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Abstract: Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath 
interference in raw echoes of spaceborne synthetic aperture radar （SAR） systems due to anomalous outliers， 
manifesting as insufficient convergence and low estimation accuracy. To address this issue， this study proposes a 
novel robust adaptive filtering algorithm， namely the M-estimation-based minimum error entropy with affine 
projection （APMMEE） algorithm. This algorithm inherits the joint multi-data-block update mechanism of the affine 
projection algorithm， enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast 
convergence. Meanwhile， it incorporates the M-estimation-based minimum error entropy （MMEE） criterion， which 
weights error samples in raw echoes through M-estimation functions， effectively suppressing outlier interference 
during the algorithm update. Both the system identification simulations and practical multipath interference 
suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior 
filtering performance.
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0 Introduction 

Spaceborne synthetic aperture radar （SAR） is 
an active microwave remote sensing system onboard 
satellites that achieves high-resolution imaging 
through synthetic aperture and pulse compression 
techniques. Its all-weather and day-night operational 
capabilities make it essential for the Earth observa⁃
tion and disaster monitoring［1］. The imaging quality 
depends fundamentally on echo signal purity， with 
multipath effects in complex scenes being a primary 
limiting factor. Multipath phenomena in spaceborne 
SAR exhibit dual characteristics： Constructive mul⁃
tipath （e.g.， building double reflections or slope-di⁃
rected scattering） provides target 3D information to 
supplement terrain analysis， whereas redundant in⁃
terference from urban canyons or sea waves de⁃

grades the signal integrity and requires suppres⁃
sion［2］. This study focuses on the latter case—detri⁃
mental redundant multipath interference that induc⁃
es ghost targets and edge blurring in SAR imag⁃
ery［3］. Precise suppression of multipath-induced out⁃
liers at the raw echo stage is therefore critical for en⁃
hancing the SAR performance.

Conventional approaches like constant false 
alarm rate detection［4］ and digital beamforming［5］ 
show limitations in dynamic environments. Adap⁃
tive filtering algorithms overcome these constraints 
by dynamically tracking interference without requir⁃
ing signal stationarity assumptions. The least mean 
square （LMS） algorithm［6-7］ offers low computation⁃
al complexity but suffers from slow convergence. 
While the recursive least squares （RLS）［8-9］ im⁃
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proves the convergence， it increases computational 
costs and exhibits the instability. Affine projection 
（AP） algorithms［10-11］ enhance the stability but re⁃
main sensitive to outliers.

Recent advances in information-theoretic learn⁃
ing （ITL）［12-14］ highlight the minimum error entropy 
（MEE） criterion， which excels in capturing higher-

order signal statistics and performs robustly in non-

Gaussian noise［15-16］. The affine projection minimum 
error entropy （APMEE） algorithm［17］ combines 
AP’s fast convergence with MEE’s impulse noise 
resistance. However， MEE using quadratic Rényi 
entropy［18-19］ underperforms with heavy-tailed/multi⁃
modal noise， where extreme outliers distort the er⁃
ror analysis［20-22］. The M-estimation-based MEE 
（MMEE） criterion［23-25］ suppresses outliers via error 
weighting， enhancing the robustness in non-Gauss⁃
ian environments， yet fails to co-optimize the con⁃
vergence speed and steady-state accuracy.

To address these challenges， we propose a 
novel robust adaptive filtering algorithm which is M-

estimation-based MEE with AP （APMMEE）. Its 
core innovation lies in the organic integration of the 
fast convergence characteristics of AP algorithm 
with the strong robustness of MMEE criterion. The⁃
oretical analysis reveals intrinsic consistency be⁃
tween the sliding window length in MMEE criterion 
and the subspace dimension in the AP algorithm. 
Based on reproducing kernel Hilbert space 
（RKHS）［26-27］ theory， Gaussian kernel［28］ transforms 
the total error minimization problem into an adap⁃
tively solvable optimization model. Inheriting AP’s 
multi-data-block joint updating mechanism， it 
achieves rapid convergence， Simultaneously， the 
MMEE criterion employs M-estimation to weight 
error samples based on posterior error magnitude， 
effectively suppressing outlier interference and sig⁃
nificantly enhancing impulsive noise resistance. 
Comparative experiments and processing tests with 
actual spaceborne SAR echo data demonstrate that 
the APMMEE algorithm effectively overcomes the 
technical challenge of traditional algorithms’ sensi⁃
tivity to outliers in non-stationary multipath environ⁃

ments. The algorithm exhibits superior filtering per⁃
formance in complex noise environments， making it 
particularly suitable for preprocessing raw echo data 
in spaceborne SAR systems. By precisely suppress⁃
ing anomalous outliers caused by redundant multipa⁃
th interference， it achieves signal purification prior 
to critical imaging steps such as range compression 
and azimuth focusing， thereby fundamentally reduc⁃
ing interference effects on subsequent imaging quali⁃
ty and establishing a stable， reliable data foundation 
for high-resolution SAR imaging.

1 Overview of Existing Related Al‑
gorithms

1. 1 Algorithmic model　

In typical complex multipath propagation envi⁃
ronments of radar systems， establishing accurate 
signal models forms the foundation for multipath in⁃
terference suppression research. For spaceborne 
SAR echo characteristics， the radar transmits base⁃
band pulse signals s（n） using linear frequency modu⁃
lated （LFM） waveforms［29］， which are standard in 
SAR systems. As the core waveform for spaceborne 
SAR imaging， LFM signals achieve large band⁃
width through linear variation of instantaneous fre⁃
quency during the pulse duration， enabling pulse 
compression via frequency modulation. The signal 
parameters of carrier frequency f0=5.4 GHz and 
bandwidth B=200 MHz are selected to match prac⁃
tical engineering scenarios while enhancing model 
specificity.

