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Abstract: High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China 
construction initiative. Current research on 3D reconstruction using high-resolution satellite data primarily focuses on 
two approaches： Multi-stereo fusion and multi-view matching. While algorithms based on these two methodologies 
for multi-view image 3D reconstruction have reached relative maturity， no systematic comparison has been conducted 
specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods. 
This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite 
datasets from diverse geographical regions. To ensure fairness in accuracy comparison， both methodologies employ 
non-local dense matching for cost optimization. Results demonstrate that the multi-stereo fusion method outperforms 
multi-view matching in all evaluation metrics， exhibiting approximately 1.2% higher average matching accuracy and 
10.7% superior elevation precision in the experimental datasets. Therefore， for 3D modeling applications using 
satellite data， we recommend adopting the multi-stereo fusion approach for digital surface model （DSM） product 
generation.
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0 Introduction 

Dense image matching methods primarily aim 
to search for corresponding points pixel-by-pixel in 
stereo pairs， generating dense 3D point clouds 
through forward intersection. These methods offer 
significant advantages， including large observation 
ranges， high point cloud density， and low modeling 
costs， enabling widespread applications in architec⁃
tural design［1］， urban planning［2］， disaster monitor⁃
ing［3］， cultural heritage preservation［4］， and engi⁃
neering surveying［5］.

Current 3D reconstruction methods based on 
multi-view imagery encompass two approaches： 
（1） Dense matching for individual stereo pairs fol⁃

lowed by multi-stereo fusion of digital surface model 
（DSM） products （referred to as the multi-stereo fu⁃
sion method）； and （2） direct multi-view dense 
matching to generate DSMs （referred to as the 
multi-view matching method）.

The multi-stereo fusion method divides 3D re⁃
construction into two steps： Single-stereo dense 
matching and multi-view surface model fusion. For 
single-stereo dense matching， traditional photo⁃
grammetric stereo matching typically involves four 
steps： （1） Cost computation［6］； （2） cost optimiza⁃
tion； （3） disparity calculation［6-7］； and （4） disparity 
refinement［8-9］. Cost computation measures the simi⁃
larity between corresponding points in stereo imag⁃
es， commonly using metrics such as MCCNN［10］， 
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census［11］， mutual information［12］， correlation coeffi⁃
cients［13］， and gradient histograms［14］. Cost optimiza⁃
tion relies on smoothness constraints between corre⁃
sponding points to construct a global energy func⁃
tion for refining matching costs［12，15］. Disparity calcu⁃
lation extracts the optimal disparity for each pixel 
from the optimized cost using a winner-takes-all 
（WTA） strategy. Disparity refinement involves 
post-processing operations， such as noise removal 
and interpolation of invalid regions［16］. For multi-
view DSM fusion， various algorithms exist. A sim⁃
ple approach involves weighted averaging of multi⁃
ple DSMs along the depth direction［17］. However， 
weighted averaging fails to handle outliers or errors 
in DSMs， leading to the adoption of median fu⁃
sion［18］. While median fusion and weighted averag⁃
ing operate at the pixel level， they neglect local sur⁃
face geometry. To address this， spatial median-

based filtering methods［19］ assume Gaussian distribu⁃
tion of elevation values within DSM grids， reducing 
noise and improving elevation estimation.

In contrast， the multi-view matching method 
directly generates DSMs from multi-view imagery 
by incorporating multi-view constraints into the cost 
computation. These constraints， such as photomet⁃
ric consistency and visibility， enhance matching reli⁃
ability. Photometric consistency evaluates pixel simi⁃
larity across images based on color or intensity， 
while visibility constraints ensure that only points 
observable across multiple views are matched［20］. 
However， challenges persist in occlusion detection 
and effective utilization of multi-view intensity con⁃
straints. Multi-view matching methods can be cate⁃
gorized into depth-map-based， voxel-based， and lo⁃
cal-patch-based approaches. Depth-map-based meth⁃
ods improve photometric consistency by matching 
reference views with all visible views［21］. Voxel-
based methods compute cost functions over 3D vox⁃
els and apply optimizations like graph cuts to extract 
DSMs［22］. Local-patch-based methods match image 
patches to generate semi-dense or dense point 
clouds［23］.

