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Abstract: Intelligent interpretation of high-resolution remote sensing imagery is a fundamental challenge in aerospace
information processing. Complex ground environments such as construction and demolition (C&.D) waste landfills
exemplify the need for robust segmentation models that can handle diverse spatial and spectral patterns. Conventional
convolutional neural networks (CNNs) are limited by their local receptive fields, whereas Transformer-based
architectures often lose fine spatial detail, resulting in incomplete delineation of heterogeneous remote sensing targets.
To address these issues, we propose a global-local collaborative network (GLC-Net) , which is designed for
intelligent remote sensing image segmentation. The model integrates an efficient Transformer block to capture global
dependencies and a local enhancement block to refine structural details. Furthermore, a multi-scale spatial aggregation
and enhancement (MSAE) module is introduced to strengthen contextual representation and suppress background
noise. Deep supervision facilitates hierarchical feature learning. Experiments on two high-resolution remote sensing
datasets (Changping and Daxing) demonstrate that GLC-Net surpasses state-of-the-art baselines by 1.5%—3.2% in
mean intersection over union (mloU) , while achieving superior boundary precision and semantic consistency. These
results confirm that global-local collaborative modeling provides an effective pathway for intelligent remote sensing

image segmentation in aerospace environmental monitoring.
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0 Introduction

The accelerating pace of global urbanization
has triggered a substantial increase in construction
and demolition (C&D) waste. This type of waste
not only occupies valuable land resources but also
poses persistent environmental risks through the po-
tential leaching of hazardous substances, including
heavy metals and asbestos, into soil and groundwa-
ter systems. Consequently, effective monitoring and
assessment of C&D waste landfill sites are critical
for advancing sustainable urban development and en-
suring environmental protection".

Traditional monitoring methods, such as man-

ual field surveys, are often hampered by high oper-

*Corresponding author, E-mail address: wenzg@tsinghua.edu.cn.

Article ID: 1005-1120(2025)05-0565-12

ational costs, low efficiency, and limited spatial
coverage. In this context, remote sensing technolo-
gy emerges as a powerful alternative, providing
wide-area, repeatable, and non-intrusive observa-
tion capabilities. The advent of high-resolution sat-
ellite imagery has further enabled a more consis-
tent and detailed capture of the spatial distribution
and temporal dynamics of landfill sites. When inte-
grated with deep learning techniques, remote sens-
ing facilitates the automated and accurate extrac-
tion of landfill-related information, thereby signifi-
cantly enhancing monitoring efficiency and support-
ing informed decision-making in waste manage-
ment '

In recent years, deep learning has become the
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dominant paradigm for interpreting remote sensing
imagery. Semantic segmentation models based on
(CNNs) have
achieved notable success in landfill detection tasks.
UNet"”

encoder-decoder architecture with skip connections,

convolutional neural networks

For instance, employs a symmetric

effectively recovering spatial details that are lost dur-
ing the downsampling process. DeeplLabV3-+"*' ex-
tends this framework by incorporating atrous convo-
lutions and an atrous spatial pyramid pooling
(ASPP) module, which capture multi-scale contex-
tual information and enhance the recognition of irreg-
ular targets. While these CNN-based methods ex-
hibit strong capabilities in local feature extraction,
their capacity to represent complex large-scale land-
fill environments remains constrained by the inher-
ent locality of convolutional operations.

The inherent limitation of CNNs lies in the in-
trinsic locality of their convolutional kernels. Al-
though highly effective at capturing local neighbor-
hood patterns, CNNs typically struggle to model
long-range, global dependencies across an entire
scene. This limitation consequently restricts a mod-
el’s ability to comprehend large-scale spatial layouts
and complex contextual relationships, such as the
correlations among dispersed waste piles, adjacent
vegetation, and engineered structures within a land-
fill  site. In response to this shortcoming,
Transformer-based architectures have been increas-
ingly adopted for semantic segmentation. For exam-

ple, SegFormer'”

replaces standard convolutions
with a hierarchical Transformer encoder and a light-
weight multilayer perceptron (MLP) decoder. By
leveraging the self-attention mechanism, it effective-
ly captures global contextual dependencies while
maintaining computational efficiency. Similarly,
UNetFormer'® integrates the powerful global mod-
eling capabilities of Transformers into a U-shaped
network, hybridizing self-attention with convolu-
tional operations to strike a balance between local
detail preservation and global context integration.
While these Transformer-based models have dem-
onstrated compelling performance in natural image
segmentation and showed considerable promise for

