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Abstract: Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath
interference in raw echoes of spaceborne synthetic aperture radar (SAR) systems due to anomalous outliers,
manifesting as insufficient convergence and low estimation accuracy. To address this issue, this study proposes a
novel robust adaptive filtering algorithm, namely the M-estimation-based minimum error entropy with affine
projection (APMMEE) algorithm. This algorithm inherits the joint multi-data-block update mechanism of the affine
projection algorithm, enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast
convergence. Meanwhile, it incorporates the M-estimation-based minimum error entropy (MMEE) criterion, which
weights error samples in raw echoes through M-estimation functions, effectively suppressing outlier interference
during the algorithm update. Both the system identification simulations and practical multipath interference

suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior
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filtering performance.
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0 Introduction

Spaceborne synthetic aperture radar (SAR) is
an active microwave remote sensing system onboard
satellites that achieves high-resolution imaging
through synthetic aperture and pulse compression
techniques. Its all-weather and day-night operational
capabilities make it essential for the Earth observa-
tion and disaster monitoring'"'. The imaging quality
depends fundamentally on echo signal purity, with
multipath effects in complex scenes being a primary
limiting factor. Multipath phenomena in spaceborne
SAR exhibit dual characteristics: Constructive mul-
tipath (e.g., building double reflections or slope-di-
rected scattering) provides target 3D information to
supplement terrain analysis, whereas redundant in-

terference from urban canyons or sea waves de-
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grades the signal integrity and requires suppres-
sion'”’. This study focuses on the latter case—detri-
mental redundant multipath interference that induc-
es ghost targets and edge blurring in SAR imag-
ery™. Precise suppression of multipath-induced out-
liers at the raw echo stage is therefore critical for en-
hancing the SAR performance.

Conventional approaches like constant false

! and digital beamforming'*’

alarm rate detection'*
show limitations in dynamic environments. Adap-
tive filtering algorithms overcome these constraints
by dynamically tracking interference without requir-
ing signal stationarity assumptions. The least mean
square (LMS) algorithm'®" offers low computation-

al complexity but suffers from slow convergence.

While the recursive least squares (RLS)™" im-
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proves the convergence, it increases computational
costs and exhibits the instability. Affine projection
(AP) algorithms' """ enhance the stability but re-
main sensitive to outliers.

Recent advances in information-theoretic learn-
ing (ITL)"*" highlight the minimum error entropy
(MEE) criterion, which excels in capturing higher-
order signal statistics and performs robustly in non-

[15-16

Gaussian noise " '*". The affine projection minimum

error entropy (APMEE) algorithm'” combines
AP’s fast convergence with MEE’s impulse noise
resistance. However, MEE using quadratic Rényi

1519 underperforms with heavy-tailed/multi-

entropy
modal noise, where extreme outliers distort the er-
ror analysis'”?*'. The M-estimation-based MEE
(MMEE) criterion®*’ suppresses outliers via error
weighting, enhancing the robustness in non-Gauss-
ian environments, yet fails to co-optimize the con-
vergence speed and steady-state accuracy.

To address these challenges, we propose a
novel robust adaptive filtering algorithm which is M-
estimation-based MEE with AP (APMMEE). Its
core innovation lies in the organic integration of the
fast convergence characteristics of AP algorithm
with the strong robustness of MMEE criterion. The-
oretical analysis reveals intrinsic consistency be-
tween the sliding window length in MMEE criterion
and the subspace dimension in the AP algorithm.
Hilbert

(RKHS)"™*" theory, Gaussian kernel ®' transforms

Based on reproducing kernel space
the total error minimization problem into an adap-
tively solvable optimization model. Inheriting AP’ s
multi-data-block joint updating mechanism, it
achieves rapid convergence, Simultaneously, the
MMEE criterion employs M-estimation to weight
error samples based on posterior error magnitude,
effectively suppressing outlier interference and sig-
nificantly enhancing impulsive noise resistance.
Comparative experiments and processing tests with
actual spaceborne SAR echo data demonstrate that
the APMMEE algorithm effectively overcomes the
technical challenge of traditional algorithms’ sensi-

tivity to outliers in non-stationary multipath environ-

ments. The algorithm exhibits superior filtering per-
formance in complex noise environments, making it
particularly suitable for preprocessing raw echo data
in spaceborne SAR systems. By precisely suppress-
ing anomalous outliers caused by redundant multipa-
th interference, it achieves signal purification prior
to critical imaging steps such as range compression
and azimuth focusing, thereby fundamentally reduc-
ing interference effects on subsequent imaging quali-
ty and establishing a stable, reliable data foundation

for high-resolution SAR imaging.