Despite the maturity of both methods， no sys⁃
tematic comparison has been conducted for satellite 
data. High-resolution satellite data， with their wide 

coverage， long-term stability， and periodic observa⁃
tion capabilities， are widely used in surveying， map⁃
ping， and national security［24-27］. This study com ⁃
pares the accuracy of multi-stereo fusion and multi-
view matching using high-resolution satellite datas⁃
ets. Both methods employ non-local dense matching 
for cost optimization to ensure fairness. The findings 
provide technical guidance for satellite-based 3D re⁃
construction in engineering applications.

1 Multi‑stereo Fusion Method 

The multi-stereo fusion method first performs 
dense matching for each image pair and then fuses 
the DSM products from multiple image pairs to gen⁃
erate a complete 3D product. In this paper， the opti⁃
mization method for dense matching adopts a non-lo⁃
cal approach， as described in Section 1.1； the multi-
view DSM fusion method uses a locally weighted 
median fusion approach， as introduced in Sec⁃
tion 1.2.

1. 1 Non‑local dense matching method　

This paper employs the concept of dynamic 
programming to achieve efficient dense matching. 
To address the limitation of weak one-dimensional 
constraints in traditional dynamic programming 
methods， a novel non-local dynamic programming 
path is adopted. This allows the dense matching re⁃
sult of each pixel to be influenced by surrounding 
global pixels， thereby achieving both high efficiency 
and high accuracy in dense matching. Traditional 
semi-global matching （SGM） methods only consid⁃
er cost aggregation in eight directions， meaning that 
each pixel’s matching result is constrained solely by 
scanning lines in those eight directions. As illustrat⁃
ed in Fig.1， pixel Q can only propagate cost infor⁃
mation to pixels on the scanning line （e.g. P）， but 
cannot influence pixels outside the scanning line. In 
weakly textured regions where the signal-to-noise ra⁃
tio is low， relying solely on scanning line constraints 
is insufficient for robust dense matching. Compared 
to traditional SGM algorithms， this study enhances 
the matching robustness in weakly textured areas 
through a two-stage iterative approach. In the first it⁃
eration， the matching cost of pixel Q is propagated 
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along the eight scanning directions to pixel T. In the 
second iteration， the cost is further propagated from 
pixel T to pixel P along its own eight scanning direc⁃
tions. Therefore， by performing two iterations， 
each pixel in the weakly textured region is con⁃
strained by global pixels， which significantly enhanc⁃
es the robustness of the matching process［11］.

The SGM algorithm formulates dense match⁃
ing as a labeling problem by establishing a global en⁃
ergy function， which is optimized through 1D dy⁃
namic programming in eight directions， shown as

Lr( p,d )=C ( p, d )+min 
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where Lr( p，d ) denotes the accumulated cost of the 
pixel p at disparity d along the current path； r the di⁃

rection of the path； C ( p， d ) the matching cost of 
pixel p at disparity d； and p - 1 the previous pixel 
of p along the current path direction.

According to the SGM theory［12］， Eq.（2） is 
typically used to perform cost aggregation in eight 
directions across the entire image. The aggregated 
results from all directions are then summed to obtain 
an approximate optimal solution of the global energy 
function， which serves as the final result of dense 
matching， shown as

S1( p,d ) = ∑
r

Lr( )p,d (2)

where S1( p，d ) represents the overall cost aggrega⁃
tion result obtained by summing the cost aggrega⁃
tion outcomes from all directions during the first iter⁃
ation.

