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Abstract: Missile acceleration saturation in a practical terminal guidance process may significantly reduce the
interception performance. To solve this problem, this paper presents an anti-saturation guidance law with finite-time
convergence for a three dimensional maneuvering interception. The finite time boundedness (FTB) theory and the
input-output finite time stability (IO-FTS) theory are used, as well as the long short-term memory (LSTM)
network. A sufficient condition for FTB and IO-FTS of a class of nonlinear systems is given. Then, an anti-
acceleration saturation missile terminal guidance law based on LSTM, namely LSTM-ASGL, is designed. It can
effectively suppress the effect of acceleration saturation to track the maneuvering target more accurately in the complex
dynamic environment. The excellent performance of LSTM-ASGL in different maneuvering target scenarios is
verified by simulation. The simulation results show that the guidance law successfully prevents acceleration saturation
and improves the tracking ability of the missile system to the maneuvering target. It is also shown that LSTM-ASGL
has good generalization and anti-jamming performance, and consumes less energy than the anti-acceleration saturation
terminal guidance law.
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0 Introduction

With the rapid development of highly intelli-
gent guidance technology, the traditional missile
guidance system is facing unprecedented challenges.

In practice, the missile’s acceleration may
reach its physical limit, which may greatly degrade
the missile’s interception performance. Acceleration
saturation prevents the missile from generating suffi-
cient normal acceleration to track the target’s ma-
neuvers, weakening its ability to quickly suppress
the line-of-sight rate. This leads to a decline in the
closed-loop stability of the guidance system, ulti-
mately increasing the miss distance. The main objec-
tive of the anti-acceleration saturation guidance law
is to prevent acceleration saturation that may occur

in the interception mission. In Ref.[1], a guidance
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method for three-dimensional (3D) interception of
maneuvering targets with anti-saturation capability
was proposed. The guidance law was designed
based on the principles of finite-time boundedness
(FTB) and the input-output finite-time stability
(IO-FTS), ensuring convergence of the line-of-
sight (LOS) angular rate within a finite time while
constraining the missile acceleration within its limit,
thereby enhancing interception performance.

In Ref.[2], an improved proportional naviga-
tion guidance (PNG) law was proposed to consider
error anti-saturation. In Refl.[3], a varying-gain
PNG law is proposed, combined with a biased feed-
back command to obtain an impact time control
guidance law. The core drawbacks of the PNG law
lie in fundamental limitations such as strong model

dependence, insufficient anti—saturation ability, and
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the inability of fixed parameters to dynamically
adapt to target maneuvers. In Ref.[4], a 3D sliding-
mode guidance law was proposed for intercepting
maneuvering targets with specified performance and
saturated actuators. Based on the two-dimensional
relative motion model of the missile and target,
Ref.[ 5] proposed a 3D fixed-time convergence guid-
ance law for intercepting highly maneuvering tar-
gets. By employing innovative fixed-timed conver-
gent sliding mode surface design and inverse control
methods, the issues of guidance command input sat-
uration and system disturbances were addressed. In
Refl.[ 6], an anti-saturation guidance law based on a
finite-time observer was designed. To address the is-
sue of requiring an upper bound of the observation
error, a new reaching law was proposed, which can
accelerate the convergence rate of sliding mode sur-
faces and mitigate the chattering phenomenon. In
Refl.[7], a time-varying sliding mode guidance law
considering the second-order autopilot dynamics and
input saturation was proposed. Utilizing the extend-
ed state observer, this guidance law does not re-
quire information on the target acceleration and in-
terceptor acceleration derivatives. The core limita-
tions of sliding mode guidance lie in the trade-off be-
tween chattering and robustness, as well as the inad-
equate adaptability of fixed structures to time-vary-
ing environments. Although these studies have par-
tially mitigated these issues through improved reach-
ing laws, observer introduction, or time-varying
sliding surface design, the fundamental challenges
of chattering and dynamic adaptability remain unre-
solved.

The traditional missile terminal guidance laws
are usually not adaptive to uncertainties and distur-
bances with limited real-time performance in differ-
ent environments and conditions. Therefore, more
intelligent guidance laws with strong real-time adapt-
ability and resistance to saturation effects are worth
investigating.