Physically， spaceborne SAR raw echoes funda⁃
mentally represent the convolution of transmitted 
signals with ground scattering functions. When in⁃
corporating multipath effects， the rm ( n )［30］ model 
becomes

rm ( n )= s ( n ) *σ ( n )+ ∑
k = 1

K

αk ⋅ s ( n - τk )*σk ( n )+

v ( n ) (1)
where “*” denotes the convolution operation， and 
s（n） the transmitted LFM signal. The first term of 
s（n）*σ（n） corresponds to the direct-path echo， con⁃
taining the true target scattering information to be 
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preserved， where σ（n） is the complex reflection 
function of ground targets. The second term repre⁃
sents redundant multipath interference. Here K is 
the number of multipaths； αk the attenuation coeffi⁃
cient of the kth path characterizing signal energy loss 
during the propagation； τk the crucial time delay 
（differential between multipath and direct signals）， 
serving as the key feature of multipath phenomena 
in the convolution model； σk ( n ) the reflection func⁃
tion of corresponding scatterers， which constitutes 
the suppression target of the algorithm， and v（n） 
additive noise comprising thermal noise and environ⁃
mental clutter.

To adapt to the adaptive filtering framework， 
the desired received signal is redefined as

d ( n )= y ( n )+ v ( n )= ∑
k = 1

K

αk ⋅ xT ( n - τk )*w 0 +

v ( n ) (2)
where y（n） denotes the redundant multipath inter⁃
ference component， x（n） the reference input for 
correlation computation， w 0 the weight vector of 
the target system， and v（n） zero-mean Gaussian 
white noise with variance σ 2

v .
The system error at the nth iteration， e（n）， is 

defined as

e ( n )= d ( n )- ∑
k = 1

K

αk ⋅ xT ( n - τk )*w ( n )+ v ( n ) (3)

where w（n） represents the current weight vector. 
The adaptive filtering technique dynamically opti⁃
mizes w（n） to asymptotically converge to the target 
weight vector w 0， thereby establishing the theoreti⁃
cal foundation for precise suppression of redundant 
multipath interference in spaceborne SAR raw 
echoes.

1. 2 Review of AP algorithm　

Compared with the conventional LMS algo⁃
rithm， the AP algorithm significantly improves the 
convergence speed by constructing an affine projec⁃
tion input matrix utilizing multiple input vectors. 
Here， the input signal matrix is X ( n )=
[ x ( n )，x ( n - 1 )，…，x ( n - P + 1 ) ]， with dimen⁃
sions of k×P. In this context， P denotes the projec⁃
tion order of the AP algorithm， and k the filter 

length. The algorithm can be described by the fol⁃
lowing constrained optimization rule

min
w ( n + 1 )

|| w ( n + 1 )- w ( n ) ||2
2

s.t. d ( n )- X T ( n ) w ( n + 1 )= 0 (4)
where || ⋅ ||2 denotes the l2 norm， and the desired sig⁃
nal is d ( n )=[ d ( n )，d ( n - 1 )，…，d ( n - P +
1 ) ]T. Based on this， the recursive formula of the 
AP algorithm is as follows

w ( n + 1 )= w ( n )+ μX ( n ) [ X T ( n ) X ( n )]-1
e ( n )

(5)
where e ( n )=[ e ( n )，e ( n - 1 )，…，e ( n - P + 1 ) ]T 
is the error signal， and μ the step size of the algo⁃
rithm. The algorithm achieves rapid convergence in 
Gaussian environments. However， due to the lack 
of an effective outlier identification mechanism and 
robust handling for data anomalies， the algorithm 
struggles to maintain stable performance when pro⁃
cessing abnormal outliers in non-Gaussian environ⁃
ments， exhibiting significant drawbacks.

1. 3 Review of the MMEE　

The MMEE assigns lower weights to abnor⁃
mal outliers through the robust weighting mecha⁃
nism of M-estimation， while its integration with the 
minimum error entropy criterion—adaptable to data 
probability distribution characteristics—effectively 
suppresses outlier interference. M-estimation， the 
core methodology of robust statistics introduced by 
Huber， is alternatively termed maximum likelihood-

type estimation due to its structural resemblance to 
maximum likelihood estimation. It suppresses outli⁃
ers through differential weighting， assigning lower 
weights to samples with larger deviations and higher 
weights to those with smaller deviations. The opti⁃
mization objective function of M-estimation is math⁃
ematically formulated as

ŵ M = arg min
w

∑
i = 1

N

ρ ( d i - wT x i

σ̂ i ) (6)

where N represents the total number of data sam ⁃
ples； ρ (⋅) the error loss function； d i the desired out⁃
put； w the weight vector， and x i the input vector. 
ri = ( d i - wT x i ) /σ̂ i represents the standardized re⁃
sidual， and σ̂ i is typically calculated via the median 
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absolute deviation （MAD）

σ̂ i = MAD
0.674 5 = med( e i - med( e ) )

0.674 5 (7)

where med （ ⋅） denotes the median operator， and 
0.674 5 is the constant correction factor.

Taking the partial derivative of the objective 
function yields

∑
i = 1

N

ψ ( ri ) x i = 0 (8)

where ψ (⋅)= ρ′(⋅) is the score function. The weight 
function φ (⋅) can be derived from ψ (⋅)：
φ (⋅)= ψ ( ri ) /ri.