After the first iteration， for each pixel， valid 
paths exist only along the scanning line directions， 
while pixels outside the scanning lines remain uncon⁃
nected. Therefore， the aggregated result from the 
first iteration is used as the new cost input for the 
second iteration， leading to

L 2
r ( p,d ) = S1( p,d ) +

min 
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where L 2
r ( p，d ) denotes the accumulated cost of the 

pixel p at disparity d along direction r during the sec⁃
ond iteration.

Finally， the cost aggregation results from all 
eight directions are summed， shown as

S2( p,d ) = S ( p,d ) + ∑
r = 1

8

( )L 2
r ( )p,d - S ( )p,d   (4)

where S2( p，d ) represents the total cost aggregation 
result from all eight directions during the second iter⁃
ation. Finally， WTA strategy is applied to extract 
the final disparity map from the optimized cost vol⁃
ume.

After two iterations， each pixel in the image is 
connected via paths to all other pixels across the en⁃
tire image， thereby significantly enhancing the over⁃
all performance of dense matching.

Fig.1　Cost aggregation path
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1. 2 Local window weighted median fusion 
method

Traditional fusion of homologous DSMs typi⁃
cally employs a point-based median filtering strate⁃
gy， that is， the number of 3D points appearing at 
the same location is counted， and the median of 
their elevations is taken as the fusion result， as illus⁃
trated in Fig. 2（a）. Although the traditional method 
is simple and effective， it does not consider informa⁃
tion from surrounding points， resulting in residual 
noise on the model surface after fusion. Moreover， 
in challenging areas， the scarcity of valid 3D points 
leads to inaccurate fusion results.

To address these issues， this paper adopts a 
DSM fusion method based on local grayscale consis⁃
tency［28］， as shown in Fig. 2（b）. The core idea of 
this method is as follows： First， a local window is 
established centered at the current fusion position； 
second， in each layer of DSM and digital orthopho⁃
to map （DOM）， 3D points with grayscale values 
similar to the central pixel are identified； finally， 
the elevations of all grayscale-similar pixels across 
all layers are combined， and their median is taken as 
the final fusion result. This method fully incorpo⁃
rates the 3D information of surrounding points， thus 
achieving higher fusion accuracy.

The core of the DSM fusion method based on 

local grayscale consistency lies in how to extract 
high-precision fusion results by utilizing the similari⁃
ty of surrounding pixels to the central pixel. This pa⁃
per adopts a weighted median filtering strategy to 
achieve this goal. First， within a window， each pix⁃
el is assigned a weight ranging from 0 to 1 based on 
its grayscale similarity to the central pixel—The 
more similar the grayscale， the higher the weight. 
Second， the weight of each pixel in the window is 
multiplied by a fixed factor （defaulted to 2 in the 
system）， and the number of times each pixel’s ele⁃
vation appears in the median filtering process is cal⁃
culated. The higher the weight， the more frequently 
the corresponding elevation appears， and thus the 
greater the likelihood it will be selected by the medi⁃
an filter. Third， the weighted results from all DSMs 
are aggregated to form an elevation sequence， such 
as { d 1

1，  d 1
1， d 1

2， …，d j
i，…}， where d j

i  represents 
the elevation information of the ith pixel in the jth 
DSM window. When the weight of a pixel is rela⁃
tively high， the corresponding elevation is more like⁃
ly to appear in the sequence （e. g.  d 1

1）， whereas 
when the weight is low， the corresponding elevation 
appears less frequently or even not at all （e.g.  d 1

2）， 
thereby ensuring the continuity and fusion accuracy 
of building edges. Finally， to achieve fast weighted 
median filtering， this paper employs a strategy 
based on histogram representations.

In the fast computation method based on histo⁃
gram representations， the DSM space is first dis⁃
cretized into histogram bins according to spatial reso⁃
lution， and the frequency of each elevation value in 
the elevation sequence is quickly counted. Then， 
starting from the lowest elevation， the elevation val⁃
ue at which the cumulative frequency reaches half of 
the total is selected as the median， and the corre⁃
sponding bin height represents the final result of the 
median filtering.