In Ref.[8], a deep neural network guidance
(DNNG) law was proposed to replace PNG. Its
performance was evaluated through the hit ratio and
energy function, and a conclusion was drawn that
DNNG could completely imitate and replace PNG.
In Ref.[9], a deep reinforcement learning (DRL)

algorithm was used to design the impact-time con-
trol guidance with a time-varying velocity. In
Ref.[10], the optimal guidance conditions were de-
rived based on the Pontryagin’s maximum principle
and transformed into a backward integration prob-
lem. A neural network was trained on the dataset to
approximate the optimal guidance command, and an
optimal terminal guidance scheme combining the
neural network with biased proportional navigation
was proposed. In Ref.[11], a collaborative guid-
ance strategy for aircraft to evade missiles was pro-
posed by using DRI.. The multi-agent game method
was adopted, and a general reward function was de-
signed to solve the sparse reward problem. In
Refl.[12], an integrated transfer learning guidance
algorithm was proposed for angular-constrained mid-
course guidance. The algorithm aims to maximize
the final speed and improve the learning efficiency
through the generalization ability of deep neural net-
works in new environments. In Ref.[13], a novel
guidance law based on reinforcement learning (RL)
was proposed, using a twin-delayed deep determin-
istic policy gradient neural network to solve the ma-
neuvering target interception problem.

Recurrent neural network (RNN) and its vari-
ant the long short-term memory (LSTM) network
have many advantages in missile terminal guidance.
In Ref.[14], the gradient algorithm of the recorded
recurrent twin delayed deep deterministic strategy
was proposed to address the uncertainty and obser-
vation noise in the guidance law of intercepting at-
mospheric maneuvering targets. RNN is introduced
to improve the performance of DRL in partially ob-
servable decision processes. In Ref.[15], a time co-
operation framework was proposed for the design of
multiple hypersonic vehicle guidance systems. The
longitudinal prediction correction guidance law was
used to satisfy both terminal and path constraints,
and LSTM was used to solve the problem of inaccu-
rate estimation of the remaining flight time. During
missile flight, the target’s motion is complex and
time-dependent, and acceleration saturation is also
time-related. LSTM, with its gating mechanism,
effectively captures long-term sequence informa-

tion, predicting acceleration saturation based on the
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target’s historical motion and the missile’s accelera-
tion changes, as well as adjusts the guidance strate-
gy in advance. Feedforward neural networks rely on-
ly on current inputs and cannot utilize historical in-
formation, making them less effective in predicting
acceleration saturation. Convolutional neural net-
works are suited for spatial data and have limited
ability to capture long-term dependencies, making
them less effective than LSTM. Simple recurrent
neural networks can process time series but suffer
from gradient vanishing, affecting prediction reliabil-
ity and making them less reliable than LSTM.

To overcome the limitation of traditional guid-
ance laws and mitigate the effect of acceleration sat-
uration on the performance of missile systems, an
anti-acceleration saturation missile terminal guid-
ance law, namely ASGL, based on LSTM is de-
signed in this paper, named as LSTM-ASGL. The
existing 3D anti-acceleration saturation guidance
law i1s modeled and simulated by using the LSTM
network. The LSTM model is trained with a large
number of training data sets obtained from the anti-
acceleration saturation guidance law. Simulation ex-
periments show that LSTM-ASGL has the charac-
teristics of anti-acceleration saturation and anti-inter-
ference, and for different types of maneuvering tar-
gets, LSTM-ASGL can predict the target maneu-

vers accurately.

1 Anti-acceleration Saturation Ter-

minal Guidance Law Design

1.1 3D missile-target equations of motion

Fig.1 shows the 3D relative motion diagram of

the missile and the target.

Fig.1 Schematic diagram of a typical radar system

In Fig.1, Mxyz is the reference inertial coordi-
nate system. Mx,y,z, is the line of sight coordinate
system. And M and T are the center of mass of the
missile and the target, respectively. r is the relative
distance between the missile and the target. ¢ and ¢
are the azimuth and pitch angles, respectively. As-
suming that the acceleration components of the mis-
sile and the target are (aw, aw,ay,) and
(ag, an, ary), respectively. The relative motion of
the missile and target can be described as

= cos’¢p + r952 +ap, — au (1a)
70 cos p =— 270 cos ¢+ 2rd0 sin p + ar, — ary(1b)
r$g=—2r¢ — rsing cos ¢ + ar, — ayy, (lc)

Assume that the missile autopilot has the first-
order dynamics in both directions of 4 and ¢

vy =—1/tay, + 1/7u, (2a)

any=—1/tay, + 1/tu, (2b)
where ¢ is the time constant; and u =/, ug]T the
controller input to the autopilot.