remote sensing applications, their specific potential

and adaptation for the task of landfill detection re-
main largely underexplored. Moreover, the fusion
of global and local features is crucial for tasks like se-
mantic segmentation. STransFuse” combines a
swin Transformer with a CNN to capture both glob-
al context and local spatial features, but its reliance
on large datasets limits its remote sensing applicabil-
ity. ST-UNet'® integrates a Transformer with a
UNet, using spatial interaction and feature compres-
sion modules to enhance segmentation, particularly
for small-scale objects. However, existing hybrid ar-
chitectures face limitations in complex remote sens-
ing environments like landfill detection. In contrast,
the global-local collaborative network (GLC-Net)
integrates global context and local details through a
Global Block for long-range dependencies and a Lo~
cal Block for fine-grained details. Unlike ST-UNet
and DeSwin-S"”', GLC-Net does not require paral-
lel CNN-Transformer branches. The local block se-
rially refines global information in a simple and effi-
cient manner, resulting in a more lightweight mod-
el. Moreover, GL.C-Net extracts global features di-
rectly during the feature extraction stage, rather
than relying on self-attention only in the decoder as
in UNetFormer, enabling more comprehensive fea-
ture representation and improved robustness for
challenging tasks.

Beyond the global context modeling challenge,
another critical issue is the effective representation
of the highly heterogeneous spatial composition
characteristic of landfill sites. In high-resolution im-
agery, such areas typically exhibit irregular geome-
tries, complex textural patterns, and multiple coex-
isting land-cover types, including exposed waste
heaps, operational facilities, access roads, and
patches of vegetation. Prevailing segmentation mod-
els often resort to simplistic strategies, such as di-
rect concatenation or element-wise addition, when
fusing multi-scale features. These approaches are
frequently inadequate for capturing the intricate spa-
tial arrangements and nuanced semantic relation-
ships among the diverse components within a land-
fill. Consequently, such representational shortcom-
ings commonly lead to misclassifications in cluttered

regions and imprecise boundary delineation in the re-
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sulting segmentation maps.

To address the aforementioned challenges, this
study proposes a novel deep learning framework,
termed GLC-Net, for the accurate and robust se-
mantic segmentation of CD waste landfills. The
principal contributions of this work are summarized
as follows:

(1) We propose a global-local collaborative
framework that synergistically leverages CNNs for
fine-grained detail extraction and Transformers for
global context modeling. This design mitigates the
limitations of local receptive fields in conventional
CNN-based models and enables a more holistic rep-
resentation of complex landfill scenes.

(2) To effectively model the heterogeneity of
landfill areas, we design a multi-scale spatial aggre-
gation and enhancement (MSAE) module. This
module is engineered to explicitly integrate
multi-scale features and strengthen spatial relation
learning, thereby achieving improved boundary de-
lineation and key region recognition.

(3) We conduct extensive experiments on the
Changping and Daxing datasets. The proposed
method demonstrates superior performance, outper-
forming state-of-the-art baselines across multiple
metrics and confirming its robustness and practical

potential.

1 Methods

To accurately identify and segment construc-
tion waste landfills in high-resolution remote sens-
ing imagery, we propose the novel GLC-Net as
shown in Fig.1. The core of GLLC-Net lies in its inte-
gration of the local detail extraction capability of
CNNs with the global context modeling power of
Transformers. This synergy is further augmented by
the specially designed MSAE module to enhance
feature representation for complex landfill scenes.
This section delineates the overall architecture of
GLC-Net, elaborates on the design principles of its
core modules, and explains the loss function strate-

gy employed for robust semantic segmentation.

