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Abstract: In remote sensing imagery， approximately 67% of the data are affected by cloud cover， significantly 
increasing the difficulty of image classification， recognition， and other downstream interpretation tasks. To effectively 
address the randomness of cloud distribution and the non-uniformity of cloud thickness， we propose a coarse-to-fine 
thin cloud removal architecture based on the observations of the random distribution and uneven thickness of cloud. In 
the coarse-level declouding network， we innovatively introduce a multi-scale attention mechanism， i. e.， pyramid 
non⁃local attention （PNA）. By integrating global context with local detail information， it specifically addresses image 
quality degradation caused by the uncertainty in cloud distribution. During the fine-level declouding stage， we focus on 
the impact of cloud thickness on declouding results （primarily manifested as insufficient detail information）. Through 
a carefully designed residual dense module， we significantly enhance the extraction and utilization of feature details. 
Thus， our approach precisely restores lost local texture features on top of coarse-level results， achieving a substantial 
leap in declouding quality. To evaluate the effectiveness of our cloud removal technology and attention mechanism， 
we conducted comprehensive analyses on publicly available datasets. Results demonstrate that our method achieves 
state-of-the-art performance across a wide range of techniques.
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0 Introduction

Reaching the satellite sensor， the signal is sus⁃
ceptible to degradation due to the absorption and 
scattering of atmospheric particles like mid⁃altitude 
clouds. These atmospheric conditions result in 
blurred image details and missing content， signifi⁃
cantly reducing the quality of remote sensing image 
（RSI）. As per statistics， approximately 67% of the 
land surface is covered by clouds［1］. Based on their 
transmittance capabilities， clouds are typically clas⁃

sified as “thin clouds” and “thick clouds”. For thick 
cloud removal， existing algorithms relying solely on 
single images exhibit low content credibility， while 
traditional methods involving multi⁃source images 
for atmospheric correction and pixel registration are 
highly complex. Unlike the irreversible information 
loss caused by thick clouds， thin clouds cover a 
broader area and occur with greater frequency. Re⁃
moving clouds from a single image better preserves 
the image’s detailed information and original fea⁃
tures， thereby achieving higher fidelity. Consequent⁃
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ly， the development of thin cloud removal technolo⁃
gy for remote sensing images has garnered signifi⁃
cant attention. However， removing thin clouds 
based on a single image remains a challenging and 
highly ill⁃conditioned task， including thin clouds［2⁃4］. 
Numerous methods have been developed for the re⁃
moval of thin cloud from RSI. These methods can 
be broadly classified into two main categories： Tra⁃
ditional thin cloud removal algorithms and decloud⁃
ing algorithms based on neural network.

Traditional image⁃processing⁃based thin cloud 
removal methods rely on simplified models or pri⁃
ors. Through data sampling， He et al.［5］ discovered 
the dark channel prior and conducted research on im ⁃
age declouding using the atmospheric scattering 
model， which yielded positive results. However， 
the restoration effect on the sky area was found to 
be inadequate. Gao et al.［6］ addressed the issues of 
overly smooth and missing details in Ref.［5］ meth⁃
od by incorporating the morphological reconstruc⁃
tion method. Zhu et al.［7］ proposed a dehazing meth⁃
od that estimates the transmittance by minimizing 
the energy function， effectively resolving the draw⁃
backs of the dark channel prior method. These tradi⁃
tional model⁃ or prior⁃based methods rely heavily on 
handcrafted features， and their restoration results 
have low accuracy and robustness for remote sens⁃
ing images with various ground cover conditions and 
complex textures electromagnetic interference or 
power consumption.

In recent years， the neural network algorithm 
represented by data support has shown advanced 
performance in the field of image thin cloud remov⁃
al. Jing et al.［8］ proposed a multi⁃scale residual con⁃
volutional neural network for thin cloud removal of 
remote sensing images and it took the synthesized 
thin cloud patches as input and outputs the corre⁃
sponding transmission value. Li et al.［9］ designed a 
multi⁃input and output dehazing network based on 
the band characteristics of remote sensing images. 
However， they may not lead to significant perfor⁃
mance improvements by simply increasing the num ⁃
ber of layers or using wider layers. Ma et al.［10］ ob⁃
tained cloud information from the perspective of lin⁃
ear mixing of image overlay and successfully re⁃
stored the surface information of thin cloud areas. 

