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Abstract: In recent years， deeps learning has been widely applied in synthetic aperture radar （SAR） image 
processing. However， the collection of large-scale labeled SAR images is challenging and costly， and the 
classification accuracy is often poor when only limited SAR images are available. To address this issue， we propose a 
novel framework for sparse SAR target classification under few-shot cases， termed the transfer learning-based 
interpretable lightweight convolutional neural network （TL-IL-CNN）. Additionally， we employ enhanced gradient-
weighted class activation mapping （Grad-CAM） to mitigate the “black box” effect often associated with deep learning 
models and to explore the mechanisms by which a CNN classifies various sparse SAR targets. Initially， we apply a 
novel bidirectional iterative soft thresholding （BiIST） algorithm to generate sparse images of superior quality 
compared to those produced by traditional matched filtering （MF） techniques. Subsequently， we pretrain multiple 
shallow CNNs on a simulated SAR image dataset. Using the sparse SAR dataset as input for the CNNs， we assess 
the efficacy of transfer learning in sparse SAR target classification and suggest the integration of TL-IL-CNN to 
enhance the classification accuracy further. Finally， Grad-CAM is utilized to provide visual explanations for the 
predictions made by the classification framework. The experimental results on the MSTAR dataset reveal that the 
proposed TL-IL-CNN achieves nearly 90% classification accuracy with only 20% of the training data required under 
standard operating conditions （SOC）， surpassing typical deep learning methods such as vision Transformer （ViT） in 
the context of small samples. Remarkably， it even presents better performance under extended operating conditions 
（EOC）. Furthermore， the application of Grad-CAM elucidates the CNN’s differentiation process among various 
sparse SAR targets. The experiments indicate that the model focuses on the target and the background can differ 
among target classes. The study contributes to an enhanced understanding of the interpretability of such results and 
enables us to infer the classification outcomes for each category more accurately.
Key words：sparse synthetic aperture radar； convolutional neural network （CNN）； ensemble learning； target 
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0 Introduction 

Distinct from conventional radar systems， syn‑
thetic aperture radars （SARs） operate effectively 
under all-day and all-weather conditions and have 

been deployed in both military and civilian applica‑
tions［1-2］. Within the realm of SAR image process‑
ing， target classification［3-4］ has risen in popularity 
with the advent of deep learning. Deep learning 
methods surpass manual feature extraction by auto‑
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matically identifying target features. Schmidhuber［5］ 
provided a comprehensive examination of deep 
learning methodologies within neural networks， of‑
fering insights into their architecture， training pro‑
cesses， and applications across various domains. Al‑
ex net［6-7］ was developed by Krizhevsky et al. It won 
the ImageNet challenge with a top-5 error rate of 
17.0%， triggering a series of advancements in com ‑
puter vision tasks such as image classification. The 
success of deep learning in optical image classifica‑
tion has encouraged researchers to adapt these tech‑
niques to SAR image classification， which has led 
to the creation of specialized deep learning models 
for SAR images. In 2014， Chen et al.［8］ proposed to 
replace backpropagation with a sparse autoencoder 
to conduct multi-class SAR image classification 
tasks. However， the scarcity of large-scale annotat‑
ed SAR datasets hampers the progression of deep 
learning in SAR image classification. Consequently， 
enhancing the classification performance with a lim ‑
ited number of SAR samples has become an impor‑
tant goal in SAR target classification research in re‑
cent years.

Specifically， in 2016， Chen et al.［9］ further pro‑
posed a fully convolutional network （termed A-Con‑
vNets） that helped to avoid the overfitting issue and 
achieved a 99.13% accuracy rate using all the train‑
ing samples. And Ding et al.［10］ addressed issues re‑
lated to target translation， speckle noise， and miss‑
ing poses by proposing three distinct data augmenta‑
tion techniques. In 2017， Lin et al.［11］ introduced the 
convolutional highway unit （CHU） as a solution to 
the gradient vanishing problem observed in deep 
convolutional neural networks （CNNs）. Jiang et al.［12］ 
achieved classification accuracy of 96.32% on the 
MSTAR dataset in 2018， by decomposing each 
original SAR image into 36 Gabor feature maps at 
multiple scales and orientations using Gabor filters. 
These were then used as inputs to a deep CNN［12-13］. 
In 2019， Wang et al.［14］ replaced the rectified linear 
unit （ReLU） with concatenated ReLU （CReLU） 
as an activation function to preserve the negative 
phase information and obtain dual feature maps from 
the previous layer. They demonstrated that even 
with only 20% of the MSTAR dataset， a classifica‑

tion accuracy of 88.17% could be achieved. Guo et 
al.［15］ proposed a novel feature learning structure 
called the compact convolutional autoencoder 
（CCAE） in 2020， which utilized a dual-channel 
shared parameter structure to calculate the compact‑
ness loss between targets of the same class. They 
showed that the CCAE could achieve a accuracy of 
98.59% by minimizing this compactness loss. Final‑
ly， in 2021， Fu et al.［16］ introduced the first meta-

learning framework for SAR， named MSAR， 
which learned a favorable initialization and an effec‑
tive update strategy， thereby validating the applica‑
bility of meta-learning to few-shot SAR classifica‑
tion.

