt ⊙M HF - F ( )x sty ⊙M HF
1

(21)

This loss term directly forces the spectral struc‑
ture of the generated image， particularly the high-

frequency details critical for SAR target recogni‑
tion， to match that of the target sensor’s real data. 
By incorporating these physical priors， the final opti‑
mization objective for feature extrapolation is

L total = LAD + λ cnt L cnt + λ sp L sp + λ f L f (22)
where λ cnt represents content loss weight， λ sp speck‑
le statistical loss weight， and λ f frequency loss 
weight. In our experiments， the loss weights are set 
based on empirical analysis to balance the three ob‑
jectives of content retention， style transfer， and 
physical realism. The weight λ cnt of the content loss 
L cnt is set to 0.25 to ensure the structural fidelity of 
the generated images. The weights λ sp and λ f for the 
speckle statistical loss L sp and frequency domain loss 
L f are both set to 0.1. These two physical prior 
terms serve as a supplement and fine-tuning to the 
attention distillation style loss LAD， guiding the mod‑
el to generate details more consistent with SAR im ‑
aging principles without dominating the entire opti‑
mization process. These settings are proven effec‑
tive in our experiments.
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3 Experiments 

3. 1 Experimental dataset and parameter intro⁃
duction　

To comprehensively evaluate the performance 
of the proposed framework， we construct a hetero‑
geneous spaceborne SAR dataset containing seven 
different types of aircraft targets. The heteroge‑
neous dataset used in experiments is composed of 
data from two distinct SAR payloads， representing 
different generations of spaceborne technology. 
The source domain （SAR1） data is from Germa‑
ny’s established TerraSAR-X satellite， launched 
in June 2007， while the target domain （SAR2） da‑
ta is from the more recent Fucheng-1 （Fuxi-1） sat‑
ellite， launched in January 2023. These sensors op‑
erate under fundamentally different physical param ‑

eters， most notably in their frequency band and 
spatial resolution. TerraSAR-X operates in the 
high-frequency X-band and provides high-resolution 
imagery of approximately 1 m， making it highly 
sensitive to surface textures and fine details. In con‑
trast， Fucheng-1 operates in the lower-frequency 
C-band with a moderate resolution of around 3 m， 
resulting in different penetration capabilities and 
less detailed textural information. This significant 
disparity in both operating frequency and resolution 
creates a substantial domain gap， leading to dis‑
tinct backscattering characteristics， speckle statis‑
tics， and textural representations in the imagery 
from the two payloads. To mitigate the long-tail ef‑
fect， the data from Fucheng-1 is controlled. The 
specific data quantities for the dataset are shown in 
Table 1.

In the experiment， all comparative methods are 
used to learn the image style transfer from the Ter‑
raSAR-X to Fucheng-1， with the generated images 
serving as augmented data for Fucheng-1. All GAN-

based comparative methods use similar training ep‑
ochs and optimizer settings. All GAN models are 
trained for a total of 200 epochs. The batch size is 
uniformly set to 12. We select the Adam optimizer 
for both the generator and discriminator of all mod‑
els， with an initial learning rate of 1e-4.

3. 2 Comparative methods　

To evaluate our framework， we select several 
representative GAN-based models from the I2I 
translation field for comparison. These include clas‑
sic and modern unpaired methods such as Cycle‑
GAN， which uses cycle-consistency loss； Star‑
GAN， which extends translation to multiple do‑
mains with a single generator； and the more recent 
contrastive unpaired translation （CUT）， which em‑
ploys contrastive learning for higher efficiency. Ad‑
ditionally， we select Pix2pix， a foundational model 

for paired I2I translation， as a supervised reference. 
These baselines are compared against our method， 
the complete two-stage framework based on content 
generation and feature extrapolation.