Since the guidance objective is to eliminate line-
of-sight angular rates 6 and ¢, the radial accelera-
tion a,, will not be considered.

Assumption 1 The missile accelerations sat-
isfy
| @y | << any (3)

| Anmo ‘ < Ao,
where ay, =0 and ay, = 0 are the given accelera-

tion upper bounds.

The system state vector is defined as x(z)=
[21, 2o, 5, IJT:WCOS by by aro aW]T, the nor-
mal accelerations of the target are considered as dis-
turbance w(¢)=[w,, wz]TZ[am, aw]’r, and the
state equations are obtained as
av=—2r(0)/r(t)x,— 1/r(t)xs+ a2, tan g +

1/r(t)w, (4a)
Zo=—27(t)/r(t)x,— 1/r(t)x,— 2 tan ¢ +

1/r(1)w, (4b)
Ty=—1/tx;+ 1/tu; (4¢)
T, =— 1/, + 1/tu, (4d)
Remark 1

Since the missile and the target have a certain size,

Eq.(4) is singular when r=0.

as long as r is reduced to a small enough value, a

successful intercept can be achieved. Therefore, r=>
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0 holds during the terminal guidance phase. And
cos ¢ holds as long as a reasonable reference inertial
coordinate is selected.

The guidance problem is to design the guidance
law under the system (4), so that the missile can
successfully intercept a maneuvering target in a fi-
nite time while ensuring that its acceleration does
not exceed its physical limit, that is, to meet the

constraint (3).
1.2 Definitions and preliminaries

In this paper, I, represents a £ X k identity ma-
trix and {+, +) the inner product in the Euclidean
space.

Consider a linear time-varying system (5)

2()=A()x()+ G(1)w(r) (5a)

y(1)=C(1)x(1) (5b)

where x(z)ER", w(t)ER" and y(z)ER’ repre-

sent the system state vector, the external distur-

bance, and the system output, respectively.

A(t)ER™", G(t)ER"", and C(t)ER'"" are
known matrix-valued functions.

Definition 1 (FTB)

T, a positive definite matrix H, and a positive defi-

Given a positive scalar

nite matrix-valued function I'( » ) which are defined
in the finite time interval [0, T], and I'(0)<ZH.

w () satisfies
j w' () Dow(t)di<1 Vw 6)

where D, ER’"" is a given positive definite matrix,
if the system (5) is satisfied

o Hr, <<1=>zx" (1) (1) x(t)<<1

Veel[0,T] (7)

The system (5) is said to be finite time bound-
ed with respectto (T, H,I'( + ), D, ).

Definition 2 (I0O-FTS)
(5) with x,= 0. If the system (5) satisfies

Consider the system

T

| wpwi<i=

0

Yy (ON()y(1)<1 Yeel0,T] (8
where N (+) is a positive definite matrix-valued
function. The system (5) is said to be input-output
finite-time stable with respect to (T, H, I'( '+ ) ).

Since both the initial conditions and the inputs

affect the state and output of the system, Definition
2 is given under zero initial conditions. However,
for a linear system, the effect can be superimposed,
and the controller effect is similar whether the con-
troller is designed under zero initial conditions or
non-zero initial conditions.

Consider a class of systems

a(1)=Ax(t)+ Bu(t)+ ®(x,u) 9)
where x(2)ER", u(t)ER" are the state and the in-
put of the system, respectively. AER"*",BER"""
are constant matrices; and @ (., u) is a nonlinear
function of x.

Definition 3 A nonlinear function @ (x, u) is
called a quasi-one-sided nonlinear Lipschitz function
with a quasi-one-sided Lipschitz constant matrix M.
If forany &, £ER", u €R", we have
(PO(z,u)— PO(&,u)x—iy<(x—z) -

M(x—2x) (10)
where P is a positive definite matrix to be deter-
mined and M a given real symmetric matrix. System
(9) is called a quasi-one-sided Lipschitz nonlinear
system.