1 Overview of Existing Related Al-

gorithms

1.1 Algorithmic model

In typical complex multipath propagation envi-
ronments of radar systems, establishing accurate
signal models forms the foundation for multipath in-
terference suppression research. For spaceborne
SAR echo characteristics, the radar transmits base-
band pulse signals s(7) using linear frequency modu-
lated (LFM) waveforms'®’, which are standard in
SAR systems. As the core waveform for spaceborne
SAR imaging, LFM signals achieve large band-
width through linear variation of instantaneous fre-
quency during the pulse duration, enabling pulse
compression via frequency modulation. The signal
parameters of carrier frequency f,=—5.4 GHz and
bandwidth B=200 MHz are selected to match prac-
tical engineering scenarios while enhancing model
specificity.

Physically, spaceborne SAR raw echoes funda-
mentally represent the convolution of transmitted
signals with ground scattering functions. When in-
corporating multipath effects, the 7, (n)* model
becomes

r.(n)=s(n)*c(n)+ iak-s(n— ) %0, (n )+

k=1
v(n) (1)
where “*” denotes the convolution operation, and
s(n) the transmitted LFM signal. The first term of
s(n)*c(n) corresponds to the direct-path echo, con-

taining the true target scattering information to be
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preserved, where ¢ (n) is the complex reflection
function of ground targets. The second term repre-
sents redundant multipath interference. Here K is
the number of multipaths; a, the attenuation coeffi-
cient of the kth path characterizing signal energy loss
during the propagation; 7, the crucial time delay
(differential between multipath and direct signals) ,
serving as the key feature of multipath phenomena
in the convolution model; o,(n) the reflection func-
tion of corresponding scatterers, which constitutes
the suppression target of the algorithm, and v (1)
additive noise comprising thermal noise and environ-
mental clutter.

To adapt to the adaptive filtering framework,
the desired received signal is redefined as

d(n)Zy(n)Jrv(n)zzK:ak-xT(n*rk)*wo+

=1
v(n) (2)
where y (n) denotes the redundant multipath inter-
ference component, x (1) the reference input for
correlation computation, w, the weight vector of
the target system, and v (n) zero-mean Gaussian
white noise with variance o7
The system error at the nth iteration, e(n), is
defined as
K
e(n):d(n)*zak-xT(n*rk)*w(n)Jr"u(n) (3)
=1
where w (n) represents the current weight vector.
The adaptive filtering technique dynamically opti-
mizes w(n) to asymptotically converge to the target
weight vector w,, thereby establishing the theoreti-
cal foundation for precise suppression of redundant
multipath interference in spaceborne SAR raw

echoes.
1.2 Review of AP algorithm

Compared with the conventional LMS algo-
rithm, the AP algorithm significantly improves the
convergence speed by constructing an affine projec-
tion input matrix utilizing multiple input vectors.
Here, the X(n)=
lz(n),z(n—1), -, 2(n—P-+1)], with dimen-

sions of £XP. In this context, P denotes the projec-

input  signal matrix i

tion order of the AP algorithm, and £ the filter

length. The algorithm can be described by the fol-
lowing constrained optimization rule

min ||w(n+ 1)— w(n)|?
w(n+1)

st.d(n)— X" (n)w(n+1)=0 4)
where || « ||, denotes the /; norm, and the desired sig-
dn)=[d(n),dn—1),-,d(n— P+

1)]". Based on this, the recursive formula of the

nal is

AP algorithm is as follows

wnt+ 1D=wn)+pXn) [ X" ()X (n)] eln)

where e(n)=[e(n),e(n—1), -, e(n—P+1)]"
is the error signal, and p the step size of the algo-
rithm. The algorithm achieves rapid convergence in
Gaussian environments. However, due to the lack
of an effective outlier identification mechanism and
robust handling for data anomalies, the algorithm
struggles to maintain stable performance when pro-
cessing abnormal outliers in non-Gaussian environ-

ments, exhibiting significant drawbacks.
1.3 Review of the MMEE

The MMEE assigns lower weights to abnor-
mal outliers through the robust weighting mecha-
nism of M-estimation, while its integration with the
minimum error entropy criterion—adaptable to data
probability distribution characteristics—effectively
suppresses outlier interference. M-estimation, the
core methodology of robust statistics introduced by
Huber, is alternatively termed maximum likelihood-
type estimation due to its structural resemblance to
maximum likelihood estimation. It suppresses outli-
ers through differential weighting, assigning lower
weights to samples with larger deviations and higher
weights to those with smaller deviations. The opti-
mization objective function of M-estimation is math-
ematically formulated as

. Y [di—wa

Wy = arginm 2,0(&[) (6)
where N represents the total number of data sam-
ples; p(s) the error loss function; d, the desired out-
put; w the weight vector, and x; the input vector.
r,=(d,— w'x;)/5, represents the standardized re-

sidual, and ¢, is typically calculated via the median
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absolute deviation (MAD)
MAD  med(e, — med(e))
0.6745 0.674 5

where med (+) denotes the median operator, and

(7)

6=

0.674 5 is the constant correction factor.
Taking the partial derivative of the objective

function yields
N
>¢r)a, =0 (8)
=1

where ¢(+)=p'(+) is the score function. The weight
from ()

function ¢(s) can be derived

o)=¢(r,)/r.
For non-Gaussian noise scenarios, the Hampel
weight function demonstrates outstanding perfor-

mance through residual-tiered processing, defined as

1 |7"[|<A1
A
Tll A << ‘7’:|<A2
rl
Prrampet ()= 9)
A ﬁsM)A<M<A
i A A, 2 AR YAY
O |7’1|>A3

where A,, A,, A; are the threshold parameters of
Hampel’s weight function.