In the field of SAR target classification， imag‑
es recovered through matched filtering （MF） have 
commonly been used and have achieved consider‑
able success. Nonetheless， MF-based images can 
be significantly compromised by noise， sidelobes， 
and clutter. To mitigate these issues， sparse SAR 
imaging technology has been developed ， which 
enhances the image quality by emphasizing the tar‑
gets and suppressing background clutter. Sparse re‑
covery algorithms， such as iterative soft threshold‑
ing （IST）［17-18］ and orthogonal matching pursuit 
（OMP）［19-20］， are typically employed for this en‑
hancement. A novel sparse recovery algorithm， 
termed BiIST （Bidirectional iterative soft threshold‑
ing）， was proposed in 2018， building upon the IST 
method［21-22］. BiIST enhances the target features 
while maintaining the statistical distribution of the 
image. Further advancements were made in 2021， 
when Bi et al.［23］ demonstrated that the integration 
of sparse SAR images with popular object detection 
methods， such as YOLOv3 and Faster R-CNN， 
yielded higher accuracy compared to MF-based im‑
ages. Continuing this trend， in 2022， Deng et al.［24］ 
introduced a new sparse SAR target classification 
framework named the amplitude-phase CNN （AP-

CNN）. This framework exploited both the magni‑
tude and phase information from sparse SAR imag‑
es reconstructed using BiIST. The findings suggest‑
ed that the combination of sparse SAR images with 
AP-CNN framework could lead to superior perfor‑
mance［24］.
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The Transformer is a deep neural network 
model that relies on a self-attention mechanism， it 
was proposed by Google in 2017［25］. It has emerged 
as one of the most sophisticated models to handle se‑
quential data， especially suitable for tasks involving 
natural language processing （NLP）. Compared with 
traditional sequence models， such as the recurrent 
neural network （RNN）［26］ and long short-term mem ‑
ory network （LSTM）［27］， the Transformer can han‑
dle longer data sequences and model the relationship 
between any two elements due to the self-attention 
mechanism. As exploration in the field has pro‑
gressed， the Transformer has also been adapted for 
use in computer vision. As the Transformer was ini‑
tially designed for the processing of natural lan‑
guage， it requires inputs in sequence form. In 2020， 
Dosovitskiy et al.［28］ minimally modified the Trans‑
former to create the vision Transformer （ViT）， 
which dissected an image into patches， assigned 
these patches to different positions in a sequence， 
and encoded them. This innovation reduces the reli‑
ance on traditional convolution and pooling opera‑
tions in deep learning networks. Taking a different 
approach， Liu et al.［29］ introduced the swin Trans‑
former， which segmented the input image into mul‑
tiple levels， with each level being processed by its 
own Transformer model. The swin Transformer 
achieves greater efficiency by restricting the self-at‑
tention computations to non-overlapping local win‑
dows and enabling inter-window connections. This 
model has shown impressive performance in tasks 
such as image classification， object detection， and 
image segmentation.

The Transformer model， recognized for its su‑
perior sequence modeling capabilities， holds great 
potential in SAR target classification and recogni‑
tion. It can globally model the features within SAR 
images， leading to enhanced classification accuracy 
and robustness. While CNNs have long been the 
foundation of SAR automatic target recognition 
（ATR）， they experience challenges in the case of 
limited data， such as the inability to expand their 
width and depth without encountering a bottleneck 
in feature representation， leading to poor recogni‑
tion performance. The Transformer and CNN mod‑

els， as the focal points of current research in SAR 
target classification， are instrumental in enhancing 
the accuracy of few-shot SAR target classifica‑
tion［30-32］. To address the overfitting issue in SAR 
ATR with small sample sizes， Li et al.［33］ intro‑
duced a non-subsampled Laplacian pyramid decom ‑
position （NSLP）-based ViT model in 2021， named 
NSLP-ViT. After preprocessing SAR images with 
NSLP， the model leverages the preprocessed imag‑
es for ViT network training， effectively mitigating 
overfitting issues［33］. In 2022， Li et al.［34］ further de‑
veloped a self-attention-based multi-aspect SAR rec‑
ognition method. This approach eliminates from the 
sequential dependency of RNNs， which can result 
in information loss. By discovering correlations with‑
in the semantic information in images and employ‑
ing convolutional autoencoders， this method enhanc‑
es the noise immunity and reduces the dependency 
on extensive datasets［34］. Wang et al.［35］ proposed a 
convolutional Transformer （ConvT） tailored to 
few-shot learning （FSL） in SAR ATR. ConvT con‑
structs hierarchical feature representations and cap‑
tures the global correlations of local features， thus 
maintaining the network’s capacity for local feature 
extraction while also considering the global con‑
text［35］. Deng et al.［36］ combined the ViT architec‑
ture with a contrastive learning framework， using a 
plethora of unlabeled samples for pre-training， fol‑
lowed by fine tuning with a smaller set of labeled da‑
ta. This approach proved effective for SAR image 
classification tasks， even with limited labeled sam ‑
ples［36］. To address the scarcity of SAR data， Youk 
et al.［37］ proposed a novel Transformer-based SAR 
target image translation network. This model was 
designed to learn a feature space mapping from syn‑
thetic to real SAR domains， facilitating the genera‑
tion of targets at various azimuth angles［37］. Finally， 
to address the biased SAR data distribution and in‑
sufficient model representation in target recogni‑
tion， Liu et al.［38］ introduced a new view semantic 
Transformation network （VSTNet）. This network 
synthesized samples to enrich the statistical distribu‑
tion of the training data， demonstrating its robust‑
ness and effectiveness in experiments on the 
MSTAR dataset［39］.
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In this paper， we introduce a novel model for 
sparse SAR target classification that leverages trans‑
fer learning and ensemble learning. This frame‑
work， named TL-IL-CNN （Transfer learning-

