
Oct. 2025 Vol. 42 No. 5Transactions of Nanjing University of Aeronautics and Astronautics

GLC⁃Net: Global⁃Local Collaborative Network for Remote 
Sensing Image Segmentation

WEI Kan1，2， LI Ling1， LIANG Shilin1， WEN Zongguo1*

1. School of Environment， Tsinghua University， Beijing 100084， P. R. China；
2. Aerospace Information Research Institute， Chinese Academy of Sciences， Beijing 100190， P. R. China

（Received 11 August 2025； revised 30 September 2025； accepted 13 October 2025）

Abstract: Intelligent interpretation of high‑resolution remote sensing imagery is a fundamental challenge in aerospace 
information processing. Complex ground environments such as construction and demolition （C&D） waste landfills 
exemplify the need for robust segmentation models that can handle diverse spatial and spectral patterns. Conventional 
convolutional neural networks （CNNs） are limited by their local receptive fields， whereas Transformer‑based 
architectures often lose fine spatial detail， resulting in incomplete delineation of heterogeneous remote sensing targets. 
To address these issues， we propose a global‑local collaborative network （GLC‑Net）， which is designed for 
intelligent remote sensing image segmentation. The model integrates an efficient Transformer block to capture global 
dependencies and a local enhancement block to refine structural details. Furthermore， a multi‑scale spatial aggregation 
and enhancement （MSAE） module is introduced to strengthen contextual representation and suppress background 
noise. Deep supervision facilitates hierarchical feature learning. Experiments on two high‑resolution remote sensing 
datasets （Changping and Daxing） demonstrate that GLC‑Net surpasses state‑of‑the‑art baselines by 1.5%—3.2% in 
mean intersection over union （mIoU）， while achieving superior boundary precision and semantic consistency. These 
results confirm that global‑local collaborative modeling provides an effective pathway for intelligent remote sensing 
image segmentation in aerospace environmental monitoring.
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0 Introduction 

The accelerating pace of global urbanization 
has triggered a substantial increase in construction 
and demolition （C&D） waste. This type of waste 
not only occupies valuable land resources but also 
poses persistent environmental risks through the po‑
tential leaching of hazardous substances， including 
heavy metals and asbestos， into soil and groundwa‑
ter systems. Consequently， effective monitoring and 
assessment of C&D waste landfill sites are critical 
for advancing sustainable urban development and en‑
suring environmental protection［1］.

Traditional monitoring methods， such as man‑
ual field surveys， are often hampered by high oper‑

ational costs， low efficiency， and limited spatial 
coverage. In this context， remote sensing technolo‑
gy emerges as a powerful alternative， providing 
wide‑area， repeatable， and non‑intrusive observa‑
tion capabilities. The advent of high‑resolution sat‑
ellite imagery has further enabled a more consis‑
tent and detailed capture of the spatial distribution 
and temporal dynamics of landfill sites. When inte‑
grated with deep learning techniques， remote sens‑
ing facilitates the automated and accurate extrac‑
tion of landfill‑related information， thereby signifi‑
cantly enhancing monitoring efficiency and support‑
ing informed decision‑making in waste manage‑
ment［2］.

In recent years， deep learning has become the 
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dominant paradigm for interpreting remote sensing 
imagery. Semantic segmentation models based on 
convolutional neural networks （CNNs） have 
achieved notable success in landfill detection tasks. 
For instance， UNet［3］ employs a symmetric 
encoder‑decoder architecture with skip connections， 
effectively recovering spatial details that are lost dur‑
ing the downsampling process. DeepLabV3+［4］ ex‑
tends this framework by incorporating atrous convo‑
lutions and an atrous spatial pyramid pooling 
（ASPP） module， which capture multi‑scale contex‑
tual information and enhance the recognition of irreg‑
ular targets. While these CNN‑based methods ex‑
hibit strong capabilities in local feature extraction， 
their capacity to represent complex large‑scale land‑
fill environments remains constrained by the inher‑
ent locality of convolutional operations.

The inherent limitation of CNNs lies in the in‑
trinsic locality of their convolutional kernels. Al‑
though highly effective at capturing local neighbor‑
hood patterns， CNNs typically struggle to model 
long‑range， global dependencies across an entire 
scene. This limitation consequently restricts a mod‑
el’s ability to comprehend large‑scale spatial layouts 
and complex contextual relationships， such as the 
correlations among dispersed waste piles， adjacent 
vegetation， and engineered structures within a land‑
fill site. In response to this shortcoming， 
Transformer‑based architectures have been increas‑
ingly adopted for semantic segmentation. For exam ‑
ple， SegFormer［5］ replaces standard convolutions 
with a hierarchical Transformer encoder and a light‑
weight multilayer perceptron （MLP） decoder. By 
leveraging the self‑attention mechanism， it effective‑
ly captures global contextual dependencies while 
maintaining computational efficiency. Similarly， 
UNetFormer［6］ integrates the powerful global mod‑
eling capabilities of Transformers into a U‑shaped 
network， hybridizing self‑attention with convolu‑
tional operations to strike a balance between local 
detail preservation and global context integration. 
While these Transformer‑based models have dem ‑
onstrated compelling performance in natural image 
segmentation and showed considerable promise for 
remote sensing applications， their specific potential 

