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Abstract: Highresolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China
construction initiative. Current research on 3D reconstruction using high-resolution satellite data primarily focuses on
two approaches: Multi-stereo fusion and multi-view matching. While algorithms based on these two methodologies
for multi-view image 3D reconstruction have reached relative maturity, no systematic comparison has been conducted
specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods.
This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite
datasets from diverse geographical regions. To ensure fairness in accuracy comparison, both methodologies employ
non-local dense matching for cost optimization. Results demonstrate that the multi-stereo fusion method outperforms
multi-view matching in all evaluation metrics, exhibiting approximately 1.2% higher average matching accuracy and
10.7% superior elevation precision in the experimental datasets. Therefore, for 3D modeling applications using
satellite data, we recommend adopting the multi-stereo fusion approach for digital surface model (DSM) product
generation.
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0 Introduction

Dense image matching methods primarily aim
to search for corresponding points pixel-by-pixel in
stereo pairs, generating dense 3D point clouds
through forward intersection. These methods offer
significant advantages, including large observation
ranges, high point cloud density, and low modeling
costs, enabling widespread applications in architec-
tural design'"’, urban planning'®’, disaster monitor-
ing™, cultural heritage preservation'*’, and engi-
neering surveying ’.

Current 3D reconstruction methods based on
multi-view imagery encompass two approaches:

(1) Dense matching for individual stereo pairs fol-
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lowed by multi-stereo fusion of digital surface model
(DSM) products (referred to as the multi-stereo fu-
sion method); and (2) direct multi-view dense
matching to generate DSMs (referred to as the
multi-view matching method).

The multi-stereo fusion method divides 3D re-
construction into two steps: Single-stereo dense
matching and multi-view surface model fusion. For
single-stereo dense matching, traditional photo-
grammetric stereo matching typically involves four
steps: (1) Cost computation'®’; (2) cost optimiza-
tion; (3) disparity calculation®” ; and (4) disparity
refinement®*". Cost computation measures the simi-
larity between corresponding points in stereo imag-

es, commonly using metrics such as MCCNN""/,
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census' ', mutual information"'*, correlation coeffi-

cients!™

, and gradient histograms'"*'. Cost optimiza-
tion relies on smoothness constraints between corre-
sponding points to construct a global energy func-
tion for refining matching costs''*"'’. Disparity calcu-
lation extracts the optimal disparity for each pixel
from the optimized cost using a winner-takes-all
(WTA) strategy. Disparity refinement involves
post-processing operations, such as noise removal

Ul For multi-

and interpolation of invalid regions
view DSM fusion, various algorithms exist. A sim-
ple approach involves weighted averaging of multi-
ple DSMs along the depth direction'"”!. However,
weighted averaging fails to handle outliers or errors
in DSMs, leading to the adoption of median fu-
sion'"™. While median fusion and weighted averag-
ing operate at the pixel level, they neglect local sur-
face geometry. To address this, spatial median-
based filtering methods'"’' assume Gaussian distribu-
tion of elevation values within DSM grids, reducing
noise and improving elevation estimation.

In contrast, the multi-view matching method
directly generates DSMs from multi-view imagery
by incorporating multi-view constraints into the cost
computation. These constraints, such as photomet-
ric consistency and visibility, enhance matching reli-
ability. Photometric consistency evaluates pixel simi-
larity across images based on color or intensity,
while visibility constraints ensure that only points
observable across multiple views are matched"®".
However, challenges persist in occlusion detection
and effective utilization of multi-view intensity con-
straints. Multi-view matching methods can be cate-
gorized into depth-map-based, voxel-based, and lo-
cal-patch-based approaches. Depth-map-based meth-
ods improve photometric consistency by matching

2 Voxel-

reference views with all visible views
based methods compute cost functions over 3D vox-
els and apply optimizations like graph cuts to extract
DSMs'*'. Local-patch-based methods match image
patches to generate semi-dense or dense point
clouds'*".

Despite the maturity of both methods, no sys-
tematic comparison has been conducted for satellite

data. High-resolution satellite data, with their wide

coverage, long-term stability, and periodic observa-
tion capabilities, are widely used in surveying, map-

ping, and national security'**"

. This study com-
pares the accuracy of multi-stereo fusion and multi-
view matching using high-resolution satellite datas-
ets. Both methods employ non-local dense matching
for cost optimization to ensure fairness. The findings
provide technical guidance for satellite-based 3D re-

construction in engineering applications.