This method relies too much on prior knowledge 
and performs well in scenes with light cloud cover 
or uniform cloud distribution， but performs poorly 
in the face of thick clouds or irregularly distributed 
cloud layers［11］. Liu et al.［12］ used a two⁃stage super⁃
vised network to stratify and remove clouds， en⁃
hancing the clarity and contrast of the image and pro⁃
viding a reliable data source for subsequent small ob⁃
ject detection. Cai et al.［13］ proposed DehazeNet， 
where they employed a neural network model to 
learn the direct mapping relationship between foggy 
images and transmittance maps. Similarly， Ren et 
al.［14］ also predicted transmission map with convolu⁃
tional neural network （CNN）. But the atmospheric 
scattering model is a simplified approximation of the 
thin cloud effect， making it challenging to achieve a 
clear reconstruction effect solely based on the trans⁃
mittance map. As a result， the two⁃stage dehazing 
network， which progresses from coarse to fine， has 
gained significant attention. Zhao et al.［15］ introduced 
a two⁃stage weak supervision framework called Re⁃
fineDNet. This framework first utilizes the dark 
channel prior to restore visibility and then employs 
GAN to enhance authenticity. Tran et al.［16］ consid⁃
ered different fog densities and adopted an efficient 
pooling mechanism to replace the traditional SA 
module， significantly reducing the computational de⁃
mand. Zhang et al.［17］ estimated the atmospheric 
light A and transmittance T using two CNN net⁃
work models. They then combined these estimates 
with the GAN network to obtain the final clear pic⁃
ture. Li et al.［18］ designed a two⁃stage dehazing net⁃
work architecture to address the problem of missing 
detailed information during the dehazing process， re⁃
constructing the firststage dehazing features with 
multi⁃scale detail adjustment. Du et al.［19］ and Li et 
al.［20］ had also proposed a two⁃stage repair network 
that follows a physical model to remove fog and 
heavy rain scenarios， respectively. Although the 
aforementioned methods achieve satisfactory results 
in fog removal， atmospheric particles in complex 
satellite scenes are susceptible to the coupled effects 
of wind speed， humidity， illumination direction， 
and terrain occlusion. Consequently， fog concentra⁃
tion exhibits random and non⁃uniform spatial varia⁃
tions［21］. This leads to content estimation errors in 
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traditional defogging algorithms at fog boundaries 
and transition zones. These errors can cause color 
loss， halo artifacts， and detail loss. Therefore， ex⁃
plicitly modeling the randomness and 
non⁃uniformity of fog distribution within the defog⁃
ging framework is an effective solution.

Furthermore， multi⁃scale representations and 
recursive reasoning have demonstrated powerful 
contextual modeling capabilities across numerous 
low⁃level computer vision tasks. Multiscale strate⁃
gies capture both broad fog concentration trends 
across different spatial resolutions by concurrently 
or sequentially extracting features from “global se⁃
mantics” to “local textures”. Recursive mechanisms 
progressively refine reconstructions from coarse to 
fine scales， feeding high⁃level semantic priors back 
into low⁃level detail recovery to enhance edge con⁃
sistency. Theoretically， this organic integration of 
both approaches holds promise to overcome the ex⁃
pressive limitations of traditional “single⁃scale⁃ 
single⁃step” defogging frameworks for non⁃uniform 
fog distributions， offering a novel research paradigm 
for image defogging in complex scenes. In the cur⁃
rent research， thin cloud scenarios and fog scenarios 
are used interchangeably， and this paper uniformly 
uses thin cloud for description［22⁃24］.

Based on this， this paper revisits the degrada⁃

tion mechanisms of non⁃uniform thin cloud images 
and proposes a coarse⁃to⁃fine thin cloud removal 
method with a refined network. During the coarse 
declouding stage， we introduce a plug⁃and⁃play pyr⁃
amid non-local attention mechanism module to en⁃
hance the fusion of global and local features. This 
mechanism captures semantic information and de⁃
tails at different levels， thereby improving the net⁃
work’s ability to restore areas with non-uniform 
thin cloud concentration. During the refinement de⁃
clouding stage， we focus on mitigating the impact of 
cloud thickness on declouding results. Through a 
cleverly designed residual dense module， we signifi⁃
cantly reduce the loss of feature details. Consequent⁃
ly， this approach precisely restores lost local texture 
features on top of coarse declouding results， achiev⁃
ing a further leap in declouding quality.