and adaptation for the task of landfill detection re‑
main largely underexplored. Moreover， the fusion 
of global and local features is crucial for tasks like se‑
mantic segmentation. STransFuse［7］ combines a 
swin Transformer with a CNN to capture both glob‑
al context and local spatial features， but its reliance 
on large datasets limits its remote sensing applicabil‑
ity. ST‑UNet［8］ integrates a Transformer with a 
UNet， using spatial interaction and feature compres‑
sion modules to enhance segmentation， particularly 
for small‑scale objects. However， existing hybrid ar‑
chitectures face limitations in complex remote sens‑
ing environments like landfill detection. In contrast， 
the global-local collaborative network （GLC‑Net） 
integrates global context and local details through a 
Global Block for long‑range dependencies and a Lo‑
cal Block for fine‑grained details. Unlike ST‑UNet 
and DeSwin‑S［9］， GLC‑Net does not require paral‑
lel CNN‑Transformer branches. The local block se‑
rially refines global information in a simple and effi‑
cient manner， resulting in a more lightweight mod‑
el. Moreover， GLC‑Net extracts global features di‑
rectly during the feature extraction stage， rather 
than relying on self‑attention only in the decoder as 
in UNetFormer， enabling more comprehensive fea‑
ture representation and improved robustness for 
challenging tasks.

Beyond the global context modeling challenge， 
another critical issue is the effective representation 
of the highly heterogeneous spatial composition 
characteristic of landfill sites. In high‑resolution im ‑
agery， such areas typically exhibit irregular geome‑
tries， complex textural patterns， and multiple coex‑
isting land‑cover types， including exposed waste 
heaps， operational facilities， access roads， and 
patches of vegetation. Prevailing segmentation mod‑
els often resort to simplistic strategies， such as di‑
rect concatenation or element‑wise addition， when 
fusing multi‑scale features. These approaches are 
frequently inadequate for capturing the intricate spa‑
tial arrangements and nuanced semantic relation‑
ships among the diverse components within a land‑
fill. Consequently， such representational shortcom ‑
ings commonly lead to misclassifications in cluttered 
regions and imprecise boundary delineation in the re‑
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sulting segmentation maps.
To address the aforementioned challenges， this 

study proposes a novel deep learning framework， 
termed GLC‑Net， for the accurate and robust se‑
mantic segmentation of CD waste landfills. The 
principal contributions of this work are summarized 
as follows：

（1） We propose a global-local collaborative 
framework that synergistically leverages CNNs for 
fine‑grained detail extraction and Transformers for 
global context modeling. This design mitigates the 
limitations of local receptive fields in conventional 
CNN‑based models and enables a more holistic rep‑
resentation of complex landfill scenes.

（2） To effectively model the heterogeneity of 
landfill areas， we design a multi‑scale spatial aggre‑
gation and enhancement （MSAE） module. This 
module is engineered to explicitly integrate 
multi‑scale features and strengthen spatial relation 
learning， thereby achieving improved boundary de‑
lineation and key region recognition.

（3） We conduct extensive experiments on the 
Changping and Daxing datasets. The proposed 
method demonstrates superior performance， outper‑
forming state‑of‑the‑art baselines across multiple 
metrics and confirming its robustness and practical 
potential.

1 Methods 

To accurately identify and segment construc‑
tion waste landfills in high‑resolution remote sens‑
ing imagery， we propose the novel GLC‑Net as 
shown in Fig.1. The core of GLC‑Net lies in its inte‑
gration of the local detail extraction capability of 
CNNs with the global context modeling power of 
Transformers. This synergy is further augmented by 
the specially designed MSAE module to enhance 
feature representation for complex landfill scenes. 
This section delineates the overall architecture of 
GLC‑Net， elaborates on the design principles of its 
core modules， and explains the loss function strate‑
gy employed for robust semantic segmentation.