based interpretable lightweight‑CNN）， is further ex‑
amined using gradient-weighted class activation 
mapping （Grad-CAM） to provide insights into the 
CNN’s decision-making process across various tar‑
get classes， thereby significantly improving the re‑
sults’ interpretation. To augment the quality of the 
MF-based SAR dataset， we initially employ the Bi‑
IST algorithm， which enhances the image quality 
and yields a refined sparse SAR dataset. Subse‑
quently， these improved sparse SAR images under‑
go preprocessing to accommodate varying sizes， be‑
fore being fed into the TL-IL-CNN. This network 
is responsible for feature extraction and delivering 
the final classification outcomes. In the final stage of 
analysis， we utilize a lightweight model in conjunc‑
tion with Grad-CAM to elucidate the classification 
decisions for different sparse SAR target types. In 
extensive experiments conducted on the MSTAR 
dataset［38］， the TL-IL-CNN framework demon‑
strates a remarkable classification accuracy of nearly 
90% while utilizing only 20% of the training data in 
a standard operating condition （SOC） scenario. 
The framework also exhibits superior performance 
compared to conventional deep learning methods un‑
der extended operating conditions （EOCs）. The re‑
sults reveal that the classification framework priori‑
tizes distinct regions of the images when discerning 
between various sparse SAR targets， offering a 
deeper understanding of how the framework process‑
es and identifies these targets.

The main contributions of this work can be con‑
cluded as follows：

（1） By harnessing the intrinsic advantages of 
sparse SAR data coupled with transfer learning tech‑
niques， this approach significantly enhances the clas‑
sification precision， thereby setting a new bench‑
mark for future research in face to small sample situ‑
ation.

（2） A multi-scale integrated migration model 

is proposed for sparse SAR target classification， 
and a voting mechanism is used to output test image 
classification results. This model can improve the 
classification accuracy and increase the number of 
correctly predicted target types under the condition 
of small samples.

（3） Grad-CAM not only enhances the inter‑
pretability of the model but also deepens the under‑
standing of its behavior， allowing for a more nu‑
anced analysis of the features that the model “sees” 
and “considers” important in the SAR image classi‑
fication tasks.

The remaining sections of this paper are struc‑
tured as follows. Section 1 briefly describes the prin‑
ciple of the BiIST-based sparse SAR image recov‑
ery algorithm. Then， the target classification model 
of the TL-IL-CNN and the principle of Grad-CAM 
are introduced in Section 2. Sections 3 and 4 de‑
scribe the experiments and analysis based on the 
sparse images. Section 5 concludes our work.

1 Methodology 

1. 1 BiIST based SAR image enhanceme　

Traditional MF techniques are widely used in 
SAR image formation， yet they often suffer from 
noise， sidelobes， and clutter interference， which 
can obscure target features and degrade classifica‑
tion performance. To address these limitations， 
sparse recovery algorithms have been developed to 
enhance image quality by promoting sparsity in the 
target scene. The MF-based［21-22］ image serves as 
the input， and the sparse imaging model can be ex‑
pressed as

XMF = X+ N (1)
where X is the area of interest to be recovered and 
N the difference between XMF and X. Then， X is re‑
constructed by considering the L1-norm regulariza‑
tion problem

X̂= min
X
｛ ｝ XMF - X

2

F
+ β  X

1
(2)

where F denotes the Frobenius norm and β the regu‑
larization parameter.