1 Multi-stereo Fusion Method

The multi-stereo fusion method first performs
dense matching for each image pair and then fuses
the DSM products from multiple image pairs to gen-
erate a complete 3D product. In this paper, the opti-
mization method for dense matching adopts a non-lo-
cal approach, as described in Section 1.1; the multi-
view DSM fusion method uses a locally weighted
median fusion approach, as introduced in Sec-
tion 1.2.

1.1 Non-local dense matching method

This paper employs the concept of dynamic
programming to achieve efficient dense matching.
To address the limitation of weak one-dimensional
constraints in traditional dynamic programming
methods, a novel non-local dynamic programming
path is adopted. This allows the dense matching re-
sult of each pixel to be influenced by surrounding
global pixels, thereby achieving both high efficiency
and high accuracy in dense matching. Traditional
semi-global matching (SGM) methods only consid-
er cost aggregation in eight directions, meaning that
each pixel’s matching result is constrained solely by
scanning lines in those eight directions. As illustrat-
ed in Fig.1, pixel Q can only propagate cost infor-
mation to pixels on the scanning line (e.g. P), but
cannot influence pixels outside the scanning line. In
weakly textured regions where the signal-to-noise ra-
tio is low, relying solely on scanning line constraints
is isufficient for robust dense matching. Compared
to traditional SGM algorithms, this study enhances
the matching robustness in weakly textured areas
through a two-stage iterative approach. In the first it-

eration, the matching cost of pixel Q is propagated
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(a) Traditional SGM

(b) Enhanced non-local matching

Fig.1 Cost aggregation path

along the eight scanning directions to pixel T. In the
second iteration, the cost is further propagated from
pixel T to pixel P along its own eight scanning direc-
tions. Therefore, by performing two iterations,
each pixel in the weakly textured region is con-
strained by global pixels, which significantly enhanc-
es the robustness of the matching process''".

The SGM algorithm formulates dense match-
ing as a labeling problem by establishing a global en-
ergy function, which is optimized through 1D dy-

namic programming in eight directions, shown as
L{p—1.d)
L(p—1,d—1)+P,

L(p.d)=C(p, d)+mi -
(pod)=Clp.d)tminy | ar1)p,

mkin L(p—1,k)+P,
min L,( p—1,7) (1)

where L,( p, d) denotes the accumulated cost of the

pixel p at disparity d along the current path; 7 the di-

rection of the path; C(p, d) the matching cost of
pixel p at disparity d; and p — 1 the previous pixel
of p along the current path direction.

According to the SGM theory'®, Eq.(2) is
typically used to perform cost aggregation in eight
directions across the entire image. The aggregated
results from all directions are then summed to obtain
an approximate optimal solution of the global energy
function, which serves as the final result of dense

matching, shown as

S'(p.d)=>L(p.d) (2)

where S'( p, d ) represents the overall cost aggrega-

tion result obtained by summing the cost aggrega-
tion outcomes from all directions during the first iter-
ation.

After the first iteration, for each pixel, valid
paths exist only along the scanning line directions,
while pixels outside the scanning lines remain uncon-
nected. Therefore, the aggregated result from the
first iteration is used as the new cost input for the
second iteration, leading to

Li(p,d)=S'"(p,d)+

Li{p—1.d)
Lip—1,d—1)+P,

min (3)
Lp—1,d+1)+ P,

min L}(p—1,k)+ P,
k

where LZ( p, d ) denotes the accumulated cost of the

pixel p at disparity d along direction r during the sec-
ond iteration.

Finally, the cost aggregation results from all
eight directions are summed, shown as

8
S (p.d)=S(p,d)+ >(Lip,d)—S(p,d)) (4)
r=1

where S*( p, d ) represents the total cost aggregation
result from all eight directions during the second iter-
ation. Finally, WTA strategy is applied to extract
the final disparity map from the optimized cost vol-
ume.