1 Methodology

As illustrated in Fig.1， we propose a two-stage 
remote sensing image thin cloud network that pro⁃
gressively refines reconstructions from coarse to fine 
scales. This approach feeds high⁃level semantic pri⁃
ors back into low⁃level detail recovery to enhance 
edge consistency. In the first stage， we concatenate 
the obtained multi⁃scale feature maps and project 
them onto the feature map matrices KT and VT，then 

Fig.1 Proposed cloud removal network
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we combine two attention mechanisms by simultane⁃
ously considering spatial distribution and channel im ⁃
portance to enhance thin cloud region restoration. In 
the second stage， we develop a recursive block to 
further improve declouding performance without sig⁃
nificantly increasing training parameters.

1. 1 Coarse thin cloud removal stage

Since the attention mechanism can significantly 
improve the performance of the network with mini⁃
mal cost， it is widely used. In this paper， we contin⁃
uously use the decoder⁃encoder structure of U⁃Net 
network and consider designing multi⁃scale attention 
mechanism from both spatial and channel dimen⁃
sions to improve the performance of the coarse 
cloud removal network spatial features. In order to 
balance the computational efficiency and perfor⁃
mance of the network， we provide a pyramid 
non⁃locale attention （PNA）. PNA can integrate dif⁃
ferent levels of features through progressive pyra⁃
mid pooling， which can not only enhance the net⁃
work’s feature extraction capability for the different 
distribution of cloud layers， but also effectively im ⁃
prove the network’s integration effect of global and 
local semantic information. In order to reduce the 
impact of PNA on the computational efficiency of 
the network， no additional convolution operation is 
added in the pyramid pooling but adaptive pooling is 
used directly. The reason why K and V are forced 
to be consistent here is also considered for efficien⁃
cy. In addition， in terms of feature channels， we ad⁃
ditionally use channel attention to make up for the 
lack of PNA in cross⁃channel information integra⁃
tion， so that the model can adaptively re⁃weight 
each channel， thus strengthening effective， sup⁃
pressing redundant responses， and further improv⁃
ing the compactness and cloud layer discrimination 
of the representation.

Feature maps with 128 channels and a pixel 
size of 24×24 will undergo adaptive pooling at five 
different scales （1， 3， 7， 9， 16）. We validate the 
appropriateness of the scale in our ablation experi⁃
ments to obtain features with different dimensions，
and the final PNA can be defined as

PHA out = reshape (Q,K,V )+ X

PHA out ∈ R c × h × w,c = 128,h = w = 24 (1)
where R is the feature space， and c the number of 
channels； h and w represent the length and width of 
features.

After obtaining the feature map with the initial 
encoding， we perform multi-scale processing： X1∈
Rc×h×w， c=128， h=w=1；X3∈Rc×h×w， c=128， h=
w=3， X7 ∈ Rc×h×w， c=128， h=w=7， X9 ∈ Rc×h×w， 
c=128， h=w=9， X16 ∈ Rc×h×w， c=128， h=w=16. 
Then all these values will be flattened into a new 
1D vector： Q∈Rn×c，n=576，c=128.

1. 2 Fine thin cloud removal stage

The uneven distribution of thin cloud poses a 
challenge to the network’s performance. While in⁃
creasing the depth of the network can be beneficial 
for tasks like semantic segmentation， classification， 
and target detection （where pixels are classified into 
specific categories）， it is not as effective for thin 
cloud removal［25］. Therefore， we propose a recur⁃
sive block using a residual dense block （RDB） to re⁃
use features and enhance image detail restoration by 
superimposing detail information on advanced infor⁃
mation. This ensures uninterrupted information flow 
between network layers and effectively enhances the 
thin cloud removal effect.

Specifically， in RDB， the original input fea⁃
tures can access network layers of different depths 
one by one through dense connections. This allows 
for a continuous state transmission and the convey⁃
ance of information that needs to be preserved. RDB 
is composed of four convolution layers， with the 
first three layers expanding the dimension of feature 
maps and the last layer fusing these feature maps. 
The input channel size and growth rate in each RDB 
are set to 16. The output result of RDB can be ex⁃
pressed as

RDBout = ReLU ( Conv ( F 1,F 2,F 3 )+ Conv ( F 1 ) )
(2)

where ReLU represents the activation function， and 
Conv the convolution operation； F1， F2 and F3 rep⁃
resent feature maps after Conv and ReLU.