In comparison with MF-based results， sparse 
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SAR images have less clutter and noise and fewer 
sidelobes. Hence， the target contour is more obvi‑
ous. In order to quantify the superiority of BiIST 
based SAR image reconstruction method on sup‑
pressing noise and clutters， we use target-to-back‑
ground ratio （TBR） to evaluate the merits of sparse 
images， which is expressed as

TBR ( X ) ≜ 20 lg ( )max( p，q )∈ T || ( X )( p，q )

( 1 NB ) ∑( p，q ∈ B )
|| ( X )( p，q ) )

(3)
where （p，q） denotes the pixel point in the area of in‑
terest， T the target area， and NB the number of pix‑
els in the background area B. The target area was 
manually delineated by thresholding and morpholog‑
ical operations to cover the target’s physical extent， 
while the background area was defined as a 50-pixel 
wide buffer zone surrounding excluding the target re‑
gion itself. The higher the TBR， the more promi‑
nent the target is and the better suppression of noise 
and clutter. The efficacy of the BiIST algorithm in 
enhancing the target-to-background ratio （TBR） for 
targets within the same category is demonstrated in 
Fig.1. The comparative data presented in Table 1 
indicate a substantial increase in the TBR for sparse 
images post-reconstruction. Notably， the TBR for 
images reconstructed using the BiIST algorithm sur‑

passes the TNR for those processed with the MF al‑
gorithm by over 25 dB. This significant improve‑
ment underscores the BiIST algorithm’s potential 
in improving the quality of SAR imagery.

1. 2 Transfer learning and ensemble learning　

The proposed SAR target classification frame‑
work is based on the transfer learning and ensemble 
learning techniques. Transfer learning is a technique 
that utilizes a pre-trained CNN as the feature extrac‑
tor and fine tunes the network on a small dataset of 
SAR images. This process is aimed at learning the 
features that are specifically relevant to SAR target 
classification， as shown in Fig. 2， where FC stands 
for full connected layer.

This approach takes advantage of the powerful 
features learned by the CNN from a large dataset of 
simulated SAR images， which comprises seven 
types of vehicles with three different distributions 
and includes 3 024 targets in each category. Initial‑
ly， the simulated SAR dataset is randomly divided 
into two sets， with 70% for training and 30% for 
testing. The original learning rate is set at 0.01， and 
all parameters in the network are randomly initial‑

Table 1　Comparison of TBR values of MF‑based target 
and BiIST‑based sparse SAR target dB

Target
1
2
3

Sparse method
58.046
59.556
58.281

MF method
30.806
28.627
29.284

Fig.1　SAR image recovered by BiIST and MF based meth‑
ods

Fig.2　Principle of transfer learning
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ized to better adapt to the target domain.
Ensemble learning， on the other hand， com‑

bines the predictions of multiple CNNs that have 
been trained on the SAR dataset. This method can 
enhance the robustness and accuracy of the classifi‑
cation results by leveraging the advantages of differ‑
ent CNNs. Specifically， we employ three different 
CNN architectures as base models and train them in‑
dependently. We then merge the predictions of 
these models using a weighted average approach to 
obtain the final classification results of the ensemble 
framework.It is important to note that when training 
the different CNNs， we use the same training data 
but with varying input sizes to accommodate targets 
of different scales.

As illustrated in Fig.3， the proposed TL-IL-

CNN framework is structured into three main com ‑
ponents. The first component involves preprocess‑
ing the input data into two different sizes， specifical‑
ly 88 pixel×88 pixel and 128 pixel ×128 pixel. As 
previously mentioned， training on images of varying 
sizes contributes to the framework’s robustness 
against the size variations encountered during infer‑
ence. This is particularly beneficial in scenarios 
where the sizes of the input images are not standard‑
ized. Furthermore， by accommodating differently 
sized inputs， the TL-IL-CNN is able to recognize 
salient features at multiple scales， thereby enhanc‑
ing its efficiency and accuracy. The second compo‑

nent is the feature extraction module， which con‑
sists of three branches. （1） The first branch is A-

ConvNet［9］， which is an established architecture. 
（2） The second branch is a deep network that we 
developed， featuring five convolutional layers. The 
first two convolutional layers are each followed by a 
ReLU activation and a max-pooling layer. Subse‑
quently， there are two additional convolutional lay‑
ers， and the final layer is the combination of a con‑
volutional layer， ReLU activation， and a max-pool‑
ing layer， leading to two fully connected layers. 
To prevent overfitting， we integrate dropout lay‑
ers after the first two fully connected layers in the 
deep network， referred to as CNN-Dropout. （3） 
The third branch is a lightweight network devised 
by ourselves， which is significantly shallower than 
the deep network，comprising three convolutional 
layers. Each layer is succeeded by a ReLU activa‑
tion function and a max-pooling layer， culminating 
in a single fully connected layer. The feature ex‑
traction layers highlighted in red within Fig.3 are 
pretrained on a simulated SAR dataset. This pre‑
training step aims to accelerate the convergence 
and enhance the classification accuracy. The final 
component is the fusion module， which integrates 
the predictions from the various branches using a 
voting strategy to produce the ultimate classifica‑
tion outcome.

Fig.3　Architecture of TL-IL-CNN
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2 Visualization of CNN 

Grad-CAM is a technique used to visualize 
the regions of an input image that are significant for 
a neural network’s prediction. Fig.4 illustrates the 
core principle： It involves using the gradients of the 
output class score with respect to the feature maps 
of the network’s last convolutional layer to ascer‑

tain the importance of each feature map in making 
the prediction， where W  represents the weight. 
Grad-CAM begins by forward propagating an input 
image through the network to generate a class acti‑
vation map （CAM）［26］， which is a 2D representa‑
tion that emphasizes the image regions most impor‑
tant to the predicted class.