For non-Gaussian noise scenarios， the Hampel 
weight function demonstrates outstanding perfor⁃
mance through residual-tiered processing， defined as

φHampel (⋅)=

ì

í

î

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï
ïï
ï
ï

ï

1      |ri | ≤ Δ 1

Δ 1

|ri |
Δ 1 < |ri | ≤ Δ 2

Δ 1

|ri |
× ( )Δ 3 - |ri |

Δ 3 - Δ 2
Δ 2 < |ri | ≤ Δ 3

0      |ri | > Δ 3

(9)

where Δ 1， Δ 2， Δ 3 are the threshold parameters of 
Hampel’s weight function.

The MMEE method extends M-estimation by 
integrating its outlier-sensitive weight function φ (⋅) 
into conventional Bagger-window density estima⁃
tors. By adaptively weighting or discarding error 
samples e i， a novel PDF kernel density estimator is 
constructed as

p̂M ( x )= 1
L ∑

i = n - L + 1

n

κσ( x - φτ ( e i ) ⋅ e i ) (10)

where φτ ( e i ) is the M-estimation weight factor that 
adjusts contributions based on sample outlier severi⁃
ty， L the length of the sliding window， and κσ (⋅) the 
kernel function with kernel width σ controlling 
smoothness， defined mathematically as

κσ ( x )= 1
σ 2π

exp ( - x 2

2σ 2 ) (11)

Building upon this estimator， the modified qua⁃
dratic information potential （MQIP） is introduced 
as the cost function for MMEE entropy criteria

V̂ M
2 ( τ )= 1

L2 ∑
i = n - L + 1

n

∑
j = n - L + 1

n

κσ ( φτ ( e i ) ⋅ e i -

φτ ( e j ) ⋅ e j ) (12)

By maximizing the MQIP， the optimization 
problem for the MMEE criterion can be formulated 
as
JMMEE ( w n )=

max
w

1
L2 ∑

i = n - L + 1

n

∑
j = n - L + 1

n

κσ ( φτ ( e i )⋅ e i - φτ ( e j )⋅ e j )

(13)
where ei， ej denote the posterior errors. The robust⁃
ness is enhanced through this cost function.

2 The Proposed APMMEE algo‑
rithm

Although the MMEE criterion demonstrates 
excellent performance in suppressing abnormal outli⁃
ers through its robust weighting mechanism and 
adaptability to non-Gaussian distributions， its sensi⁃
tive dependence on kernel function parameters， high 
computational complexity from higher-order statis⁃
tics， and performance fluctuations under low SNR 
or unknown data distribution scenarios impose limi⁃
tations in applications requiring both real-time opera⁃
tion and dynamic adaptability （e. g.， adaptive filter⁃
ing tasks with complex multipath interference）. No⁃
tably， the AP algorithm’s dynamic tracking capabil⁃
ity through multi-step projection updates and its uti⁃
lization of input correlation characteristics offer po⁃
tential to compensate for these limitations. Within 
this research framework， we reformulate the optimi⁃
zation problem in Eq.（4） using the MMEE criteri⁃
on. The core optimization objective is to solve for 
the optimal weight vector w under the norm con⁃
straint of weight updating， formally expressed as

max
w ( t )

1
L2 ∑

i = 1

L

∑
j = 1

L

κσ ( φ e i
( ep ( t - i ) ) ⋅ ep ( t - i )-

         φ e j
( ep ( t - j ) ) ⋅ ep ( t - j ) )

subject to ||w ( t )- w ( t - 1 )||2
2 ≤ μ2 (14)

where w denotes the weight vector， φ e the weight⁃
ing function， L the sliding window length， and σ the 
kernel width of the Gaussian kernel function； ep ( t -
i ) and ep ( t - j ) indicate the posterior errors at time 
steps t-i and t-j， respectively. In Eq.（14）， the ob⁃
jective function employs adaptive weighting to dy⁃
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namically adjust error samples， effectively mitigat⁃
ing outlier-induced perturbations in algorithmic up⁃
dates. This mechanism drives the system toward op⁃
timizing the error distribution toward an ideal config⁃
uration， thereby enhancing overall performance. 
The constraint ||w ( t )- w ( t - 1 )||2

2 ≤ μ2 rigorously 
bounds the variation magnitude of weight vectors be⁃
tween consecutive iterations. The parameter μ， gov⁃
erning the step size of weight updates， critically de⁃
termines the system stability and convergence prop⁃
erties. Excessive μ values may cause aggressive 
weight updates， resulting in the system instability 
or even divergence； whereas insufficient μ values 
lead to prohibitively slow updates， severely degrad⁃
ing the convergence speed and compromising real-
time applicability.

To solve this constrained optimization prob⁃
lem， we implement the classical Lagrange multipli⁃
er method. By introducing the Lagrange multiplier 
γ， the constrained problem is transformed into an 
unconstrained extremum problem， yielding the de⁃
rived cost function as

JAPMMEE = 1
L2 ∑

i = 1

L

∑
j = 1

L

κσ ( φ e i
( ep ( t - i ) ) ⋅ ep ( t - i )-

φ e j
( ep ( t - j ) ) ⋅ ep ( t - j ) )- γ [ ||w ( t )-

w ( t - 1 )||2
2 - μ2 ] (15)

where γ denotes the Lagrange multiplier. It func⁃
tions as a balancer in this well-designed cost func⁃
tion to precisely regulate the relationship between 
the objective function and constraints. The value of 
γ is not arbitrarily assigned， but directly governs the 
optimization outcome. Larger γ values significantly 
increase the weight of constraints during the optimi⁃
zation， enforcing stricter bounds on weight updates 
to ensure system stability； whereas smaller γ values 
prioritize the objective function’s optimization， driv⁃
ing the system toward extremum seeking for en⁃
hanced performance.

