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Abstract: In remote sensing imagery, approximately 67% of the data are affected by cloud cover, significantly
increasing the difficulty of image classification, recognition, and other downstream interpretation tasks. To effectively
address the randomness of cloud distribution and the non-uniformity of cloud thickness, we propose a coarse-to-fine
thin cloud removal architecture based on the observations of the random distribution and uneven thickness of cloud. In
the coarse-level declouding network, we innovatively introduce a multi-scale attention mechanism, i.e., pyramid
non-local attention (PNA ). By integrating global context with local detail information, it specifically addresses image
quality degradation caused by the uncertainty in cloud distribution. During the fine-level declouding stage, we focus on
the impact of cloud thickness on declouding results (primarily manifested as insufficient detail information). Through
a carefully designed residual dense module, we significantly enhance the extraction and utilization of feature details.
Thus, our approach precisely restores lost local texture features on top of coarse-level results, achieving a substantial
leap in declouding quality. To evaluate the effectiveness of our cloud removal technology and attention mechanism,
we conducted comprehensive analyses on publicly available datasets. Results demonstrate that our method achieves
state-of-the-art performance across a wide range of techniques.
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0 Introduction

Reaching the satellite sensor, the signal is sus-
ceptible to degradation due to the absorption and
scattering of atmospheric particles like mid-altitude
clouds. These atmospheric conditions result in
blurred image details and missing content, signifi-
cantly reducing the quality of remote sensing image
(RSI). As per statistics, approximately 67 % of the
land surface is covered by clouds''. Based on their

transmittance capabilities, clouds are typically clas-
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sified as “thin clouds” and “thick clouds”. For thick
cloud removal, existing algorithms relying solely on
single images exhibit low content credibility, while
traditional methods involving multi-source images
for atmospheric correction and pixel registration are
highly complex. Unlike the irreversible information
loss caused by thick clouds, thin clouds cover a
broader area and occur with greater frequency. Re-
moving clouds from a single image better preserves
the image’s detailed information and original fea-

tures, thereby achieving higher fidelity. Consequent-
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ly, the development of thin cloud removal technolo-
gy for remote sensing images has garnered signifi-
cant attention. However, removing thin clouds
based on a single image remains a challenging and
highly ill-conditioned task, including thin clouds”*'.
Numerous methods have been developed for the re-
moval of thin cloud from RSI. These methods can
be broadly classified into two main categories: Tra-
ditional thin cloud removal algorithms and decloud-
ing algorithms based on neural network.

Traditional image-processing-based thin cloud
removal methods rely on simplified models or pri-
ors. Through data sampling, He et al."”’ discovered
the dark channel prior and conducted research on im-
age declouding using the atmospheric scattering
model, which yielded positive results. However,
the restoration effect on the sky area was found to
be inadequate. Gao et al."’ addressed the issues of
overly smooth and missing details in Ref.[ 5] meth-
od by incorporating the morphological reconstruc-
tion method. Zhu et al.””" proposed a dehazing meth-
od that estimates the transmittance by minimizing
the energy function, effectively resolving the draw-
backs of the dark channel prior method. These tradi-
tional model- or prior-based methods rely heavily on
handcrafted features, and their restoration results
have low accuracy and robustness for remote sens-
ing images with various ground cover conditions and
complex textures electromagnetic interference or
power consumption.

In recent years, the neural network algorithm
represented by data support has shown advanced
performance in the field of image thin cloud remov-
al. Jing et al.'"” proposed a multi-scale residual con-
volutional neural network for thin cloud removal of
remote sensing images and it took the synthesized
thin cloud patches as input and outputs the corre-
sponding transmission value. Li et al.””’ designed a
multi-input and output dehazing network based on
the band characteristics of remote sensing images.
However, they may not lead to significant perfor-
mance improvements by simply increasing the num-
ber of layers or using wider layers. Ma et al."""" ob-
tained cloud information from the perspective of lin-
ear mixing of image overlay and successfully re-

stored the surface information of thin cloud areas.