1. 1 Global⁃local collaborative modeling frame⁃
work　

The proposed GLC‑Net follows an encoder-de‑
coder framework， architected to jointly capture glob‑
al context and local details for precise landfill seg‑
mentation， as depicted in Fig.1， where H， W， C，

D and N denote the image height， width， channel 
dimension， the dimension of the feature map， and 
the number of classes， respectively. The network 
mainly consists of the efficient Transformer （ET） 

Fig.1　Pipeline of the proposed GLC‑Net
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block and the MSAE module. Given an input image 
I ∈  RH × W × 3， it is first processed by a stem layer 
composed of convolutional operations that perform 
initial downsampling and channel expansion， yield‑
ing a base feature map，shown as

F 0 = Convstem( I ) ∈ RH/4 × W/4 × C (1)
This feature map serves as the input to a hierar‑

chical encoder comprising four stages. At each stage 
i， the spatial resolution of the feature map is re‑
duced by a factor of two while the channel dimen‑

sion is doubled， yielding F i ∈ R
H

2i + 1
× H

2i + 1
× 2i - 1 C

.
Within each stage， the network sequentially 

employs an ET block［10］ and a local block. The ET 
block leverages an EMSA mechanism to model 
long‑range dependencies， thereby capturing the 
global contextual information essential for identify‑
ing spatially dispersed landfill regions. Formally， 
the attention operation is expressed as

F ET
i = EMSA ( F in

i ) (2)

H k = Softmax ( Qk K T
k

dk
) (3)

EMSA ( F ) = Concat ( H 1,H 2,…,H h )W O (4)
where F in

i  is the input to stage i； Q k， K k， and V k are 
the queries， keys， and values for the kth attention 
head； h is the number of heads， dk the head dimen‑
sion， and W O a projection matrix［11］. The ET block 
ensures that distant regions within the landfill can in‑
teract， establishing a globally coherent representa‑
tion.

Following the ET block， the local block re‑
fines the globally contextualized features using dep‑
thwise separable convolutions and residual connec‑
tions，shown as

F i = F ET
i + Convdw( F ET

i ) (5)
Eq.（5） enhances local textures and neighbor‑

hood relations while preserving global semantic con‑
text. Unlike conventional convolutional refinement 
modules that process features in isolation， the local 
block sequentially integrates global and local infor‑
mation in a lightweight manner， allowing more ef‑
fective contextual adaptation with minimal computa‑
tional overhead. Its structure ensures targeted en‑
hancement of fine‑grained details without disrupting 

the globally aggregated features. By applying this 
global‑local sequence at every stage， the encoder 
produces a multi‑scale feature pyramid 
{ F 1，F 2，F 3，F 4 }， where features at each level pro‑
gressively encode richer semantics with coarser spa‑
tial resolution. These hierarchical features integrate 
global dependencies and local details， forming a ro‑
bust foundation for the decoder to generate 
high‑precision segmentation outputs.

1. 2 MSAE module　

To improve the representational capacity of hi‑
erarchical features extracted by the hybrid 
CNN‑Transformer backbone， we propose the 
MSAE module. Integrated at the output of each 
backbone stage， the MSAE module explicitly cap‑
tures multi‑scale spatial dependencies and adaptive‑
ly recalibrates channel‑wise feature responses. By 
emphasizing semantically salient regions while sup‑
pressing background noise， the module enhances 
the discriminability of features for complex landfill 
scenes， facilitating more accurate delineation of ir‑
regular structures and heterogeneous land cover 
types.

Let the feature map output from the local block 
of stage i in the backbone be denoted as 
F i ∈ RH i × W i × Ci. This feature map serves as the input 
to the corresponding MSAE module. First， the fea‑
ture map is evenly split along the channel dimension 
into four sub‑feature maps { Gj }4

j = 1， and each of size 
is H i × W i × Ci /4. This channel splitting strategy 
allows parallel processing of distinct sub‑feature 
maps， facilitating the capture of heterogeneous spa‑
tial patterns.

Each sub‑feature map Gj is then processed 
through an independent branch composed of a depth‑
wise separable convolution， denoted as D ( ∙ ). By 
employing different kernel sizes or dilation rates 
across the branches， the module extracts multi‑scale 
spatial features from the same input map. The trans‑
formed feature map from each branch is given by

H j = D ( Gj ) (6)
The multi‑scale features from all four branches 

are concatenated along the channel dimension to 
form an aggregated feature map F i

agg ∈ RH i × W i × Ci，
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shown as
F i

agg = Concat [ H 1, H 2, H 3, H 4 ] (7)
This aggregated representation， containing 

rich multi‑scale spatial context， is further processed 
to generate a 2D spatial attention map 
M s ∈ RH i × W i × 1 through a 1 × 1 convolution fol‑
lowed by a Sigmoid activation σ ( ∙ )，shown as

M s = σ ( Conv1 × 1 (F agg ) ) (8)
Finally， the original input feature map F i is re‑

fined by the spatial attention map through 
element‑wise multiplication ⊗ and a residual con‑
nection， producing the output F 'i of the MSAE mod‑
ule，shown as

F 'i = F i +(F i ⊗  M s ) (9)
By incorporating MSAE modules at every 

backbone stage， the network progressively refines 
the hierarchical features， enhancing their discrimina‑
tive power for the decoder. This design allows the 
model to accurately capture both fine‑grained details 
and global spatial dependencies in complex landfill 
scenes， resulting in improved segmentation perfor‑
mance.