3. 3 Result of generation and migration　

In order to visually evaluate the performance of 
the proposed two-stage framework in cross-payload 
data extrapolation tasks， we qualitatively visualize 
the generation and migration results for different air‑
craft targets， as shown in Fig.7. The results are pre‑
sented in the following figure. TerraSAR-X （Row 
1） vs. Fucheng-1 （Row 2） imaging differences are 
resolved through generated content （Row 3） and fi‑
nal outputs （Row 4） that preserve TerraSAR-X air‑
craft structures while replicating Fucheng-1’s speck‑
le， brightness， and textures. The figure clearly dem ‑
onstrates the complete transformation process from 
the source domain to the target domain and validates 
the capability of our approach in both content reten‑
tion and style migration.

Table 1　Dataset details

Dataset name
Fucheng‑1 dataset

TerraSAR‑X dataset
Dataset after adding generated data

B‑52
50

129
366

Boeing‑747
50

146
383

Boeing‑767
50

132
369

C‑130
50

134
371

C‑17
50

165
402

F‑15
50

143
382

F‑16
50

134
373
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3. 4 After adding the generated data　

We use performance on a downstream classifi‑
cation task as the core evaluation metric for data 
augmentation effectiveness. Fig.8 shows the distri‑
bution of data quantities for each aircraft type in the 
dataset， demonstrating that our method can expand 
the quantity of effective data， thereby improving the 
performance of the classification network. We use a 
standard ResNet50［30］ classification network， which 
is trained on a mixed training set composed of “a 
small amount of real data from the new sensor” and 

“augmented data generated by each method”. The 
model is then evaluated on a fixed test set of real da‑
ta from Fucheng-1.

We utilize four metrics commonly used in clas‑
sification performance studies： Accuracy， precision，
recall and F1-score to evaluate the performance of 
each class of methods on the ResNet50 classification 
network.

During the training phase of a deep learning 
model， training loss and training accuracy are two 
fundamental metrics used to monitor the learning 
process. Training loss is the primary value that the 
optimization algorithm directly minimizes and it is a 
numerical representation of the error， or discrepan‑
cy， between the model’s predictions and actual 
ground-truth labels on the training dataset. This val‑
ue， which is often calculated using functions like 
Cross-Entropy for classification， provides essential 
gradient information needed to update the model’s 
weights. In parallel， training accuracy offers a more 
intuitive measure of performance， representing the 
percentage of training samples that the model has 
classified correctly. While training loss provides a 
fine-grained signal for optimization， training accura‑
cy gives a high-level， human-interpretable summary 
of how well the model is fitting the data it has seen. 
Generally， as the training loss decreases， the train‑
ing accuracy is expected to increase， indicating a 
successful learning progression. Fig.9 represents 
these two key parameters profiles for each type of 
model when trained on ResNet50. It can be seen 
from Fig.9 that our framework achieves superior 

Fig.8　Histogram of distribution of each type of data on the 
dataset

Fig.7　Real and synthetic SAR samples 
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convergence speed， stability， and final accuracy 
over GAN-based methods in both loss reduction and 
classification accuracy.

A confusion matrix is a specific table used to 
evaluate a classification model’s performance； it 
lays out the counts of correct and incorrect predic‑
tions for each class， providing a detailed breakdown 
of exactly what kind of errors the model is making. 
Fig.10 shows a visual analysis of results of compari‑
son experiments， using confusion matrices to visual‑
ize the performance of the downstream tasks.

The data generated by each method is used to 
enhance the training of the downstream classifica‑
tion model， with the performance results shown in 
Table 2. For ease of comparison， we also include 
the classification results of a baseline model， which 
is trained using only the small amount of real data 
from Fucheng-1.