For enhanced detail in the localization map， 
Grad-CAM calculates the gradients of the class 
score for the output concerning the feature maps of 
the final convolutional layer. These gradients are 
then used to weight the feature maps， yielding a 
coarse localization map that accentuates the image 
regions most influential to the prediction. Formally， 
let fk（i，j） denote the activation of the kth feature 
map at the spatial location （i，j）， and let yc repre‑
sent the predicted probability for class c. The Grad-

CAM algorithm computes the gradient of yc with re‑
spect to fk as

αkc = 1 Z ·∑
i
∑

j

∂yc /∂fk ( i，j ) (4)

where Z is a normalization factor and the summation 
is over all spatial locations of fk. The gradient αkc is 
then used to weight the feature maps， producing a 
localization map Lc for class c， which can be written 
as

Lc = ReLU ( )∑
k

αkc ·fk (5)

where ReLU is the rectified linear unit activation 
function. The localization map generated by Grad-

CAM can be displayed as a heatmap superimposed 
on the input image， highlighting the areas that play 
a pivotal role in the network’s prediction. This visu‑
alization technique is instrumental in understanding 
the decision-making process of deep neural net‑
works and identifying the specific features that they 
rely on to make predictions.

One of the primary benefits of Grad-CAM is its 
universal applicability to any CNN， obviating the 
need for alterations to the existing network architec‑
ture. Moreover， Grad-CAM is versatile enough to 
illuminate not only the primary objects of interest 
but also the contextual elements， such as the back‑
ground and adjacent objects， that the network takes 
into account when classifying an image.

3 Experimental Results 

3. 1 Dataset　

This section introduces the reconstruction of a 
sparse SAR image dataset featuring military vehicle 
samples from the MSTAR project［40］. Fig.5 exhibits 

Fig.4　Flowchart of Grad-CAM
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the original SAR images for each category， along‑
side their corresponding optical images. The 
MSTAR dataset， which is publicly available， is 
composed of complex image data derived using the 
MF algorithm. This dataset includes a diverse array 
of SAR target samples at a resolution of 0.3 m×
0.3 m， and it has been extensively employed in 
SAR target detection， recognition， and classifica‑
tion research. In this dataset， there are ten different 
classes of military vehicle targets.

The dataset encompasses SAR image seg‑
ments of stationary ground targets， spanning vari‑
ous categories and aspect angles from 0° to 360° . 
Within the MSTAR dataset， there are ten types of 
military vehicles， and Table 2 provides a detailed 
description of the data. The target segments in 

MSTAR are divided into SOC and EOC. For the 
purposes of this study， the BiIST algorithm has 
been applied to construct a sparse SAR dataset 
based on the MSTAR samples.

The simulated dataset［41］ was generated using 
electromagnetic scattering modeling based on physi‑
cal optics and shooting-and-bouncing-ray tech‑
niques， incorporating three distinct ground back‑
ground distributions （urban， woodland， desert） to 
simulate realistic SAR conditions. This dataset was 
selected for pretraining due to： （1） Geometric simi‑
larity of vehicle models to MSTAR targets， （2） 
controlled variation in depression angles matching 
MSTAR acquisition parameters， and （3） speckle 
noise characteristics emulating real SAR systems. 
We configure the learning rate and the number of ep‑
ochs at 0.05 and 200， respectively. The pretraining 
phase yields accuracy exceeding 99% on the testing 
set， thereby establishing a robust foundation for sub‑
sequent experiments.

3. 2 Evaluation of transfer learning on sparse 
SAR target classification　

To illustrate the impact of transfer learning on 
sparse SAR target classification， we take the light‑
weight network branch as a case study. We quantita‑
tively assess the effect of varying the number of pre‑
trained layers， specifically transferring 3， 5， and 
7 layers， with the reconstructed MSTAR dataset 
serving as the input. Fig.6 showcases the classifica‑
tion performance on a sparse SAR dataset with dif‑
ferent volumes of training samples. The results indi‑

Fig.5　SAR image and corresponding optical image of ten 
classes of vehicles in MSTAR dataset

Table 2　Data description for SOC

Class

2S1
BMP2

BRDM2
BTR60
BTR70

D7
T62
T72

ZIL131
ZSU23‑4

Total

Serial No.

B01
SN9563

E‑71
Kloyt7532

C71
92v13015

A51
SN132

E12
D08

Training set
(Depression 17°)

299
233
298
256
233
299
299
232
299
299

2 747

Testing set
(Depression 15°)

274
196
274
195
196
274
273
196
274
274

2 426
Fig.6　Comparative results based on transferring different 

numbers of pretrained layers
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cate that， with a sufficient number of training sam ‑
ples， the various transfer learning approaches yield 
comparable classification accuracy. However， when 
the number of training samples is limited to 20%， 
the proposed transfer learning method demonstrates 
superior performance， outperforming the other two 
methods by 3.51% and 1.37%， respectively.