1. 3 Decoder and deep supervision　

The decoder is constructed as a multi‑scale fu‑
sion architecture to integrate hierarchical features 
from all stages of the backbone. The deepest feature 
map F '4 is first processed through a PPM［12］ to cap‑
ture contextual information at multiple scales， en‑
hancing the global receptive field. The three 
stage‑wise feature maps， { F 'i }4

i = 2 are then fused 
through a FPN［13］， which leverages top‑down path‑
ways and lateral connections to combine high‑level 
semantic cues with detailed spatial information. The 
final segmentation map is obtained by applying a 
convolution to the FPN output，shown as
Ŷ final = Conv1 × 1 ( FPN ( F '1, F '2, F '3, PPM ( F '4 ) ) (10)

To facilitate deep supervision， the four back‑
bone features before FPN are individually passed 
through convolutions to generate auxiliary 
multi‑scale segmentation maps { Ŷ i }4

i = 1. These auxil‑
iary predictions provide intermediate gradient sig‑
nals during training， guiding the backbone to learn 
more discriminative multi‑scale features and improv‑
ing convergence， boundary delineation， and robust‑

ness against heterogeneous spatial structures. All 
outputs are rescaled via bilinear interpolation to 
match the input resolution H × W.

The total training loss（L） combines Dice and 
Focal losses （L dice and L focal） and incorporates contri‑
butions from both the main and auxiliary outputs 
（Lmain and L aux） in a weighted manner，shown as

L= Lmain + α × ∑
i = 1

4

L ( i )
aux (11)

Lmain = L dice(Ŷ final,Y )+ L focal(Ŷ final,Y ) (12)

L aux = L dice(Ŷ i,Y )+ L focal(Ŷ i,Y ) (13)

where Y denotes the ground‑truth segmentation 
map and α is set to 0.1 during training. By combin‑
ing multiscale supervision with hierarchical feature 
fusion， the decoder effectively balances local detail 
preservation and global contextual understanding， 
producing highly accurate segmentation results for 
complex landfill scenes.

2 Experiment and Analysis 

2. 1 Experimental datasets　

The proposed method was evaluated on two 
high‑resolution datasets［14］ ： Changping （CP） and 
Daxing （DX）. The Changping dataset comprises 
1 368 images of size 512 pixel × 512 pixel， acquired 
from the GF‑2 satellite， which provides 0.8 m pan‑
chromatic and 3.2 m multispectral imagery with ap‑
proximately 80 cm ground sample distance （GSD）. 
The Daxing dataset contains 2 285 images of the 
same size， obtained from Google Earth via the 
Google API， with a spatial resolution of approxi‑
mately 50 cm GSD.

Both datasets were split into training and test‑
ing sets at an 8∶2 ratio， yielding 1 094 training and 
274 testing images for Changping， and 1 828 train‑
ing and 457 testing images for Daxing. Each image 
is annotated with four semantic categories： Back‑
ground， vacant landfillable area， engineering facility 
area， and waste dumping area. These classes reflect 
the key components of construction and demolition 
landfill sites and provide a fine‑grained basis for eval‑
uating semantic segmentation performance.

The combination of high spatial resolution， di‑
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verse land‑cover types， and clearly defined catego‑
ries makes these datasets suitable benchmarks for as‑
sessing the accuracy and robustness of landfill detec‑
tion methods.

2. 2 Experimental implementation　

We evaluated our model using three estab‑
lished semantic segmentation metrics： Overall accu‑
racy （OA）， mean intersection over union （mIoU）， 
and mean F1 score （mF1）. OA measures global 
pixel‑wise classification accuracy， while mIoU as‑
sesses per‑class region overlap between predictions 
and ground truth. mF1 balances precision and recall 
across all categories， providing a comprehensive 
performance assessment through complementary 
perspectives on segmentation quality and class‑wise 
consistency.

All experiments were implemented in PyTorch 
on a single NVIDIA RTX 4090 GPU. The model 
was trained for 100 epochs with a batch size of 32， 
using the AdamW optimizer with a learning rate of 
0.001 and weight decay of 0.000 5， enhanced by a 
warm‑up poly learning rate scheduler.

2. 3 Performance comparison　

To comprehensively evaluate the effectiveness 
of the proposed GLC‑Net， we conduct comparisons 
with a set of representative baseline methods span‑
ning three major technical paradigms. These include 
conventional CNNs such as DeepLab-V3+ and 
U‑Net lightweight CNN‑based architectures includ‑
ing A2‑FPN［15］， ABCNet‑E［16］ and BA‑Net［17］， as 
well as Transformer‑based models such as SegForm ‑
er［5］， UNetFormer， DeSwin‑S， and CMTFNet［18］.

