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Abstract: The oscillation of large space structure （LSS） can be easily induced because of its low vibration frequency. 
The coupling effect between LSS vibration control and attitude control can significantly reduce the overall 
performance of the control system， especially when the scale of flexible structure increases. This paper proposes an 
optimal placement method of piezoelectric stack actuators （PSAs） network which reduces the coupling effect between 
attitude and vibration control system. First， a spacecraft with a honeycomb-shaped telescope is designed for a 
resolution-critical imaging scenario. The coupling dynamics of the spacecraft is established using finite element method 
（FEM） and floating frame of reference formulation （FFRF）. Second， a coupling-effect-reducing optimal placement 
criterion for PSAs based on coupling-matrix enhanced Gramian is designed to reduce the coupling effect excitation 
while balancing controllability. Additionally， a laddered multi-layered optimizing scheme is established to increase the 
speed and accuracy when solving the gigantic discrete optimization problem. Finally， the effectiveness of the proposed 
method is illustrated through numerical simulation.
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0 Introduction 

Spacecraft with large space structure is increas‑
ingly attractive thanks to their broad mission poten‑
tial. Recent advances in launching capability， de‑
ployable mechanisms［1］， in-space assembly［2］， 3D 
printing， are making the application practical. As 
the size of flexible appendages grows， such as solar 
panels， antennas［3］， robot manipulators［4］， on-orbit 
service devices［5］， their low natural frequencies 
make vibration readily excited by disturbances like 
thermal environmental perturbations［6］， space debris 
impact［7］， on-orbit service operations［8］， actuator 
faults［9］， or maneuvering inputs.

Flexible spacecraft control strategies can be cat‑

egorized into two types： Attitude control system 
（ACS） only， and attitude control with an active vi‑
bration control system （AVCS）. Within ACS-only 
methods， passive control［10］， e.g.，input shaping［11］， 
component synthesis［12］， may work for spacecraft 
with small solar panels， but are sensitive to model 
uncertainties. Adaptive and robust techniques， e.g.， 
parameter-adaptive fuzzy control［13］， observer-based 
control［14-15］， treat the coupling effect of the vibra‑
tion of flexible appendages as disturbance. Passive 
stability can be guaranteed［16］ when the flexible cou‑
pling matrix is small compared to the original inertia 
matrix of the spacecraft. For missions that strictly 
require precise pointing or structure shape， an 
AVCS is typically indispensable. Two frequently 
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used AVCS approaches are independent modal 
space control （IMSC） and positive position feed‑
back （PPF）. They are often integrated with ACS， 
either as a combined strategy［17‑18］ or in a synergetic 
manner［19］.

Actuator placement can significantly affect sys‑
tem performance in many ways. Efforts have been 
made to get better oscillation attenuation perfor‑
mance［20］， maximum observability and controllabili‑
ty［21］， minimum control effort［22-23］， less spillover ef‑
fect［24］. Analytical methods［25］ are only feasible for 
simple structures like cantilevers. Heuristic optimi‑
zation algorithms such as genetic algorithm（GA）， 
particle swarm optimization（PSO）， gray wolf［23］ 
have been used for complex structures［26］. Howev‑
er， three gaps remain. First， most studies focus on 
small or moderate flexible structures［27］ whose 
amount of truss varies from tens［28］ to hundreds［29］. 
Optimal actuator placement of large space structure 
（LSS） which has up to thousands of trusses are sel‑
dom studied. Second， the existing criteria typically 
optimizes vibration suppression alone and ignores 
how placement influences attitude vibration cou‑
pling， which can degrade both attitude and vibration 
performance on LSS. Third， the increasing size and 
complexity of structure add challenges to modeling 
and solving of the optimization problem in an expo‑
nential way. Current optimization algorithms are 
prone to local convergence， which can render the 
outcomes infeasible.

In this study， an optimal vibration actuator 
placement strategy which reduces the coupling be‑
tween ACS and AVCS for a spacecraft with a large 
space telescope structure is developed.The contribu‑
tions of this paper can be listed as follows. （1）This 
paper proposes a model of a spacecraft operating in 
geostationary earth orbit （GEO）. The model fea‑
tures a large， flexible， honeycomb-shaped telescope 
structure， which is inspired by typical LSS［1，30-31］， 
and designed to meet high-resolution imaging re‑
quirements. （2） A coupling-matrix-enhanced Grami‑
an is introduced， which weights vibrational modes 
based on their contributions to attitude-vibration cou‑
pling， thereby explicitly penalizing coupling effects 

while maintaining control lability. （3） A laddered 
multilayer GA featuring geometry-aware coding is 
developed to efficiently address the discrete optimi‑
zation problem. This development facilitates the 
generation of a feasible layout for the network of 
piezoelectric stack actuators （PSAs）.

This paper is organized as follows. Section 1 
presents the development of the system model， en‑
compassing the spacecraft geometry， the finite-ele‑
ment （FE） representation of the telescope， the 
model of the PSAs， and the coupled rigid-flexible 
dynamics. Section 2 formulates the actuator place‑
ment problem， introduces a geometry-aware coding 
approach， develops the coupling-reduced optimiza‑
tion criteria， and elaborates the laddered multi-layer 
GA solver. Simulation results are provided in Sec‑
tion 3 to show the effectiveness of the proposed 
method. Section 4 concludes the study.

1 Mathematical Model of Flexible 
Spacecraft

1. 1 Geometric setup of the spacecraft　

To facilitate the application of space telescope 
in high-resolution imaging scenarios， a honeycomb-

shaped telescope with a large diameter is designed. 
Then， a spacecraft featuring a flexible telescope 
structure and a rigid hub is designed. As shown in 
Fig.1， according to the work in Ref.［31］， the aper‑
ture of the telescope should reach up to 40 m to 
meet the angle resolution requirement of 10 mas for 
exoplanets observing.