The MMEE method extends M-estimation by
integrating its outlier-sensitive weight function ¢(¢)
into conventional Bagger-window density estima-
tors. By adaptively weighting or discarding error
samples e;, a novel PDF kernel density estimator is

constructed as
pulo) =~ 3 klz—p.le)re) (10
P

where ¢.(e;) is the M-estimation weight factor that
adjusts contributions based on sample outlier severi-
ty, L the length of the sliding window, and «,(+) the
kernel function with kernel width o controlling
smoothness, defined mathematically as
il i)
= exp| — — (11)

o 2 20"

Building upon this estimator, the modified qua-

k,(x)

dratic information potential (MQIP) is introduced
as the cost function for MMEE entropy criteria
N 1 n n
Vi o)== > D) k(gle)e—
L™= lj=n—L+1

o.(e)ee;) (12)

By maximizing the MQIP, the optimization
problem for the MMEE criterion can be formulated

as
]MMEE(wn)
1 n n
max — z k, (p.(e)ee;—¢.(e)ee;)
w < i=n—L+1lj=n—L+1
(13)

where ¢,, ¢; denote the posterior errors. The robust-

ness is enhanced through this cost function.

2 The Proposed APMMEE algo-

rithm

Although the MMEE criterion demonstrates
excellent performance in suppressing abnormal outli-
ers through its robust weighting mechanism and
adaptability to non-Gaussian distributions, its sensi-
tive dependence on kernel function parameters, high
computational complexity from higher-order statis-
tics, and performance fluctuations under low SNR
or unknown data distribution scenarios impose limi-
tations in applications requiring both real-time opera-
tion and dynamic adaptability (e.g., adaptive filter-
ing tasks with complex multipath interference). No-
tably, the AP algorithm’s dynamic tracking capabil-
ity through multi-step projection updates and its uti-
lization of input correlation characteristics offer po-
tential to compensate for these limitations. Within
this research framework, we reformulate the optimi-
zation problem in Eq.(4) using the MMEE criteri-
on. The core optimization objective is to solve for
the optimal weight vector w under the norm con-

straint of weight updating, formally expressed as

iiimmum—wwm—m—

p—)

max

w(t) |,
p.le,(t—j))ee,(t—j))
subject to lw(7)— w(z— 1)|F<<y* (14)
where w denotes the weight vector, ¢, the weight-
ing function, L the sliding window length, and o the
kernel width of the Gaussian kernel function; e, (7 —
i) and e,(z— j) indicate the posterior errors at time
steps t—i and 71—, respectively. In Eq.(14), the ob-

jective function employs adaptive weighting to dy-
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namically adjust error samples, effectively mitigat-
ing outlier-induced perturbations in algorithmic up-
dates. This mechanism drives the system toward op-
timizing the error distribution toward an ideal config-
uration, thereby enhancing overall performance.
The constraint |lw(z)— w(z— 1)||;<< 4° rigorously
bounds the variation magnitude of weight vectors be-
tween consecutive iterations. The parameter p, gov-
erning the step size of weight updates, critically de-
termines the system stability and convergence prop-
erties. Excessive g values may cause aggressive
weight updates, resulting in the system instability
or even divergence; whereas insufficient p values
lead to prohibitively slow updates, severely degrad-
ing the convergence speed and compromising real-
time applicability.

To solve this constrained optimization prob-
lem, we implement the classical Lagrange multipli-
er method. By introducing the Lagrange multiplier
y, the constrained problem is transformed into an
unconstrained extremum problem, yielding the de-

rived cost function as

1 L L
]APMMEE:PZZK(; (@e‘(ep(ti l.))°€p(lf* i)—

o e, (t—j))ee,(t—j))— y[llw(r)—

w(z— D — ] (15)
where y denotes the Lagrange multiplier. It func-
tions as a balancer in this well-designed cost func-
tion to precisely regulate the relationship between
the objective function and constraints. The value of
y 1s not arbitrarily assigned, but directly governs the
optimization outcome. Larger y values significantly
increase the weight of constraints during the optimi-
zation, enforcing stricter bounds on weight updates
to ensure system stability; whereas smaller y values
prioritize the objective function’s optimization, driv-
ing the system toward extremum seeking for en-
hanced performance.