1.1 Global-local collaborative modeling frame-

work

The proposed GL.LC-Net follows an encoder-de-
coder framework, architected to jointly capture glob-
al context and local details for precise landfill seg-
mentation, as depicted in Fig.1, where H, W, C,
D and N denote the image height, width, channel
dimension, the dimension of the feature map, and
the number of classes, respectively. The network

mainly consists of the efficient Transformer (ET)

DWConv
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Fig.1 Pipeline of the proposed GLC-Net
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block and the MSAE module. Given an input image
I€R" 773 it is first processed by a stem layer
composed of convolutional operations that perform
initial downsampling and channel expansion, yield-
ing a base feature map,shown as
Fy=Conv,,(I)eR" " ¢ (1)
This feature map serves as the input to a hierar-
chical encoder comprising four stages. At each stage
i, the spatial resolution of the feature map is re-
duced by a factor of two while the channel dimen-

H H .
——Xx——x27C
+1

sion is doubled, yielding F, &€ R? Zet

Within each stage, the network sequentially
employs an ET block'" and a local block. The ET
block leverages an EMSA mechanism to model
long-range dependencies, thereby capturing the
global contextual information essential for identify-
ing spatially dispersed landfill regions. Formally,
the attention operation is expressed as

FF"=EMSA(FM) (2)

KT
Q.K, ) .
Jdy
EMSA(F )= Concat( H,,H,,--- ,H,)W° (4)
where F" is the input to stage 75 Q,, K,, and V, are

H,= Softmax

the queries, keys, and values for the kth attention
head; A is the number of heads, d, the head dimen-
sion, and W a projection matrix''"". The ET block
ensures that distant regions within the landfill can in-
teract, establishing a globally coherent representa-
tion.

Following the ET block, the local block re-
fines the globally contextualized features using dep-
thwise separable convolutions and residual connec-
tions, shown as

F,= F"+ Conv,(F") (5)

Eq.(5) enhances local textures and neighbor-
hood relations while preserving global semantic con-
text. Unlike conventional convolutional refinement
modules that process features in isolation, the local
block sequentially integrates global and local infor-
mation in a lightweight manner, allowing more ef-
fective contextual adaptation with minimal computa-
tional overhead. Its structure ensures targeted en-

hancement of fine-grained details without disrupting

the globally aggregated features. By applying this
global-local sequence at every stage, the encoder
produces a  multi-scale  feature  pyramid
{F,, F,, Fy, F,}, where features at each level pro-
gressively encode richer semantics with coarser spa-
tial resolution. These hierarchical features integrate
global dependencies and local details, forming a ro-
bust foundation for the decoder to generate

high-precision segmentation outputs.
1.2 MSAE module

To improve the representational capacity of hi-
hybrid
propose the

erarchical features extracted by the
CNN-Transformer backbone, we
MSAE module. Integrated at the output of each
backbone stage, the MSAE module explicitly cap-
tures multi-scale spatial dependencies and adaptive-
ly recalibrates channel-wise feature responses. By
emphasizing semantically salient regions while sup-
pressing background noise, the module enhances
the discriminability of features for complex landfill
scenes, facilitating more accurate delineation of ir-
regular structures and heterogeneous land cover
types.

Let the feature map output from the local block
backbone be

F,eR" ™% This feature map serves as the input

of stage ¢ in the denoted as
to the corresponding MSAE module. First, the fea-
ture map is evenly split along the channel dimension
into four sub-feature maps { G, };—,, and each of size
is H; X W, X C;/4. This channel splitting strategy
allows parallel processing of distinct sub-feature
maps, facilitating the capture of heterogeneous spa-
tial patterns.

Each sub-feature map G, is then processed
through an independent branch composed of a depth-
wise separable convolution, denoted as 2(-). By
employing different kernel sizes or dilation rates
across the branches, the module extracts multi-scale
spatial features from the same input map. The trans-
formed feature map from each branch is given by

H,= D(G;) (6)

The multi-scale features from all four branches

are concatenated along the channel dimension to

form an aggregated feature map Fi,&R" "¢
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shown as

F.,= Concat| H,, H,, Hs, H,] (7)

This aggregated representation, containing

rich multi-scale spatial context, is further processed

to generate a 2D

M, eR"“"*! through a 1 X 1 convolution fol-
lowed by a Sigmoid activation o(+),shown as

M,=o(Conv, . (F,)) (8)