We subsequently investigate the update mecha⁃
nism for weight vector w（t） by deriving the gradi⁃
ent of Lagrangian JAPMMEE with respect to w（t）， 
which determines both the direction and magnitude 

of weight updates. The gradient expression is for⁃
mally defined as

∇JAPMMEE ( w ( t ) )= ∂JAPMMEE ( w ( t ) )
∂w ( t )

=

1
L2 σ 2 ∑

i = t - L + 1

t

∑
j = t - L + 1

t

[ ( u ( t - i ) φ e i
( ep ( t - i ) )-

u ( t - j ) φ e j
( ep ( t - j ) ) )×

κσ ( φ e i
( ep ( t - i ) ) ⋅ ep ( t - i )- φ e j

( ep ( t - j ) ) ⋅
ep ( t - j ) )×( φ e i

( ep ( t - i ) ) ⋅ ep ( t - i )-

]φ e j
( ep ( t - j ) ) ⋅ ep ( t - j ) ) -

2γ [ w ( t )- w ( t - 1 ) ] (16)
where t denotes time； u（t-i） and u（t-j） repre⁃
sent the input vectors at time steps i and j， respec⁃
tively.

This gradient formulation transcends mere 
mathematical manipulation， incorporating the syner⁃
gistic effects of input signals， error terms， and ker⁃
nel functions to establish a rigorous theoretical foun⁃
dation for weight vector updates. To enhance practi⁃
cal utility for computational implementation and 
analysis， we employ mathematical simplification 
techniques to derive a condensed matrix-form itera⁃
tion formula. To enhance notational simplicity and 
improve both readability and computational efficien⁃
cy of the formulae， we introduce the following defi⁃
nitions：λi = φ e i

( ep ( t - i ) )， λj = φ e j
( ep ( t - j ) ) and 

κσij = κσ ( λi ep ( t - i )- λj ep ( t - j ) ). The simplifica⁃
tion process leverages matrix operation properties 
and relevant mathematical theorems. The gradient 
expression of the cost function obtained through rig⁃
orous derivation is as follows.
∇JAPMMEE ( w ( t ) )=

1
L2 σ 2 ∑

i = t - L + 1

t

∑
j = t - L + 1

t

[ ( u ( t - i ) λi -

u ( t - j ) λj ) κσij ( λi ep ( t - i )- λj ep ( t - j ) ) ]-
2γ [ w ( t )- w ( t - 1 ) ]=
Ω 1 - Ω 2 - Ω 3 + Ω 4 - 2γ [ w ( t )- w ( t - 1 ) ]=
2Ω 1 - 2Ω 2 - 2γ [ w ( t )- w ( t - 1 ) ]=

2
L2 σ 2 X ( t ) ( Β ( t )- Α ( t ) ) E p ( t )-

2γ [ w ( t )- w ( t - 1 ) ] (17)
where
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Ω 1 = 1
L2 σ 2 ∑

i = t - L + 1

t

∑
j = t - L + 1

t

u ( t - i ) λi κσij ep ( t - i )

Ω 2 = 1
L2 σ 2 ∑

i = t - L + 1

t

∑
j = t - L + 1

t

u ( t - i ) λi κσij ep ( t - j )

Ω 3 = 1
L2 σ 2 ∑

i = t - L + 1

t

∑
j = t - L + 1

t

u ( t - j ) λj κσij ep ( t - i )

Ω 4 = 1
L2 σ 2 ∑

i = t - L + 1

t

∑
j = t - L + 1

t

u ( t - j ) λj κσij ep ( t - j )

(18)
During this derivation， the kernel matrices 

B（t） and A（t）， constructed from weighted errors， 
play pivotal roles throughout the optimization pro⁃
cess. They are defined as

Α i,j = κσ ( λi ep ( t - i )- λj ep ( t - j ) ) (19)

Β i,j =
ì

í

î

ïïïï

ïïïï

∑
i = 1

L

∑
j = 1

L

Α i,j i = j

0 i ≠ j
(20)

Let W = diag ( λ1，λ2，⋯，λL ) is a diagonal 
weight matrix. Meanwhile， E p ( t ) denotes the 
weighted error vector， formulated as
E p ( t )=[ λ1 ep ( t - 1 ),λ2 ep ( t - 2 ),⋯,

λL ep ( t - L ) ]=
W [ ep ( t - 1 ),ep ( t - 2 ),⋯,ep ( t - L ) ] (21)
X（t） represents the weighted input signal ma⁃

trix， expressed as
X ( t )= [ λ1 u ( t - 1 ),λ2 u ( t - 2 ),…,λL u ( t - L )] =

U ( t )W T (22)
where U ( t )= [ u ( t - 1 )，u ( t - 2 )，…，u ( t - L )] 
is the unweighted input matrix.

Setting Eq.（16） to zero yields the difference 
expression for consecutive weight vectors

w ( t )- w ( t - 1 )=
1

L2 σ 2 γ
X ( t ) ( Β ( t )- Α ( t ) ) E p ( t ) (23)

To rigorously derive the Lagrange multiplier γ 
while ensuring optimization validity and reliability 
under complex conditions， we impose the strictest 
constraint ||w ( t )- w ( t - 1 )||2

2 = μ2. Substituting 
Eq.（23） into this constraint and through rigorous 
mathematical derivation， we obtain

γ = 1
L2 σ 2 μ ||X ( t ) ( Β ( t )- Α ( t ) ) E p ( t ) ||2 (24)

Finally， substituting Eq.（24） into Eq.（23） 
yields the iterative update formula for weight vector 
w（t）

w ( t )= w ( t - 1 )+ μ
X ( t ) ( Β ( t )- Α ( t ) ) E p ( t )

||X ( t ) ( Β ( t )- Α ( t ) ) E p ( t ) ||2

(25)
Eq.（25） explicitly defines the weight vector up⁃

date mechanism at each iteration， serving as the 
computational cornerstone for the optimization algo⁃
rithm based on affine projection spaces and the 
MMEE criterion. In practical applications， iterative 
execution of this formula enables real-time weight 
vector adaptation to varying signal environments 
based on input signals and error feedback.