2 Multi‑view Matching Method 

The multi-view matching method directly utiliz⁃
es multiple images and operates in object space. It 
defines the elevation range through the vertical line 
locus （VLL） and employs a non-local dense match⁃Fig.2　Schematic of DSM fusion
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ing optimization approach to directly generate DSM 
products. The advantage of this object-space-based 
multi-view direct optimization method lies in its 
high computational efficiency and low resource re⁃
quirements. However， challenges remain in deter⁃
mining pixel occlusion and fully utilizing grayscale 
constraints from multiple views.

To leverage the respective strengths of the 
multi-stereo fusion method and the multi-view 
matching method while overcoming their limita⁃
tions， this paper proposes a hierarchical image 
matching method that integrates both approaches. 
The technical framework is illustrated in Fig.3. 
First， image pyramids are constructed for the multi-
view images， as shown in Fig.3（a）. At the upper 
level of the pyramid， a robust initial disparity map is 
generated using the multi-stereo fusion method， as 

shown in Fig.3（b）. Finally， at the bottom level of 
the pyramid， high-precision multi-view matching is 
performed by determining the visible images and 
grayscale constraints for each ground pixel based on 
the initial disparity map， as shown in Fig.3（c）.

In this proposed method， applying the multi-
stereo fusion approach at the upper pyramid level 
significantly reduces computational resources and 
improves efficiency. For example， in a 2×2 pyra⁃
mid， the image matching time at the upper level is 
only one-eighth of that at the lower level. Further⁃
more， to address the visibility issue of ground pixels 
in multi-view images， the initial surface model pro⁃
vided by the multi-stereo fusion method is used as 
the basis for occlusion judgment. This effectively re⁃
solves the visibility and grayscale constraint issues 
in the multi-view matching process.

2. 1 Visible image set for ground pixels　

The major challenge in multi-view matching 
lies in determining the visible image set for each 
ground pixel. Including occluded or invisible images 
in the matching process can severely degrade the ac⁃
curacy of image matching. To address this issue， 
this paper uses the multi-stereo fusion result from 
the upper level of the pyramid as the basis for visibil⁃
ity determination and applies the Z-buffer algorithm 
to assess whether each pixel is visible in a given im ⁃
age. The specific steps are as follows：

（1） For a given satellite image， all 3D points 
within the study area are projected onto the image 
using the rational function model （RFM）.

（2） Projected points falling outside the image 
extent are discarded， and only those within the im ⁃

age bounds are retained.
（3） For each pixel on the satellite image， the 

elevation of the projected 3D point is recorded. If 
multiple elevation values are projected onto the 
same pixel， only the highest elevation point is re⁃
tained， while the others are considered occluded.

（4） All images are processed sequentially， and 
the visible image set for each ground pixel is finally 
obtained.

2. 2 Image matching based on multi‑view con‑
straints

Assuming the visible image set for ground pix⁃
el p is V ( p ) = { Ii ( p ) }， the image matching cost 
term can be expressed as the average matching cost 
of pixel p across all visible images， shown as

Fig.3　Flowchart of image matching technology
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C ( p,d ) =
∑

Ii,Ij ∈ V ( )p

cost ( )p,d,Ii,Ij

( )||V ( )p ∙
||V ( )p - 1

2

(5)

where C ( p，d ) denotes the total matching cost for 
pixel p at elevation d； |V ( p ) | the number of visible 
images in the visible image set； and cost ( p，d，Ii，Ij ) 
the matching cost for pixel p at elevation d between 
the image pair Ii and Ij. Eq.（5） shows that the 
matching cost for pixel p is expressed as the average 
cost over multiple stereo image pairs in the visible 
image set. The Census transform is used in this pa⁃
per as the cost similarity measure.