The space telescope structure is designed by 
our team as around 45 m of the diameter and is 
made up of more than 180 duplicated single hexago‑

Fig.1　Work in Ref.[31]
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nal modules. Honeycomb structures are frequently 
used in large space structures， as shown in the re‑
cent research in Ref.［2］. It shows advantages in 
weight-reducing， thermal stability， mechanical ri‑
gidity， and small stowed volume for deployable 
mechanism. An array-style feed system， in which 
each individual module is equipped with its own 
feed source， enhances fault tolerance， improves pre‑
cise beamforming and pointing， and increases the 
signal processing efficiency of the space telescope. 
The rigid hub where attitude actuators are installed， 
is connected to the central module of the telescope 
structure by rigid beams. A simplified beam-based 
model is established to facilitate the finite element 
method （FEM）， optimal actuator placement and vi‑
bration control of the flexible spacecraft. The model 
is made up of 2 438 beams in total， and the material 
is supposed as carbon fiber （230 GPa）， as is chosen 
in Ref.［32］. The side view， bottom view， and sin‑
gle module view of the spacecraft with deployed 
structure are shown in Fig.2. Twelve tip displace‑
ment probes are set on the edge of the structure to 
verify the vibration of the structure in Section 3， as 
marked as green diamonds in Fig.2. It is noteworthy 
that since the telescope structure is both axial and 
central symmetric， all modal shapes show axial or 
central symmetric patterns， which indicates that the 
energy transition also follows a symmetric pattern. 
The symmetric nature of modal shapes enlightens 
the development of the geometry‑aware coding 
method， which is discussed in Section 2.3.

1. 2 FEM model of the flexible telescope struc⁃
ture

The FEM model of the flexible structure is for‑
mulated in a beam-based way， that is， each single 
truss is modeled as two nodes and one element. Sup‑
pose the structure has n0 nodes， each of which has 
three translational freedoms and three rotational 
freedoms， thus the total degree of freedom would 
be n = 6n0. Let the number of installed actuators be 
na. And the dimension of disturbance force is nd. 
The FEM model of the flexible structure is formu‑
lated as［33］

Mδ̈ + Cδ̇ + Kδ = B d fd + B a fa (1)
where δ ∈ R n × 1 is the physical displacement of each 
degree of freedom of the nodes， M ∈ R n × n the mass 
matrix， C ∈ R n × n the damping matrix， and K ∈ R n × n 
the stiffness matrix of the flexible structure； 
fd ∈ R nd × 1， fa ∈ R na × 1 are the disturbance forces and 
the control forces， respectively， applied to the flexi‑
ble appendages with respect to each degree of the 
mass elements of the system； B d ∈ R n × nd and 
B a ∈ R n × na are the disturbance location matrix and 
the actuator installation matrix of the appendage， re‑
spectively. M and K are derived as follows. Each 
truss member of the honeycomb telescope is mod‑
eled as a straight Euler-Bernoulli beam element with 
two nodes and six degrees of freedom per node 
（three translations and three rotations）. Let e de‑
note a generic beam element with length Le， cross-

sectional area A， Young’s modulus E， and density 
ρ . The local nodal displacement vector is

q e =
é

ë

ê
êê
ê ù

û

ú
úú
úq i

q j

(2)

where
q i = [ uxi uyi uzi θxi θyi θzi ] T (3)
q j = [ uxj uyj uzj θxj θyj θzj ] T (4)

where subscripts i and j denote the two end nodes. 
Using standard beam shape functions， the displace‑
ment field along the element is interpolated from the 
nodal degrees of freedom as

δ e ( x )= N e ( x ) q e      x ∈ [ 0,Le ] (5)
κ e ( x )= B e ( x ) q e      x ∈ [ 0,Le ] (6)

where δ e ( x ) collects the translational and rotational Fig.2　Geometric model of spacecraft
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displacements of element e at the position x； N e ( x ) 
the corresponding shape function matrix； κ e ( x ) the 
bending curvature field； and B e ( x ) the associated 
strain-displacement matrix for Euler-Bernoulli bend‑
ing. The axial deformation is neglected since it con‑
tributes only to high frequency modes that lie far 
above the truncated modal bandwidth. The consis‑
tent element mass and stiffness matrices then follow 
the kinetic and strain energy as

M e =∫
0

Le

ρA N T
e ( x ) N e ( x ) dx (7)

Ke =∫
0

Le

EI BT
e ( x ) B e ( x ) dx (8)

where I is the second moment of area of the beam 
cross section. Let Te be the Boolean transformation 
matrix that maps the local degrees of freedom q e in‑
to the global physical displacement vector δ ∈ R n. 
The global mass and stiffness matrices in Eq.（1） 
are obtained by standard FE assembly over all Nb = 
2 438 beams

M = ∑
e = 1

N b

T T
e M eT e,    K = ∑

e = 1

N b

T T
e KeT e (9)

Note that the present study is restricted to the 
small deformation linear regime in which modal de‑
coupling is valid. The influence of nonlinear geomet‑
ric coupling， thermal variations， or parameter-de‑
pendent modal changes is beyond the scope of this 
work and will be considered in future extensions.