Finally, the original input feature map F, is re-

fined by the

element-wise multiplication &) and a residual con-

spatial ~ attention  map

spatial  attention map through
nection, producing the output F/of the MSAE mod-
ule,shown as
F/=F +(F.®M,) (9)
By incorporating MSAE modules at every
backbone stage, the network progressively refines
the hierarchical features, enhancing their discrimina-
tive power for the decoder. This design allows the
model to accurately capture both fine-grained details
and global spatial dependencies in complex landfill
scenes, resulting in improved segmentation perfor-

mance.
1.3 Decoder and deep supervision

The decoder is constructed as a multi-scale fu-
sion architecture to integrate hierarchical features
from all stages of the backbone. The deepest feature
map F/ is first processed through a PPM"* to cap-
ture contextual information at multiple scales, en-
hancing the global receptive field. The three
stage-wise feature maps, {F/}{—, are then fused
through a FPN'"**' | which leverages top-down path-
ways and lateral connections to combine high-level
semantic cues with detailed spatial information. The
final segmentation map is obtained by applying a
convolution to the FPN output, shown as
Y= Conv,..,(FPN(F, FJ, F{, PPM(F}))(10)

To facilitate deep supervision, the four back-
bone features before FPN are individually passed
convolutions  to

through generate

multi-scale segmentation maps { Y, }{—,. These auxil-

auxiliary

iary predictions provide intermediate gradient sig-
nals during training, guiding the backbone to learn
more discriminative multi-scale features and improv-

ing convergence, boundary delineation, and robust-

ness against heterogeneous spatial structures. All
outputs are rescaled via bilinear interpolation to
match the input resolution H X W.

The total training loss (£) combines Dice and
Focal losses (L. and L.,) and incorporates contri-
butions from both the main and auxiliary outputs
(L, and L,,,) in a weighted manner, shown as

L=LpmtaX jﬁi,gl (11)
i=1

Loin = Edice( Yﬁnal’ Y) + E(ocal( Yﬁna], Y> (12)

Lon= Lo VoY )+ Lo YY) (13)

where Y denotes the ground-truth segmentation
map and « is set to 0.1 during training. By combin-
ing multiscale supervision with hierarchical feature
fusion, the decoder effectively balances local detail
preservation and global contextual understanding,
producing highly accurate segmentation results for

complex landfill scenes.
2 Experiment and Analysis

2.1 Experimental datasets

The proposed method was evaluated on two
high-resolution datasets"*' : Changping (CP) and
Daxing (DX). The Changping dataset comprises
1 368 images of size 512 pixel X 512 pixel, acquired
from the GF-2 satellite, which provides 0.8 m pan-
chromatic and 3.2 m multispectral imagery with ap-
proximately 80 cm ground sample distance (GSD).
The Daxing dataset contains 2 285 images of the
same size, obtained from Google Earth via the
Google API, with a spatial resolution of approxi-
mately 50 cm GSD.

Both datasets were split into training and test-
ing sets at an 8: 2 ratio, yielding 1 094 training and
274 testing images for Changping, and 1 828 train-
ing and 457 testing images for Daxing. Each image
is annotated with four semantic categories: Back-
ground, vacant landfillable area, engineering facility
area, and waste dumping area. These classes reflect
the key components of construction and demolition
landfill sites and provide a fine-grained basis for eval-
uating semantic segmentation performance.

The combination of high spatial resolution, di-
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verse land-cover types, and clearly defined catego-
ries makes these datasets suitable benchmarks for as-
sessing the accuracy and robustness of landfill detec-

tion methods.
2.2 Experimental implementation

We evaluated our model using three estab-
lished semantic segmentation metrics: Overall accu-
racy (OA), mean intersection over union (mIoU),
and mean F, score (mF1). OA measures global
pixel-wise classification accuracy, while mloU as-
sesses per-class region overlap between predictions
and ground truth. mF1 balances precision and recall
across all categories, providing a comprehensive
performance assessment through complementary
perspectives on segmentation quality and class-wise
consistency.

All experiments were implemented in PyTorch
on a single NVIDIA RTX 4090 GPU. The model
was trained for 100 epochs with a batch size of 32,
using the AdamW optimizer with a learning rate of
0.001 and weight decay of 0.000 5, enhanced by a

warm-up poly learning rate scheduler.
2.3 Performance comparison

To comprehensively evaluate the effectiveness
of the proposed GLC-Net, we conduct comparisons
with a set of representative baseline methods span-
ning three major technical paradigms. These include
conventional CNNs such as Deeplab-V3+ and
U-Net lightweight CNN-based architectures includ-
ing A2-FPN" , ABCNet-E"” and BA-Net'” , as
well as Transformer-based models such as SegForm-
er”, UNetFormer, DeSwin-S, and CMTFNet"'*.