After two iterations, each pixel in the image is
connected via paths to all other pixels across the en-
tire image, thereby significantly enhancing the over-

all performance of dense matching.
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1.2 Local window weighted median fusion

method

Traditional fusion of homologous DSMs typi-
cally employs a point-based median filtering strate-
gy, that is, the number of 3D points appearing at
the same location is counted, and the median of
their elevations is taken as the fusion result, as illus-
trated in Fig.2(a). Although the traditional method
is simple and effective, it does not consider informa-
tion from surrounding points, resulting in residual
noise on the model surface after fusion. Moreover,
in challenging areas, the scarcity of valid 3D points
leads to inaccurate fusion results.

To address these issues, this paper adopts a
DSM fusion method based on local grayscale consis-
tency'®’, as shown in Fig.2(b). The core idea of
this method is as follows: First, a local window is
established centered at the current fusion position;
second, in each layer of DSM and digital orthopho-
to map (DOM), 3D points with grayscale values
similar to the central pixel are identified; finally,
the elevations of all grayscale-similar pixels across
all layers are combined, and their median is taken as
the final fusion result. This method fully incorpo-
rates the 3D information of surrounding points, thus
achieving higher fusion accuracy.

The core of the DSM fusion method based on
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(a) Traditional fusion method

g D T ¥
N\
\ TR sy,

\ & e Pixel of DSM
< \ X . Fused pixel
\ & \ Fused DSM - Grayscale-simﬂar
pixel
(b) Method based on local grayscale consistency
Fig.2 Schematic of DSM fusion
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local grayscale consistency lies in how to extract
high-precision fusion results by utilizing the similari-
ty of surrounding pixels to the central pixel. This pa-
per adopts a weighted median filtering strategy to
achieve this goal. First, within a window, each pix-
el is assigned a weight ranging from 0O to 1 based on
its grayscale similarity to the central pixel—The
more similar the grayscale, the higher the weight.
Second, the weight of each pixel in the window is
multiplied by a fixed factor (defaulted to 2 in the
system) , and the number of times each pixel’s ele-
vation appears in the median filtering process is cal-
culated. The higher the weight, the more frequently
the corresponding elevation appears, and thus the
greater the likelihood it will be selected by the medi-
an filter. Third, the weighted results from all DSMs
are aggregated to form an elevation sequence, such
as {d|, d{, d;, ---,dl,-+}, where d] represents
the elevation information of the 7th pixel in the jth
DSM window. When the weight of a pixel is rela-
tively high, the corresponding elevation is more like-
ly to appear in the sequence (e.g. d{) , whereas
when the weight is low, the corresponding elevation
appears less frequently or even not at all (e.g. d;) ,
thereby ensuring the continuity and fusion accuracy
of building edges. Finally, to achieve fast weighted
median filtering, this paper employs a strategy
based on histogram representations.

In the fast computation method based on histo-
gram representations, the DSM space is first dis-
cretized into histogram bins according to spatial reso-
lution, and the frequency of each elevation value in
the elevation sequence is quickly counted. Then,
starting from the lowest elevation, the elevation val-
ue at which the cumulative frequency reaches half of
the total 1s selected as the median, and the corre-
sponding bin height represents the final result of the

median filtering.

2  Multi-view Matching Method

The multi-view matching method directly utiliz-
es multiple images and operates in object space. It
defines the elevation range through the vertical line

locus (VLL) and employs a non-local dense match-



No. 5

LIU Tengfei, et al. Precision Comparison and Analysis of Multi-stereo Fusion and Multi-view -+ 581

ing optimization approach to directly generate DSM
products. The advantage of this object-space-based
multi-view direct optimization method lies in its
high computational efficiency and low resource re-
quirements. However, challenges remain in deter-
mining pixel occlusion and fully utilizing grayscale
constraints from multiple views.

To leverage the respective strengths of the
multi-stereo fusion method and the multi-view
matching method while overcoming their limita-
tions, this paper proposes a hierarchical image
matching method that integrates both approaches.
The technical framework is illustrated in Fig.3.
First, image pyramids are constructed for the multi-
view images, as shown in Fig.3(a). At the upper
level of the pyramid, a robust initial disparity map is

generated using the multi-stereo fusion method, as

Dl B [~

(a) Image pyramid QH—LY_Q

Pairwise matching

(b) Multi-view fusion

Resampling to original resolution ;

shown in Fig.3(b). Finally, at the bottom level of
the pyramid, high-precision multi-view matching is
performed by determining the visible images and
grayscale constraints for each ground pixel based on
the initial disparity map, as shown in Fig.3(c).