This method relies too much on prior knowledge
and performs well in scenes with light cloud cover
or uniform cloud distribution, but performs poorly
in the face of thick clouds or irregularly distributed
cloud layers'"'. Liu et al."”*' used a two-stage super-
vised network to stratify and remove clouds, en-
hancing the clarity and contrast of the image and pro-
viding a reliable data source for subsequent small ob-

ject detection. Cai et al.'"”

proposed DehazeNet,
where they employed a neural network model to
learn the direct mapping relationship between foggy
images and transmittance maps. Similarly, Ren et

al_[u'

also predicted transmission map with convolu-
tional neural network (CNN). But the atmospheric
scattering model is a simplified approximation of the
thin cloud effect, making it challenging to achieve a
clear reconstruction effect solely based on the trans-
mittance map. As a result, the two-stage dehazing
network, which progresses from coarse to fine, has
gained significant attention. Zhao et al.""” introduced
a two-stage weak supervision framework called Re-
fineDNet. This framework first utilizes the dark
channel prior to restore visibility and then employs
GAN to enhance authenticity. Tran et al.'"" consid-
ered different fog densities and adopted an efficient
pooling mechanism to replace the traditional SA
module, significantly reducing the computational de-

mand. Zhang et al.''”’

estimated the atmospheric
light A and transmittance T using two CNN net-
work models. They then combined these estimates
with the GAN network to obtain the final clear pic-
ture. Li et al."™® designed a two-stage dehazing net-
work architecture to address the problem of missing
detailed information during the dehazing process, re-
constructing the firststage dehazing features with

1.7 and Li et

multi-scale detail adjustment. Du et a
al."™ had also proposed a two-stage repair network
that follows a physical model to remove fog and
heavy rain scenarios, respectively. Although the
aforementioned methods achieve satisfactory results
in fog removal, atmospheric particles in complex
satellite scenes are susceptible to the coupled effects
of wind speed, humidity, illumination direction,
and terrain occlusion. Consequently, fog concentra-
tion exhibits random and non-uniform spatial varia-

[21]

tions-“". This leads to content estimation errors in
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traditional defogging algorithms at fog boundaries
and transition zones. These errors can cause color
loss, halo artifacts, and detail loss. Therefore, ex-
plicitly modeling the randomness and
non-uniformity of fog distribution within the defog-
ging framework is an effective solution.
Furthermore, multi-scale representations and
recursive reasoning have demonstrated powerful
contextual modeling capabilities across numerous
low-level computer vision tasks. Multiscale strate-
gies capture both broad fog concentration trends
across different spatial resolutions by concurrently
or sequentially extracting features from “global se-
mantics” to “local textures”. Recursive mechanisms
progressively refine reconstructions from coarse to
fine scales, feeding high-level semantic priors back
into low-level detail recovery to enhance edge con-
sistency. Theoretically, this organic integration of
both approaches holds promise to overcome the ex-
pressive limitations of traditional “single-scale-
single-step” defogging frameworks for non-uniform
fog distributions, offering a novel research paradigm
for image defogging in complex scenes. In the cur-
rent research, thin cloud scenarios and fog scenarios
are used interchangeably, and this paper uniformly
uses thin cloud for description'#**.

Based on this, this paper revisits the degrada-

tion mechanisms of non-uniform thin cloud images
and proposes a coarse-to-fine thin cloud removal
method with a refined network. During the coarse
declouding stage, we introduce a plug-and-play pyr-
amid non-local attention mechanism module to en-
hance the fusion of global and local features. This
mechanism captures semantic information and de-
tails at different levels, thereby improving the net-
work’ s ability to restore areas with non-uniform
thin cloud concentration. During the refinement de-
clouding stage, we focus on mitigating the impact of
cloud thickness on declouding results. Through a
cleverly designed residual dense module, we signifi-
cantly reduce the loss of feature details. Consequent-
ly, this approach precisely restores lost local texture
features on top of coarse declouding results, achiev-

ing a further leap in declouding quality.

1 Methodology

As illustrated in Fig.1, we propose a two-stage
remote sensing image thin cloud network that pro-
gressively refines reconstructions from coarse to fine
scales. This approach feeds high-level semantic pri-
ors back into low-level detail recovery to enhance
edge consistency. In the first stage, we concatenate
the obtained multi-scale feature maps and project

them onto the feature map matrices K and V', then
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we combine two attention mechanisms by simultane-
ously considering spatial distribution and channel im-
portance to enhance thin cloud region restoration. In
the second stage, we develop a recursive block to
further improve declouding performance without sig-