Consider a quasi-one-sided Lipschitz nonlinear

system(11)
() =A()x(t)+B(Hu(t)+G(t)w(t)+
D(x,u) (11a)

y(1)=C(t)x(1) (11b)
where B(7)ER"*" is a known matrix-valued func-
tion; @(0,u)=0; w(r) satisfies the inequality in
Eq.(6). According to Definitions 1 and 2, FTB and
IO-FTS is defined.
Definition 4 (FTB and IO-FTS)
(11), the closed-loop system is defined as
2(O)=A)x()+G(w(t)+ @ (x,u) (12)
with a state feedback control law
u(t)=K(t)x(t) (13)
where A(¢)=A(¢)+ B(t)K(¢) and K(z) is the
control gain to be determined. Eqs. (12, 13) satisfy
FTB about (T,H,I'(-),D,) and IO-FTS about

For system

(T,D,,N(-)), if the unknown disturbance satisfies
the inequality in Eq.(6), and the conditions (7) and
(8) hold simultaneously.

Quasi-one-sided Lipschitz condition is em-

ployed to address the nonlinear term, and trans-
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forms the problem of ensuring the system FTB and
IO-FTS simultaneously to that of solving a differen-
tial linear matrix inequality (DLMI). To design the
state feedback controller of the system (11) using
the DLMI technology, we assume that M is posi-
tive semidefinite, and then there is a matrix

D € R""" that satisfies

M=D"D (14)
Theorem 1 Consider a closed loop system
(12) with a state feedback controller (13). System
(13) satisfies FTB and IO-F TS. If there exists a pos-
itive definite matrix-valued function P(z)ER""",
and for any unknown disturbance satisfying Eq.(6),

the following three conditions are satisfied

K' (OB ()P(t)+A (O P(O)+P(O)+P()AD)+P()B()K (1) P(1)G(1) DT

G'(t)P(t)
D
P(t)=max(2I(¢),C"(¢t)N(¢)C(t)) (16)
P(0)<<H (17)

The control gain K (¢) of the controller (13) is
designed under the three conditions in Theorem 1.

Corollary 1  For quasi-one-sided Lipschitz
nonlinear system (11), if there is a positive matrix
value function Q (7)€ R"*" and a matrix value func-
tion E(z)ER""", and the following three inequali-

ties hold.

O(t) G(t) QDT
G'(t) —D, 0 |<0 (18)
DQ 0o —1/21,
Q '(2)=max(2I(¢),C"(t)NC(¢)) (19)
Q (0)<H (20)

where @ (1)=E"(:)B"(1)+ Q(1)A™(1)— Q1)+
A(2)Q(t)+B(t)E(t). The state feedback control
law K (2)=FE (¢)Q '(¢) makes system (11) satisly
FTB and IO-FTS.

Proof Details can be found in Ref.[1].

1.3 Anti-acceleration saturation guidance law

design

Rewrite the state Eq.(4) as
2()=A()x(t)+B()u(t)+ G(t)w(t)+

D(x,u) (21)
—2/r 0 —1/r 0
where  A(2)— 0 —2F/r 0 —1/r ’
0 0 —1/7 0
0 0] 0 —1/r
0 0 1/r 0
0 0 0 1/r
B — ’ — ’
() 1/t 0 G(1) 0 0
0 1/ 0 0

—D, 0 <0 (15)

0] —1/2I,
and @ (x,u)=[x,2,tan¢, —a7 tan ¢, 0, O]T.

Take the output as

y(1)=C(1)x (1) 22)
where y(2)=[y., ], C([)_Ll) (1) 8 g} wnd

the finite time interval as[ 0, #].

The guidance law u is designed to make sys-
tems (21, 22) satisfy FTB and IO-FTS, LOS
rates of § and ¢ to converge to zero, and the missile
acceleration auy and ay, to meet the constraint (3).

To use Corollary 1, one needs to verify that
the nonlinear function @ (x,u) satisfies Eq.(10).
Obviously, @ (0, u)=0.

Apply Eq.(10) withz =0, then

(P(t)DP(x,u),x)y<<x'(t)D"Dx(t) (23)

Let a positive definite matrix P(¢)=pl,,
where p 1s a positive constant.

Since P(t)®(x,u) = [ px,x,tang,
—pxitang, 0,01

(P(t)®(x,u),x)=x " P(t)D(x,u)=0 (24)

Following Eq.(14) and the semidefinite proper-
ties, the right-hand side of Eq.(23) satisfies

' Mxr=0 (25)

For any x€R*, x7# 0, the condition (23)
holds.