3 Analysis of Stability 

Before proceeding with the analysis， it is neces⁃
sary to introduce the following assumptions， which 
are commonly adopted in the adaptive filtering.

Assumption 1　 In practical applications， both 
u（t） and noise signal v（t） are considered as station⁃
ary random variables with zero mean.

Assumption 2　The auto correlation matrix of 
the input signal satisfies

E [ u ( t ) uT ( t ) ]= σ 2
u I (26)

It indicates that the input signals are mutually 
independent across different dimensions， with each 
dimension having identical variance σ 2

u .
Assumption 3　The auto correlation matrix of 

the noise satisfies
E [ v ( t ) vT ( t ) ]= σ 2

v I (27)
It implies that the noise components are also in⁃

dependent across dimensions with uniform vari⁃
ance σ 2

v .
Assumption 4　　The noise signal v（t） is uncor⁃

related with the input vector sequence x（t）. They 
are statistically independent， satisfying

E [ u ( t ) v ( t ) ]= 0 (28)
Assumption 5　　 The M-estimation weight 

function λi = φ ( e i )， as the core element for achiev⁃
ing robustness in the APMMEE algorithm， is 
bounded within λi ∈ [ 0，1 ]. This constraint ensures 
that the weighting effect on error samples remains 
within a reasonable range， preventing excessive am ⁃
plification or attenuation of error impacts.

To analyze the temporal evolution of the 
weight error vector w͂ ( t )， we substitute the weight 
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update formula into w͂ ( t + 1 )= w 0 - w ( t + 1 )， 
yielding

w͂ ( t + 1 )= w͂ ( t )- μU ( t ) Η ( t ) ( d ( t )-
U T ( t ) w ( t ) ) (29)

where Η ( t )= W T ( Β ( t )- Α ( t ) )W
||X ( t ) ( Β ( t )- Α ( t ) ) E p ( t ) ||2

. This 

difference equation characterizes the relationship be⁃
tween current and subsequent weight error vectors， 
whose dynamical properties determine algorithm 
convergence to optimal weights and form the corner⁃
stone of subsequent stability analysis. Incorporating 
the system model d ( t )= U T ( t ) w 0 + v ( t )， where 
d ( t ) denotes the desired signal， we derive
w͂ ( t + 1 )= w͂ ( t )- μU ( t ) Η ( t )U T ( t ) w͂ ( t )-

μU ( t ) H ( t ) v ( t ) (30)
This expression establishes explicit connec⁃

tions among weight deviation dynamics， input sig⁃
nals， noise， and current weight deviations， laying 
the foundation for stability analysis via statistical 
properties. Taking expectations on both sides （with 
zero-mean noise） yields
E [ w͂ ( t + 1 ) ]=

E [ w͂ ( t ) ]- μE [U ( t ) Η ( t )U T ( t )] E [ w͂ ( t ) ]
(31)

To facilitate the analysis， we perform orthogo⁃
nal decomposition of H（t）

Η ( t )= QΣQT (32)
where Q is an orthogonal matrix QQT = I， and Σ =
diag ( ξ1，ξ2，…，ξL ) the diagonal eigenvalue matrix 
with ξ1，ξ2，…，ξL representing the eigenvalues of 
H（t）.

From Assumption 2， we obtain
E [U ( t )U ( t )T ] =

E é
ë[ u ( t ),u ( t - 1 ),…,u ( t - L + 1 )] ⋅

[ u ( t ),u ( t - 1 ),…,u ( t - L + 1 )] Tù
û= Lσ 2

u I

(33)
Combining Eq.（33） with Eq.（31） gives
E [ w͂ ( t + 1 ) ]=

E [ D ( t ) ( I - μΣ ) DT ( t )] E [ w͂ ( t ) ] (34)
where D ( t )= U ( t ) Q， satisfying E [ D ( t ) DT ( t ) ]=
I.

To guarantee the algorithm’s convergence to 
optimal weights， where the expectation of the 

weight error vector asymptotically approaches zero， 
the following condition must hold ||E [ D ( t ) ( I -
μΣ ) DT ( t ) ] || < 1. Given that D ( t ) ( I - μΣ ) DT ( t ) 
is a symmetric matrix， its norm equals the absolute 
value of the maximum eigenvalue. For the diagonal 
matrix I - μΣ with eigenvalues 1 - μξj  ( j =
1，2，…，L )， this condition is equivalent to requiring 
the spectral radius of I - μΣ to be less than unity

|1 - μξj | < 1 (35)
Consequently， the step size must satisfy

0 < μ < 2
max j ξ j

(36)

4 Simulation Results 

The superior performance of the proposed 
APMMEE algorithm is validated through computer 
simulations， with evaluation conducted using the 
normalized mean square deviation （NMSD）， de⁃
fined as

NMSD ( t )= 10 lg ( ||w ( t )- w 0 ( t ) ||2
2

||w 0 ( t ) ||2
2 ) (37)

where w（t） denotes the weight vector of the filter at 
time t， w 0 ( t ) the reference vector at time t， || ⋅ ||2

2 
the squared l2 norm of the vector， and lg (⋅) the base-

10 logarithm operation that transforms linear-do⁃
main deviations to decibel （dB）-scale results.