We subsequently investigate the update mecha-

nism for weight vector w (#) by deriving the gradi-
ent of Lagrangian Jpyue: With respect to w (2) ,

which determines both the direction and magnitude

of weight updates. The gradient expression is for-
mally defined as

aJ;’\l’MMEE(w(l))
J"\I’MMEE ==
VI, (w(t)) Tw0(s)

: 2 2 [(u(t—i)e. (e, (1—i))—

IZ 2
<0 == L+1j=(—L+1

u(t—jle., (e, (1—j)))X

k(@ (e,(t—i))ee,(1—i)—¢,(e,(1—j))

e,(t—j))X (g, (e, (t—1i))ee,(t—i)—

p.le,(t—j))ve,(1—j))]—

2y lw()—w(t—1)] (16)
where 7 denotes time; u (—i) and u (z—j) repre-
sent the input vectors at time steps i and j, respec-
tively.

This gradient formulation transcends mere
mathematical manipulation, incorporating the syner-
gistic effects of input signals, error terms, and ker-
nel functions to establish a rigorous theoretical foun-
dation for weight vector updates. To enhance practi-
cal utility for computational implementation and
analysis, we employ mathematical simplification
techniques to derive a condensed matrix-form itera-
tion formula. To enhance notational simplicity and
improve both readability and computational efficien-
cy of the formulae, we introduce the following defi-
nitions: A, = ¢, (e,(t— 1)), A= ¢, (e,(t—j)) and
k= t,(Ne,(t—1)— Ae,(1—j)). The simplifica-
tion process leverages matrix operation properties
and relevant mathematical theorems. The gradient
expression of the cost function obtained through rig-

orous derivation is as follows.

VI apuvee (w (7)) =
1 L .
— E z (ult—1i)A,—
Lio™ =, -5

u(t—j)A) k(e (t—1)— Ae,(t—j))]—
2ylw(t)—w(t—1)]=

0,— 0,02, +0,—2y[wlt)—w(t—1)]=
20, — 20, — 2y [w(t)—w(t—1)]=

X()(B(t)—A())E, (t)—

14202
2y lw(t)—w(z—1)] (17)

where
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1 - -
Ql: S 2 2 2 u(lf_l.)/lllcmjep(l‘_l‘)
Lo” =,
1 - :
QZZ 2 2 2 2 u(Z_Z.)/lllcmjep([_j)
Lo” =,
1 . -
Q=—— > > ult—j) ke, (t—1)
Lo = 1,5
1 ! ! . .
Q= > u(t—j)Akze,(1—j)
Lo = 1,- T

(18)

During this derivation, the kernel matrices

B(¢) and A (2), constructed from weighted errors,

play pivotal roles throughout the optimization pro-
cess. They are defined as

A =k,(Ae,(t—i)— Le,(t—7)) (19)

LoL
B, — ;;A” Y (20)
0 i#j
Let W=diag(4,,4,,+,4,) is a diagonal
weight matrix. Meanwhile, FE,(z) denotes the
weighted error vector, formulated as
E,(t)=[Ae,(t— 1), e, (t—2),-,
Are,(t—L)]=
Wle (t—1),e,(t—2),-,e,(t—L)] (21)
X (1) represents the weighted input signal ma-
trix, expressed as
X()=[ ult—1),2u(t—2),~ Au(t—L)]=
U)w' (22)

where U(t)=[u(t—1),u(z—2), -, u(z—L)]

is the unweighted input matrix.
Setting Eq.(16) to zero yields the difference
expression for consecutive weight vectors

w(t)—w(t—1)=

- X()(B()—A())E, (1) (23)
Loy

To rigorously derive the Lagrange multiplier y
while ensuring optimization validity and reliability
under complex conditions, we impose the strictest
constraint |lw(z)— w(zt— 1)|;=4". Substituting
Eq.(23) into this constraint and through rigorous
mathematical derivation, we obtain

y == IX()(B(1)—A())E, ()], (24)

Finally, substituting Eq.(24) into Eq.(23)

yields the iterative update formula for weight vector
w(?)

X(2)(B(2)—A())E, (1)
“IX (OB~ A E, (1),
(25)
Eq.(25) explicitly defines the weight vector up-

w(t)=w(t— 1)+

date mechanism at each iteration, serving as the
computational cornerstone for the optimization algo-
rithm based on affine projection spaces and the
MMEE criterion. In practical applications, iterative
execution of this formula enables real-time weight
vector adaptation to varying signal environments

based on input signals and error feedback.

3 Analysis of Stability

Before proceeding with the analysis, it is neces-
sary to introduce the following assumptions, which
are commonly adopted in the adaptive filtering.

Assumption 1 In practical applications, both
u(7) and noise signal v(z) are considered as station-
ary random variables with zero mean.