1. 3 Loss function

To achieve an end-to-end training network， we 
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used the average absolute error loss L1 and perceptu⁃
al loss L p for joint optimization， and the loss calcula⁃
tion process is as follows
ì

í

î

ïïïï

ïïïï

L coarse = L 1 ( J coarse - Igt )+ L p ( ϕ ( J coarse )- ϕ ( Igt ) )
L refine = L 1 ( J refine - Igt )+ L p ( ϕ ( J refine )- ϕ ( Igt ) )
L finall = L coarse + L refine

(3)

where Jcoarse and Jrefine represent the dehazed image op⁃
timized by coarse and fine dehazing stage； Igt repre⁃
sents the clear image of the real scene； ϕ corre⁃
sponds to the output of the 14th layer of the 
VGG19； and Lfinall represents the final loss function 
output.

2 Experiments

2. 1 Dataset introduction

WHUS2‑CR dataset［26］： It is derived from the 
Sentinel⁃2 satellite and consists of cloud images cap⁃
tured in various areas between 2016 and 2021. The 
dataset covers different types of land such as vegeta⁃
tion， water， cities， bare land， and snow/ice. It con⁃
tains a total of 24 450 images， with resolutions of 
10， 20， and 60 m. For training and testing purpos⁃
es， we chose 384 pixel×384 pixel size data with 
10 m resolution for training.

RICE dataset［27］： It comes from the Landsat8 
satellite and consists of 500 sets of thin cloud data 
and 736 sets of thick cloud data. Each image has a 
size of 384 pixel× 384 pixel. Subsequently， the da⁃
taset was divided into a 4∶1 ratio， with 80% used 
as a training set and 20% as a test set.

2. 2 Exprimential details

In the training process of declouding network， 
the Adam optimizer is used， and parameters are set 
to default. The model is trained with batch size of 5 
and a termination iteration of around 300 epochs. In 
terms of evaluation indicators， the widely used 
structural similarity （SSIM）， peak signal-to-noise 
ratio （PSNR） and mean squared error （MSE） are 
adopted. We validated the effectiveness of our meth⁃
od by utilizing seven approaches from 2020 to 2025， 
based on the WHUS2⁃CR and RICE datasets. In 
the ablation experiment， we used the same training 
method and parameter settings to validate the atten⁃
tion network.

2. 2. 1 Comparison of dehazing methods
MSBDN［27］： Ref.［27］ proposed a multi-scale 

enhanced dehazing network with dense feature fu⁃
sion based on boosting and error feedback principles.

LapDehazeNet［28］： Ref.［28］ introduced the 
principle of infinite approximation of Taylor’s theo⁃
rem with the Laplace pyramid pattern to build a de⁃
hazing model， in which low-order polynomials re⁃
constructed the low-frequency information of the im ⁃
age， and high-order polynomials regressed the high-

frequency information of the image.
Refusion［29］： Ref.［29］ proposed a latent space 

diffusion model based on U-Net， which can diffuse 
in the low-resolution latent space while retaining the 
high-resolution information of the original input for 
decoding.

FCTF‑Net［25］： Ref.［25］ designed a first-
coarse-then-fine two-stage dehazing neural net⁃
work， with DensUnet as the baseline and extra 
channel attention.

CR4S2［9］： Ref.［9］ designed a multi-input and 
output dehazing network based on the band charac⁃
teristics of remote sensing images.

TFFDNet［18］： Ref.［18］ designed a two-stage 
dehazing network architecture to address the prob⁃
lem of missing detailed information during the dehaz⁃
ing process， reconstructing the firststage dehazing 
features with multi-scale detail adjustment.

SENet［30］： Ref.［30］ designed a novel fast de⁃
hazing framework based on the saturation algo⁃
rithm， which used a new feature extraction convolu⁃
tion faster and more performant than the common 
3×3 convolution， and reduced the information re⁃
dundancy between the channels of the feature map， 
while significantly improving the computing efficien⁃
cy.
2. 2. 2 Comparison of attention mechanisms

CBAM［31］： Ref.［31］ proposed an attention 
mechanism module that integrated space and chan⁃
nel， which was extensively employed in the design 
of neural networks.