In this proposed method, applying the multi-
stereo fusion approach at the upper pyramid level
significantly reduces computational resources and
improves efficiency. For example, in a 2X2 pyra-
mid, the image matching time at the upper level is
only one-eighth of that at the lower level. Further-
more, to address the visibility issue of ground pixels
in multi-view images, the initial surface model pro-
vided by the multi-stereo fusion method is used as
the basis for occlusion judgment. This effectively re-
solves the visibility and grayscale constraint issues

in the multi-view matching process.

ﬂ (c) Multi-view matching
 —

Ground pixel visibility determination

Fig.3 Flowchart of image matching technology

2.1 Visible image set for ground pixels

The major challenge in multi-view matching
lies in determining the visible image set for each
ground pixel. Including occluded or invisible images
in the matching process can severely degrade the ac-
curacy of image matching. To address this issue,
this paper uses the multi-stereo fusion result from
the upper level of the pyramid as the basis for visibil-
ity determination and applies the Z-buffer algorithm
to assess whether each pixel is visible in a given im-
age. The specific steps are as follows:

(1) For a given satellite image, all 3D points
within the study area are projected onto the image
using the rational function model (RFM).

(2) Projected points falling outside the image

extent are discarded, and only those within the im-

age bounds are retained.

(3) For each pixel on the satellite image, the
elevation of the projected 3D point is recorded. If
multiple elevation values are projected onto the
same pixel, only the highest elevation point is re-
tained, while the others are considered occluded.

(4) All images are processed sequentially, and
the visible image set for each ground pixel is finally

obtained.

2.2 Image matching based on multi-view con-

straints
Assuming the visible image set for ground pix-
el pis V(p)={L(p)}, the image matching cost
term can be expressed as the average matching cost

of pixel p across all visible images, shown as
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2 cost( p,d,I,1;) z g(p.I)
C(/),d): I,LEV(p) (5) G(p)zl,ev(p) (8)
IV(p)l—1 V()
VPl

where C( p, d ) denotes the total matching cost for
pixel p at elevation d; |V ( p)| the number of visible

images in the visible image set; and cost( p, d, I, I,)
the matching cost for pixel p at elevation d between
the image pair I, and I, Eq.(5) shows that the
matching cost for pixel p is expressed as the average
cost over multiple stereo image pairs in the visible
image set. The Census transform is used in this pa-
per as the cost similarity measure.

In designing the cost smoothing term for image
matching, this paper assumes, as in prior work,
that neighboring pixels with similar appearance
should have consistent elevation values. Therefore,
the smoothing term is formulated as a function of
the elevation disparity between neighboring pixels,

shown as

0 ld,—d,|=0
d,|<1 (6)
ld,—d,|>1

T(P,(]): Pl |dp_
P1+P2'UJ(]),(])

where T( p,¢g) denotes the smoothness term be-
tween pixels p and g. When the smoothness term is
strong, the probability that pixels p and ¢ share simi-
lar elevations increases. d, and d, represent the esti-
mated elevations of pixels p and ¢, respectively; P,
is the smaller penalty coefficient, P, the larger pen-
alty coefficient, and w( p, ¢) the weight defined by
the grayscale difference between pixels p and ¢. A
larger grayscale difference results in a smaller
weight; conversely, a smaller grayscale difference
yields a larger weight. The value of w(p, q) lies
within the range [0, 1], and it is used to improve re-
construction accuracy at elevation discontinuities.
To achieve high-precision weighted computation,
the grayscale values of pixels p and ¢ must be ob-
tained. In this paper, the average grayscale across
all visible images is used as the grayscale value of

the ground pixel, shown as

S(p.d)=>L(p.d) (7)

where G( p) denotes the average grayscale of pixel
p across the visible image set; g( p, I;) the grayscale
of pixel p in the visible image I,. Therefore, the defi-

nition of the weight w( p, ¢ ) is
(¢(r—c()

w(p,q)=-exp| — g 9)

where ¢” represents the smoothing factor that ad-
justs the weight of grayscale similarity.