Assumption 2 The auto correlation matrix of
the input signal satisfies

Elu(t)u'(1)]=0/1 (26)

It indicates that the input signals are mutually
independent across different dimensions, with each
dimension having identical variance o, .

Assumption 3 The auto correlation matrix of
the noise satisfies

Elv()v"(1)]=0l1 (27)

It implies that the noise components are also in-
dependent across dimensions with uniform vari-
ance oZ.

Assumption 4 The noise signal v(¢) is uncor-
related with the input vector sequence x (#). They
are statistically independent, satisfying

Elu(t)v()]=0 (28)

Assumption 5  The M-estimation weight
function A,= ¢(e,), as the core element for achiev-
ing robustness in the APMMEE algorithm, 1is
bounded within A,&€[ 0, 1]. This constraint ensures
that the weighting effect on error samples remains
within a reasonable range, preventing excessive am-
plification or attenuation of error impacts.

To analyze the temporal evolution of the

weight error vector w(z), we substitute the weight
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update formula into w(z+ 1)=w,— w(r+ 1),

yielding
w(tt+1)=w(t)—pU()H(2)(d(1)—
U'(1)w(z)) (29)
where H(t)= W (B(:)—Al:))W This

X (O(B()— A E, ()]
difference equation characterizes the relationship be-
tween current and subsequent weight error vectors,
whose dynamical properties determine algorithm
convergence to optimal weights and form the corner-
stone of subsequent stability analysis. Incorporating
the system model d(2)=U"(¢)w,+ v(¢), where
d (1) denotes the desired signal, we derive
w(t+ 1D)=w(t)—pU()HOU" (w(t)—

pU(t)H (1)v(1) (30)
This expression establishes explicit connec-
tions among weight deviation dynamics, input sig-
nals, noise, and current weight deviations, laying
the foundation for stability analysis via statistical
properties. Taking expectations on both sides (with
zero-mean noise) yields
Elw(+1)]=
Elw(t)]—pE[U()H (DU ()]E [w(1)]
(31)
To facilitate the analysis, we perform orthogo-
nal decomposition of H(¢)
H(1)=QXQ' (32)
where Q is an orthogonal matrix QQ" =1, and X' =

diag( &, &, --+, &) the diagonal eigenvalue matrix

with £, &, -+, &, representing the eigenvalues of
H(1).

From Assumption 2, we obtain
E[U()U (1) ]=

E[[u([),u(z— 1), u(t—L+1)]

[u(t)ult—1), ult— L+ 1)]“‘]=L031

(33)
Combining Eq.(33) with Eq.(31) gives
Elw(t+1)]=
E[D()(I—pX)D"(t)]E[w(z)] (34)
where D(¢)=U (1)Q, satisfying E[ D(¢)D" (¢) ]=
L
To guarantee the algorithm’ s convergence to

optimal weights, where the expectation of the

weight error vector asymptotically approaches zero,
the following condition must hold ||[E [ D(z)(I—
pX)D"(¢)]||<<1. Given that D(¢)(I— uX )D" (t)
is a symmetric matrix, its norm equals the absolute
value of the maximum eigenvalue. For the diagonal
1—pé (j=

matrix [ — X with eigenvalues

1,2, -+, L), this condition is equivalent to requiring
the spectral radius of I — yX to be less than unity
1 —ul<<1 (35)
Consequently, the step size must satisfy
0<<pu<< 2 (36)
max;¢;

4 Simulation Results

The superior performance of the proposed
APMMEE algorithm is validated through computer
simulations, with evaluation conducted using the
normalized mean square deviation (NMSD) , de-
fined as
lw(2)— w, ()]

[, ()13

NMSD(7)= 10lg( ) (37)

where w(7) denotes the weight vector of the filter at
time ¢, w,(¢) the reference vector at time z, | -]
the squared /, norm of the vector, and Ig (+) the base-
10 logarithm operation that transforms linear-do-
main deviations to decibel (dB)-scale results.

In the simulation experiments, the steady-state
error serves to quantify the minimum achievable er-
ror after prolonged system operation. Ideally, this
error should asymptotically approach zero, with
smaller computed values indicating closer approxi-
mation to this ideal condition. The convergence rate
is measured by the time required for the algorithm to
achieve stable convergence, while the tracking per-
formance is primarily characterized by the system’s
recovery speed to a new steady state following
abrupt changes in impulse response. All experimen-
tal data represent averaged results from 300 indepen-
dent simulation trials to ensure the reliability and sci-
entific validity.