The quantitative results， summarized in Table 
1 and Table 2， demonstrate that GLC‑Net consis‑
tently outperforms all baseline methods across both 
datasets， where BA represents the background ar‑
ea， VLA the vacant landfillable area， EFA the engi‑
neering facility area， and WDA the waste dumping 
area. On the CP dataset （Table 1）， our method 
achieves outstanding performance with 92.28% of 
OA， 80.08% of mIoU， and 88.75% of mF1， sur‑
passing the second‑best approach by significant mar‑
gins of 2.22%， 6.59%， and 3.74%， respectively. 
These substantial improvements are particularly no‑

table when compared against traditional CNN archi‑
tectures and their lightweight variants. The superior 
performance validates the effectiveness of our pro‑
posed global-local hybrid modeling paradigm， 
which synergistically combines the fine‑grained de‑
tail capture capability of CNNs with the long‑range 
contextual reasoning strength of Transformers. This 
complementary integration enables the network to 
extract more discriminative features across diverse 
spatial scales and complex landfill scenarios， ad‑
dressing the challenging nature of the CP dataset.

For the DX dataset （Table 2）， GLC‑Net 
maintains its performance superiority， attaining 
95.80% of OA， 89.10% of mIoU， and 94.18% of 
mF1 while consistently leading across all evaluation 
metrics. Although Transformer‑based methods such 
as SegFormer and UNetFormer demonstrate com ‑
petitive performance on this high‑resolution dataset， 

Table 1　Performance comparison of the CP dataset %
Method
A2‑FPN

ABCNet‑E
BA‑Net

DeSwin‑S
DeepLab‑V3+

SegFormer
U‑Net

UNetFormer
CMFTNet
GLC‑Net

BG
90.23
93.14
95.23

92.78
91.62
93.88
92.96
92.63
94.67
95.00

VLA
71.21
73.67
84.89
80.54
77.92
82.96
80.86
79.09
84.97
85.66

EFA
80.87
85.61
89.51
86.72
84.41
87.23
85.26
85.21
88.38
91.03

WDA
55.86
70.50
79.15
78.44
76.83
75.97
71.91
74.51
80.94
83.32

OA
83.70
87.14
91.69
89.02
87.32
90.06
88.54
88.32
91.28
92.28

mIoU
61.03
68.69
77.79
73.76
70.94
74.49
71.29
71.32
77.72
80.08

mF1
74.54
80.73
87.20
84.62
82.69
85.01
82.75
82.86
87.94
88.75

Note: The bold and underline values indicate the best and 
second‑best results in each column, respectively.

Table 2　Performance comparison of the DX dataset %

Method
A2‑FPN

ABCNet‑E
BA‑Net

DeSwin‑S
DeepLab‑V3+

SegFormer
U‑Net

UNetFormer
CMFTNet
GLC‑Net

BG
95.6

94.66
95.96
95.97
97.13
97.45
97.26
96.66
97.52

97.48

VLA
89.89
85.78
89.92
93.40
95.05
95.04
94.97
93.87
94.84
95.35

EFA
82.32
74.03
80.89
88.70
90.78
91.07
90.93
89.01
90.62
91.21

WDA
80.15
74.05
83.12
87.46
91.26
91.16
91.92
89.44
91.09
92.67

OA
91.42
88.35
91.56
93.90
95.44
95.59
95.49
94.50
95.48
95.80

mIoU
77.51
70.64
78.24
84.32
88.01
88.23
88.37
85.77
87.96
89.10

mF1
86.99
82.13
87.47
91.38
93.55
93.68
93.77
92.25
93.52
94.18

Note: The bold and underline values indicate the best and 
second‑best results in each column, respectively

570



No. 5 WEI Kan, et al. GLC-Net: Global-Local Collaborative Network for Remote Sensing Image Segmentation

our approach exhibits distinct advantages in han‑
dling complex scenarios featuring highly irregular 
waste pile distributions and mixed land‑cover types. 
The robust performance underscores the critical im ‑
portance of simultaneously maintaining global con‑
text awareness and local detail sensitivity for accu‑
rate feature extraction in challenging remote sensing 
environments.

Further analysis indicates that the varying per‑
formance of BA‑Net across the two datasets mainly 
reflects differences in model robustness rather than 
dataset characteristics alone. BA‑Net’s lightweight 
CNN design depends heavily on local texture cues， 
which work well in the CP dataset due to its regular 
landfill structures and homogeneous backgrounds. 
However， this reliance becomes a limitation when 
facing the DX dataset’s higher spatial heterogeneity 
and spectral variations caused by different sensors 
and resolutions. Compared with CMTFNet， which 
primarily focuses on multi‑scale feature fusion 
through Transformer encoder， GLC‑Net emphasiz‑
es a more efficient global‑local interaction to en‑
hance spatial consistency and contextual understand‑

ing. In contrast， GLC‑Net maintains consistent ac‑
curacy across both datasets because its global‑local 
collaborative mechanism adaptively balances 
fine‑grained spatial detail with global contextual un‑
derstanding. By integrating long‑range dependency 
modeling with local feature enhancement，GLC‑Net 
demonstrates stronger generalization and robustness 
under diverse imaging and scene conditions， an es‑
sential capability for real‑world remote sensing appli‑
cations.