Corollary 2 Consider the terminal guidance
systems (21, 22). If there are positive definite ma-
trix-valued functions Q(z)ER*** and matrix-val-
ued functions E'(z)ER*"*, the matrix inequalities
(18—20) hold, and the closed-loop systems (21,
22) have the state feedback guidance law

w())=K()x(1) Yt€[0,T] (26)
where K(¢)=FE'(¢)x(¢), the closed-loop system
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is FTB-IO-FTS.

Corollary 2 is a direct result of Corollary 1.
When tracking a maneuvering target, the guidance
law (26) can drive LOS rates § and ¢ to converge
in a finite time and ensure that the accelerations ayy
and ay, do not exceed the given physical limits in
Eq.(3).

The missile actuator or propeller, as well as
which

makes it difficult to intercept highly maneuverable

the maneuverability, is usually limited,
targets. If the command acceleration is much greater
than the acceptable range that the missile can pro-
vide, it will saturate the actuator, which in turn af-
fects the guidance performance. Therefore, to over-
come the limitation of missile maneuverability and
improve its interception efficiency in intercepting
highly maneuverable targets, research on anti-accel-
eration saturation terminal guidance is particularly

important.

2 LSTM Neural Network Design

To further improve the anti-acceleration satura-
tion capability of missile guidance, this paper com-
bines the missile guidance technology with the deep
learning technology and uses the LSTM network to
control the guidance process. During the missile’s
flight, the target’s motion is complex, and the ac-
celeration saturation is related to time. Thanks to its
gating mechanism, LSTM can effectively capture
information from long time series. It can accurately
predict the acceleration saturation based on the his-
torical motion states of the target and the missile,

and then adjust the guidance strategy accordingly.

In contrast, feedforward neural networks do
not have memory units and only rely on the current
input. As a result, they are unable to make use of
historical information and have a weak ability to pre-
dict acceleration saturation. Convolutional neural
networks are suitable for processing spatial data,
but their ability to capture long-term temporal de-
pendencies is limited. Although simple recurrent
neural networks can handle time series, they are
prone to problems such as gradient vanishing or ex-
plosion, resulting in unstable learning and memory
capabilities, and their reliability is not as good as
that of LSTM.

2.1 Data collection and preprocessing

In this paper, MATLAB is used to simulate
the anti-acceleration saturation guidance law, and
generate the data set. The data set has line-of-sight
angular rates @ and ¢ and time 7 as inputs, and accel-
eration components au, and ay; as outputs. In the
data set, 70% data are randomly selected as the
training set, and the rest is used as the test set.

The data sets are normalized to make the nu-
merical ranges of different features similar, and help
to improve stability of the model and accelerate the
convergence of the model. Different features in the
data set may have different scales, which may result
in some features having a greater impact on the mod-
el. Through normalization, it can avoid the exces-
sive impact of numerical differences on the model,
and ensure that the impact of each feature on the

model is relatively balanced.
2.2 LSTM model construction

The LSTM model structure is shown in Fig.2.

put | |LSTM| |LST™™M Full
layer layer layer [+ eommecion
layer

Leni Regression
L~ activation —»| 8" —| Output
layer
layer

Fig.2 LSTM model structure

The overall architecture of the model includes
a sequence of input layer, two LSTM layers, a full
connection layer, a Tanh activation layer, and a re-
gression layer. Each LSTM layer has a different

number of hidden units and outputs the hidden state

of the entire sequence by adjusting the output mode.
The input layer is used to accept the input for

the entire sequence. The LSTM layer processes se-

quential data, captures time sequence information,

and can process and remember long-term dependen-
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cies in sequence more effectively through the input
gate, forgetting gate, output gate, and other mecha-
nisms. The fully connected layer maps the output of
the LSTM layer to a fixed-size output space, and
by learning weights and biases, the output of the
LLSTM layer is linearly combined and nonlinear rela-
tions are introduced. The Tanh activation layer
maps the output of the fully connected layer nonlin-
early, helping the network learn more complex pat-
terns. The regression layer calculates the loss be-
tween the model output and the guidance law simu-
lation output value, and uses the mean square error
loss function to measure the difference between the
model output and the actual value to improve the

prediction accuracy.
2.3 Data collection and preprocessing

The Adam algorithm is used for optimization
of the LSTM model, which combines the advantag-
es of the momentum method and the root mean
square propagation (RMSProp) algorithm. By cal-
culating the exponential weighted sum of the mov-
ing average gradient and gradient square, the learn-
ing rate is dynamically adjusted for each parameter.