4.1 System identification

In the system identification experiment, the in-

put signal is generated by filtering zero-mean, unit-
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variance Gaussian white noise through a first-order
filter with a transfer function of F(z)=1/(1—
0.7z'). This experimental setup is designed to en-
dow the input signal with specific correlation and
spectral characteristics, thereby better approximat-
ing real-world non-white noise scenarios encoun-
tered in practical applications. The simple structure
of the first-order filter ensures the rationality of the
input signal while reducing simulation complexity,
which facilitates the analysis of the adaptive algo-
rithm’s convergence performance and identification
effectiveness. To simulate realistic conditions, the
noise with a signal-to-noise ratio (SNR) of 30 dB is
added to the input signal. This SNR level represents
a commonly adopted reference value in engineering
practice, as it maintains adequate signal quality
while effectively evaluating the algorithm perfor-
mance.

The background noise v (¢) in the experiment
follows an a-stable distribution. The parameters of
the a-stable distribution are specified by the vector
Vess=[a,8,7,0 1", The characteristic exponent
a takes values in (0, 2), determining the tail charac-
teristics of the a-stable distribution. In probability
distributions, the tail corresponds to the probability
of extreme outliers. As a decreases from 2, the tail
of the a-stable distribution becomes heavier, indicat-
ing a significantly increased probability of outliers.
To simulate anomalous outliers in the signal, the pa-
rameters of the a-stable distribution are set to [ 0.2,
0, 1.5, 0] for all system identification simulations.

Typically, the threshold parameters of Ham-
pel’s weight function are empirically determined,
with common settings such as A, =1.31, A,=
2.039, A, =4, or
4, Ay=8"". According to the literature on MMEE

[33]

alternatively A, =2, A, =
criterion™ , we select an optimal parameter set
A, =0.5,4,=2, A;=4 to ensure peak perfor-
mance of the proposed algorithm.

In the first experimental trial, we systematical~
ly investigate the performance of the APMMEE al-
gorithm (step size # = 0.01, filter length is 32)
across varying kernel bandwidths ¢€{0.3, 0.5,

1.0, 2.0, 2.5}. As demonstrated by the experimen-
tal data in Fig.1, the kernel width =1 exhibits su-
perior performance. In subsequent experiments, the

kernel bandwidth is fixed at c=1.

0
—0=03
----g=05
——o=10
=g =20
I 2 e=25
8
a
2
_10 -
\
\%&ht.r‘-“.’.::*—*~v»""_"“::':.-
_15 1 1 1 1
0 1000 2 000 3 000 4000 5000
Iteration
Fig.1 NMSD curves of the APMMEE algorithm versus pa-
rameter o

The second experiment investigates the impact
of varying projection orders L€ {8, 16, 32, 641 on
the performance of the APMMEE algorithm within
the affine projection framework. As clearly illustrat-
ed in Fig.2, increasing the projection order leads to
a significant improvement in the convergence rate of
the APMMEE algorithm, albeit at the expense of a

slight degradation in steady-state accuracy.

0
—P=8
- — P=16
------- P=32
——P=64
-5
3
% AN ST TN NI NN
-10 \- R e Ak WU OR norns
R N VAL L WAL R P U
_15 1 1 1
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Fig.2 NMSD performance of APMMEE versus projection

order

The third experiment comparatively evaluates
the performance of LMS (x =0.08) , AP (x =
0.074) , APSA™ (x =0.069) , APMEE (x =
0.008 5) , and the proposed APMMEE algorithm
(#=0.008 5) under identical projection order (P =
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32). As demonstrated in Fig.3, the APMMEE al-
gorithm exhibits significant advantages in both con-

vergence rate and steady-state accuracy.

NMSD /dB
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Fig.3 NMSD performance comparison of LMS, AP, AP~
SA, APMEE and the proposed APMMEE under

a-stable noise

In a-stable non-Gaussian noise environments,
the LMS algorithm fails to distinguish between nor-
mal errors and outliers, resulting in sluggish conver-
gence; while the AP algorithm accelerates conver-
gence through block updates, its lack of targeted
suppression mechanisms causes trajectory deviation
from the optimal path and inability to reduce the
steady-state error. The APSA algorithm demon-
strates limited utilization of input correlations and re-
stricted non-Gaussian noise handling capability. Al-
though it achieves faster convergence and lower
NMSD compared to LMS and AP, its inadequate
exploitation of higher-order statistics results in weak
noise suppression and higher steady-state error than
both APMEE and APMMEE. The APMEE algo-
rithm inherits the fast convergence characteristic of
the AP algorithm’s multi-data-block joint update
mechanism, while demonstrating competent perfor-
mance through the MEE criterion’s flexible charac-
terization of signal probability distributions. Howev-
er, the APMEE lacks dedicated outlier suppression
mechanisms, allowing anomalies to corrupt the er-
ror entropy calculation, which biases weight up-
dates and induces convergence fluctuations or perfor-
mance degradation. In contrast, the APMMEE pre-

serves both the AP algorithm’s rapid convergence

and MEE’s non-Gaussian noise adaptability, while
incorporating an M-estimation weighting mecha-
nism to establish dedicated outlier suppression. This
design enables stable convergence under extreme
outlier interference, with APMMEE outperforming
APMEE and LMS in both the convergence speed
across all scenarios and achieving optimal steady-
state NMSD performance. Consequently, it deliv-
ers purer echo data for subsequent spaceborne SAR
imaging processing.