1. 3 Modal state⁃space model of the flexible 
telescope structure　

According to the vibration theory， the physical 
displacement can be transformed into modal dis‑
placement as

δ = ∑
i = 1

m

Φ i η i = Φη (10)

where Φ ∈ R n × m is the mode shape matrix； m the 
number of retained modes， and η ∈ Rm the modal 
displacement vector considering m order mode. Sub‑
stituting Eq.（10） into Eq.（1） yield

ΦT MΦη̈ + ΦTCΦη̇ + ΦT KΦη =
ΦT B d fd + ΦT B a fa (11)

Considering the normalized and orthogonal na‑
ture of mode shapes， ΦT MΦ = E. Let

C η = ΦTCΦ = diag [ 2ζ1 ω 1,2ζ2 ω 2,…,2ζm ωm ] (12)

K η = ΦT KΦ = diag [ ω 2
1,ω 2

2,…,ω 2
m ] (13)

where ωi is the vibration frequency of the ith mode； 
ζi the damping ratio of the ith mode. The first eight 
modal frequencies are illustrated in Table 1. The 
model adopting independent modal space control 
（IMSC） is obtained

η̈ + C η η̇ + K η η = u + d (14)
where u is the modal control force； and d the modal 

disturbance force. Let x = [ ηT，η̇T ]
T
， and the sys‑

tem state-space expression can be written as
x = Ax + B aΦ F a + B dΦ F d (15)

where A is a diagonal matrix made up of m matrices

A i = é

ë
ê
êê
ê ù

û
úúúú

0 1
-ω 2

i -2ζi ωi
(16)

where A=blkdiag（Ai）， i=［1， 2， … ， m］. Ele‑
ments in odd-numbered rows of B aΦ ∈ R 2m × m all 
equals 0， while those in even numbered rows are 
made up of ΦT B a. B dΦ is defined similarly as B aΦ. Fd 
is the disturbance force， and Fa the control force pro‑
duced by PSAs.

To justify the modal truncation， we adopt a 
strain energy convergence criterion. For a linear 
elastic structure， the strain energy associated with 
mode i is

U i = 1
2 Φ T

i KΦ i (17)

Therefore， the cumulative strain energy ratio 
of the first m modes is

r SE
m =

∑
i = 1

m

Φ T
i KΦ i

∑
i = 1

Nm

Φ T
i KΦ i

(18)

where N m is the total number of computed modes. 
In the present model， r SE

10 > 0.997， which means 
that the retained ten constrained modes capture 
more than 99.73% of the total structural strain ener‑
gy， and the truncated higher modes have negligible 

Table 1　Frequencies of first eight modes

Mode
1
2
3
4

Frequency/Hz
0.102
0.109
0.133
0.291

Mode
5
6
7
8

Frequency/Hz
0.335
0.366
0.457
0.501
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influence on the rigid‑flexible coupling.

1. 4 PSA installation and modeling　

The minimum single module of the flexible 
honeycomb structure is used to explain the set up of 
the actuators （Fig.3）. PSAs are frequently used in 
truss-based structures［34］ to suppress the vibration. 
Due to the strict installation restrictions the deploy‑
able mechanism of structure applies on the struc‑
ture， the offset stack type actuator which is consid‑
ered in Ref.［35］ is not chosen in this case. Besides， 
the pi-shaped configuration also needs to decide the 
direction angle along which the actuator is installed， 
which increases the complexity of the system de‑
sign. The active vibration actuator considered in this 
paper is piezoelectric stack. The applicable place‑
ment locations of the actuators in a single module in‑
clude two parts， all those six beams in the planar 
honeycomb structure and the four out-of-plane 
beams.

In Fig.3， ten nodes are included in each single 
module. The actuation force exerted by the piezo‑
electric stack is along the aligned line of the actua‑
tor. As mentioned Fa in Eq.（15）， the position angle 
of the installed actuator respect to global coordinate 
are α， β， γ. The force applied to node 1 and node 7 
would be F1 = −F7.
ì
í
î

F 1 =[ F a cos α F a cos β F a cos γ ]T

F 7 =[ -F a cos α -F a cos β -F a cos γ ]T (19)

The installation matrix B a of the actuator in the 
single module can be expressed as

B a =

é

ë

ê

ê

ê

ê
êêê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

ú[ cos α cos β cos γ ]T

05 × 3

[ -cos α -cos β -cos γ ]T

03 × 3 10 × 3

(20)

The electric-mechanical governing equation of 
a PSA can be expressed as［36］

fa = AcE
33

nt
δ33 - Ad 33 cE

33

t
V (21)

where A is the cross-sectional area of the stack； cE
33 

the modulus under constant electric field in the stack 
axial direction； δ 33 the physical displacement of the 
stack； n the number of stack layers； t the thickness 
of each stack layer； d33 the piezoelectric constant of 
stack； and V ∈ R na × 1 the input voltage applied to the 
stack. Substituting Eq.（21） into Eq.（1） yields

Mδ̈ + Cδ̇ + K͂δ = B d fd - B͂ aV (22)
where K͂ and B͂ a are the modified stiffness matrix 
and the electro-mechanical installation matrix con‑

taining Ad 33 cE
33

nt
 and A

nt
， respectively. The modified 

modal space equation can be derived from Eq.（15） 
similarly as

ẋ = A͂x + B͂ aΦ F a + B dΦ F d (23)
It is assumed here that changes to the mass and 

the stiffness matrices introduced by the PSA are 
negligible.

1. 5 Dynamic model of flexible spacecraft　

The flexible spacecraft dynamics derived from 
Eq.（14） and the rigid spacecraft dynamics［37］ can be 
expressed as
ì

í

î

ï

ï
ïïï
ï

ï

ï
ïïï
ï

ï

ï

M̂ flex
é
ë
êêêê ù

û
úúúúv̇

ω̇
-

é

ë

ê

ê

ê

ê
êêê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú∑
i = 1

m

B tran - i η̈

∑
i = 1

m

B rot - i η̈
= é
ë
êêêê ù

û
úúúúF

T

η̈ + 2ζωη̇ + ω2 η + BT
rot ω̇ + BT

tran v̇ = u + d

(24)

where M̂ flex is the generalized inertia matrix of the 
flexible spacecraft； and F and T are the control 
force and the torque applied to mass center of space‑
craft， respectively.

M̂ flex = é
ë
êêêê

ù
û
úúúúM 11 M 12

M 21 M 22
(25)

ì

í

î

ï
ïï
ï

ï
ïï
ï

M 11 = mE 3 - BT
tran B tran

M 12 = -BT
tran B rot

M 21 = -BT
rot B tran

M 22 = I - BT
rot B rot

(26)

where B tran， B rot ∈ R 3 × m  are the translational and the 
rotational coupling matrixes of the spacecrafts， re‑
spectively.