Analyzing experimental results， a detailed com ‑
parison reveals the varied efficacy of different data 

augmentation strategies when compared to the base‑
line model （57.14% accuracy）， which is trained on‑

Fig.9　Training performance comparison Fig.10　Confusion matrices for each comparative experimen‑
tal groups

Table 2　Improvement of classification accuracy by adding data generated by different methods in Fucheng⁃1 training set

Method
No generated data added

StarGAN
CUT

Pix2pix
CycleGAN
Our method

Accuracy/%
57.142
50.549
61.538
65.934
69.231
85.714

Precision/%
55.659
37.165
59.865
71.705
71.082
86.199

Recall/%
57.143
50.549
61.538
65.934
69.231
85.714

F1‑score/%
51.650
41.328
56.110
63.770
69.396
85.549
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ly on the limited Fucheng-1 data. While some GAN-

based image translation techniques show potential， 
their performance is inconsistent； notably， Cycle‑
GAN improves the accuracy to 69.23%， demon‑
strating the viability of the unpaired translation con‑
cept. However， other adversarial methods struggle， 
performing even below the baseline， which under‑
scores the significant challenge posed by the domain 
gap and the inherent instability of adversarial train‑
ing for this specific task. In stark contrast， the pro‑
posed framework significantly surpasses all compar‑
ative methods across all evaluated metrics， achiev‑
ing a final accuracy of 85.71%. This represents a 
substantial improvement of over 16 percentage 
points compared to the best-performing method， 
CycleGAN. This superior performance is attributed 
to our framework’s two-stage decoupled design， 
which generates a richer diversity of content via its 
T2I module and ensures higher fidelity style transfer 
through a more stable， optimization-based attention 
distillation process. This result conclusively demon‑
strates the capability and robustness of the proposed 
framework for cross-payload SAR data extrapola‑
tion.

3. 5 Ablation experiment　

To validate the effectiveness of each compo‑
nent of our framework， we conduct a series of abla‑

tion experiments. We continue to use the perfor‑
mance on a downstream classification task as the 
core evaluation metric for data augmentation effec‑
tiveness. To simulate the real-world scenario of data 
scarcity for a new sensor， the test set consistently 
uses 30% of Fucheng-1 data， while the training set 
is composed according to different ablation settings. 
In research on small-sample learning and data-scarce 
scenarios， a 70%/30% training/test split is a com ‑
mon and widely accepted setting. It ensures suffi‑
cient data for model evaluation while maximizing 
the simulation of the challenge of insufficient train‑
ing data. Our choice follows the general practice in 
this field to ensure the comparability of experimental 
results. Reducing the test set proportion （e. g.， to 
10%） would lower the confidence of evaluation re‑
sults； increasing it （e.g.， to 50%） would further ex‑
acerbate the scarcity of training data， potentially ren‑
dering all models （including baseline models） un‑
able to be effectively trained， thereby making it diffi‑
cult to distinguish the true performance differences 
introduced by different data augmentation methods. 
Therefore， 30% is considered a balanced choice.

To verify the necessity of the proposed two-

stage data extrapolation framework， we design four 
comparative experimental groups. Experimental re‑
sults are shown in Table 3. Fig.11 shows a visual 
analysis of results of ablation experiments.

The ablation study demonstrates the necessity 
of each component in our two-stage framework. 
The baseline model， trained only on the relative 
scarce Fucheng-1 dataset， achieves 57.14% accura‑
cy. Naively adding the TerraSAR-X data degrades 
performance to 48.35%， confirming that a signifi‑
cant domain gap makes simple data pooling detri‑
mental. By using only the style transfer component， 

which aligns the TerraSAR-X data with the 
Fucheng-1 style， the accuracy dramatically increas‑
es to 73.63%. This result validates that our style ex‑
trapolation module is crucial for effectively bridging 
the domain gap. Finally， our complete framework， 
which combines diverse content generation with 
style transfer， achieves the superior accuracy of 
85.71%. This step-by-step improvement validates 

Table 3　Ablation experiment results %

Training dataset
Fucheng‑1 dataset

Fucheng‑1+TerraSAR‑X dataset
Fucheng‑1+TerraSAR‑X dataset migrated by Fucheng‑1

Fucheng‑1+TerraSAR‑X dataset migrated by Fucheng‑1+Generated data

Accuracy
57.142
48.351
73.626
85.714

Precision
55.659
48.275
73.365
86.199

Recall
57.143
48.352
73.626
85.714

F1‑score
51.650
41.276
71.580
85.549
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that both content generation and feature migration 
are indispensable， and their synergy is key to the 
framework’s success.