The quantitative results, summarized in Table
1 and Table 2, demonstrate that GLC-Net consis-
tently outperforms all baseline methods across both
datasets, where BA represents the background ar-
ea, VLA the vacant landfillable area, EFA the engi-
neering facility area, and WDA the waste dumping
area. On the CP dataset (Table 1), our method
achieves outstanding performance with 92.28% of
OA, 80.08% of mIoU, and 88.75% of mF1, sur-
passing the second-best approach by significant mar-
gins of 2.22%, 6.59%, and 3.74%, respectively.

These substantial improvements are particularly no-

table when compared against traditional CNN archi-
tectures and their lightweight variants. The superior
performance validates the effectiveness of our pro-
posed global-local hybrid modeling paradigm,
which synergistically combines the fine-grained de-
tail capture capability of CNNs with the long-range
contextual reasoning strength of Transformers. This
complementary integration enables the network to
extract more discriminative features across diverse

spatial scales and complex landfill scenarios, ad-

dressing the challenging nature of the CP dataset.

Table 1 Performance comparison of the CP dataset ¢

Method BG VLA EFA WDA OA mloU mF1
A2-FPN  90.23 71.21 80.87 55.86 83.70 61.03 74.54
ABCNet'E  93.14 73.67 85.61 70.50 87.14 68.69 80.73
BA-Net 95.23 84.89 89.51 79.15 91.69 77.79 87.20
DeSwin-S  92.78 80.54 86.72 78.44 89.02 73.76 84.62

DeeplLab-V3—+ 91.62 77.92 84.41 76.83 87.32 70.94 82.69
SegFormer 93.88 82.96 87.23 75.97 90.06 74.49 85.01
U-Net 92.96 80.86 85.26 71.91 88.54 71.29 82.75
UNetFormer 92.63 79.09 85.21 74.51 88.32 71.32 82.86
CMFTNet 94.67 84.97 88.38 80.94 91.28 77.72 87.94
GLC-Net  95.00 85.66 91.03 83.32 92.28 80.08 88.75

Note: The bold and underline values indicate the best and

second-best results in each column, respectively.

Table 2 Performance comparison of the DX dataset %}

Method BG VLA EFA WDA OA mloU mF1
A2-FPN 95.6 89.89 82.32 80.15 91.42 77.51 86.99
ABCNetE  94.66 85.78 74.03 74.05 88.35 70.64 82.13
BA-Net 95.96 89.92 80.89 83.12 91.56 78.24 87.47
DeSwin-S  95.97 93.40 88.70 87.46 93.90 84.32 91.38

DeepLab-V3+ 97.13 95.05 90.78 91.26 95.44 88.01 93.55
SegFormer  97.45 95.04 91.07 91.16 95.59 88.23 93.68
U-Net  97.26 94.97 90.93 91.92 95.49 88.37 93.77
UNetFormer 96.66 93.87 89.01 89.44 94.50 85.77 92.25
CMFTNet  97.52 94.84 90.62 91.09 95.48 87.96 93.52
GLC-Net  97.48 95.35 91.21 92.67 95.80 89.10 94.18

Note: The bold and underline values indicate the best and

second-best results in each column, respectively

For the DX dataset (Table 2) , GLC-Net
maintains its performance superiority,
95.80% of OA, 89.10% of mIoU, and 94.18% of

mF 1 while consistently leading across all evaluation

attaining

metrics. Although Transformer-based methods such
as SegFormer and UNetFormer demonstrate com-

petitive performance on this high-resolution dataset,
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our approach exhibits distinct advantages in han-
dling complex scenarios featuring highly irregular
waste pile distributions and mixed land-cover types.
The robust performance underscores the critical im-
portance of simultaneously maintaining global con-
text awareness and local detail sensitivity for accu-
rate feature extraction in challenging remote sensing
environments.

Further analysis indicates that the varying per-
formance of BA-Net across the two datasets mainly
reflects differences in model robustness rather than
dataset characteristics alone. BA-Net’ s lightweight
CNN design depends heavily on local texture cues,
which work well in the CP dataset due to its regular
landfill structures and homogeneous backgrounds.
However, this reliance becomes a limitation when
facing the DX dataset’ s higher spatial heterogeneity
and spectral variations caused by different sensors
and resolutions. Compared with CMTFNet, which
primarily focuses on multi-scale feature fusion
through Transformer encoder, GL.C-Net emphasiz-
es a more efficient global-local interaction to en-

hance spatial consistency and contextual understand-

ing. In contrast, GLC-Net maintains consistent ac-
curacy across both datasets because its global-local
collaborative  mechanism  adaptively  balances
fine-grained spatial detail with global contextual un-
derstanding. By integrating longrange dependency
modeling with local feature enhancement, GLC-Net
demonstrates stronger generalization and robustness
under diverse imaging and scene conditions, an es-
sential capability for real-world remote sensing appli-
cations.