ECA‑Net［32］： It primarily enhanced the SENet 
module by introducing a local cross-channel interac⁃
tion strategy known as the ECA module. This ap⁃
proach does not involve dimensionality reduction 
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and incorporates a method for adaptively selecting 
the size of a one-dimensional convolution kernel.

As the ECA module， this approach does not in⁃
volve dimensionality reduction and also incorporates 
a method for adaptively selecting the size of a one-di⁃
mensional convolution kernel.

SA‑Net［33］： Ref.［33］ proposed a shuffle atten⁃
tion （SA） module. Initially， the shuffle unit was 
employed to depict the interdependence of features 
in the spatial domain and channel dimension of the 
channel split data. Subsequently， all the features 
were consolidated through channel shuffle.

2. 3 Evaluation of results

As shown in Fig.2， the experimental results of 
various methods on WHUS-CR datasets are pre⁃

sented. GT represents the ground truth. The red 
rectangle box denotes the area of focused attention. 
For the cloud mist scattering in Fig.2（a）， the image 
has a large amount of cloud mist diffusion phenome⁃
non， which poses a high demand on thehazing algo⁃
rithm for such a complex scenario. The experimen⁃
tal results show that the FCTF-Net， TFFDNet， 
and SENet methods all failed to effectively remove 
thin cloud， and there are still obvious traces of cloud 
mist in the image. Although MSBDN， LapDeha⁃
zeNet， CR4S2， and SpA-GAN can remove some 
of the cloud mist to a certain extent. But there are 
still problems of incomplete cloud removal in some 
areas， and the details of the terrain are not complete⁃
ly clear.

Our proposed PANet method performs excep⁃
tionally well， completely removing the thin cloud 
occlusion and restoring clear terrain details， which 
is significantly better than other methods. In Fig.2
（b）， the image has a significant halo phenomenon， 
which poses a higher challenge for the anti-interfer⁃

ence ability and detail recovery ability of the dehaz⁃
ing algorithm. The experimental results show the 
MSBDN， FCTF-Net， TFFDNet， and SENet 
methods are not satisfactory in removing the halo， 
and there are still obvious artifacts in image， affect⁃
ing the visual effect and the accuracy of subsequent 

Fig.2　Comparison of WHUS2⁃CR data
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applications. However， although LapDehazeNet， 
CR4S2， and SpA-GAN can correct and repair color 
cast to some extent， the effect is not ideal， and the 
problem of color distortion is still more prominent. 
In contrast， our PANet method performs excellent⁃
ly in dealing the halo phenomenon， effectively re⁃
moving the artifacts and precisely correcting and re⁃
pairing the color cast， restoring more natural and 
true image colors. Table 1 presents the quantitative 
evaluation results of the WHUS-CR dataset. By ex⁃
amining the data in the table， it is evident that our 

PNANet all other methods across the board. Specif⁃
ically， PNANet achieves the highest score in 
SSIM， PSNR， and the lowest in MSE. Compared 
to other methods， PNAN outperforms them by an 
average of 5.801% in SSIM， 1.72 dB in PSNR， 
and a reduction of 8.582 in MSE. These improve⁃
ments highlight the superior performance of 
PNANet in preserving image structures， enhancing 
signal quality， and minimizing errors， thereby dem ⁃
onstrating its effectiveness in the context of the 
WHUS-CR dataset.

Fig.3 gives the comparison of RICE data. GT 
represents the ground truth and the red rectangle box 
denotes the area of focused attention. Similarly， for 
the scene with uneven cloud distribution in Fig.3（a）， 
the situation that is more complicated. Most of the 

other methods cannot effectively remove the cover 
when processing such images， resulting in the infor⁃
mation of the ground objects still being obscured. 
Especially， the LapDehazeNet method not only 
fails to successfully remove the thin cloud， but also 