In designing the cost smoothing term for image 
matching， this paper assumes， as in prior work， 
that neighboring pixels with similar appearance 
should have consistent elevation values. Therefore， 
the smoothing term is formulated as a function of 
the elevation disparity between neighboring pixels， 
shown as

T ( )p,q =
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0 || dp - dq = 0

P 1 || dp - dq ≤ 1

P 1 + P 2 ∙w ( )p,q || dp - dq > 1

  (6)

where T ( p，q ) denotes the smoothness term be⁃
tween pixels p and q. When the smoothness term is 
strong， the probability that pixels p and q share simi⁃
lar elevations increases. dp and dq represent the esti⁃
mated elevations of pixels p and q， respectively； P 1 
is the smaller penalty coefficient， P 2 the larger pen⁃
alty coefficient， and w ( p，q ) the weight defined by 
the grayscale difference between pixels p and q. A 
larger grayscale difference results in a smaller 
weight； conversely， a smaller grayscale difference 
yields a larger weight. The value of w ( p，q ) lies 
within the range ［0，1］， and it is used to improve re⁃
construction accuracy at elevation discontinuities. 
To achieve high-precision weighted computation， 
the grayscale values of pixels p and q must be ob⁃
tained. In this paper， the average grayscale across 
all visible images is used as the grayscale value of 
the ground pixel， shown as

S1( p,d ) = ∑
r

Lr( )p,d (7)

- -- ----- --
G ( )p =

∑
Ii ∈ V ( )p

g ( )p,Ii

||V ( )p
(8)

where - -- ----- --
G ( p ) denotes the average grayscale of pixel 

p across the visible image set； g ( p，Ii ) the grayscale 
of pixel p in the visible image Ii. Therefore， the defi⁃
nition of the weight w ( p，q ) is

w ( p,q ) = exp 
æ
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ö
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where  σ 2 represents the smoothing factor that ad⁃
justs the weight of grayscale similarity.

Based on the definitions of the data term and 
the smoothness term， this paper ultimately com ⁃
bines the two to construct a global energy function， 
and a non-local energy optimization strategy is ad⁃
opted to directly obtain the DSM of the surveyed ar⁃
ea， shown as

E ( D ) = ∑
p ∈ M

C ( )p,d + ∑
p,q ∈ M

T ( )p,q (10)

where E denotes the global energy function for 
multi-view matching； D the set of elevation values 
for all ground pixels； and M the spatial extent of the 
survey area.

For the energy function （Eq.（10））， this paper 
continues to employ a non-local dense matching 
strategy for optimization. The specific optimization 
method for the energy function can be found in Sec⁃
tion 1.1.

3 Experimental Areas 

To comprehensively evaluate the geometric ac⁃
curacy of the multi-stereo fusion method and the 
multi-view matching method， three representative 
experimental regions with distinct terrain character⁃
istics were selected， as shown in Fig.4. The specific 
details are as follows.

（1） Stereo satellite data of Shandong Universi⁃
ty of Science and Technology， China

This dataset uses stereo imagery from the GF-

7 satellite， with a spatial resolution ground sampling 
distance （GSD）， which refers to the distance be⁃
tween the centers of two consecutive pixels on the 
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ground， of approximately 0.7 m， captured on April 
17， 2021. The surface of this region is primarily 
covered by buildings and mountainous terrain， with 
some vegetation， resulting in moderate terrain com ⁃
plexity. The stereo image pair has an intersection an⁃
gle of 25°， high solar elevation angle， minimal shad⁃
ow regions， and an image overlap exceeding 80%， 
indicating high data quality. The corresponding 
ground truth data consist of laser point cloud data 
from the same region （GSD of 13 cm）， resampled 
to generate DSM ground truth products matching 
the image resolution.

（2） Tri-stereo satellite data of Hobart， Austra⁃
lia

This dataset uses tri-view imagery from the 
IKONOS satellite， with a spatial resolution GSD of 
approximately 1.0 m， captured in 2003. The surface 
of this region includes mountainous areas， forests， 
exposed surfaces， and a small number of buildings， 
contributing to high terrain complexity. The inter⁃
section angles of the three images range from 15° to 
30°， with an image overlap exceeding 70%， high so⁃
lar elevation angle， minimal shadow regions， and 
high data quality， making it suitable for the experi⁃
mental requirements of this study. The ground truth 

data consist of 114 high-precision control points and 
their corresponding annotations in the same region.