Fig.3　PSA installation

697



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

B tran = ∑
k = 1

na

m k Φ k

B rot = ∑
k = 1

na

m k ( )l͂Φ k + rk Φ k

(27)

where k ∈［1， 2， …， n0］ denotes the kth node of the 
structure； Φ k ∈ R 3 × n the mode shape matrix of the 
kth node； m k ∈ R 3 × 1 the mass matrix of the kth 
node； rk the position vector from the kth node to the 
origin of the telescope coordinate； and l͂ the cross 
product matrix of l， which is the vector from tele‑
scope coordinate origin to the spacecraft coordinate 
origin. Since the spacecraft considered in this work 
operates in GEO， the air drag disturbance is neglect‑
ed. Meanwhile， due to the geometric symmetry of 
the spacecraft and the near coincidence between its 
geometric center and center of mass， the solar radia‑
tion torque is not considered.

2 Placement Optimization of PSA 
of Space Telescope

2. 1 Optimization problem statement　

Using the applicable placement locations dis‑
cussed in Section 1.4， the number of possible com ‑
binations would be too large for the traversal meth‑
od when multiple actuators are installed. Besides， 
the gigantic data storage space it takes would be up 
to several hundreds of millions TB. In this case， 
among all 2 438 beams of the antenna， the number 
of applicable positions is 1 570. If the number of ac‑
tuators is 8， the number of possible combinations 
would be 8.9 × 1 020， and the data storage demand 
would be 8.18 × 108 TB， which is not tolerable in 
practical application.

Let the number of feasible locations be np ∈ N， 
the possible location set of actuators is ｛1， 2， …， 
np｝. The number of actuators is na， 1≤na≤np. The 
sequence of actuator locations L is represented as 
{ l1， l2， …， li， …， lna }， where li denotes the loca‑
tion of the ith actuator， 1≤li≤np. Then the objec‑
tive of the optimization is to determine L that 
achieves the best optimal criteria.

2. 2 Multilayer geometry⁃aware coding for GA

Since the gigantic number of optional locations 

of the actuators， these positions should be coded in 
a sorted way for the benefit of initializing and search‑
ing efficiency of GA. A multi-layered coding 
scheme which maps the physical candidate positions 
P expressed as { l1， l2， …， lnp } to an index-based po‑
sition coding ［1， 2， … ， np］ is thus proposed to 
meet the requirement of gigantic searching space. 
As shown in Fig.4， the Cartesian coordinate of li is 
（pi1（xi1， yi1， zi1）， pi2（xi2， yi2， zi2））， and whose mid‑
point in cylindrical coordinates is pi ( ρi，θi，zi ). A 
sorting priority criteria is designed to be multilay‑
ered based on geometric layout of optional loca‑
tions， mathematically described by function of li， pi.

The first priority criteria is the quadrant of pi 
（Ⅰ—Ⅱ—Ⅲ—Ⅳ）. The second is the slope of the 
line connecting Op and pi，tan θi. The third is the dis‑
placement of pi with respect to Op， pi. The fourth is 

the slope li， tan βi = yi2 - yi1

xi2 - xi1
. The fifth is the pla‑

nar level of li. The coding scheme is illustrated as in 
Table 2.

Fig.4　Geometry for coding

Table 2　Multi⁃layer coding scheme

Priority
1
2
3
4
5

Criteria
Quadrant

tanθi

ρi

tanβi

Level

Ranging map
Ⅰ→Ⅱ→Ⅲ→Ⅳ

+∞→−∞
0→ρmax

+∞→−∞
1→3
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Remark 1　 The coding sequence designed 
here not only benefits the search efficiency of the ge‑
netic algorithm， but also facilitates the successive 
initialization of the population， which will be dis‑
cussed in Section 2.4

2. 3 Coupling⁃reduced optimal criteria and 
constraints

A coupling-matrix enhanced Gramian-based op‑
timal criteria inspired by Ref.［37］ is proposed in 
this section to take the pose-vibrational coupling ef‑
fect into account when optimizing the placement of 
PSAs. Based on the state-space model Eq.（23） pre‑
sented in Section 1.4， suppose the initial state of the 
system is x0， the expected state at t = Tf is xf， the 
control effort during this period is formulated as

J =∫
0

T f

uT ( t ) u ( t ) dt (28)

According to Pontryagin’s maximum princi‑
ple， the control effort can also be denoted as

J = ( eAT f x 0 − x f )TW cT f ( eAT f x 0 − x f ) (29)
where W cT f is the Gramian controllability matrix 
that can be derived from Eq.（30）， whose norm re‑
flects the energy consumption

AW cT f + W cT f AT = eAT f BBT eATT f − BBT (30)
The controllability and energy consumption of 

the system can be optimized through the criteria［37］ 
as

CritA = trace (W c ) det (W c )2nc

σ ( λj )
(31)

Since reducing the non-negligible coupling ef‑
fect between the flexible structure and the rigid hub 
is the main concern of the study， a new criteria is 
proposed to take the pose-vibration coupling effect 
into account， by weighting the Gramian controllabil‑
ity matrix according to the extent each mode contrib‑
utes to the coupling matrix.