nificantly increasing training parameters.
1.1 Coarse thin cloud removal stage

Since the attention mechanism can significantly
improve the performance of the network with mini-
mal cost, it is widely used. In this paper, we contin-
uously use the decoder-encoder structure of U-Net
network and consider designing multi-scale attention
mechanism from both spatial and channel dimen-
sions to improve the performance of the coarse
cloud removal network spatial features. In order to
balance the computational efficiency and perfor-
mance of the network, we provide a pyramid
non-locale attention (PNA). PNA can integrate dif-
ferent levels of features through progressive pyra-
mid pooling, which can not only enhance the net-
work’ s feature extraction capability for the different
distribution of cloud layers, but also effectively im-
prove the network’s integration effect of global and
local semantic information. In order to reduce the
impact of PNA on the computational efficiency of
the network, no additional convolution operation is
added in the pyramid pooling but adaptive pooling is
used directly. The reason why K and V are forced
to be consistent here is also considered for efficien-
cy. In addition, in terms of feature channels, we ad-
ditionally use channel attention to make up for the
lack of PNA in cross-channel information integra-
tion, so that the model can adaptively re-weight
each channel, thus strengthening effective, sup-
pressing redundant responses, and further improv-
ing the compactness and cloud layer discrimination
of the representation.

Feature maps with 128 channels and a pixel
size of 24X 24 will undergo adaptive pooling at five
different scales (1, 3, 7, 9, 16). We validate the
appropriateness of the scale in our ablation experi-
ments to obtain features with different dimensions,

and the final PNA can be defined as

PHA,, = reshape(Q,K,V )+ X
PHA,, €ER " “,c=128,h=w=24 (1)
where R is the feature space, and ¢ the number of
channels; A and w represent the length and width of
features.

After obtaining the feature map with the initial
encoding, we perform multi-scale processing: X,&
R, ¢=128, h=w=1; X,€R""™, ¢=128, h=
w=3, X; € R, c=128, h=w=7, X, € R""™,
=128, h=w=9, X;; € R"", (=128, h=w=16.
Then all these values will be flattened into a new
1D vector: QER"™ ,n=>576,c=128.

1.2 Fine thin cloud removal stage

The uneven distribution of thin cloud poses a
challenge to the network’s performance. While in-
creasing the depth of the network can be beneficial
for tasks like semantic segmentation, classification,
and target detection (where pixels are classified into
specific categories) , it is not as effective for thin
cloud removal®. Therefore, we propose a recur-
sive block using a residual dense block (RDB) to re-
use features and enhance image detail restoration by
superimposing detail information on advanced infor-
mation. This ensures uninterrupted information flow
between network layers and effectively enhances the
thin cloud removal effect.

Specifically, in RDB, the original input fea-
tures can access network layers of different depths
one by one through dense connections. This allows
for a continuous state transmission and the convey-
ance of information that needs to be preserved. RDB
is composed of four convolution layers, with the
first three layers expanding the dimension of feature
maps and the last layer fusing these feature maps.
The mnput channel size and growth rate in each RDB
are set to 16. The output result of RDB can be ex-
pressed as

RDB,,= RelLU(Conv(F,,F,,F,;)+ Conv(F,))
(2)
where RelLU represents the activation function, and
Conv the convolution operation; F,, F, and F; rep-

resent feature maps after Conv and Rel.U.
1.3 Loss function

To achieve an end-to-end training network, we
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used the average absolute error loss L, and perceptu-
al loss L, for joint optimization, and the loss calcula-
tion process is as follows
Leue = L1 (Jgue — I )H L, (¢ (T )— ¢ (1))
Loine= L1 (Juoe — L)+ L (¢(J oo )— ¢(1)) (3)
Lot = L course T Lreine
where Joouse and Joq,. represent the dehazed image op-
timized by coarse and fine dehazing stage; I, repre-
sents the clear image of the real scene; ¢ corre-
sponds to the output of the 14th layer of the
VGG19; and Ly, represents the final loss function
output.

2 Experiments

2.1 Dataset introduction

WHUS2-CR dataset™™ ; It is derived from the
Sentinel-2 satellite and consists of cloud images cap-
tured in various areas between 2016 and 2021. The
dataset covers different types of land such as vegeta-
tion, water, cities, bare land, and snow/ice. It con-
tains a total of 24 450 images, with resolutions of
10, 20, and 60 m. For training and testing purpos-
es, we chose 384 pixel X384 pixel size data with
10 m resolution for training.