In the simulation experiments， the steady-state 
error serves to quantify the minimum achievable er⁃
ror after prolonged system operation. Ideally， this 
error should asymptotically approach zero， with 
smaller computed values indicating closer approxi⁃
mation to this ideal condition. The convergence rate 
is measured by the time required for the algorithm to 
achieve stable convergence， while the tracking per⁃
formance is primarily characterized by the system’s 
recovery speed to a new steady state following 
abrupt changes in impulse response. All experimen⁃
tal data represent averaged results from 300 indepen⁃
dent simulation trials to ensure the reliability and sci⁃
entific validity.

4. 1 System identification　

In the system identification experiment， the in⁃
put signal is generated by filtering zero-mean， unit-
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variance Gaussian white noise through a first-order 
filter with a transfer function of F ( z )= 1/( 1 -
0.7z-1 ). This experimental setup is designed to en⁃
dow the input signal with specific correlation and 
spectral characteristics， thereby better approximat⁃
ing real-world non-white noise scenarios encoun⁃
tered in practical applications. The simple structure 
of the first-order filter ensures the rationality of the 
input signal while reducing simulation complexity， 
which facilitates the analysis of the adaptive algo⁃
rithm’s convergence performance and identification 
effectiveness. To simulate realistic conditions， the 
noise with a signal-to-noise ratio （SNR） of 30 dB is 
added to the input signal. This SNR level represents 
a commonly adopted reference value in engineering 
practice， as it maintains adequate signal quality 
while effectively evaluating the algorithm perfor⁃
mance.

The background noise v（t） in the experiment 
follows an α-stable distribution. The parameters of 
the α-stable distribution are specified by the vector 
V α⁃SD =[ α，β，γ，δ ]［31］. The characteristic exponent 
α takes values in （0， 2）， determining the tail charac⁃
teristics of the α-stable distribution. In probability 
distributions， the tail corresponds to the probability 
of extreme outliers. As α decreases from 2， the tail 
of the α-stable distribution becomes heavier， indicat⁃
ing a significantly increased probability of outliers. 
To simulate anomalous outliers in the signal， the pa⁃
rameters of the α -stable distribution are set to ［0.2， 
0， 1.5， 0］ for all system identification simulations.

Typically， the threshold parameters of Ham ⁃
pel’s weight function are empirically determined， 
with common settings such as Δ 1 = 1.31， Δ 2 =
2.039， Δ 3 = 4， or alternatively Δ 1 = 2， Δ 2 =
4， Δ 3 = 8［32］. According to the literature on MMEE 
criterion［33］ ， we select an optimal parameter set 
Δ 1 = 0.5， Δ 2 = 2， Δ 3 = 4 to ensure peak perfor⁃
mance of the proposed algorithm.

In the first experimental trial， we systematical⁃
ly investigate the performance of the APMMEE al⁃
gorithm （step size μ = 0.01， filter length is 32） 
across varying kernel bandwidths σ ∈ { 0.3， 0.5，  

1.0， 2.0， 2.5 }. As demonstrated by the experimen⁃
tal data in Fig.1， the kernel width σ=1 exhibits su⁃
perior performance. In subsequent experiments， the 
kernel bandwidth is fixed at σ=1.

The second experiment investigates the impact 
of varying projection orders L∈｛8，16，32，64｝ on 
the performance of the APMMEE algorithm within 
the affine projection framework. As clearly illustrat⁃
ed in Fig.2， increasing the projection order leads to 
a significant improvement in the convergence rate of 
the APMMEE algorithm， albeit at the expense of a 
slight degradation in steady-state accuracy.

The third experiment comparatively evaluates 
the performance of LMS （μ =0.08）， AP （μ =
0.074）， APSA［34］ （μ =0.069）， APMEE （μ =
0.008 5）， and the proposed APMMEE algorithm 
（μ=0.008 5） under identical projection order （P = 

Fig.1　NMSD curves of the APMMEE algorithm versus pa⁃
rameter σ

Fig.2　NMSD performance of APMMEE versus projection 
order
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32）. As demonstrated in Fig.3， the APMMEE al⁃
gorithm exhibits significant advantages in both con⁃
vergence rate and steady-state accuracy.

In α -stable non-Gaussian noise environments， 
the LMS algorithm fails to distinguish between nor⁃
mal errors and outliers， resulting in sluggish conver⁃
gence； while the AP algorithm accelerates conver⁃
gence through block updates， its lack of targeted 
suppression mechanisms causes trajectory deviation 
from the optimal path and inability to reduce the 
steady-state error. The APSA algorithm demon⁃
strates limited utilization of input correlations and re⁃
stricted non-Gaussian noise handling capability. Al⁃
though it achieves faster convergence and lower 
NMSD compared to LMS and AP， its inadequate 
exploitation of higher-order statistics results in weak 
noise suppression and higher steady-state error than 
both APMEE and APMMEE. The APMEE algo⁃
rithm inherits the fast convergence characteristic of 
the AP algorithm’s multi-data-block joint update 
mechanism， while demonstrating competent perfor⁃
mance through the MEE criterion’s flexible charac⁃
terization of signal probability distributions. Howev⁃
er， the APMEE lacks dedicated outlier suppression 
mechanisms， allowing anomalies to corrupt the er⁃
ror entropy calculation， which biases weight up⁃
dates and induces convergence fluctuations or perfor⁃
mance degradation. In contrast， the APMMEE pre⁃
serves both the AP algorithm’s rapid convergence 

and MEE’s non-Gaussian noise adaptability， while 
incorporating an M-estimation weighting mecha⁃
nism to establish dedicated outlier suppression. This 
design enables stable convergence under extreme 
outlier interference， with APMMEE outperforming 
APMEE and LMS in both the convergence speed 
across all scenarios and achieving optimal steady-

state NMSD performance. Consequently， it deliv⁃
ers purer echo data for subsequent spaceborne SAR 
imaging processing.