To evaluate the specific contribution of the 
speckle statistical loss and the frequency domain 
loss， we conduct the following ablation analysis. 
This analysis aims to isolate and demonstrate the 
key role of these two physics-based prior constraints 
in enhancing the quality of cross-sensor SAR image 
generation. The results are shown in Table 4.

When the speckle statistical loss and the fre‑
quency domain loss work in conjunction， the frame‑
work’s performance is optimal. This demonstrates 
a strong complementary relationship between them. 
The downstream classification model trained with 
this data generated by both losses exhibits the best 
performance， validating that these two loss func‑
tions are indispensable components for successfully 

achieving high-fidelity cross-sensor data extrapola‑
tion.

4 Conclusions 

Addressing critical challenges of labeled data 
scarcity and significant imaging differences across 
sensors in new-generation spaceborne SAR sys‑
tems， this paper has proposed and validated a novel 
cross-sensor SAR data extrapolation framework 
founded on “content-style” decoupling. The method 
first utilizes a large， pre-trained text-to-image mod‑
el， which is fine-tuned with parameter-efficient Lo‑
RA on source domain data， to generate a semanti‑
cally controllable content base representing the phys‑
ical structure of the target. Subsequently， it em‑
ploys an optimization-based attention distillation 
technique， which uniquely incorporates SAR-specif‑
ic physical prior constraints such as speckle statistics 
and frequency domain characteristics， to precisely 
transfer the imaging style of the target sensor onto 
this content base under fully unpaired conditions. 
Experiments on a real-world， heterogeneous aircraft 
dataset demonstrate that the augmented data gener‑
ated by our framework improves the accuracy of a 
downstream classification task to 85.71%， signifi‑
cantly outperforming prominent GAN-based meth‑
ods. This research not only provides an effective 
technical solution for the data bottleneck problem in 
new SAR systems， but also establishes a new para‑
digm for the cross-modal and cross-sensor intelli‑
gent interpretation of remote sensing images.
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基于扩散模型和特征迁移的跨载荷 SAR数据生成

吴宣廷， 张 帆， 马 飞， 尹 嫱， 周勇胜
（北京化工大学信息科学与技术学院, 北京  100029,中国）

摘要：不同的合成孔径雷达（Synthetic aperture radar， SAR）传感器在分辨率、极化方式和工作频段等方面差异显

著，导致现有模型难以直接迁移到新发射的 SAR 卫星。新系统需要大量带标签数据进行重训，而短时间内收集

足量样本往往不可行。针对这一矛盾，本文提出一种数据生成与迁移框架，将稳定扩散模型与注意力蒸馏相结

合，利用历史 SAR 数据为新型 SAR 系统合成符合其独特成像特性的训练样本。具体而言，在多模扩散 Trans‑
former（Multimodal diffusion Transformer， MM‑DiT）架构中微调低秩适应（Low‑rank adaptation， LoRA）模块，实

现由文本提示引导的类别可控 SAR 图像生成。为确保生成图像具备目标 SAR 系统的统计属性与成像特征，进

一步引入注意力蒸馏机制，将真实目标域中的传感器专属特征，如空间纹理、斑点分布和结构模式，迁移至生成

模型。在两个真实星载 SAR 系统的多类飞机目标数据集上进行的大量实验结果表明，所提方法能够有效缓解数

据稀缺问题，支撑跨传感器遥感应用。

关键词：合成孔径雷达；生成技术；跨载荷；特征迁移
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