（3） Multi-view high-resolution satellite data of 
the Explorer region， Argentina

This dataset uses multi-view off-nadir imagery 
from the WorldView-3 satellite， comprising a total 
of 19 images captured over a time span of approxi⁃
mately two years （2015—2016）， with a spatial res⁃
olution GSD of approximately 0.3 m. The surface of 
this region is primarily flat， with no mountainous 
terrain， many buildings， and some vegetation， re⁃
sulting in low terrain complexity. The image over⁃
lap ranges from 60% to 80%， and the abundant 
number of images makes it suitable for multi-view 
matching experiments. The corresponding ground 
truth data consist of laser point cloud data from the 
same region， resampled to generate DSM ground 
truth products matching the image resolution.

By selecting satellite data with varying terrain 
complexities as experimental samples and incorpo⁃
rating diverse image parameters， this study enables 
a more comprehensive evaluation of the geometric 
accuracy of the multi-stereo fusion method and the 
multi-view matching method under different terrain 
conditions.

Fig.4　Schematic diagrams of the experimental area
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4 Results and Analysis 

4. 1 Accuracy evaluation methods　

The accuracy evaluation metrics used in this 
study include matching accuracy and elevation accu⁃
racy.

For matching accuracy， the ground truth data 
are used as references to independently evaluate the 
DSM accuracy produced by the multi-stereo fusion 
method and the multi-view matching method. A pre⁃
defined threshold is set： If the absolute error of a 
pixel is less than this threshold， the pixel is consid⁃
ered correctly matched； otherwise， it is considered 
a mismatched pixel. The ratio of correctly matched 
pixels to the total number of pixels in each DSM is 
calculated as the matching accuracy， defined as

Accper =
COUNT ( )p|dis ( )p < 2

COUNT ( )p|dis ( )p ∈ N
(11)

where p denotes a pixel in the DSM； dis（p） the ele⁃
vation difference between the estimated elevation of 
pixel p and the ground truth； COUNT the number 
of pixels satisfying a specific condition； and Accper 
the proportion of correctly matched pixels relative to 
the total number of valid DSM pixels.

Previously， different datasets typically required 
the selection of thresholds based on their spatial res⁃
olution， as higher spatial resolution and greater im ⁃
age coverage often necessitate smaller threshold val⁃
ues. However， to simplify the computational meth⁃
odology and ensure stronger consistency and compa⁃
rability of results across different datasets， this 
study opted to use a unified threshold of T = 2 me⁃
ters for accuracy evaluation. This choice minimizes 
evaluation biases caused by threshold differences 
and provides a more intuitive reflection of the perfor⁃
mance of the matching algorithms.

For evaluating elevation accuracy， the ground 
truth DSM of the Explorer region from 2017 is used 
as a reference. The elevation accuracy of the DSMs 
produced by the multi-stereo fusion method and the 
multi-view matching method is separately calculat⁃
ed， defined as

AccH = AVG (| H p - ------
H p | ) (12)

where AccH denotes the DSM elevation accuracy 
metric； AVG the averaging function； H p the esti⁃
mated elevation of a given pixel； and ------H p the ground 
truth elevation of that pixel.

4. 2 Comparison and analysis of modeling accu‑
racy　

Using ground truth DSMs and control point da⁃
ta as references， the elevation accuracy of DSMs 
generated by two types of algorithms， multi-stereo 
fusion and multi-view matching， is evaluated.

In the case of the Shandong University of Sci⁃
ence and Technology dataset， only two satellite im ⁃
ages are available. Therefore， the multi-stereo fu⁃
sion method in this experiment essentially corre⁃
sponds to a dense matching result derived from a ste⁃
reo pair. Under this two-image condition， the differ⁃
ence between the multi-stereo fusion and multi-view 
matching methods lies in their processing domains： 
The former performs dense matching in image 
space， while the latter operates in object space.