RICE dataset'”' . It comes from the Landsat8
satellite and consists of 500 sets of thin cloud data
and 736 sets of thick cloud data. Each image has a
size of 384 pixel X 384 pixel. Subsequently, the da-
taset was divided into a 4: 1 ratio, with 80% used

as a training set and 20% as a test set.
2.2 Exprimential details

In the training process of declouding network,
the Adam optimizer is used, and parameters are set
to default. The model is trained with batch size of 5
and a termination iteration of around 300 epochs. In
terms of evaluation indicators, the widely used
structural similarity (SSIM) , peak signal-to-noise
ratio (PSNR) and mean squared error (MSE) are
adopted. We validated the effectiveness of our meth-
od by utilizing seven approaches from 2020 to 2025,
based on the WHUS2-CR and RICE datasets. In
the ablation experiment, we used the same training
method and parameter settings to validate the atten-

tion network.

2. 2.1 Comparison of dehazing methods

MSBDN'"*". Ref.[27] proposed a multi-scale
enhanced dehazing network with dense feature fu-
sion based on boosting and error feedback principles.

LapDehazeNet *': Ref.[28] introduced the
principle of infinite approximation of Taylor’s theo-
rem with the Laplace pyramid pattern to build a de-
hazing model, in which low-order polynomials re-
constructed the low-frequency information of the im-
age, and high-order polynomials regressed the high-
frequency information of the image.

Refusion'”': Ref.[29] proposed a latent space
diffusion model based on U-Net, which can diffuse
in the low-resolution latent space while retaining the
high-resolution information of the original input for
decoding.

FCTF-Net®'. Ref.[25] designed

coarse-then-fine two-stage dehazing neural net

a first

work, with DensUnet as the baseline and extra
channel attention.

CR4S2" . Ref.[9] designed a multi-input and
output dehazing network based on the band charac-
teristics of remote sensing images.

TFFDNet' ®': Ref.[18] designed a two-stage
dehazing network architecture to address the prob-
lem of missing detailed information during the dehaz-
ing process, reconstructing the firststage dehazing
features with multi-scale detail adjustment.

SENet ™ : Ref.[30] designed a novel fast de-
hazing framework based on the saturation algo-
rithm, which used a new feature extraction convolu-
tion faster and more performant than the common
3X 3 convolution, and reduced the information re-
dundancy between the channels of the feature map,
while significantly improving the computing efficien-
cy.

2. 2.2 Comparison of attention mechanisms

CBAM"™":

mechanism module that integrated space and chan-

Ref.[31] proposed an attention

nel, which was extensively employed in the design
of neural networks.

ECA-Net™ : Tt primarily enhanced the SENet
module by introducing a local cross-channel interac-
tion strategy known as the ECA module. This ap-

proach does not involve dimensionality reduction
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and incorporates a method for adaptively selecting
the size of a one-dimensional convolution kernel.

As the ECA module, this approach does not in-
volve dimensionality reduction and also incorporates
a method for adaptively selecting the size of a one-di-
mensional convolution kernel.

SA-Net'*'. Ref.[33] proposed a shuffle atten-
tion (SA) module. Initially, the shuffle unit was
employed to depict the interdependence of features
in the spatial domain and channel dimension of the
channel split data. Subsequently, all the features

were consolidated through channel shuffle.
2.3 Evaluation of results

As shown in Fig.2, the experimental results of

various methods on WHUS-CR datasets are pre-

LapDehazeNet

sented. GT represents the ground truth. The red
rectangle box denotes the area of focused attention.
For the cloud mist scattering in Fig.2(a), the image
has a large amount of cloud mist diffusion phenome-
non, which poses a high demand on thehazing algo-
rithm for such a complex scenario. The experimen-
tal results show that the FCTF-Net, TFFDNet,
and SENet methods all failed to effectively remove
thin cloud, and there are still obvious traces of cloud
mist in the image. Although MSBDN, LapDeha-
zeNet, CR4S2, and SpA-GAN can remove some
of the cloud mist to a certain extent. But there are
still problems of incomplete cloud removal in some

areas, and the details of the terrain are not complete-

ly clear.

MSBDN FCTF-Net TFFDNet §,

SpA-GAN

(a) With extensive cloud coverage

F (;‘TF—Net

TFFDNet

LapDehazeNet 7 CR4S2 S‘pA—GAN

(b) Featuring concurrent cloud and halo phenomena
Fig.2 Comparison of WHUS2-CR data