To better cope with large-scale data sets, we
adopt a mini-batch gradient descent optimization

strategy, dividing the data set into multiple small

batches, and only using a part of the samples to up-
date the model parameters at each iteration. In a
small batch gradient descent, the number of sam-
ples per small batch is set to 64. Using small batch-
es of gradient descent can reduce computational
costs, improve computational efficiency, and obtain
more stability during training. To ensure the stabili-
ty of the training process and improve the conver-
gence speed, the initial learning rate is set to 0.005.
By combining the Adam algorithm and small batch
gradient descent, more accurate results can be ob-
tained in model training. To prevent the problem of
gradient explosion in the training process, the gradi-
ent threshold is set to 1. If the gradient of any param-
eter exceeds this threshold, the gradient is clipped
to limit it to a controllable range. This strategy
helps to maintain the stability of model training and
prevent numerical problems that may be caused by
gradient explosion. To improve the model’s ability
to generalize the data, we randomly rearrange the
data before each training cycle. In this way, the
model is exposed to more diverse data in each small
batch of training, helping prevent overfitting and im-
prove performance on unseen data.

The LSTM training flow chart is shown in
Fig.3.

Update weights
. . MATLAB . . -
ANG-GOCElertion [jy,ylotion| THAMNECE |, Adam Bii-Gatch Gradient Calculate mean Qutpus
saturation missile — LSTM neural Groms | optimizer [ gradient [—> clippin squared error | predicted
terminal guidance law | ¢ ¢ network i’ P descent pping 4 curve
aMH aMé
Fig.3 LSTM training flow chart

3 Simulation and Result Analysis

3.1 Simulation results

The initial condition i1s set as: 4, =10s, t=
0.5s,7,=3000m, 7= 100 M/S, Qrpmx = Autgmax =
100m/s*, ¢(0)=n/3,2,(0)=0.05rad /s, x,(0)=
0.01rad /s,x:(0)=a,(0)=—100 m/s"

Assume a weaving target maneuver with sinu-

soidal acceleration ag,= 50sin(4xz) m/s*, ap, =

50cos(4nz) m/s’*. To demonstrate the anti-satura-
tion characteristics of LSTM-ASGL,
pared with the sliding mode guidance law (SMGL)

it 18 com-

proposed in Ref.[16].

The simulation results are shown in Fig.4. It
can be seen that although the target can perform
high-frequency sinusoidal maneuvers, the LSTM-
ASGL still prevents missile acceleration saturation

compared to the SMGL proposed in Ref.[16].
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0 1 2 3 4 5
t/s
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Fig.4 Acceleration comparison for a sinusoidal maneuver-

ing target

Fig.5 shows the acceleration comparison be-
tween the anti-acceleration terminal guidance law
and LSTM-ASGL. As can be seen, they match
very well.

It can be seen that the acceleration curve pre-

dicted by LSTM-ASGL closely resembles the curve

400

350 | — Anti-saturation terminal guidance law
— —-LSTM-ASGL

3001

2501
200
150
100
50
0
=50

0 2 4 6 8 10
t/s

(a) Acceleration a,,,

ay,/ (m * s7)

400

350 | — Anti-saturation terminal guidance law
——-LSTM-ASGL

300

2501
2001
1501
100k

Ayl (m = s7)

t/s
(b) Acceleration a,,,

Fig.5 Acceleration comparison

of the original anti-acceleration saturation guidance
law, which shows the ability of the LSTM-ASGL
model in capturing complex dynamics.

The 3D trajectory diagram under sinusoidal ma-

neuver is shown in Fig.6.

N
N

N
—Miissile *.

Fig.6 3D trajectory under sinusoidal maneuver

It can be seen that LSTM-ASGL can achieve
the interception mission of target performing a sinu-
soidal maneuver.

During the prediction process, LSTM-ASGL
requires only 0.52 s for computation after training,
whereas the original guidance law takes 3.18 s. This
significantly improves computational efficiency,
demonstrating that LSTM-ASGL can greatly re-
duce computation time during the guidance process,
making it more suitable for real-time guidance re-
quirements.