The total energy transferred to the structure 
from the actuators is defined as

E =∫
0

∞

( E p ( t )+ E k ( t ) ) dt =

1
2 ∫

0

∞

∑
i = 1

m

( )η̇2
i ( t )+ η2

i ( t ) dt (32)

where E p and E k are the potential and the kinetic en‑

ergy of vibration， respectively. From Eq.（23）， ne‑
glecting the disturbance term， the system response 
under a dirac input δ ( t ) would be

x ( t )=[ η ( t ),η̇ ( t ) ]= eA͂t B͂ aΦ (33)
Since the Gramian controllability matrix can be 

calculated from Eq.（30） as

W cT f =∫
0

T f

eA͂t B͂ aΦ B͂T
aΦ eA͂T t dt (34)

It can be derived from Eqs.（32—34） that

E = 1
2 trace (W c )= 1

2 ∑
i = 1

N

( )W c2i,2i
+ W c2i - 1,2i - 1 (35)

From Eq.（24）， the coupling attitude torque in‑
duced by vibration is

T flex = ∑
i = 1

m

B rot ‑i ( 2ζi ωi η̇ i + ω 2
i η i ) (36)

The energy transferred from the flexible struc‑
ture to the attitude motion of rigid body through cou‑
pling effect can be expressed as

E c = ∑
j = 1

3 ∫
0

∞

T flex‑j dt =

∑
j = 1

3 ∫
0

∞

∑
i = 1

m

BT
rot ( i,j ) ( 2ξi ωi η̇ i ( t )+ ω 2

i η i ( t ) ) dt

(37)
where j = 1，2，3 denotes the three rotational axises. 
Eq.（37） can be further expressed as

E c =∑
j= 1

3

∑
i= 1

m

2ξi ωi ∫
0

∞

BT
rot ( i,j ) ( η̇ i ( t )+ ωi

2ξi
η i ( t )) dt=

A ξi ωi
trace ( B rot ‑ext W c ) (38)

where A ξi ωi
 is a constant matrix related to ξi and ωi； 

W c  is calculated by the square root of each ele‑
ment of W c， and B rot ‑ext ∈ R 2m × 2m is a extended ma‑
trix of B rot.
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B rot‑ext = blkdiag ( )s1 D 1, s2 D 2,…, sm D m

D i =
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úú
ú

ú1 0

0 ωi

2ξi

si ≜ ∑
j = 1

3

B rot ( i,j )    i = 1,2,…,m

（39）

The optimization target is to maximize the ener‑
gy E transferred from the actuator to the structure 
while balancing， if not minimizing the energy E c 
transferred from the structure to the rigid body atti‑
tude. In other word， to maximize the actuator effi‑
ciency while reducing the coupling effect， it can be 
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interpreted in Eq.（40）， considering Eq.（35） and 
Eq.（38）.

T opt = E
E c

= trace (W c )
2trace ( B rot ‑ext W c )

=

1
2 trace ( B-1

rot ‑ext W c ) (40)

For simplicity of the optimization， T opt is de‑
signed in a simpler form

T opt = trace ( P diagW c ) (41)
where the diagonal weight matrix P diag is defined as
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P diag =
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êê
ê ù

û
úúúú

P diag ( 2i - 1,2i - 1 ) 0
0 P diag ( 2i,2i ) 2nc × 2nc

P diag ( 2i - 1,2i - 1 )= ∑
j = 1

3

B-1
rot ( i,j )

P diag ( 2i,2i )= 2ξi

ωi
∑
j = 1

3

B-1
rot ( i,j )

(42)
where i ∈ { 1，2，⋯，n c }， n c < m is the number of 
modes controlled in total m modes. Eq.（41） shows 
that the optimization target can be achieved through 
weighting W c by matrix P diag， and the weighting fac‑
tor is defined through checking the value distribution 
of rotational coupling matrix B rot. B rot and B tran are il‑
lustrated in the appendix. It shows the main contrib‑
utors to rotational x， y， z axses are modes 3， 1， 6， 
respectively. While for the translational movement， 
the coupling effect mainly takes place along z axis， 
affected by modes 2， 4.

Although the attitude stabilization is the main 
control objective for the telescope， the designed tar‑
get Eq.（41） still has its functionality for translation‑
al coupling-effect damping due to the inner connec‑
tion between B rot and B tran， since by transforming 
Eq.（27）， the B rot can be expressed in term of B tran.

B rot = l͂B tran + ∑
k = 1

n0

m k rk Φ k (43)

It shows that the value of B rot also relies on 
B tran， depending on l͂. Eq.（43） shows the optimizing 
target considered in Eq.（41） has naturally consid‑
ered the translational effect. To further enable the al‑
gorithm to adjust its attention to the translational 
coupling effect， P diag is modified as
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P͂ diag ( 2i - 1,2i - 1 )= H tran∑
j = 1

3

B-1
tran ( i,j ) +

H rot∑
j = 1

3

B-1
rot ( i,j )

P͂ diag ( 2i,2i )= H tran∑
j = 1

3

B-1
tran ( i,j ) +

H rot
2ξi

ωi
∑
j = 1

3

B-1
rot ( i,j )

(44)

where
ì

í

î

ïïïï

ï
ïï
ï

H tran = l
2

H rot = ∑ rk 2

k
+ l

2

(45)

where  •
2
 is the norm 2 of a vector； and rk and l 

are defined in Eq.（27）. Note that in Eq.（44）， the 
coefficient H tran and H rot smoothly regulate the bal‑
ance between attitude-vibration coupling effect and 
orbit-vibration coupling effect reducing perfor‑
mance. The larger the average distance of structure 
nodes from the spacecraft center， the more attention 
will be paid to the attitude-vibration coupling effect， 
while the attitude-vibration coupling keeps its priori‑

ty since H rot

H tran
≥ 1 always holds. Now， the optimiza‑

tion target Eq.（41） can be modified as
T͂ opt = trace ( P͂ diagW c ) (46)

Then， inspired from the criteria in Eq.（31）， 

which uses det (W c )2nc  and 1/( σ ( λ ) ) to punish the 
results where poorly controllable mode exists， the 
following modified control Gramian matrix W͂ c and 
criteria is designed. W͂ c is defined as

W͂ c = P͂ diagW c P͂ T
diag (47)