Qualitative visualizations shown in Fig.2 fur‑
ther corroborate these findings. GLC‑Net generates 
segmentation maps with sharper boundaries， re‑
duced fragmentation， and better internal consisten‑
cy within each semantic class. This improvement is 
attributable not only to the global-local hybrid back‑
bone but also to the MSAE module， which effec‑
tively strengthens the representation of complex spa‑
tial patterns. In contrast， other methods often pro‑
duce blurred edges， fragmented regions， or misclas‑
sifications in areas with intricate geometry， under‑
scoring the benefits of our explicit spatial informa‑
tion enhancement.

Collectively， these results demonstrate that 
GLC‑Net can simultaneously leverage global con‑
textual information and finely detailed local fea‑
tures， delivering more accurate and robust segmen‑
tation for construction waste landfill detection.

2. 4 Ablation study　

To systematically investigate the contributions 

of the key components in GLC‑Net， we conducted 
ablation experiments on the CP and DX datasets， 
focusing on three modules： The local block （LB） in 
each encoder stage， the MSAE module， and the 
deep supervision （DS） in the decoder. Table 3 sum‑
marizes the quantitative results in terms of OA， 
mIoU， and mF1.

When all three components are included， the 

Fig.2　Visual comparison on CP (rows 1—2) and DX (rows 3—4) datasets
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network achieves its best performance， with 
92.28% of OA， 80.08% of mIoU， and 88.75% of 
mF1 on CP detaset， and 95.80% of OA， 89.10% 
of mIoU， and 94.18% of mF1 on DX dataset. Re‑
moving LB while retaining MSAE and DS results 
in a drop of 0.40% of OA and 1.11% of mIoU on 
CP dataset， indicating that local feature enhance‑
ment in the encoder is important for capturing 
fine‑grained spatial details. Similarly， excluding 
MSAE while keeping LB and DS reduces perfor‑
mance by 0.87% of mIoU on CP dataset and 1.69% 
of mIoU on DX dataset， demonstrating the effec‑
tiveness of the proposed module in modeling 
multi‑scale spatial relationships and refining feature 
representations.

The impact of deep supervision is also evident. 
Removing DS while keeping LB and MSAE leads 
to slight declines in OA and mF1 （e. g.， 0.05% of 
OA and 0.56% of mF1 drop on CP dataset）， con‑
firming that multi‑scale auxiliary supervision facili‑
tates stable training and encourages the network to 
learn more discriminative intermediate representa‑
tions. Configurations with only a single module 
（LB， MSAE， or DS） exhibit the lowest perfor‑
mance， highlighting that each component contrib‑
utes complementarily to the overall accuracy and 
segmentation quality.

The ablation results demonstrate that LB， 
MSAE， and DS contribute complementarily： LB 
enhances local detail extraction， MSAE captures 
complex spatial relationships， and DS guides 
multi‑scale feature learning. Together， they enable 

precise boundary delineation， robust segmentation 
of heterogeneous regions， and improved overall ac‑
curacy in landfill scenes.

To assess the rationality of the auxiliary branch 
weight in the hybrid loss， we conducted an ablation 
experiment by varying the auxiliary loss coefficient 
α from 0.1 to 1.0. The results， presented in Table 
4， show that the model achieves the best perfor‑
mance when α = 0.1 on both CP and DX datasets. 
A small auxiliary weight allows the auxiliary branch 
to provide complementary supervision without domi‑
nating the optimization process of the main segmen‑
tation branch. As α increases， the auxiliary loss ex‑
erts excessive influence， causing the network to 
overfit local cues and deviate from the optimal glob‑
al segmentation objective. When α≥0.5， the mod‑
el’s performance begins to decline， and a further in‑
crease to α =1.0 leads to noticeable degradation. 
These findings confirm that a lower auxiliary super‑
vision strikes a better balance between stability and 
effectiveness in joint optimization.

2. 5 Heatmap visualization　

To gain deeper insights into the internal work‑
ings of GLC‑Net and to qualitatively validate the ef‑
fectiveness of its key modules， we employed 
gradient‑weighted class activation mapping 
（Grad‑CAM）［19］ to visualize feature representa‑
tions. Grad‑CAM generates heatmaps that highlight 
the most important regions in an input image con‑
tributing to a specific class prediction. By examining 
these heatmaps at different depths within the net‑
work， we can observe the evolution of feature re‑
finement across stages.