As shown in Table 1， overall， the geometric 
accuracy of the multi-stereo fusion method surpass⁃
es that of the multi-view matching method across all 
experimental datasets. Specifically：

（1） Shandong University of Science and Tech⁃
nology Dataset：The accuracy of the two algorithms 
is very close for this dataset， primarily because the 
dataset contains only two images， which limits the 
use of multi-view constraints.

（2） Hobart Dataset：In the experiments involv⁃
ing the Hobart dataset， both the multi-stereo fusion 
method and the multi-view matching method 
achieved a matching accuracy （Accper） of 100%. 
This is attributed to the ground truth data in the Ho⁃
bart region， which consist of 114 high-precision con⁃
trol points and their corresponding annotations. 
These control points are typically located at promi⁃
nent and easily matched features， such as building 
corners or road intersections， resulting in high 
matching accuracy. Both methods achieved perfect 
matching within the threshold of T=2 m. Howev⁃
er， matching accuracy alone does not fully reflect 
the differences in geometric precision. A comparison 
of elevation errors reveals that the elevation error of 
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the multi-stereo fusion method is 0.66 m， while that 
of the multi-view matching method is 0.79 m. This 
discrepancy indicates that the multi-stereo fusion 
method exhibits superior precision and robustness in 
elevation estimation.

（3） Explorer Dataset： The geometric accuracy 
of the multi-stereo fusion method is significantly 
higher than that of the multi-view matching method. 
This is because the multi-view matching method 
concentrates redundant observational constraints in 
the cost computation stage， while the subsequent 
cost optimization and disparity computation stages 
lack sufficient utilization of these constraints， lead⁃
ing to lower accuracy. In contrast， the multi-stereo 
fusion method effectively leverages redundant obser⁃
vational constraints across multiple stages， includ⁃
ing cost computation， cost optimization， and multi-
stereo fusion， resulting in higher DSM product accu⁃
racy.

Through a systematic analysis of datasets with 
varying terrain complexities， an important conclu⁃
sion can be drawn： The DSM accuracy generated 
by the multi-stereo fusion method consistently out⁃
performs that of the multi-view matching method un⁃
der different terrain complexity conditions. This con⁃
clusion is universal and demonstrates the broader ap⁃
plicability of the multi-stereo fusion method in han⁃
dling 3D reconstruction tasks for satellite imagery. 
It provides strong evidence to support the selection 
of methods in practical applications.

To further compare the modeling performance 
of the two methods， this study selects local regions 
from the Hobart and Explorer datasets to visualize 
the DSM results produced by both approaches， as 
shown in Figs.5 and 6. From the comparison， it can 
be observed that both the multi-stereo fusion meth⁃

od and the multi-view matching method achieve 
good reconstruction performance： The model sur⁃
faces are smooth and continuous， with minimal 
noise， and the building structures are clearly and ac⁃
curately reconstructed.

However， the multi-stereo fusion method dem ⁃
onstrates superior capability in modeling fine details. 
Due to the absence of redundant observational con⁃
straints during the cost optimization and disparity es⁃

Table 1　Accuracy statistics

Dataset

Shandong University of Science and Technology
Hobart

Explorer

Accper/%
Multi⁃stereo 

fusion
84.06
100

86.43

Multi⁃view 
matching

83.78
100

83.00

AccH/m
Multi⁃stereo 

fusion
1.71
0.66
1.18

Multi⁃view 
matching

1.72
0.79
1.39

Fig.5　Local comparison in the Hobart Area

Fig.6　Local comparison in the Explorer region
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timation stages， the multi-view matching method 
exhibits weaker detail modeling performance com ⁃
pared to the multi-stereo fusion method. Overall， 
the difference in detail reconstruction ability be⁃
tween the two methods contributes directly to the 
variation in their final geometric modeling accuracy.