The criteria is designed as

CritB = trace (W͂ c ) det (W͂ c )
2nc

σ ( λj )
(48)

where σ ( λj ) denotes the standard deviation of eigen‑
value of W͂ c. The term 1/σ ( λj ) discourages actuator 
placements that lead to a highly ill-conditioned cou‑
pling-weighted controllability Gramian. A large 
σ ( λj ) indicates a highly dispersed Gramian spec‑
trum， meaning that some modal directions are much 
less controllable than others. Therefore， dividing by 
σ ( λj ) penalizes such poorly balanced controllability， 
which helps avoid residual coupling dominated by 
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weakly controllable modes.
As can be summarized， in the new designed cri‑

teria， the more influence a certain mode contributes 
to the coupling effect， the less weight the corre‑
sponding mode would have in the modified Gramian 
matrix. From former analysis， P͂ diag is a diagonal 
weighting matrix reflecting the extent each mode of 
the flexible antenna contributes to the coupling ef‑
fect. By doing so， the vibration caused by modals 
which are the main contributors of the coupling ef‑
fect will be better controlled. Thus the excited cou‑
pling effect will be reduced， which leads to an im ‑
provement of the overall performance of both vibra‑
tion and attitude control performance of the space‑
craft.

As discussed in Section 1， the vibration modal 
shape of the large flexible antenna studied in this pa‑
per exhibits an axial or central symmetric pattern. 
The ideal layout of the piezoelectric stack actuators 
should be quasi-symmetric as well. This nature can 
be interpreted as constraints of the optimization pro‑
cess， by setting the quantity of actuators as four dif‑
ferent quadrants identical. Additionally， to avoid the 
infeasible case where duplicated positions are includ‑
ed in solution L， the elements in L are constrained 
as strictly descending between the upper and lower 
bound of li. The constraints can be described as

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

nq1 = nq2 = nq3 = nq4

l1 > l2 > ⋯ > li > ⋯ > lna - 1 > lna

n ≥ li ≥ 1
li ∈ Z

(49)

Remark 2　 The quadrant-based restriction is 
a rough yet effective way to utilize the symmetric na‑
ture of the vibration mode shape.

2. 4 Laddered multilayer GA scheme　

To speed up the convergence process and accu‑
racy of the optimization problem， a successive opti‑
mization mechanism is designed. Suppose the antici‑
pated number of actuators is n a = 4n， the optimiza‑
tion process is disassembled into n loops. The initial 
population of each loop is a function of the outcome 
of its predecessor loop. Suppose the outcome of the 
first loop is

[ l11, l12, l13, l14 ] (50)
The original population [ l21，l22，⋯，l2i，⋯，l28 ] 

of the next loop is generated by interpolation， and 
ë ûx  denotes the floor function of variable x.
é

ë
ê
êê
êê

ë
ê
êê
ê ú

û
úúúú

1 + l11

2 , l11,
ê

ë
ê
êê
ê ú

û
úúúú

1 + l12

2 , l12,…, l14
ù

û
úúúú (51)

The initial population of the following loop is 
generated by analogy. The flow chart of the optimi‑
zation method proposed in this paper is illustrated in 
Fig.5.

Remark 3　Taking advantage of the multilay‑
ered coding sequence of candidate positions， the 
population initialization can be simply formulated us‑
ing interpolations since the uniform mapping from 
physical space to numerical coding space.

3 Numerical Simulations 

To verify the effectiveness of the proposed 
methods， including the modeling of the flexible 
spacecraft and its large flexible antenna， the optimi‑
zation criteria， and the performance of the optimiza‑
tion algorithm， simulations are carried out. First， 
an eight-actuator optimized configuration is achieved 

Fig.5　Flow chart of laddered multi-layer GA
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using the modeling （Section 1） and the optimization 
scheme （Section 2）. The performance of the optimi‑
zation algorithm is compared with that used in 
Ref.［24］. Second， the coupling-reducing perfor‑
mance of the optimized placement is compared with 
that of the traditional criteria in Ref.［37］， using 
Monte Carlo simulation in an attitude-vibration sta‑
bilizing scenario. Independent attitude and vibration 
control， linear quadratic regulator （LQR） is adopt‑
ed to evaluate the performance of the optimal place‑
ment result

3. 1 Optimizing placement of PSAs　

Here， a performance comparison between the 
GA proposed in this paper and that used in Ref.［24］ 
is presented using three cases. Besides， two differ‑
ent types of actuators layout using traditional optimi‑
zation criteria and that in this paper are achieved for 
further use in the next section to show the vibration-

attitude coupling effect damping superiority of the 
proposed method. The GA initialization parameters 
are shown in Table 3. And parameters used for 
problem setup are presented in Table 4.

Table 1 shows the first eight mode frequencies 
derived from commercial FEM software to establish 
the mathematical model. The convergence process 
and outcome are shown in Fig.6 and Table 5. As 
can be seen from the results， when using the popula‑
tion size of 1 600， the maximum generation size of 
16 000 and the exact GA optimization method， 
which is utilized in Ref.［24］ whose optimization tar‑

get has 1 281 candidate nodes and 6 actuators are 
considered， it takes 1 056.5 s to converge to a rela‑
tively low fitness value of 844 643.5 in case 1. How‑
ever， when using the combined optimization of this 
paper and that in Ref.［24］， that is， only the multi-
layered coding technique rather than other methods 
proposed in this paper is utilized， it takes less popu‑
lation of 120 and less time of 380.8 s to achieve a 
better fitness value 126 660 in case 2. When the pro‑
posed method is fully utilized， a better fitness value 
of 171 846 is achieved using even less time of 206.5 
s. Note that all the stopping criteria of these algo‑
rithms are set as same （Table 2） and all the tested 
cases have reached the stopping criteria before end‑
ing the optimization process （Fig.6）. The less opti‑
mized result of actuators placement obtained by case 
1 and case 2 can result in the reduction in active vi‑
bration control performance and even in the instabili‑
ty of the system due to the limited maximum of actu‑
ators output（in this case is 1 000 N）. However， 