3. 3 Experiments based on MF dataset　

In this section， we evaluate the classification 
performance of the proposed TL-IL-CNN network 
using the original MSTAR dataset under SOC. For 
this purpose， samples at 17° are utilized as the train‑

ing data， while samples at 15° are employed for vali‑
dation.

A series of experiments is conducted with vary‑
ing training sample sizes of specifically 20%， 40%， 
60%， and 80%. As detailed in Tables 3 and 4， the 
TL-IL-CNN network achieves a classification accu‑
racy of 85.04%. Notably， the classification perfor‑
mance for targets across seven categories shows an 
improvement， with the models for 2S1 and ZIL131 
vehicles demonstrating a significant increase， 11 ad‑
ditional targets are correctly predicted for each class. 
On the ZIL131 class， in particular， the model 

Table 4　Confusion matrix of TL‑IL‑CNN ensemble via 20%  training samples under SOC

Class

2S1

BMP2

BRDM2

BTR60

BTR70

D7

T62

T72

ZIL131

ZSU

Accuracy/%

2S1
212

（↑11）

13

6

1

8

0

1

13

0

0

77.37

BMP2

2

131
（↑14）

26

2

23

0

0

2

0

0

66.84

BRDM2

9

2

214
（↓5）

17

4

0

0

1

0

0

78.10

BTR60

5

14

2

161
（↑2）

6

0

0

3

1

0

82.56

BTR70

6

8

0

6

153
（↓17）

0

0

1

0

0

78.06

D7

0

2

1

1

0

268
（↑2）

2

0

0

8

97.81

T62

16

2

1

0

0

0

244
（↓7）

22

0

1

89.38

T72

2

18

22

1

0

0

4

147
（↓2）

0

0

75.00

ZIL131

22

0

0

3

2

3

17

4

272
（↑11）

4

99.27

ZSU

0

4

3

0

3

5

3

1

261
（↑5）
95.26

Average

85.04

Table 3　Confusion matrix of single lightweight CNN with transfer learning via 20%  training samples under SOC

Class
2S1

BMP2
BRDM2
BTR60
BTR70

D7
T62
T72

ZIL131
ZSU23‑4

Accuracy/%

2S1
201

2
9
1
1
0
3
2
0
0

73.3

BMP2
5

127
23
5

12
0
0
3
0
0

64.80

BRDM2
4
3

219
8
2
0
0
1
0
0

79.93

BTR60
7

21
1

159
11
0
1
5
0
0

81.54

BTR70
9
3
6

11
170

0
0
0
0
0

86.73

D7
0
2
0
1
0

266
2
0
2

14
97.08

T62
27
5
1
3
0
0

251
33
7
0

91.94

T72
0

28
4
6
0
0
3

149
0
0

76.02

ZIL131
21
0

11
0
0
5
4
0

261
4

95.26

ZSU23‑4
0
5
0
1
0
3
9
3
4

256
93.43

Average

84.87
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achieves accuracy exceeding 99%， underscoring the 
potentiality of TL- IL-CNN for effective SAR tar‑
get classification in scenarios with limited training 
data.

3. 4 Comparison between TL‑IL‑CNN and 
Transformer　

The advent of the Transformer architecture has 
reduced the dominance of CNN in image processing 
tasks， including image classification， segmentation， 
and detection. ViT has particularly excelled in im ‑
age classification， offering a high-performance alter‑
native that is also resource-efficient. However， the 
efficacy of the ViT for SAR image classification re‑

mains untested.
This section compares the performance of the 

ViT and the proposed TL-IL-CNN framework in 
the few-shot setting， i. e.， using 20% of sparse 
SAR image data. According to the results compiled 
in Table 5， the ViT， despite its impressive capabili‑
ties in processing optical images， is outperformed 
by the TL-IL-CNN in the context of limited sample 
sizes. The average accuracy of the TL-IL-CNN sur‑
passes that of the ViT by 8.45%. Furthermore， in 
nine out of ten categories， the TL-IL-CNN 
achieves higher accuracy than the ViT， demonstrat‑
ing its suitability for small sample SAR image classi‑
fication tasks.

3. 5 Experiments based on TL‑IL‑CNN and 

sparse SAR dataset under SOC　

In this set of experiments， we train the three 
models independently using subsets of the available 
data，specifically 20%， 40%， 60%， and 80%，to 
evaluate their performance in SAR image classifica‑
tion against conventional deep learning approaches. 
As depicted in Fig.7， the TL-IL-CNN model ex‑
cels， achieving nearly 90% classification accuracy 
with only 20% of the training data. Its performance 
surpasses that of A-ConvNet［9］ and AP-CNN［24］ by 
3.46% and 7.20%， respectively. Moreover， with 

abundant training data， the TL-IL-CNN consistent‑
ly demonstrates higher or comparable accuracy， 
demonstrating the method’s robustness and efficacy.