Table 3　Ablation study of the proposed model’s compo⁃
nents on CP and DX datasets %

Component
LB
√

√
√
√

MSAE
√
√

√

√

DS
√
√
√

√

CP
OA

92.28

91.88
91.41
92.03
91.17
91.51
90.93

mIoU
80.08

78.77
77.53
79.24
76.95
77.75
75.93

mF1
88.75

87.96
87.05
88.19
86.69
87.21
85.94

DX
OA

95.80

95.25
95.19
95.48
94.28
95.10
93.76

mIoU
89.10

87.68
87.41
88.31
84.94
87.17
83.42

mF1
94.18

93.26
93.20
93.73
91.73
93.06
90.79

Note: The checkmark √ indicates that the corresponding module is 
included in the configuration.

Table 4　Ablation study on the auxiliary branch weight

α

0.1

0.25

0.5

0.75

1.0

Dataset
CP
DX
CP
DX
CP
DX
CP
DX
CP
DX

OA/%
92.28

95.80

91.94
95.60
91.51
95.25
91.42
95.11
90.78
94.55

mIoU/%
80.08

89.10

79.32
88.82
78.63
87.98
78.26
87.49
77.12
86.63

mF1/%
88.75

94.18

88.02
93.78
87.65
93.20
87.34
93.02
86.41
91.95
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As illustrated in Fig.3， we selected four repre‑
sentative samples and generated activation maps for 
three primary classes， focusing on four key stages of 
feature processing： A—before entering the local 
block， B—before the MSAE module， C—before 

the PPM head， and D—after the PPM head. Each 
pixel value in the heat map represents the relative 
contribution score to the final class logit； higher val‑
ues denote more informative regions for the catego‑
ry of interest.

At stage A， the initial features provide a rough 
localization of target regions. The highlighted areas 
are diffuse and contain considerable background 
noise， indicating that early features encode coarse 
positional information but exhibit limited semantic 
discriminability.

Stage B shows the effect of the local block. Ac‑
tivation regions become more concentrated， and mi‑
nor noise is suppressed. For example， in DX_38， 
the outlines of structures are clearer compared to 
stage A， demonstrating that the local block enhanc‑
es local textures and fine‑grained details. However， 
activations remain fragmented， and global target in‑
tegrity is not yet fully captured.

After passing through the MSAE module 
（stage C）， previously scattered and disjointed acti‑
vations are aggregated into semantically coherent 
and spatially continuous regions. In CP_30， scat‑
tered activations at stage B merge at stage C to form 
contiguous shapes closely matching the ground 
truth. This highlights the MSAE module’s role in 
integrating multi‑scale spatial context， substantially 
improving semantic consistency and holistic percep‑

tion.
Finally， at stage D， the PPM head refines the 

features further， producing highly focused and pre‑
cise activations. The module enhances global con‑
text understanding， accurately delineating object 
boundaries and suppressing background responses.

Overall， the Grad‑CAM visualizations reveal a 
clear pattern： Features evolve from coarse and dif‑
fuse in the early stage， to more localized and struc‑
tured after the local block， to spatially coherent and 
semantically enriched after MSAE， and finally to 
highly precise and globally consistent representa‑
tions after the PPM head. This progressive refine‑
ment underscores the pivotal role of the MSAE 
module in aggregating multi‑scale context， preserv‑
ing target integrity， and enhancing discriminative 
power， which collectively supports the superior seg‑
mentation performance of GLC‑Net in complex 
landfill scenes.

2. 6 Efficiency analysis　

To evaluate the practical utility of GLC‑Net， 
we compare its parameters computational cost， and 
segmentation performance against several state-of-

Fig.3　Heatmap visualization of each stage
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the-art （SOTA） models as shown in Table 5. From 
Table 5 we can see that， GLC‑Net achieves 
16.19×106 parameters and 24.16×108 FLOPs， es‑
tablishing a robust equilibrium between computa‑
tional efficiency and segmentation accuracy. Despite 
having fewer parameters and lower computational 
cost compared to models such as U‑Net and Deep‑
Lab-V3+， GLC‑Net consistently outperforms 
these models in mIoU and mF1， highlighting its su‑
perior capability in addressing complex remote sens‑
ing challenges， such as landfill segmentation. When 
compared to other lightweight models like 
ABCNet‑E and BA‑Net， GLC‑Net maintains a dis‑
tinct advantage in both mIoU and mF1， particularly 
excelling in vegetation detection. Although these 
models demonstrate reduced computational cost， 
they exhibit lower accuracy， underscoring that com ‑
putational efficiency alone does not guarantee robust 
performance， especially in heterogeneous remote 
sensing environments. In comparison to DeSwin‑S， 
GLC‑Net demonstrates clear computational efficien‑
cy， achieving comparable or even superior segmen‑
tation accuracy with fewer parameters and lower 
FLOPs， further reinforcing the optimal trade‑off be‑
tween model complexity， computational demand， 
and segmentation performance.

Thus， the lightweight architecture of GLC‑Net 
enables it to rival or surpass more complex models 
while maintaining a high level of efficiency. This at‑
tribute makes GLC‑Net particularly suitable for 
real‑time processing in resource‑constrained environ‑
ments， such as mobile platforms or satellite imaging 

systems， where both high segmentation accuracy 
and low computational cost are critical. This analy‑
sis emphasizes the practical applicability of 
GLC‑Net in complex， heterogeneous remote sens‑
ing tasks， positioning it as a viable solution for a 
wide range of operational scenarios.