Based on the definitions of the data term and
the smoothness term, this paper ultimately com-
bines the two to construct a global energy function,
and a non-local energy optimization strategy is ad-
opted to directly obtain the DSM of the surveyed ar-

ea, shown as

E(D)=>C(p,d)+ >, T(p,q) (10)

PEM pgeEM
where E denotes the global energy function for
multi-view matching; D the set of elevation values
for all ground pixels; and M the spatial extent of the
survey area.

For the energy function (Eq.(10) ), this paper
continues to employ a non-local dense matching
strategy for optimization. The specific optimization
method for the energy function can be found in Sec-

tion 1.1.

3 Experimental Areas

To comprehensively evaluate the geometric ac-
curacy of the multi-stereo fusion method and the
multi-view matching method, three representative
experimental regions with distinct terrain character-
istics were selected, as shown in Fig.4. The specific
details are as follows.

(1) Stereo satellite data of Shandong Universi-
ty of Science and Technology, China

This dataset uses stereo imagery from the GF-
7 satellite, with a spatial resolution ground sampling
distance (GSD), which refers to the distance be-

tween the centers of two consecutive pixels on the
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ground, of approximately 0.7 m, captured on April
17, 2021. The surface of this region is primarily
covered by buildings and mountainous terrain, with
some vegetation, resulting in moderate terrain com-
plexity. The stereo image pair has an intersection an-
gle of 25°, high solar elevation angle, minimal shad-
ow regions, and an image overlap exceeding 80% ,
indicating high data quality. The corresponding
ground truth data consist of laser point cloud data
from the same region (GSD of 13 cm) , resampled
to generate DSM ground truth products matching
the image resolution.

(2) Tri-stereo satellite data of Hobart, Austra-
lia

This dataset uses tri-view imagery f{rom the
IKONOS satellite, with a spatial resolution GSD of
approximately 1.0 m, captured in 2003. The surface
of this region includes mountainous areas, forests,
exposed surfaces, and a small number of buildings,
contributing to high terrain complexity. The inter-
section angles of the three images range from 15° to
30°, with an image overlap exceeding 70% , high so-
lar elevation angle, minimal shadow regions, and
high data quality, making it suitable for the experi-

mental requirements of this study. The ground truth

(b) Tri-stereo satellite data of Hobart (GSD:1 m)

data consist of 114 high-precision control points and
their corresponding annotations in the same region.

(3) Multi-view high-resolution satellite data of
the Explorer region, Argentina

This dataset uses multi-view offnadir imagery
from the WorldView-3 satellite, comprising a total
of 19 images captured over a time span of approxi-
mately two years (2015—2016) , with a spatial res-
olution GSD of approximately 0.3 m. The surface of
this region is primarily flat, with no mountainous
terrain, many buildings, and some vegetation, re-
sulting in low terrain complexity. The image over-
lap ranges from 60% to 80%, and the abundant
number of images makes it suitable for multi-view
matching experiments. The corresponding ground
truth data consist of laser point cloud data from the
same region, resampled to generate DSM ground
truth products matching the image resolution.

By selecting satellite data with varying terrain
complexities as experimental samples and incorpo-
rating diverse image parameters, this study enables
a more comprehensive evaluation of the geometric
accuracy of the multi-stereo fusion method and the

multi-view matching method under different terrain

conditions.

(c) Multi-view satellite data of the Explorer region (GSD:0.3 m)

Fig.4 Schematic diagrams of the experimental area
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4 Results and Analysis

4.1 Accuracy evaluation methods

The accuracy evaluation metrics used in this
study include matching accuracy and elevation accu-
racy.

For matching accuracy, the ground truth data
are used as references to independently evaluate the
DSM accuracy produced by the multi-stereo fusion
method and the multi-view matching method. A pre-
defined threshold is set: If the absolute error of a
pixel is less than this threshold, the pixel is consid-
ered correctly matched; otherwise, it is considered
a mismatched pixel. The ratio of correctly matched
pixels to the total number of pixels in each DSM is

calculated as the matching accuracy, defined as

COUNT ( pldis( p)<_2)
Acc,, = ’ ’ (11)
COUNT( pldis( p)EN)

where p denotes a pixel in the DSM; dis(p) the ele-
vation difference between the estimated elevation of
pixel p and the ground truth; COUNT the number
of pixels satisfying a specific condition; and Acc,,
the proportion of correctly matched pixels relative to
the total number of valid DSM pixels.