Although the multi-stereo fusion method dem ⁃
onstrates superior DSM accuracy compared to the 
multi-view matching method， it also has certain lim ⁃
itations. For instance， the DSM accuracy can be sig⁃
nificantly affected by the quantity and quality of 
matching image pairs. To validate this， the Explor⁃
er region dataset was used as an example， where 
the matching image pairs were ranked by quality， 
and the top n pairs were selected for matching and 
DSM fusion. The results are presented in Table 2.

The experiments show that for this dataset， 
both matching accuracy and elevation accuracy im ⁃
prove steadily as the number of matching image 
pairs increases up to 10 pairs. However， once the 
number exceeds 10， the accuracy begins to decline. 
When the number of matching image pairs reaches 
30， the accuracy is even lower than that of the multi-
view matching method. This indicates that an exces⁃
sive number of matching image pairs may introduce 
redundant data and noise， leading to error propaga⁃
tion and negatively impacting fusion accuracy.

Therefore， in practical applications， it is rec⁃
ommended to select the number of matching image 
pairs based on the specific characteristics of the data 
to achieve a balance between accuracy and error con⁃
trol.

5 Conclusions 

Mainstream approaches to dense image match⁃
ing include multi-stereo fusion methods and multi-
view matching methods. However， to date， no stud⁃
ies have systematically compared the accuracy of 
these two types of algorithms using high-resolution 
satellite imagery. In this paper， comparative experi⁃
ments and analyses are conducted using datasets 
from three regions： the Shandong University of Sci⁃
ence and Technology campus in China， the Hobart 
area in Australia， and the Explorer region in Argen⁃
tina. The satellite data sources include Gaofen-7， 
IKONOS， and WorldView-3， covering both urban 
plains and mountainous areas.

Using average matching accuracy and elevation 
accuracy as evaluation metrics， this study considers 
both stereo reconstruction and multi-view recon⁃
struction scenarios. The experimental results indi⁃
cate that， for stereo datasets， the performance dif⁃
ference between the two methods is minimal. How⁃
ever， in multi-view datasets， when the number of 
matching image pairs is kept within a reasonable 
range， the geometric accuracy of the multi-stereo fu⁃
sion method is significantly superior to that of the 
multi-view matching method. Across the experimen⁃
tal results of the three datasets， the average match⁃
ing accuracy of the multi-stereo fusion method is ap⁃
proximately 1.2% higher than that of the multi-view 
matching method， while the elevation accuracy is 
improved by approximately 10.7%. Therefore， for 
3D modeling applications using satellite imagery， 
the multi-stereo fusion method is recommended for 
the production of DSM products.
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基于高分辨率卫星数据的多立体融合方法和多视匹配方法

精度对比和分析

刘腾飞， 黄 旭， 黄泽锋
（中山大学遥感科学与技术学院，珠海  519082，中国）

摘要：高分辨率亚米级卫星数据在实景三维中国建设当中发挥着越来越重要的作用，当前基于高分辨率卫星数

据的三维重建研究主要包括多立体融合方法及多视匹配方法。目前基于这两种方法进行多视影像三维重建的

算法已较为成熟，但针对卫星数据来分析比较多立体融合和多视匹配两类方法优劣的研究仍不多见。本文针对

不同地区的高分辨率卫星数据集，对比分析了两类方法的实际精度。为了保证精度对比的公平性，两类方法均

采用非局部密集匹配方法进行代价优化。结果表明，多立体融合方法的精度在各方面均优于多视匹配方法，在

所用数据集中其平均匹配准确率提高约 1.2%，而高程精度提高约 10.7%。因此，在卫星数据三维建模应用中，

推荐采用多立体融合方法进行数字表面模型（Digital surface model，DSM）产品生产。

关键词：多立体融合重建；多视匹配重建；非局部密集匹配方法；遮挡检测；高分辨率卫星数据
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