2. 7 Limitations and future work　

While GLC‑Net demonstrates strong perfor‑
mance in landfill segmentation through its global-lo‑
cal feature fusion and multi‑scale spatial enhance‑
ment， several limitations remain. The reliance on 
pixel‑level manual annotations constrains scalabili‑
ty， as labeling is time‑consuming and requires ex‑
pert knowledge. The current datasets， limited to 
CP and DX， may not fully capture the diversity of 
urban layouts or waste characteristics in other re‑
gions， which could potentially affect generalization. 
Additionally， the multi‑scale deep supervision intro‑
duces extra computational overhead during training， 
and the use of three spectral bands may underexploit 
the potential of additional multispectral information 
for finer material discrimination.

Future work will investigate semi‑supervised 
or weakly supervised approaches to reduce annota‑
tion dependence and explore knowledge distillation 
to improve training efficiency. Expanding the datas‑
et to cover diverse geographical regions and integrat‑
ing additional spectral bands could enhance general‑
ization and material differentiation. Incorporating 
temporal analysis to monitor landfill dynamics is al‑
so planned， enabling more comprehensive applica‑
tions for urban environmental management.

3 Conclusions 

（1） We propose GLC‑Net， a global-local col‑
laborative segmentation framework that combines 
ET‑based global context modeling， LB‑based local 
detail enhancement， and MSAE‑driven multi‑scale 
spatial aggregation， addressing the challenges of 
heterogeneous and complex landfill scenes.

（2） Extensive experiments on the CP and DX 
datasets demonstrate that GLC‑Net consistently out‑
performs CNN‑ and Transformer‑based baselines， 
achieving 1.5%—3.2% mIoU improvement and su‑

Table 5　Comparison of parameters and FLOPs of 
GLC⁃Net with several SOTA models

Method
A2‑FPN

ABCNet‑E
BA‑Net

DeSwin‑S
DeepLab‑V3+

SegFormer
U‑Net

UNetFormer
CMTFNet
GLC‑Net

Parameter/106

22.82
13.36
12.69
45.61
40.34
13.73
19.88
11.68
30.07
16.19

FLOP/109

83.65
30.98
25.84
93.82
93.61
23.98

123.44
23.48
66.12
24.16
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perior boundary delineation， validating both the ef‑
fectiveness and robustness of the proposed frame‑
work.

（3） Beyond performance， this work highlights 
three core contributions： The global-local hybrid 
framework for feature extraction， the MSAE mod‑
ule for multi‑scale context aggregation， and the 
comprehensive empirical validation across diverse 
datasets. These contributions collectively provide a 
robust and generalizable solution for complex re‑
mote sensing segmentation tasks.

（4） Future work will focus on reducing annota‑
tion dependency， exploring semi‑supervised learn‑
ing， integrating multispectral information， and mod‑
eling temporal dynamics to further improve general‑
ization and efficiency.
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GLC⁃Net：面向遥感影像高效分割的全局与局部协同网络

魏 刊 1，2， 李 玲 1， 梁诗琳 1， 温宗国 1

（1.清华大学环境学院，北京 100084，中国； 2.中国科学院空天信息创新研究院，北京 100190，中国）

摘要：高分辨率空天遥感影像的智能解译是空天信息处理领域的重要研究方向。复杂地表环境，如建筑与拆除

（Construction and demolition， C&D）废弃物填埋场等，对遥感影像分割模型的鲁棒性提出了较高要求。传统卷

积神经网络（Convolutional neural networks，CNNs）受限于局部感受野，难以捕获全局依赖关系；而基于 Trans‑
former 的模型虽具备长距离建模能力，却容易忽略细粒度空间结构，导致异质遥感目标分割精度不足。为此，本

文提出一种全局与局部协同网络  （Global‑local collaborative network， GLC‑Net） ，面向空天遥感影像的智能分割

任务。该模型融合了高效 Transformer 模块以建模全局依赖关系，并引入局部增强模块用于细节结构优化。此

外，设计了多尺度空间聚合与增强模块（Multi‑scale spatial aggregation and enhancement， MSAE）以强化上下文

特征表征并抑制背景干扰，同时通过深层监督机制提升多层次语义学习能力。基于两组高分辨率遥感数据集

（昌平与大兴）的实验结果表明，GLC‑Net 在平均交并比（mean intersection over union，mIoU）指标上较现有先进

方法提升 1.5%~3.2%，并在边界刻画与语义一致性方面表现更优。结果验证了全局‑局部协同建模在空天遥感

影像智能分割与环境监测中的有效性与潜力。

关键词：遥感影像；深度学习；视觉变换器；填埋场；语义分割
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