Our proposed PANet method performs excep-
tionally well, completely removing the thin cloud
occlusion and restoring clear terrain details, which
is significantly better than other methods. In Fig.2
(b), the image has a significant halo phenomenon,

which poses a higher challenge for the anti-interfer-

ence ability and detail recovery ability of the dehaz-
ing algorithm. The experimental results show the
MSBDN, FCTF-Net, TFFDNet, and SENet
methods are not satisfactory in removing the halo,
and there are still obvious artifacts in image, affect-

ing the visual effect and the accuracy of subsequent
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applications. However, although LapDehazeNet,
CR4S2, and SpA-GAN can correct and repair color
cast to some extent, the effect is not ideal, and the
problem of color distortion is still more prominent.
In contrast, our PANet method performs excellent-
ly in dealing the halo phenomenon, effectively re-
moving the artifacts and precisely correcting and re-
pairing the color cast, restoring more natural and
true image colors. Table 1 presents the quantitative
evaluation results of the WHUS-CR dataset. By ex-

amining the data in the table, it is evident that our

PNANet all other methods across the board. Specif-
ically, PNANet achieves the highest score in
SSIM, PSNR, and the lowest in MSE. Compared
to other methods, PNAN outperforms them by an
average of 5.801% in SSIM, 1.72 dB in PSNR,
and a reduction of 8.582 in MSE. These improve-
highlight  the

PNANet in preserving image structures, enhancing

ments superior performance of
signal quality, and minimizing errors, thereby dem-
onstrating its effectiveness in the context of the

WHUS-CR dataset.

Table 1 Comparison of experimental data evaluation indexes

Dataset Metric MSBDN SpA-GAN FCTF-Net TFFDNet LapDehazeNet CR4S2 SENet PNANet
SSIM 0.680 0 0.7311 0.813 0 0.784 0 0.805 5 08131 0.7819 0.8265
WHUS-CR PSNR/dB  24.266 21.650 26.222 24.582 25.842 26.344 25.194 26.593
MSE 75.224 84.471 65.507 75.491 68.002 64.563 69.212 62.971

Fig.3 gives the comparison of RICE data. GT
represents the ground truth and the red rectangle box
denotes the area of focused attention. Similarly, for

the scene with uneven cloud distribution in Fig.3(a),

the situation that is more complicated. Most of the

other methods cannot effectively remove the cover
when processing such images, resulting in the infor-
mation of the ground objects still being obscured.
Especially, the lLapDehazeNet method not only

fails to successfully remove the thin cloud, but also

SpA-GAN

(a) Complex cloud occlusion scenes with varying thicknesses

LapDehazéi\Iet

3 =

(b) Cloud occlusion with richer detail textures

Fig.3 Comparison of RICE data
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leads to the distortion of the ground objects, severe-
ly affecting the quality and usability of the image. In
this case, only the FCTF-Net and our PNANet
method can effectively remove the cloud, and the
ground object information is restored to be relatively
clear, showing strong robustness and adaptability.
For the relatively cloud cover in Fig.3(b) , although
the overall difficulty is relatively low, it still needs
the algorithm to have the good detail recovery abili-
ty and the radiation information correction ability.
The experimental results show that except for the
LapDehazeNet method, which has difficulty in re-
storing complete ground object information, the oth-
er methods can achieve the goal of cloud removal to
a certain extent but there are still some problems,
such as image blurring, radiation information offset,
etc., thus affecting the quality of the image and the

accuracy of the follow-up. In comparison, our PAN-

et method has a better performance in restoring
ground object details, and the restored details are
closer to the real label, which can provide higher
quality image for subsequent applications and show
its significant advantages in the field of cloud remov-
al in remote sensing images. The quantitative evalu-
ation of the RICE dataset is showcased in Table 2,
where it can be seen that our PNANet achieves the
best results in all metrics, with an average improve-
ment of 5.625%, 5.363 dB and 24.016 in SSIM,
PNSR and MSE, respectively. In Table 3, we dem~
onstrate the performance comparison of different
methods in terms of efficiency by evaluating their pa-
rameter count (Params), computational complexity
(FLOPs) , and training duration (4,,). Although our
method does not achieve the best results, it achieves a

good balance between accuracy and efficiency.