To further verify the performance of LSTM-
ASGL., the consumed energy is used to evaluate
the guidance law performance. The energy con-

sumption is given as
Energy:J (amy + aw)zdl (27)
0

where ¢ is the convergence time.

Monte Carlo simulation can reliably verify the
robustness of energy loss reduction advantages.
Monte Carlo simulations of LSTM-ASGL under
these conditions are performed 100 times, and 30%
of the data are randomly selected from the training
set and the test set seperately for simulation each
time. The simulation results are shown in Fig.7.

The energy consumption of the original anti-ac-
celeration saturation guidance law is 10 619.28, and
the average energy consumption of the LSTM-AS-
GL in the 100 simulations i1s 10 531.70, which is



No. 4 LI Guilin, et al. Anti-acceleration Saturation Terminal Guidance Law Based on LSTM 549

1.080
1.075F &J
1.070 5

1.065H
1.060

1.055h
1.050

1.045{

1.040

1.035¢ d 5
L L 1 1 £ 1 L L L

1'0300 10 20 30 40 50 60 70 80 90 100

Times of Monte Carlo runs

Energy / 10*

Fig.7 Monte Carlo simulation results of energy consump-

tion for a sinusoidal maneuvering target

lower than the original anti-acceleration saturation
guidance law, indicating that LSTM-ASGL can
achieve target interception with lower energy.

To further verify the superiority of LSTM-AS-
GL, it is compared with deep neural network
(DNN) , convolutional neural network (CNN) and
gated recurrent unit (GRU) neural networks and eval-
uated in terms of mean squared error (MSE) and en-

ergy consumption. The formula for MSE is given as
N

1 2
MSE:NZU;,—%) (28)

n=1
where f, is the predicted value and y, the actual val-
ue.

To further demonstrate the superiority of
LSTM-ASGL in predicting anti-acceleration satura-
tion, a comparison of training times with other neu-
ral networks is conducted. The experiment uses a si-
nusoidal maneuver dataset under initial conditions.
The minimum error is set to 0.000 1, and the train-
ing efficiency of different networks are measured by
calculating the time required for each model to reach
this minimum error.

The results are shown in Table 1. As shown in
Table 1, LSTM exhibits significantly lower energy
consumption compared to ASGL and other neural
networks. Additionally, its predicted MSE and train

time are consistently lower than those of the other

Table 1 Performance comparison

Model MSE F_rmm Energy consumption
s ay,  time/s

ASGL 10619.28

LSTM 0.72 0.82 404 10 531.70

DNN 1.14  1.35 558 10 599.42

CNN 1.21  1.32 632 10 644.96

GRU 0.97 1.33 477 10 581.67

models. These results confirm that LSTM is the
most effective neural network for handling missile
acceleration saturation while also achieving the low-
est energy consumption.

In missile terminal guidance, target maneuver-
ing and acceleration saturation are time-dependent,
requiring the controller to use historical information
to predict target behavior and adjust strategies in ad-
vance. LSTM’ s gating mechanism accurately cap-
tures long-term temporal dependencies. In contrast,
DNN and CNN cannot handle temporal dependen-
cies, struggling to adapt to time-varying target ma-
neuvers; while GRU processes temporal informa-
tion, its simplified gating mechanism results in infe-
rior performance to LSTM.

Next, a constant maneuvering target is consid-
ered with ap,= ar,= 50 m/s*. The simulation re-

sults are shown in Fig.8.
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Fig.8 Acceleration comparison for a constant maneuvering

target

It can be seen that under constant maneuvering
of the target, the LSTM-ASGL, even without ac-
celeration constraints, is still able to naturally coun-
ter acceleration saturation and converge effectively,
achieving excellent results.

The 3D trajectory diagram under constant ma-

neuver is shown in Fig.9. It can be seen that LSTM-
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Fig.10 Monte Carlo simulation results of energy consump-

tion for a constant maneuvering target

The energy consumption of the original anti-ac-
celeration saturation terminal guidance law for the
constant maneuvering target is 40 718.13, while the
average energy consumption of LSTM-ASGL in
the 100 Monte Carlo simulations is 40 576.85,
which is lower than the former.

A triangular maneuvering target is considered
with ar, = ar, = 25sawtooth(2xz) m/s’. The simu-
lation results are shown in Fig.11. It can be seen that
under triangular maneuvering of the target, LSTM-
ASGL still effectively avoids acceleration saturation
and converges smoothly.