Previously, different datasets typically required
the selection of thresholds based on their spatial res-
olution, as higher spatial resolution and greater im-
age coverage often necessitate smaller threshold val-
ues. However, to simplify the computational meth-
odology and ensure stronger consistency and compa-
rability of results across different datasets, this
study opted to use a unified threshold of T'= 2 me-
ters for accuracy evaluation. This choice minimizes
evaluation biases caused by threshold differences
and provides a more intuitive reflection of the perfor-
mance of the matching algorithms.

For evaluating elevation accuracy, the ground
truth DSM of the Explorer region from 2017 is used
as a reference. The elevation accuracy of the DSMs
produced by the multi-stereo fusion method and the
multi-view matching method is separately calculat-

ed, defined as

Accy= AVG(

H,—H,|) (12)

where Accy denotes the DSM elevation accuracy
metric; AVG the averaging function; H, the esti-
mated elevation of a given pixel; and E the ground

truth elevation of that pixel.

4.2 Comparison and analysis of modeling accu-

racy

Using ground truth DSMs and control point da-
ta as references, the elevation accuracy of DSMs
generated by two types of algorithms, multi-stereo
fusion and multi-view matching, is evaluated.

In the case of the Shandong University of Sci-
ence and Technology dataset, only two satellite im~
ages are available. Therefore, the multi-stereo fu-
sion method in this experiment essentially corre-
sponds to a dense matching result derived from a ste-
reo pair. Under this two-image condition, the differ-
ence between the multi-stereo fusion and multi-view
matching methods lies in their processing domains:
The former performs dense matching in image
space, while the latter operates in object space.

As shown in Table 1, overall, the geometric
accuracy of the multi-stereo fusion method surpass-
es that of the multi-view matching method across all
experimental datasets. Specifically:

(1) Shandong University of Science and Tech-
nology Dataset: The accuracy of the two algorithms
is very close for this dataset, primarily because the
dataset contains only two images, which limits the
use of multi-view constraints.

(2) Hobart Dataset: In the experiments involv-
ing the Hobart dataset, both the multi-stereo fusion
method and the multiview matching method
achieved a matching accuracy (Acc,,) of 100%.
This is attributed to the ground truth data in the Ho-
bart region, which consist of 114 high-precision con-
trol points and their corresponding annotations.
These control points are typically located at promi-
nent and easily matched features, such as building
corners or road intersections, resulting in high
matching accuracy. Both methods achieved perfect
matching within the threshold of T=2 m. Howev-
er, matching accuracy alone does not fully reflect
the differences in geometric precision. A comparison

of elevation errors reveals that the elevation error of
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Table 1 Accuracy statistics
Acc,./ % Accy/m

Dataset Multi-stereo Multi-view Multi-stereo Multi-view

fusion matching fusion matching
Shandong University of Science and Technology 84.06 83.78 1.71 1.72
Hobart 100 100 0.66 0.79
Explorer 86.43 83.00 1.18 1.39

the multi-stereo fusion method is 0.66 m, while that
of the multi-view matching method is 0.79 m. This
discrepancy indicates that the multi-stereo fusion
method exhibits superior precision and robustness in
elevation estimation.

(3) Explorer Dataset: The geometric accuracy
of the multi-stereo fusion method is significantly
higher than that of the multi-view matching method.
This is because the multi-view matching method
concentrates redundant observational constraints in
the cost computation stage, while the subsequent
cost optimization and disparity computation stages
lack sufficient utilization of these constraints, lead-
ing to lower accuracy. In contrast, the multi-stereo
fusion method effectively leverages redundant obser-
vational constraints across multiple stages, includ-
ing cost computation, cost optimization, and multi-
stereo fusion, resulting in higher DSM product accu-
racy.