To determine the upper bound of the TL-IL-

CNN’s performance， we undertake experiments 
that utilize the full dataset to train the model from 
scratch. The goal is to pinpoint the maximum accu‑
racy that can be achieved. Fig.8 illustrates the out‑
comes of these tests. Although the proposed method 
does not surpass the model trained with the whole 
training set， it achieves slightly lower performance 
when using only 20% of the training data.

Table 5　Classification accuracy of each category via 20%  training samples under SOC %

Model
ViT

TL‑IL‑CNN

2S1
83.45
89.42

BMP2
77.67
86.22

BRDM2
85.43
80.66

BTR60
80.87
86.15

BTR70
72.73
78.57

D7
76.29
98.18

T62
83.47
88.28

T72
83.51
88.27

ZIL131
78.84
95.26

ZSU23‑4
89.51
95.99

Average
80.75
89.20

Fig.7　Experimental results of different SOTA (state-of-the-

art) methods under SOC

Fig.8　Classification accuracy under 20% samples with 
transfer learning and 100% samples with random ini‑
tialization

534



No. 4 JI Zhongyuan, et al. A CNN-Based Method for Sparse SAR Target Classification with Grad-CAM…

3. 6 Experiments based on TL‑IL‑CNN and 
sparse SAR dataset under EOC　

Unlike the SOC， the training and testing sets 
exhibit considerable differences in depression angle 
in the EOC， as outlined in Table 6. Specifically， 
targets are captured at 17° for training and 30° for 
testing. Moreover， discrepancies in target labels 
present an additional challenge； for instance， the 
T72 is designated as SN132 in the training set and 
as A64 in the testing set， complicating the classifica‑
tion of different target categories.

In this challenging context， we randomly select 
20% of the sparse SAR images under the EOC to 
train the TL-IL-CNN. Despite the pronounced dis‑
parity between the training and testing data， the re‑
sults displayed in Table 7 are promising. The TL-

IL-CNN secures overall accuracy of 78.54%， sur‑
passing the performance of standalone lightweight 
models by margins of 1.74%， 4.95%， and 0.61%， 
respectively. Remarkably， for targets such as the 
ZSU23-4， the accuracy achieved is as high as 
93.40%.

Multiple experiments based on a sparse SAR 
dataset are conducted to demonstrate the perfor‑
mance of the proposed TL-IL-CNN. It can be found 
that， under both the SOC and EOC， the TL-IL-

CNN performs better than the typical lightweight 
models， indicating that the proposed framework can 
improve the final classification accuracy under limit‑
ed samples.

4 SAR Target Interpretation Based 
on Grad‑CAM 

In the experiments， we utilize Grad-CAM to 
interpret sparse SAR images， focusing on whether 
the models consider the target or the background. 
To ensure a robust analysis and prevent the data in‑
sufficiency from influencing the results， 80% of the 
available samples are used for training. Grad-CAM 
visualizations of the last convolutional layer activa‑
tions are then generated for each target class. The 
visualizations in Fig.9 reveal that， across most cate‑
gories， the models demonstrate strong recognition 
capabilities. Despite some models occasionally di‑
verting their focus away from the actual targets， the 

Table 6　Data description for EOC

Class

2S1
BRDM2

T72
ZSU23‑4

Total

Serial No.

B01
E‑71

SN132/A64
D08

Training set
(Depression 17°)

299
298
299
299

1 195

Testing set
(Depression 15°)

288
287
288
288

1 151

Table 7　Confusion matrix of TL‑IL‑CNN based on 
sparse SAR image dataset under EOC

Class
2S1

BRDM2
T72

ZSU23‑4
Accuracy/%

2S1
204
27
12
11

70.83

BRDM2
37

228
21
6

79.44

T72
33
3

203
2

70.49

ZSU23‑4
14
29
52

269
93.40

Average

78.54
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Fig.9　Grad-CAM of different kinds of sparse SAR target and corresponding optical images
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collaborative strength of ensemble learning compen‑
sates for this. The ensemble enables other models to 
maintain their target focus， collectively contributing 
to the framework’s impressive overall classification 
performance. For instance， as shown in Fig. 9， the 
model predominantly focuses on the main body 
structure of BMP2 and T72 tanks （e.g.， turret and 
hull） due to their distinctive metallic components 
that produce strong scattering signatures. Converse‑
ly， for BRDM2 amphibious vehicles and ZSU23-4 
anti-aircraft systems， significant attention is given 
to the surrounding background context， likely be‑
cause their lower-profile designs blend with terrain 
features in SAR imagery， making contextual cues 
like shadow patterns and ground texture critical for 
differentiation. This divergence in focus correlates 
with target characteristics： Heavily armored vehi‑
cles （BMP2/T72） exhibit dominant scattering cen‑
ters， while low-profile targets （BRDM2/ZSU23-4） 
require environment-context integration.