The fourth experiment compares the perfor-
mance of the proposed APMMEE algorithm (p=
0.008 7) with APSA (px =0.075) , LMS (u =
0.095) , AP (x =0.081), and APMEE (x =
0.008 8) under varying sparse system conditions.
The experiment is configured with 3X 10" itera-
tions, where the unknown system coefficients are re-
generated at the 10 000th and 20 000th iterations to
simulate parameter abrupt changes, respectively.
The filter length is set to 32, initialized as a unimod-
al sparse system (only the 9th element = 1), trans-
formed to bimodal after the first abrupt change
(5th=1, 32nd=—1) , and then to trimodal after
the second abrupt change (lst, 32nd=1, 16th=
—1). As shown in Fig.4, the proposed algorithm
demonstrates superior adaptability to environmental
abrupt changes and maintains excellent steady-state
error control across different sparse systems. Its ro-
bustness provides strong support for stable opera-
tion in complex dynamic environments and heteroge-

neous systems.

NMSD / dB

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tteration / 10*

Fig.4 Comparative analysis of NMSD performance for five
algorithms under abrupt sparse structure transitions

(unimodal — bimodal — trimodal)
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4.2 Real-signal multipath interference cancel-

lation

As an active microwave remote sensing Sys-
tem, spaceborne SAR typically employs LFM sig-
nals to achieve pulse compression through frequency
modulation, thereby enhancing the range resolution
while maintaining operational range. During the sig-
nal propagation to the target area and reflection back
to the sensor, multipath interference occurs due to
multiple propagation paths, such as when encounter-
ing discontinuous structures where signal diffraction
creates additional paths, or when mountainous ter-
rain causes multiple reflections, generating multipa-
th components with different propagation distances
and phases compared to the direct path. These re-
dundant multipath interference components, which
corrupt the genuine information we receive, are
combined with environmental additive noise to form
composite signals containing both useless informa-
tion from multipath interference and random noise
disturbances. The resulting high complexity poses
significant challenges for subsequent signal process-
ing and target detection.

The fifth experiment evaluating multipath inter-
ference suppression performance systematically
compares the proposed APMMEE algorithm (x=
0.005) with LMS (x=0.4), AP (x=0.09), AP-
SA (¢=0.08), and APMEE (p¢=0.09) algorithms
under varying outlier interference intensities, com-
prehensively validating their robustness in suppress-
ing SAR multipath interference within complex
noise environments. The filter tap length is config-
ured as M=128, sufficiently covering typical mul-
tipath delay ranges (e.g., 50—200 ns) in space-
borne SAR echoes to ensure effective processing of
redundant multipath components at varying distanc-
es. Fig.5(a) displays waveform characteristics of ac-
tual spaceborne SAR raw echoes contaminated by
30 dB SNR Gaussian noise, establishing the base-
line interference scenario under clear-sky conditions.
Two characteristic a-stable noise scenarios are de-
signed to accurately match complex spaceborne
SAR observation environments. Fig.5(b) shows

Scenario | with parameters [1.2, 0, 1, 0] (char-

acteristic exponent @ =1.2) , exhibiting relatively
light-tailed characteristics where the probability den-
sity function decays rapidly with lower outlier occur-
rence frequency. This corresponds to suburban envi-
ronments where sparse low-rise buildings and vege-
tation generate weaker redundant multipath interfer-
ence, representing moderate non-Gaussian interfer-
ence. Fig.5(c) presents Scenario || with parame-
ters [0.3, 0, 1, 0] (a=0.3), demonstrating heavy-
tailed characteristics with slower probability density
function decay and significantly increased outlier
probability. This simulates dense urban areas or
stormy weather where numerous high-rise reflec-
tions and atmospheric scattering create strong redun-
dant multipath with frequent outliers, rigorously
testing algorithm performance under extreme non-
Gausslan noise conditions.

Fig.5(b) demonstrates that while conventional
algorithms achieve basic suppression of redundant
multipath interference in spaceborne SAR echoes,
their performance diverges due to inadequate adapta-
tion mechanisms to complex SAR noise statistics.
In suburban moderate-interference scenarios, they
show insufficient suppression precision for multipath
components with delays close to the direct signal,
manifesting as larger error fluctuations and slower
convergence rates that fail to meet subsequent imag-
ing requirements for echo purity. These deficiencies
are exacerbated in the high-outlier scenario of Fig.5
(c¢). Strong redundant multipath interference in
dense urban/inclement weather conditions generates
numerous extreme values, causing conventional al-
gorithms to frequently deviate from optimal weight
trajectories, worsening steady-state errors and in-
ducing persistent convergence oscillations. This im-
pairs their ability to discriminate between true target
scattering signals and interference components, sig-
nificantly degrading the SAR imaging resolution and
edge sharpness. In contrast, the APMMEE algo-
rithm outperforms in both scenarios through its inte-
grated M-estimation weighting mechanism that dy-
namically identifies multipath-induced outliers in
SAR echoes. It assigns low weights to large-magni-
tude interference while maintaining high sensitivity