Table 3　GA initialization parameters

Parameter

Initial population

Population size
Crossover fraction
Migration fraction
Max generations

Stall gen limit
Function tolerance

Case 1： 
Method in Ref.[24]

[1 570,1 402, 1 234, 10 628, 
5, 897, 7 560, 392]

1 600
0.5
0.9

16 000
1 000

1 × 10-8

Case 2： 
Combined method in Ref.[24] and 

the proposed method
[1 570, 1 402, 1 234, 1 065, 

897, 728, 560, 392]
120
0.5
0.9

5 000
1 000

1 × 10-8

Case 3： 
The proposed method

[1 570, 1 178, 785, 392]

120
0.5
0.9

5 000
1 000

1 × 10-8

Table 4　Properties of honeycomb structure

Parameter
Number of beams

Number of candidate beams
Number of actuators

Order of modes
Number of layers

Cross‑sectional area/m2

Layer thickness/m
d33/(m·V-1)

cE
33/Pa

Max force of PSAs/N

Value
2 438
1 570

8
10

130
3.46 × 10-5

120 × 10-6

568 ×10-12

6.75 × 1010

1 000
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since the main concern of this paper is to enhance 
the coupling-damping characteristic of the actuator 
layout， this phenomenon is not presented here for 
simplicity.

The placement result derived from traditional 
criteria （Eq.（31）） and the proposed criteria 
（Eq.（48）） both using the optimization algorithm in 
this paper are shown as placement Type A and 
Type B in Fig.7. And the corresponding coding 
number is shown in Table 6. As can be seen from 
the result， both the optimized placement achieved 
from traditional criteria and that of this paper show a 
roughly central symmetric pattern， which is as sup‑
posed in former sections. Besides， the results in 
Refs.［23，29］ also show the symmetric pattern， 
which adds to the reliability of this paper. By consid‑
ering the coupling effect reducing objective， the pro‑
posed configuration shows a larger average distance 
from installation place to the origin where the flexi‑
ble structure is connect to the rigid hub.

3. 2 Overall performance evaluation under atti⁃
tude⁃vibration stabilization control　

An attitude stabilization scenario where the 
spacecraft is impacted by a high-speed space debris 
is considered. Two configurations achieved in Sec‑
tion 3.1 are compared in the same scenario. The ini‑
tial parameters are shown as follow. The initial atti‑
tude angle， vibration mode and their derivatives are 

Fig.6　Convergence procedure of optimization comparison

Table 5　Performance comparison of optimization algo⁃
rithms

Performance 
criteria

Best fitness value

Generation 
consumption

Time consumption
(@i7‑14700)/s

Case 1

84 463.5

1 402

1 056.5

Case 2

126 660

3 276

380.8

Case 3

171 846

1 863

206.5

Table 6　Types and their position numbers

Type
A
B

Position number
[1 468, 1 434, 986, 883, 674, 587, 230, 55]
[1 354, 1 343, 997, 816, 560, 551, 150, 55]

Fig.7　Displacement result comparison
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all 0. The mass property of the spacecraft is set as 
Table 7. The magnitude of the disturbance torque 
introduced by the debris is 1 000 N⋅m， and its direc‑
tion is decided by the specific Monte Carlo simula‑
tion trail. The impact takes place at time instant 
50 s， and the duration is 0.01 s. The number of 
Monte Carlo trails is set as 300 in this case， which 
produces the impacting torque that has the distribu‑
tion as in Fig.8.

Since the main objective of this paper is to com ‑
pare different PSA placements， both ACS and 
AVCS are implemented using independent LQR 
controllers. The controller design is kept standard 
so that the performance difference comes solely 
from PSA placement. Based on the coupled dynam ‑
ics in Eq.（24），the attitude subsystem is linearized as

ẋ a = A a x a + B a u a + d a,    x a =[ θ,ω ] (52)
The flexible subsystem derived from Eqs.（14—

15） is written as
ẋ v = A v x v + B v uv + d v,    x v =[ η i,η̇ i ] (53)

For each subsystem， the LQR gain is obtained 
from its corresponding algebraic Riccati equation.

For ACS， the Riccati equation is

A T
a P a + P a A a - P a B a R-1

a BT
a P a + Q a = 0 (54)

and the feedback gain is
K a = R-1

a BT
a P a (55)

For AVCS， the Riccati equation is
A T

v P v + P v A v - P v B v R-1
v BT

v P v + Q v = 0 (56)
and the feedback gain is

K v = R-1
v BT

v P v (57)
The ACS uses identical gains for all three rota‑

tional axes， and all vibration modes share the same 
set of modal gains. The numerical values employed 
in simulation are listed in Table 8. It is noted that 
those numerical values are the LQR weight matrices 
( Q a，R a ) and ( Q v，R v ). The final feedback gains 
used in the simulations， K a and K v， are obtained 
from these weights via the standard LQR solution 
K = R-1 BT P， where P is the solution of the alge‑
braic Riccati equation. Thus， specifying ( Q，R ) ful‑
ly determines ( K a，K v )， and both descriptions are 
equivalent.

To evaluate the capability of the proposed 
method to reduce pose-vibrational coupling effect， 
the energy consumption of the reaction wheel during 
the attitude stabilization period is defined as

E a =∫
t0

T f

( )|Tx | + |Ty | + |Tz | dt (58)

Similar to the energy consumption evaluation， 
the maximum Euler angle magnitude excited by the 
vibration control is defined as
M A = max ( | Δψ | )+ max ( | Δθ | )+ max ( | Δφ | ) (59)
where Δψ，Δθ and Δφ are the attitude errors com ‑
pared to rigid body dynamics. For convenience， the 
unordered result of Monte Carlo simulation is sorted 
in a descending way of the energy consumption of 
Type A configuration.