To quantitatively support the observation of dif‑
ferential background focus， we introduce a target-to-

background activation ratio （TBAR） metric defined 
as

TBAR = μ target

μbackground
(6)

where μ target and μbackground denote the mean activation 
intensity within the manually delineated target area 
and background area. Analysis of three representa‑
tive classes reveals significant variation： BMP2 
（TBAR=8.7±1.2） ， BRDM2 （TBAR=2.1±
0.8）， and ZSU23-4 （TBAR=1.9±0.7）. This 
quantitatively confirms that heavily armored targets 
（BMP2） predominantly activate target regions 
while low-profile vehicles （BRDM2/ZSU23-4） ex‑
hibit comparable activation in background areas.

In future work， we plan to systematically ana‑
lyze the learned features to understand the underly‑
ing mechanisms driving the model’s decision mak‑
ing. Additionally， we aim to explore the synergy of 
Grad-CAM with other visualization methodologies， 
such as saliency maps and occlusion sensitivity 
maps， to construct a more holistic picture of the 
classification process. Our future endeavors will also 
include evaluating the transferability of the learned 

features across different SAR datasets and applica‑
tion scenarios.

5 Conclusions 

We propose a novel framework for sparse SAR 
target classification that is based on transfer learning 
and ensemble learning， named TL-IL-CNN. First， 
the BiIST algorithm is used to reconstruct the 
MSTAR dataset， enhancing its performance. Sub‑
sequently， sparse SAR images of various sizes are 
used to form the training data set. The TL-IL-CNN 
framework is then introduced to classify targets and 
to output the final results for each testing image us‑
ing a voting module. The experimental results dem ‑
onstrate that the TL-IL-CNN outperforms a single 
lightweight model in both SOC and EOC. Notably， 
with only 20% of the training samples under the 
SOC， the TL-IL-CNN still achieves a classification 
accuracy of 89.20%， with some classes displaying 
accuracy of over 95%. Additionally， we employ 
Grad-CAM to visualize the CNN model and inter‑
pret the classification results. The experiments re‑
veal that， through the use of ensemble learning， the 
framework compensates for individual models that 
occasionally focus on incorrect areas. This ensures 
that other models within the ensemble maintain 
their focus on the correct targets， resulting in excel‑
lent overall classification performance. In future re‑
search， we will continue to explore SAR target in‑
terpretation to deepen our understanding of how the 
framework learns and recognizes sparse SAR tar‑
gets.
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基于卷积神经网络的稀疏 SAR目标梯度加权类激活映射

分类方法

姬忠远 1，2，3， 张晶晶 1，3， 刘泽昊 4， 李国旭 5

（1.南京航空航天大学电子信息工程学院，南京  211106，中国；2.山东政法学院刑事司法学院，济南  250014，中国；

3. 南京航空航天大学雷达成像与微波光子学教育部重点实验室，南京  211106，中国；4. 南瑞科技股份有限公司，

南京  211106，中国； 5.中电科思仪科技股份有限公司，青岛  266555，中国）

摘要：近年来，深度学习在合成孔径雷达（Synthetic aperture radar， SAR）图像处理中得到了广泛的应用。然而，

大规模标记 SAR 图像的采集具有挑战性和成本高的特点，当 SAR 图像有限时，分类精度往往很差。为了解决这

个问题，本文提出了一种新的稀疏 SAR 目标分类框架，称为基于转移学习的可解释轻量化卷积神经网络（Trans‑
fer learning‑based interpretable lightweight convolutional neural network， TL‑IL‑CNN）。此外，本文采用增强梯度

加权类激活映射（Gradient‑weighted class activation mapping， Grad‑CAM）来缓解深度学习模型中的“黑箱”效应，

并探索 CNN 对各种稀疏 SAR 目标进行分类的机制。首先，采用一种新的双向迭代软阈值（Bidirectional iterative 
soft thresholding， BiIST）算法来生成比传统匹配滤波（Matched filtering， MF）方法更高质量的稀疏图像。然后，

在模拟的 SAR 图像数据集上预训练多个浅层 CNN。利用稀疏 SAR 数据集作为 CNN 的输入，评估了迁移学习

在稀疏 SAR 目标分类中的有效性，并提出了 TL‑IL‑CNN 的融合方法，以进一步提高分类精度。在 MSTAR 数

据集上的实验结果表明，所提出的 TL‑IL‑CNN 在标准操作条件（Standard operating conditions， SOC）下仅需

20% 的训练数据就可以达到近 90% 的分类准确率，在小样本情况下超过了典型的深度学习方法，如 ViT （Vi‑
sion Transformer）。它甚至在扩展操作条件（Extended operating conditions， EOC）下表现出更好的性能。此外，

Grad‑CAM 的应用阐明了 CNN 在各种稀疏 SAR 目标之间的分化过程。实验结果表明，该模型以目标为中心，不

同目标类别的背景会有所不同。本研究有助于加深对此类结果可解释性的理解，以能够更准确地推断每个类别

的分类结果。

关键词：稀疏合成孔径雷达；卷积神经网络；集成学习；目标分类；SAR 解译
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