Qualitative visualizations shown in Fig.2 fur-
ther corroborate these findings. GLLC-Net generates
segmentation maps with sharper boundaries, re-
duced fragmentation, and better internal consisten-
cy within each semantic class. This improvement is
attributable not only to the global-local hybrid back-
bone but also to the MSAE module, which effec-
tively strengthens the representation of complex spa-
tial patterns. In contrast, other methods often pro-
duce blurred edges, fragmented regions, or misclas-
sifications in areas with intricate geometry, under-
scoring the benefits of our explicit spatial informa-

tion enhancement.

(a) Image

(b) Ground (c) A2-FPN (d) ABCNet-E (e) BA-Net (f) DeSwin-S (g) DeepLab- (h) SegFormer (i) U-Net  (j) UNetFormer (k) CMTFNet (1) GLC-Net
truth V3+

M Background area  [JVacant landfillable area M Engineering facility area BWaste dumping area

Fig.2 Visual comparison on CP (rows 1—2) and DX (rows 3—4) datasets

Collectively, these results demonstrate that
GLC-Net can simultaneously leverage global con-
textual information and finely detailed local fea-
tures, delivering more accurate and robust segmen-

tation for construction waste landfill detection.
2.4 Ablation study

To systematically investigate the contributions

of the key components in GLC-Net, we conducted
ablation experiments on the CP and DX datasets,
focusing on three modules: The local block (LLB) in
each encoder stage, the MSAE module, and the
deep supervision (DS) in the decoder. Table 3 sum-
marizes the quantitative results in terms of OA,
mloU, and mF1.

When all three components are included, the
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Table 3 Ablation study of the proposed model’s compo-
nents on CP and DX datasets %

Component CP DX
LB MSAE DS OA mloU mF1 OA mloU mFl
NG NG < 92.28 80.08 88.75 95.80 89.10 94.18
NG < 91.88 78.77 87.96 95.25 87.68 93.26

N ~ 91.41 77.53 87.05 95.19 87.41 93.20
N NG 92.03 79.24 88.19 95.48 88.31 93.73
N 91.17 76.95 86.69 94.28 84.94 91.73

N 91.51 77.75 87.21 95.10 87.17 93.06

<~/ 90.93 75.93 85.94 93.76 83.42 90.79

Note: The checkmark ~/ indicates that the corresponding module is

included in the configuration.

network achieves its best
92.28% of OA, 80.08% of mloU, and 88.75% of
mF1 on CP detaset, and 95.80% of OA, 89.10%
of mIoU, and 94.18% of mF1 on DX dataset. Re-
moving LB while retaining MSAE and DS results
in a drop of 0.40% of OA and 1.11% of mIoU on

CP dataset, indicating that local feature enhance-

performance, with

ment in the encoder is important for capturing
fine-grained spatial details. Similarly, excluding
MSAE while keeping LB and DS reduces perfor-
mance by 0.87% of mIoU on CP dataset and 1.69%
of mIoU on DX dataset, demonstrating the effec-
tiveness of the proposed module in modeling
multi-scale spatial relationships and refining feature
representations.

The impact of deep supervision is also evident.
Removing DS while keeping LB and MSAE leads
to slight declines in OA and mF1 (e.g., 0.05% of
OA and 0.56% of mF1 drop on CP dataset) , con-
firming that multi-scale auxiliary supervision facili-
tates stable training and encourages the network to
learn more discriminative intermediate representa-
tions. Configurations with only a single module
(LB, MSAE, or DS) exhibit the lowest perfor-
mance, highlighting that each component contrib-
utes complementarily to the overall accuracy and
segmentation quality.

The ablation results demonstrate that LB,
MSAE, and DS contribute complementarily: LB
enhances local detail extraction, MSAE captures
and DS guides

multi-scale feature learning. Together, they enable

complex spatial relationships,

precise boundary delineation, robust segmentation
of heterogeneous regions, and improved overall ac-
curacy in landfill scenes.