The fourth experiment compares the perfor⁃
mance of the proposed APMMEE algorithm （μ =
0.008 7） with APSA （μ =0.075）， LMS （μ =
0.095）， AP （μ =0.081）， and APMEE （μ =
0.008 8） under varying sparse system conditions. 
The experiment is configured with 3×104 itera⁃
tions， where the unknown system coefficients are re⁃
generated at the 10 000th and 20 000th iterations to 
simulate parameter abrupt changes， respectively. 
The filter length is set to 32， initialized as a unimod⁃
al sparse system （only the 9th element = 1）， trans⁃
formed to bimodal after the first abrupt change 
（5th=1， 32nd=-1）， and then to trimodal after 
the second abrupt change （1st， 32nd=1， 16th=
-1）. As shown in Fig.4， the proposed algorithm 
demonstrates superior adaptability to environmental 
abrupt changes and maintains excellent steady-state 
error control across different sparse systems. Its ro⁃
bustness provides strong support for stable opera⁃
tion in complex dynamic environments and heteroge⁃
neous systems.

Fig.3　NMSD performance comparison of LMS, AP, AP⁃
SA, APMEE and the proposed APMMEE under 
α-stable noise

Fig.4　Comparative analysis of NMSD performance for five 
algorithms under abrupt sparse structure transitions 
(unimodal → bimodal → trimodal)
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4. 2 Real‑signal multipath interference cancel‑
lation

As an active microwave remote sensing sys⁃
tem， spaceborne SAR typically employs LFM sig⁃
nals to achieve pulse compression through frequency 
modulation， thereby enhancing the range resolution 
while maintaining operational range. During the sig⁃
nal propagation to the target area and reflection back 
to the sensor， multipath interference occurs due to 
multiple propagation paths， such as when encounter⁃
ing discontinuous structures where signal diffraction 
creates additional paths， or when mountainous ter⁃
rain causes multiple reflections， generating multipa⁃
th components with different propagation distances 
and phases compared to the direct path. These re⁃
dundant multipath interference components， which 
corrupt the genuine information we receive， are 
combined with environmental additive noise to form 
composite signals containing both useless informa⁃
tion from multipath interference and random noise 
disturbances. The resulting high complexity poses 
significant challenges for subsequent signal process⁃
ing and target detection.

The fifth experiment evaluating multipath inter⁃
ference suppression performance systematically 
compares the proposed APMMEE algorithm （μ =
0.005） with LMS （μ =0.4）， AP （μ =0.09）， AP⁃
SA （μ=0.08）， and APMEE （μ=0.09） algorithms 
under varying outlier interference intensities， com⁃
prehensively validating their robustness in suppress⁃
ing SAR multipath interference within complex 
noise environments. The filter tap length is config⁃
ured as M=128， sufficiently covering typical mul⁃
tipath delay ranges （e. g.， 50—200 ns） in space⁃
borne SAR echoes to ensure effective processing of 
redundant multipath components at varying distanc⁃
es. Fig.5（a） displays waveform characteristics of ac⁃
tual spaceborne SAR raw echoes contaminated by 
30 dB SNR Gaussian noise， establishing the base⁃
line interference scenario under clear-sky conditions. 
Two characteristic α -stable noise scenarios are de⁃
signed to accurately match complex spaceborne 
SAR observation environments. Fig.5（b） shows 
Scenario Ⅰ with parameters ［1.2， 0， 1， 0］ （char⁃

acteristic exponent α =1.2）， exhibiting relatively 
light-tailed characteristics where the probability den⁃
sity function decays rapidly with lower outlier occur⁃
rence frequency. This corresponds to suburban envi⁃
ronments where sparse low-rise buildings and vege⁃
tation generate weaker redundant multipath interfer⁃
ence， representing moderate non-Gaussian interfer⁃
ence. Fig.5（c） presents Scenario Ⅱ with parame⁃
ters ［0.3， 0， 1， 0］ （α=0.3）， demonstrating heavy-

tailed characteristics with slower probability density 
function decay and significantly increased outlier 
probability. This simulates dense urban areas or 
stormy weather where numerous high-rise reflec⁃
tions and atmospheric scattering create strong redun⁃
dant multipath with frequent outliers， rigorously 
testing algorithm performance under extreme non-

Gaussian noise conditions.
Fig.5（b） demonstrates that while conventional 

algorithms achieve basic suppression of redundant 
multipath interference in spaceborne SAR echoes， 
their performance diverges due to inadequate adapta⁃
tion mechanisms to complex SAR noise statistics. 
In suburban moderate-interference scenarios， they 
show insufficient suppression precision for multipath 
components with delays close to the direct signal， 
manifesting as larger error fluctuations and slower 
convergence rates that fail to meet subsequent imag⁃
ing requirements for echo purity. These deficiencies 
are exacerbated in the high-outlier scenario of Fig.5
（c）. Strong redundant multipath interference in 
dense urban/inclement weather conditions generates 
numerous extreme values， causing conventional al⁃
gorithms to frequently deviate from optimal weight 
trajectories， worsening steady-state errors and in⁃
ducing persistent convergence oscillations. This im⁃
pairs their ability to discriminate between true target 
scattering signals and interference components， sig⁃
nificantly degrading the SAR imaging resolution and 
edge sharpness. In contrast， the APMMEE algo⁃
rithm outperforms in both scenarios through its inte⁃
grated M-estimation weighting mechanism that dy⁃
namically identifies multipath-induced outliers in 
SAR echoes. It assigns low weights to large-magni⁃
tude interference while maintaining high sensitivity 
to valid direct-path components， ensuring stable 

624



No. 5 WANG Weixin, et al. M-Estimation-Based Minimum Error Entropy with Affine Projection Algorithm…

convergence even under severe outlier interference. 
These results conclusively demonstrate APMMEE’s 
superior redundant multipath suppression capability 
in spaceborne heavy-tailed clutter environments， 
and providing more reliable signal purification for 
spaceborne SAR raw echo preprocessing， thereby 
advancing practical applications of SAR redundant 
multipath interference suppression in complex sce⁃
narios.