Table 1　Comparison of experimental data evaluation indexes

Dataset

WHUS⁃CR

Metric
SSIM

PSNR/dB
MSE

MSBDN
0.680 0
24.266
75.224

SpA⁃GAN
0.731 1
21.650
84.471

FCTF⁃Net
0.813 0
26.222
65.507

TFFDNet
0.784 0
24.582
75.491

LapDehazeNet
0.805 5
25.842
68.002

CR4S2
0.813 1
26.344
64.563

SENet
0.781 9
25.194
69.212

PNANet
0.826 5
26.593
62.971

Fig.3 Comparison of RICE data
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leads to the distortion of the ground objects， severe⁃
ly affecting the quality and usability of the image. In 
this case， only the FCTF-Net and our PNANet 
method can effectively remove the cloud， and the 
ground object information is restored to be relatively 
clear， showing strong robustness and adaptability. 
For the relatively cloud cover in Fig.3（b）， although 
the overall difficulty is relatively low， it still needs 
the algorithm to have the good detail recovery abili⁃
ty and the radiation information correction ability. 
The experimental results show that except for the 
LapDehazeNet method， which has difficulty in re⁃
storing complete ground object information， the oth⁃
er methods can achieve the goal of cloud removal to 
a certain extent but there are still some problems， 
such as image blurring， radiation information offset， 
etc.，thus affecting the quality of the image and the 
accuracy of the follow-up. In comparison， our PAN⁃

et method has a better performance in restoring 
ground object details， and the restored details are 
closer to the real label， which can provide higher 
quality image for subsequent applications and show 
its significant advantages in the field of cloud remov⁃
al in remote sensing images. The quantitative evalu⁃
ation of the RICE dataset is showcased in Table 2， 
where it can be seen that our PNANet achieves the 
best results in all metrics， with an average improve⁃
ment of 5.625%， 5.363 dB and 24.016 in SSIM， 
PNSR and MSE， respectively. In Table 3， we dem⁃
onstrate the performance comparison of different 
methods in terms of efficiency by evaluating their pa⁃
rameter count（Params）， computational complexity
（FLOPs）， and training duration（ttrain）. Although our 
method does not achieve the best results， it achieves a 
good balance between accuracy and efficiency.

2. 4 Ablation experiment

In the attention mechanism comparison experi⁃
ment， we use the U⁃Net network as the baseline， 
and add the attention mechanisms of CBAM， 
ECA⁃Net， SA⁃Net and PNA， respectively. Table 
4 presents the accuracy after 300 epochs， with our 
PNA achieving the highest results in terms of both 
SSIM and PNSR. In terms of efficiency， the pro⁃
posed method outperforms others in FLOPs， pa⁃
rameter count， and training time. This is because 
the PNA attention design reduces the number of 
U⁃Net channels from 256 to 128. In the ablation ex⁃
periment， U⁃Net is used as the baseline， our PNA 
is the addition of PNA， our L1 represents the addi⁃
tion of fine thin cloud removal stage on the basis of 

former， and our L1⁃Lp represents the network with 
added perceptual loss. The experimental results are 
shown in Table 4. In Fig.4， the attention visualiza⁃
tion results of all methods are also shown， and the 
improvement of the network’s attention to the thin 
cloud coverage area can be clearly observed. In Ta⁃
ble 5， we conducted ablation tests on PAN and 
RDB structures， comparing scenarios where PAN 
was not used （PAN_0）， only scales 1， 3， and 7 
were used （PAN_137）， PAN_912 （using only 
scales 9 and 12）， RDB_0， RDB_1， RDB_3， and 
OUR_PAN_RDB. The results show that using 
RDB generally leads to an upward trend in both 
SSIM and PSNR metrics compared to not using it. 
This is because the RDB module’s multi⁃feature re⁃

Table 3　Contrast experiment efficiency evaluation

Metric
FLOPs/109

Params/106

ttrain /s

MSBDN
—

2.983
308.781

SpA⁃GAN
55.242
28.713

144.562

FCTF⁃Net
22.607
0.163

94.544

TFFDNet
384.94
2.653

276.06

LapDehazeNet
104.690
34.548

185.072

CR4S2
21.100

1.485
190.603

SENet
1.221 1

0.008 4

16.134

PNANet
46.083
2.029

105.458

Table 2　Comparison of RICE data evaluation indexes

Dataset

RICE

Metric
SSIM

PSNR/dB
MSE

MSBDN
0.837 1
29.670
50.278

SpA⁃GAN
0.828 1
26.074
71.248

FCTF⁃Net
0.909 1
32.773
37.840

TFFDNet
0.769 9
21.444
98.089

LapDehazeNet
0.849 9
25.349
77.574

CR4S2
0.911 8
30.846
53.191

SENet
0.868 5
27.569
57.319

PNANet
0.923 5
34.307
34.010
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use enhances the recovery of fine texture structures. 
However， as the number of RDBs increases， so 
does the computational burden of parameter calcula⁃
tions. We observe that when RDB increases to 3， 
SSIM and PSNR show an negligible improvement. 
Balancing performance and effectiveness， we there⁃