To assess the rationality of the auxiliary branch
weight in the hybrid loss, we conducted an ablation
experiment by varying the auxiliary loss coefficient
a from 0.1 to 1.0. The results, presented in Table
4, show that the model achieves the best perfor-
mance when @ = 0.1 on both CP and DX datasets.
A small auxiliary weight allows the auxiliary branch
to provide complementary supervision without domi-
nating the optimization process of the main segmen-
tation branch. As «a increases, the auxiliary loss ex-
erts excessive influence, causing the network to
overfit local cues and deviate from the optimal glob-
al segmentation objective. When «=0.5, the mod-
el’s performance begins to decline, and a further in-
crease to @ =1.0 leads to noticeable degradation.
These findings confirm that a lower auxiliary super-
vision strikes a better balance between stability and

effectiveness in joint optimization.

Table 4 Ablation study on the auxiliary branch weight

a Dataset OA/% mloU/% mF1/%
CP 92.28 80.08 88.75
01 DX 95.80 89.10 94.18
cp 91.94 79.32 88.02
0-25 DX 95.60 88.82 93.78
CP 91.51 78.63 87.65
05 DX 95.25 87.98 93.20
CP 91.42 78.26 87.34
0-75 DX 95.11 87.49 93.02
CP 90.78 77.12 86.41
Lo DX 94.55 86.63 91.95

2.5 Heatmap visualization

To gain deeper insights into the internal work-
ings of GLC-Net and to qualitatively validate the ef-

fectiveness of its key modules, we employed

mapping
(Grad-CAM)'™' to visualize feature representa-

gradient-weighted  class  activation
tions. Grad-CAM generates heatmaps that highlight
the most important regions in an input image con-
tributing to a specific class prediction. By examining
these heatmaps at different depths within the net-
work, we can observe the evolution of feature re-

finement across stages.
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As illustrated in Fig.3, we selected four repre-
sentative samples and generated activation maps for
three primary classes, focusing on four key stages of
feature processing: A—before entering the local
block, B—before the MSAE module, C—before

the PPM head, and D—after the PPM head. Each
pixel value in the heat map represents the relative
contribution score to the final class logit; higher val-
ues denote more informative regions for the catego-

ry of interest.

oe]

Class 1 Class2  Class 3 Class 1 Class2  Class 3

Class 3

Class 1 Class2  Class 3 Class 1 Class 2

Fig.3 Heatmap visualization of each stage

At stage A, the initial features provide a rough
localization of target regions. The highlighted areas
are diffuse and contain considerable background
noise, indicating that early features encode coarse
positional information but exhibit limited semantic
discriminability.

Stage B shows the effect of the local block. Ac-
tivation regions become more concentrated, and mi-
nor noise is suppressed. For example, in DX _38,
the outlines of structures are clearer compared to
stage A, demonstrating that the local block enhanc-
es local textures and fine-grained details. However,
activations remain fragmented, and global target in-
tegrity is not yet fully captured.

After passing through the MSAE module
(stage C), previously scattered and disjointed acti-
vations are aggregated into semantically coherent
and spatially continuous regions. In CP_30, scat
tered activations at stage B merge at stage C to form
contiguous shapes closely matching the ground
truth. This highlights the MSAE module’ s role in

integrating multi-scale spatial context, substantially

improving semantic consistency and holistic percep-

tion.
the PPM head refines the

features further, producing highly focused and pre-

Finally, at stage D,

cise activations. The module enhances global con-

text understanding, accurately delineating object

boundaries and suppressing background responses.
Overall,

clear pattern: Features evolve from coarse and dif-

the Grad-CAM visualizations reveal a
fuse in the early stage, to more localized and struc-
tured after the local block, to spatially coherent and
semantically enriched after MSAE, and finally to
highly precise and globally consistent representa-
tions after the PPM head. This progressive refine-
ment underscores the pivotal role of the MSAE
module in aggregating multi-scale context, preserv-
ing target integrity, and enhancing discriminative
power, which collectively supports the superior seg-
mentation performance of GLC-Net in complex

landfill scenes.
2.6 Efficiency analysis

To evaluate the practical utility of GLC-Net,
we compare its parameters computational cost, and

segmentation performance against several state-of-
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Table 5 Comparison of parameters and FLOPs of
GLC-Net with several SOTA models