to valid direct-path components, ensuring stable
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Fig.5 Wave diagrams of the input signal and performance
comparison of the algorithm under different levels of

noise in a stationary enviroment

convergence even under severe outlier interference.
These results conclusively demonstrate APMMEE’s
superior redundant multipath suppression capability
in spaceborne heavy-tailed clutter environments,
and providing more reliable signal purification for
spaceborne SAR raw echo preprocessing, thereby
advancing practical applications of SAR redundant
multipath interference suppression in complex sce-
narios.

In the sixth experiment addressing redundant

multipath interference suppression for spaceborne

SAR under high-dynamic observation scenarios, the
investigation is conducted under [0.7, 0, 1, 0]
noise conditions, where these noise parameters sim-
ulate complex environments with random variations
in multipath delays and amplitudes caused by rapid
radar beam scanning across undulating mountainous
terrain, with redundant multipath interference pri-
marily arising from combined mountain reflections
and surface scattering. To accurately emulate high-
dynamic channel characteristics of spaceborne SAR
(where satellite high-speed motion causes abrupt
changes in beam illumination areas leading to drastic
multipath propagation variations) , a channel muta-
tion is introduced at the 2 500th iteration by imple-
menting both channel inversion processing and
switching to random sparse configurations, with cor-
responding experimental results presented in Figs.6

(a) and 6(b).

-18
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Iteration
(a) NMSD performance of five algorithms for multipath interference
suppression under channel inversion mutation
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(b) NMSD performance of five algorithms for multipath interference
suppression under random sparse channel mutation

Fig.6 Performance comparison of the algorithm under dif-

ferent levels of noise in a non-stationary environment
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Fig.6(a) clearly demonstrates that convention-
al algorithms exhibit significant tracking lag when
channel mutations occur in spaceborne SAR sys-
tems. Their weight-updating mechanisms fail to
promptly adapt to rapid multipath interference varia-
tions, causing notable fluctuations in suppression
performance, sudden drops in target echo SNR,
and direct degradation of phase coherence in subse-
quent imaging. These limitations become more pro-
nounced in the random sparse channel scenario de-
picted in Fig.6(b). The random sparse channel emu-
lates the stochastic appearance/disappearance of
multipath sources when beams scan steep terrains.
In these steep terrains, the impulsive and non-sta-
tionary characteristics amplify error signal anoma-
lies, substantially reducing conventional algo-
rithms’ convergence speed, increasing the steady-
state error, and consequently impairing multipath in-
terference suppression capability. In contrast, the
proposed APMMEE algorithm achieves rapid pa-
rameter adaptation, dynamically filtering strong
multipath outliers during mutations through its M-
estimation weighting mechanism, while simultane-
ously tracking channel variations via multi-data-
block joint updates to maintain stable convergence
speed and low steady-state error. It outperforms
comparative algorithms in both post-mutation recov-
ery capability and tracking precision, enabling accu-
rate redundant multipath suppression in dynamic sce-
narios, conclusively validating its superior perfor-
mance in complex non-stationary spaceborne SAR

observation environments.

5 Conclusions

In the context of multipath interference suppres-
sion and outlier processing in spaceborne SAR, this
paper proposes the M-estimation-based minimum er-
ror entropy with affine projection algorithm. Its dedi-
cated framework addresses redundant multipath in-
terference from building diffraction and terrain reflec-
tion by assigning differential weights to urban and
mountainous scattering outliers via a weighting func-
tion, dynamically optimizing the error vector, and

imposing a /;-norm constraint to enhance adaptabili-

ty in complex environments. Simulation results dem-
onstrate that the proposed algorithm exhibits excel-
lent multipath tracking capability in sparse systems
simulating urban clusters and undulating terrains, ef-
fectively capturing delay and amplitude variations.
In heavy-tailed interference environments such as
strong urban reflections and storm pulses, it can
achieve faster convergence and lower steady-state
error than conventional methods, and mitigate the
convergence instability and accuracy degradation
caused by outliers, thereby providing more reliable
suppression for SAR raw echo preprocessing. How-
ever, when processing ultra-large-scale data such as
full-aperture imaging, joint updates of multiple data
blocks increase the memory overhead. Future work
will focus on lightweight architectures, leveraging
the range-azimuth separability of SAR echoes to op-
timize data partitioning and parallel processing,
thereby

supporting  higher-precision spaceborne

SAR imaging and multipath suppression.
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