fore employ 2 RDBs for feature recovery. Further⁃
more， compared to not using PAN， the multi⁃scale 
feature attention achieves excellent results in reduc⁃
ing the randomness of thin cloud locations， without 
significantly increasing parameters or floating⁃point 
operations.

3 Conclusions

In this paper， based on observations of the ran⁃
dom distribution and uneven thickness of clouds， 
we propose a network for removing thin clouds un⁃
der non-uniform thin cloud conditions. This network 
adopts a coarse-to-fine thin cloud removal architec⁃
ture. In the coarse-level de-clouding network， we in⁃

novatively incorporate an attention mechanism. By 
integrating global context with local texture， this 
mechanism specifically addresses image quality deg⁃
radation caused by the uncertainty in cloud distribu⁃
tion. During the fine-level de-clouding stage， we fo⁃
cus on the impact of cloud layer thickness on feature 
detail information. Through a carefully designed re⁃
sidual dense module， we significantly enhance the 

Table 5　Ablation evaluation results of PAN and RDB structure

Parameter
RDB⁃0
RDB⁃1
RDB⁃3
PAN_0

PAN_137
PAN_916

Ours

Training time/(s·epoch-1)
42.366

48.334

66.543
53.523
54.763
55.755
56.335

Params/106

1.95

2.00

2.06
2.01

2.03
2.03
2.03

FLOPs/109

16.28

18.88

22.08
20.18
20.48
20.48
20.48

SSIM
0.805 25
0.815 37
0.826 67

0.775 84
0.790 62
0.804 68
0.828 09

PSNR/dB
25.505 7
25.961 7
26.517 3

24.579 9
25.627 6
25.353 3
26.546 6

Table 4　Ablation evaluation of attention

Metric
SSIM

PSNR/dB
FLOPs/109

Params/106

ttrain/s

U⁃Net
0.815

25.742
38.882
2.597

62.716

CBAM
0.821

26.301
38.914
2.602

85.193

ECA⁃Net
0.821

26.239
38.934
2.597

72.178

SA⁃Net
0.822

26.427
38.882
2.597

66.675

Our PNA
0.827

26.683 2
38.401
1.973

58.143 3

Our L1

0.827
26.722

—
—
—

Our L1⁃Lp

0.841
27.014

—
—
—

Fig.4　Examples of various attention feature maps
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extraction and utilization of feature detail informa⁃
tion. Through experiments on publicly available da⁃
tasets， our thin cloud removal network and atten⁃
tion mechanism demonstrate superior performance 
compared to various existing methods.
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一种结合金字塔非局部注意力的二段式薄云去除网络
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摘要：在遥感影像中，约 67% 的数据会受到云层覆盖的影响，这显著增加了影像分类、识别等下游解译任务的难

度。为有效解决云分布的随机性与云厚度的不均匀性问题，基于对云雾随机分布及厚度不均的观测，本文提出

一种由粗略到精细的二段式薄云去除架构。在粗去云网络中，创新性地引入多尺度注意力机制，即金字塔非局

部注意力（Pyramid non⁃local attention， PNA）机制，通过融合全局上下文与局部细节信息，针对性地解决云分布

不确定性导致的影像质量退化问题；在精细化去云阶段，重点关注云厚度对去云效果的影响（主要表现为细节信

息不足），通过精心设计的残差密集模块，显著增强特征细节的提取与利用能力。因此，本文方法在粗去云结果

的基础上，精准恢复了丢失的局部纹理特征，实现了去云质量的大幅提升。为验证所提网络的性能和关键组件，

在公开数据集上进行了全面实验分析，结果表明该方法在多种技术指标上均达到当前最优性能。

关键词：通道注意力；薄云去除网络；金字塔非局部注意力；遥感影像；残差密集连接

600