The 3D trajectory diagram under triangular ma-
neuver is shown in Fig. 12. It can be seen that
LSTM-ASGL can achieve the interception mission

of target performing a triangular maneuver.

(b) Acceleration a,,,

Fig.11 Acceleration comparison for a triangular maneuver-

ing target
1
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3000 |
24200 — Missile
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Y/ 200 570 L1

Fig.12 3D trajectory under triangular maneuver

We carry out 100 Monte Carlo simulations for
the triangular maneuvering target, and 30% of the
data are randomly selected in the training set and the
test set separately. The simulation results are shown
in Fig.13.
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Fig.13 Monte Carlo simulation results of energy consump-

tion for a triangular maneuvering target
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The energy consumption of the original anti-ac-

celeration saturation terminal guidance law is
18 612.85, while the average energy consumption
of LSTM-ASGL in the 100 Monte Carlo simula-
tions is 18 477.34, which is lower than the former.
From the simulation results of the three types
of maneuvering targets, it can be concluded that
LSTM-ASGL achieves the anti-saturation charac-
teristics. Through the simulation study of these
three types of maneuvers, it can be observed that
LSTM-ASGL has an accurate acceleration predic-
tion ability. In addition, LSTM-ASGL can achieve

lower energy consumption than the original anti-ac-

400
| — Anti-saturation terminal guidance law
350r —_LSTM-ASGL

3001
2501
2001
150
100

a,,/ (m *s7)

09 2 4 6 8 10

t/'s
(a) Acceleration a,,

celeration saturation guidance law.
Overall, LSTM-ASGL demonstrates practical
significance to improve the guidance accuracy and

adaptability of the guidance system.
3.2 Generalization performance test

Two different initial conditions are set as:
$(0)=mn/4, 2,(0)=0.06rad /s, 25(0)=0.08rad /s
and ¢(0)==/6, x2,(0)=0.04rad/s, x,(0)=
0.12rad /s. A training set is setup. The data from
the initial conditions of the first experimental setup
are used as the test set to verify LSTM-ASGL gen-
eralization performance for unknown data, and the

predicted results are shown in Fig.14.
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Fig.14 Acceleration curve comparison chart

3.3 Robustness test

To verify the robust performance of the neural
network, a disturbance is added to the target accel-
eration, and the robustness is assessed. The distur-
bance follows a standard normal distribution (mean
of 0 and standard deviation of 1) and is multiplied
by a disturbance magnitude (magnitude=2) to con-
trol its size. The normal distribution effectively char-

acterizes uncertain target motions and realistically

400
| — Anti-saturation terminal guidance law
3501 ——LSTM-ASGL

o~

t/s
(a) Acceleration a,,

simulates missile interference in combat. To verify
the robustness of the neural network, the guidance
law data set without disturbance is taken as the train-
ing set, and the guidance law data after disturbance
is taken as the test set. The missile accelerations for
intercepting the sinusoidal maneuvering target, the
constant maneuvering target, and the triangular ma-
neuvering target with disturbance are shown in

Figs.15, 16, and 17, respectively.
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Fig.15 Acceleration comparison for a sinusoidal maneuvering target
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Fig.17 Acceleration comparison for a triangular maneuvering target

The simulation results show that the neural net-
work has remarkable anti-jamming performance
when facing different types of maneuvering targets.
LSTM-ASGL successfully learns and adapts to the
disturbance. Therefore, the LSTM-ASGL has a
strong robustness in practical applications, and pro-
vides reliable theoretical support for its application

in complex environments.

4 Conclusions

This paper studies the application of LSTM in
missile terminal guidance. Aiming at the anti-accel-
eration saturation terminal guidance law, the de-
signed LSTM-ASGL successfully captures and pre-
dicts the target maneuvers and has good anti-acceler-
ation  saturation characteristics.  Furthermore,
LSTM-ASGL demonstrates superior generalization
performance on previously unknown data, demon-
strating its ability to adapt to different engagement
scenarios. Meanwhile, the calculation time of the
LSTM-ASGL is also much lower than that of the
original anti-acceleration saturation guidance law. In
the robustness test, LSTM-ASGL successfully pro-
cesses the disturbance data and shows good anti-
jamming ability. The excellent performance of

LSTM-ASGL in different maneuverability, general-

ization, and anti-jamming tests substantiates its
broad application prospect in missile terminal guid-

ance systems.
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