In the sixth experiment addressing redundant 
multipath interference suppression for spaceborne 

SAR under high-dynamic observation scenarios， the 
investigation is conducted under ［0.7， 0， 1， 0］ 
noise conditions， where these noise parameters sim ⁃
ulate complex environments with random variations 
in multipath delays and amplitudes caused by rapid 
radar beam scanning across undulating mountainous 
terrain， with redundant multipath interference pri⁃
marily arising from combined mountain reflections 
and surface scattering. To accurately emulate high-

dynamic channel characteristics of spaceborne SAR 
（where satellite high-speed motion causes abrupt 
changes in beam illumination areas leading to drastic 
multipath propagation variations）， a channel muta⁃
tion is introduced at the 2 500th iteration by imple⁃
menting both channel inversion processing and 
switching to random sparse configurations， with cor⁃
responding experimental results presented in Figs.6
（a） and 6（b）.

Fig.5　Wave diagrams of the input signal and performance 
comparison of the algorithm under different levels of 
noise in a stationary enviroment

Fig.6　Performance comparison of the algorithm under dif⁃
ferent levels of noise in a non-stationary environment
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Fig.6（a） clearly demonstrates that convention⁃
al algorithms exhibit significant tracking lag when 
channel mutations occur in spaceborne SAR sys⁃
tems. Their weight-updating mechanisms fail to 
promptly adapt to rapid multipath interference varia⁃
tions， causing notable fluctuations in suppression 
performance， sudden drops in target echo SNR， 
and direct degradation of phase coherence in subse⁃
quent imaging. These limitations become more pro⁃
nounced in the random sparse channel scenario de⁃
picted in Fig.6（b）. The random sparse channel emu⁃
lates the stochastic appearance/disappearance of 
multipath sources when beams scan steep terrains. 
In these steep terrains， the impulsive and non-sta⁃
tionary characteristics amplify error signal anoma⁃
lies， substantially reducing conventional algo⁃
rithms’ convergence speed， increasing the steady-

state error， and consequently impairing multipath in⁃
terference suppression capability. In contrast， the 
proposed APMMEE algorithm achieves rapid pa⁃
rameter adaptation， dynamically filtering strong 
multipath outliers during mutations through its M-

estimation weighting mechanism， while simultane⁃
ously tracking channel variations via multi-data-

block joint updates to maintain stable convergence 
speed and low steady-state error. It outperforms 
comparative algorithms in both post-mutation recov⁃
ery capability and tracking precision， enabling accu⁃
rate redundant multipath suppression in dynamic sce⁃
narios， conclusively validating its superior perfor⁃
mance in complex non-stationary spaceborne SAR 
observation environments.

5 Conclusions 

In the context of multipath interference suppres⁃
sion and outlier processing in spaceborne SAR， this 
paper proposes the M-estimation-based minimum er⁃
ror entropy with affine projection algorithm. Its dedi⁃
cated framework addresses redundant multipath in⁃
terference from building diffraction and terrain reflec⁃
tion by assigning differential weights to urban and 
mountainous scattering outliers via a weighting func⁃
tion， dynamically optimizing the error vector， and 
imposing a l ₂-norm constraint to enhance adaptabili⁃

ty in complex environments. Simulation results dem ⁃
onstrate that the proposed algorithm exhibits excel⁃
lent multipath tracking capability in sparse systems 
simulating urban clusters and undulating terrains， ef⁃
fectively capturing delay and amplitude variations. 
In heavy-tailed interference environments such as 
strong urban reflections and storm pulses， it can 
achieve faster convergence and lower steady-state 
error than conventional methods， and mitigate the 
convergence instability and accuracy degradation 
caused by outliers， thereby providing more reliable 
suppression for SAR raw echo preprocessing. How⁃
ever， when processing ultra-large-scale data such as 
full-aperture imaging， joint updates of multiple data 
blocks increase the memory overhead. Future work 
will focus on lightweight architectures， leveraging 
the range-azimuth separability of SAR echoes to op⁃
timize data partitioning and parallel processing， 
thereby supporting higher-precision spaceborne 
SAR imaging and multipath suppression.
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基于 M 估计的最小误差熵仿射投影算法在

星载 SAR系统离群值抑制中的应用

王伟鑫， 常雪莲， 欧世峰
（烟台大学物理与电子信息学院，烟台  264005，中国）

摘要：传统自适应滤波算法在处理星载合成孔径雷达系统原始回波中的多径干扰时，常因异常离群值导致性能

退化，表现为收敛不足与估计精度低下。针对该问题，本文提出一种新型鲁棒自适应滤波算法——基于 M 估计

的最小误差熵仿射投影算法。该算法继承仿射投影算法的多数据块联合更新机制，能够快速适配原始回波的动

态特性，实现快速收敛；同时融入基于 M 估计的最小误差熵准则，通过 M 估计函数对原始回波中的误差样本进

行加权处理，在算法更新过程中有效抑制离群值干扰。系统辨识仿真与基于原始回波的实际多径干扰抑制实验

均表明，所提算法具有更优异的滤波性能。

关键词：雷达信号；自适应滤波；最小误差熵；M 估计；仿射投影
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