Method Parameter/10° FLOP/10’
A2-FPN 22.82 83.65
ABCNet-E 13.36 30.98
BA-Net 12.69 25.84
DeSwin-S 45.61 93.82
DeeplLab-V3+ 40.34 93.61
SegFormer 13.73 23.98
U-Net 19.88 123.44
UNetFormer 11.68 23.48
CMTFNet 30.07 66.12
GLC-Net 16.19 24.16

the-art (SOTA) models as shown in Table 5. From
Table 5 we can see that, GLC-Net achieves
16.19X 10° parameters and 24.16 X 10° FLOPs, es-
tablishing a robust equilibrium between computa-
tional efficiency and segmentation accuracy. Despite
having fewer parameters and lower computational
cost compared to models such as U-Net and Deep-
Lab-V3+, GLC-Net
these models in mloU and mF1, highlighting its su-

consistently  outperforms
perior capability in addressing complex remote sens-
ing challenges, such as landfill segmentation. When
compared to other models like
ABCNet-E and BA-Net, GLC-Net maintains a dis-

tinct advantage in both mIoU and mF1, particularly

lightweight

excelling in vegetation detection. Although these
models demonstrate reduced computational cost,
they exhibit lower accuracy, underscoring that com-
putational efficiency alone does not guarantee robust
performance, especially in heterogeneous remote
sensing environments. In comparison to DeSwin-S,
GLC-Net demonstrates clear computational efficien-
cy, achieving comparable or even superior segmen-
tation accuracy with fewer parameters and lower
FLOPs, further reinforcing the optimal trade-off be-
tween model complexity, computational demand,
and segmentation performance.

Thus, the lightweight architecture of GLC-Net
enables it to rival or surpass more complex models
while maintaining a high level of efficiency. This at-
tribute makes GLC-Net particularly suitable for
real-time processing in resource-constrained environ-

ments, such as mobile platforms or satellite imaging

systems, where both high segmentation accuracy
and low computational cost are critical. This analy-
sis emphasizes the practical applicability of
GLC-Net in complex, heterogeneous remote sens-
ing tasks, positioning it as a viable solution for a

wide range of operational scenarios.
2.7 Limitations and future work

While GLC-Net demonstrates strong perfor-
mance in landfill segmentation through its global-lo-
cal feature fusion and multi-scale spatial enhance-
ment, several limitations remain. The reliance on
pixel-level manual annotations constrains scalabili-
ty, as labeling is time-consuming and requires ex-
pert knowledge. The current datasets, limited to
CP and DX, may not fully capture the diversity of
urban layouts or waste characteristics in other re-
gions, which could potentially affect generalization.
Additionally, the multi-scale deep supervision intro-
duces extra computational overhead during training,
and the use of three spectral bands may underexploit
the potential of additional multispectral information
for finer material discrimination.

Future work will investigate semi-supervised
or weakly supervised approaches to reduce annota-
tion dependence and explore knowledge distillation
to improve training efficiency. Expanding the datas-
et to cover diverse geographical regions and integrat-
ing additional spectral bands could enhance general-
ization and material differentiation. Incorporating
temporal analysis to monitor landfill dynamics is al-
so planned, enabling more comprehensive applica-

tions for urban environmental management.

3 Conclusions

(1) We propose GLC-Net, a global-local col-
laborative segmentation {ramework that combines
ET-based global context modeling, [.B-based local
detail enhancement, and MSAE-driven multi-scale
spatial aggregation, addressing the challenges of
heterogeneous and complex landfill scenes.

(2) Extensive experiments on the CP and DX
datasets demonstrate that GL.C-Net consistently out-
performs CNN- and Transformer-based baselines,

achieving 1.5%—3.2% mloU improvement and su-
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perior boundary delineation, validating both the ef-
fectiveness and robustness of the proposed frame-
work.

(3) Beyond performance, this work highlights
three core contributions: The global-local hybrid
framework for feature extraction, the MSAE mod-
ule for multi-scale context aggregation, and the
comprehensive empirical validation across diverse
datasets. These contributions collectively provide a
robust and generalizable solution for complex re-
mote sensing segmentation tasks.

(4) Future work will focus on reducing annota-
tion dependency, exploring semi-supervised learn-
ing, integrating multispectral information, and mod-
eling temporal dynamics to further improve general-

ization and efficiency.
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