Table 2 Comparison of RICE data evaluation indexes

Dataset ~ Metric MSBDN  SpA-GAN FCTF-Net TFFDNet LapDehazeNet CR4S2  SENet  PNANet
SSIM 0.837 1 0.828 1 0.909 1 0.769 9 0.849 9 09118 0.8685 0.923 5
RICE PSNR/dB  29.670 26.074 32.773 21.444 25.349 30.846 27.569 34.307
MSE 50.278 71.248 37.840 98.089 77.574 53.191 57.319 34.010
Table 3 Contrast experiment efficiency evaluation
Metric MSBDN  SpA-GAN FCTF-Net TFFDNet LapDehazeNet CR4S2 SENet PNANet
FLOPs/10’ — 55.242 22.607 384.94 104.690 21.100 1.2211 46.083
Params/10° 2.983 28.713 0.163 2.653 34.548 1.485 0.008 4 2.029
by /'S 308.781 144.562 94.544 276.06 185.072 190.603 16.134 105.458

2.4 Ablation experiment

In the attention mechanism comparison experi-
ment, we use the U-Net network as the baseline,
and add the attention mechanisms of CBAM,
ECA-Net, SA-Net and PNA, respectively. Table
4 presents the accuracy after 300 epochs, with our
PNA achieving the highest results in terms of both
SSIM and PNSR. In terms of efficiency, the pro-
posed method outperforms others in FLOPs, pa-
rameter count, and training time. This is because
the PNA attention design reduces the number of
U-Net channels from 256 to 128. In the ablation ex-
periment, U-Net is used as the baseline, our PNA
is the addition of PNA, our L, represents the addi-

tion of fine thin cloud removal stage on the basis of

former, and our L,"L, represents the network with
added perceptual loss. The experimental results are
shown in Table 4. In Fig.4, the attention visualiza-
tion results of all methods are also shown, and the
improvement of the network’ s attention to the thin
cloud coverage area can be clearly observed. In Ta-
ble 5, we conducted ablation tests on PAN and
RDB structures, comparing scenarios where PAN
was not used (PAN_0) , only scales 1, 3, and 7
were used (PAN_137) , PAN_912 (using only
scales 9 and 12) , RDB 0, RDB_1, RDB 3, and
OUR_PAN_RDB. The results show that using
RDB generally leads to an upward trend in both
SSIM and PSNR metrics compared to not using it.

This is because the RDB module’s multi-feature re-
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use enhances the recovery of fine texture structures.
However, as the number of RDBs increases, so
does the computational burden of parameter calcula-
tions. We observe that when RDB increases to 3,
SSIM and PSNR show an negligible improvement.

Balancing performance and effectiveness, we there-

fore employ 2 RDBs for feature recovery. Further-
more, compared to not using PAN, the multi-scale
feature attention achieves excellent results in reduc-
ing the randomness of thin cloud locations, without
significantly increasing parameters or floating-point

operations.

Table 4 Ablation evaluation of attention

Metric U-Net CBAM ECA-Net SA-Net Our PNA Our L, Our L,°L,

SSIM 0.815 0.821 0.821 0.822 0.827 0.827 0.841
PSNR/dB 25.742 26.301 26.239 26.427 26.683 2 26.722 27.014
FLOPs/10° 38.882 38.914 38.934 38.882 38.401 — —
Params/10° 2.597 2.602 2.597 2.597 1.973 — —

Loin! S 62.716 85.193 72.178 66.675 58.143 3 — —

Cloud image

Ours PNA

Fig.4

ECA-Net:

Examples of various attention feature maps

Table 5 Ablation evaluation results of PAN and RDB structure

Parameter Training time/(s*epoch™) Params/10° FLOPs/10’ SSIM PSNR/dB
RDB-0 42.366 1.95 16.28 0.805 25 25.5057
RDB-1 48.334 2.00 18.88 0.815 37 25.9617
RDB-3 66.543 2.06 22.08 0.826 67 26.517 3
PAN_O 53.523 2.01 20.18 0.775 84 24.579°9

PAN_137 54.763 2.03 20.48 0.790 62 25.627 6

PAN_916 55.755 2.03 20.48 0.804 68 25.353 3

Ours 56.335 2.03 20.48 0.828 09 26.546 6

3 Conclusions

In this paper, based on observations of the ran-
dom distribution and uneven thickness of clouds,
we propose a network for removing thin clouds un-
der non-uniform thin cloud conditions. This network
adopts a coarse-to-fine thin cloud removal architec-

ture. In the coarse-level de—clouding network, we in-

novatively incorporate an attention mechanism. By
integrating global context with local texture, this
mechanism specifically addresses image quality deg-
radation caused by the uncertainty in cloud distribu-
tion. During the fine-level de-clouding stage, we fo-
cus on the impact of cloud layer thickness on feature
detail information. Through a carefully designed re-

sidual dense module, we significantly enhance the
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extraction and utilization of feature detail informa-

tion.

Through experiments on publicly available da-

tasets, our thin cloud removal network and atten-

tion mechanism demonstrate superior performance

compared to various existing methods.
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