Through a systematic analysis of datasets with
varying terrain complexities, an important conclu-
sion can be drawn: The DSM accuracy generated
by the multi-stereo fusion method consistently out-
performs that of the multi-view matching method un-
der different terrain complexity conditions. This con-
clusion is universal and demonstrates the broader ap-
plicability of the multi-stereo fusion method in han-
dling 3D reconstruction tasks for satellite imagery.
It provides strong evidence to support the selection
of methods in practical applications.

To further compare the modeling performance
of the two methods, this study selects local regions
from the Hobart and Explorer datasets to visualize
the DSM results produced by both approaches, as
shown in Figs.5 and 6. From the comparison, it can

be observed that both the multi-stereo fusion meth-

(a) Multi-stereo fusion

(b) Multi-view matching

Fig.5 Local comparison in the Hobart Area

(b) Multi-view matching

Fig.6 ILocal comparison in the Explorer region

od and the multi-view matching method achieve
good reconstruction performance: The model sur-
faces are smooth and continuous, with minimal
noise, and the building structures are clearly and ac-
curately reconstructed.

However, the multi-stereo fusion method dem-
onstrates superior capability in modeling fine details.

Due to the absence of redundant observational con-

straints during the cost optimization and disparity es-
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timation stages, the multi-view matching method
exhibits weaker detail modeling performance com-
pared to the multi-stereo fusion method. Overall,
the difference in detail reconstruction ability be-
tween the two methods contributes directly to the
variation in their final geometric modeling accuracy.
Although the multi-stereo fusion method dem-
onstrates superior DSM accuracy compared to the
multi-view matching method, it also has certain lim-
itations. For instance, the DSM accuracy can be sig-
nificantly affected by the quantity and quality of
matching image pairs. To validate this, the Explor-
er region dataset was used as an example, where
the matching image pairs were ranked by quality,
and the top n pairs were selected for matching and

DSM fusion. The results are presented in Table 2.
Table 2 Influence of different number of matching im -

age pairs on DSM fusion accuracy in

multi-stereo fusion methods (Explorer)

Number of matching

image pairs Acc,o/ % Accy/m
5 86.37 1.28
10 86.43 1.26
15 85.65 1.37
20 85.08 1.43
25 84.28 1.46
30 82.83 1.51

The experiments show that for this dataset,
both matching accuracy and elevation accuracy im-
prove steadily as the number of matching image
pairs increases up to 10 pairs. However, once the
number exceeds 10, the accuracy begins to decline.
When the number of matching image pairs reaches
30, the accuracy is even lower than that of the multi-
view matching method. This indicates that an exces-
sive number of matching image pairs may introduce
redundant data and noise, leading to error propaga-
tion and negatively impacting fusion accuracy.

Therefore, in practical applications, it is rec-
ommended to select the number of matching image
pairs based on the specific characteristics of the data
to achieve a balance between accuracy and error con-

trol.

5 Conclusions

Mainstream approaches to dense image match-
ing include multi-stereo fusion methods and multi-
view matching methods. However, to date, no stud-
ies have systematically compared the accuracy of
these two types of algorithms using high-resolution
satellite imagery. In this paper, comparative experi-
ments and analyses are conducted using datasets
from three regions: the Shandong University of Sci-
ence and Technology campus in China, the Hobart
area in Australia, and the Explorer region in Argen-
tina. The satellite data sources include Gaofen-7,
IKONOS, and WorldView-3, covering both urban
plains and mountainous areas.

Using average matching accuracy and elevation
accuracy as evaluation metrics, this study considers
both stereo reconstruction and multi-view recon-
struction scenarios. The experimental results indi-
cate that, for stereo datasets, the performance dif-
ference between the two methods is minimal. How-
ever, in multi-view datasets, when the number of
matching image pairs is kept within a reasonable
range, the geometric accuracy of the multi-stereo fu-
sion method is significantly superior to that of the
multi-view matching method. Across the experimen-
tal results of the three datasets, the average match-
ing accuracy of the multi~stereo fusion method is ap-
proximately 1.2% higher than that of the multi-view
matching method, while the elevation accuracy is
improved by approximately 10.7%. Therefore, for
3D modeling applications using satellite imagery,
the multi-stereo fusion method is recommended for

the production of DSM products.
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