According to Fig.9， the ACS consumption of 

Fig.8　Impact torque distribution of Monte Carlo

Table 8　Parameters of controller

System

ACS

AVCS

Parameter

Qa

Ra

Qv

Rv

Value

diag(1 400, 4 × 104)

I

diag(0.1, 0. 1)

I

Table 7　Parameters of the system

Parameter
Rigid hub mass/kg
Structure mass/kg

Inertia matrix/
(kg·m2)

Btran

Brot

Value
5 000
2 000

é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

ú0.6 × 106 0 0
0 0.6 × 106 0
0 0 0.1 × 107

Defined in appendix
Defined in appendix

704



No. 6 GUO Yanning, et al. Coupling-Reduced Optimal Placement of Piezoelectric Actuators for…

the PSA configuration Type B shows its advantage 
even when disturbance torque in all directions is con‑
sidered. It saves up to 15% of energy， compared 
with Type A. And the percentage of its saving de‑
scends as the total consumption descends. Accord‑
ing to Fig.10， the excited attitude error shows up to 
6% of reduction， with maximum magnitude of 0.1°. 
This advantage is notable for missions that have 
strict requirement on pointing accuracy.

3. 3 Case study under attitude⁃vibration stabili⁃
zation control

A slice of the Monte Carlo simulation is pre‑
sented here to help demonstrate the effectiveness of 
the proposed method. In this case the disturbance 
torque is along the yaw axis. All the other parame‑
ters are exactly the same as those in Section 3.2.

As shown in Figs.11， 12， the impact distur‑
bance from the debris and the coupling disturbance 
from the active vibration control system occur simul‑
taneously at 50 s. However， due to the varying de‑
grees of coupling effects induced by different place‑
ments of the PSAs， the excited attitude Euler an‑
gles exhibit significant variation.

In Figs.11—13， the results show that the crite‑
ria proposed in this paper can reduce the attitude-vi‑
bration coupling effect by over 10%， along with an 
over 10% reduction in the flywheel energy consump‑
tion and nearly 50% reduction in settling time of the 
probe displacement. Note that the stabilized state of 
the vibration control is defined as the tip displace‑
ment of 12 probes are less than 1 mm.

Fig.9　ACS energy consumption reduction percent

Fig.11　Attitude responses during stabilization controlFig.10　Max attitude difference in Monte Carlo simulation

Fig.12　Displacement responses of 12 probes
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The only compromise is the energy consump‑
tion of PSA， which suffers 10% additional increase. 
However， this pitfall is tolerable compared with its 
advantages， especially for LSS whose pointing accu‑
racy and stabilizing settling time are the main con‑
cerns of its mission.

In Fig.14（a）， the debris impacting torque of 
5 000 N·m at 50 s leads to an approximately 
2 500 N·m coupling torque at the commence. After 
the impact， the attitude-vibration coupling torque of 
Type B placement is dramatically lower than that of 
Type A， which shows the coupling-reduced func‑
tionality of optimal criteria proposed in Section 2.3. 
Meanwhile， Fig.14（b） shows that， since the trans‑
lation coupling matrix Btran is also considered in 
Eq.（44）， although with a smaller weighting coeffi‑
cient Htran compared with Hrot， the flexible-rigid cou‑
pling force generated by Type B configuration is al‑
so slightly less than that by the traditional Type A 
method. Fig.15 shows that the oscillation of intend‑
ed control torque of reaction wheel under Type B 
configuration is also obviously less than that of 
Type A， which benefits the application in practice.

4 Conclusions 

This study designs a spacecraft with a large 
telescope structure that can fit into a high resolution 

Fig.15　Attitude control inputs under debris impact

Fig.13　Energy consumptions of reaction wheel and PSA Fig.14　Attitude responses during stabilization control
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exoplanet observing mission， followed by a design 
scheme of coupling-reduced optimal actuator place‑
ment for the large flexible honeycomb shaped tele‑
scope structure. Unlike existing methods， an atti‑
tude-vibration coupling effect damping criteria for 
the optimal placement of PSA is proposed. A lad‑
dered multilayer GA algorithm is designed to solve 
the gigantic discrete optimization problem numerical‑
ly. According to the results， the proposed method 
shows its effectiveness in reducing the coupling ef‑
fect between AVCS and ACS of the spacecraft in 
terms of less attitude control effort， less excited atti‑
tude error， and less convergence time of the vibra‑
tion and attitude control system.

This paper further shows that the optimal place‑
ment of vibration actuators plays an important role 
in improving the control system performance of flex‑
ible spacecraft with large space structures. And the 
difficulties of optimization caused by the increasing 
size and complexity of large space structures should 
be well handled.

Our future work will extend the proposed place‑
ment framework to nonlinear and parameter-varying 
models， including thermo-elastic effects and large-

angle maneuvers， to further assess robustness in 
practical mission scenarios.
Appendix　Coupling Matrix of Spacecraft　

The coupling matrices calculated from Eq.（27） are list‑
ed here.
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-3.445 1.059 × 10-10 -2.389 × 10-10

2.042 × 10-9 -1.753 × 10-9 4.098 × 101

-1.975 × 10-8 1.708 8.128 × 10-10

1.088 × 10-10 4.005 × 10-11 3.383 × 101

4.987 × 10-11 -1.612 × 10-11 -7.801 × 10-11

2.011 × 10-10 6.476 × 10-11 9.022 × 10-11

-2.612 5.435 -7.801 × 10-11

1.644 × 10-11 -3.946 × 10-10 -9.784
1.999 × 10-10 -9.188 × 10-11 -5.549 × 10-11

-1.360 × 10-10 8.791 × 10-12 -1.569 × 10-10
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柔性望远镜航天器压电作动器降耦合最优布局优化

郭延宁 1，2， 邓宇辰 1， 冉光滔 1， 刘付成 3

（1.哈尔滨工业大学航天学院，哈尔滨  150001，中国； 2.哈尔滨工业大学郑州高等研究院，郑州  450000，中国； 
3.上海交通大学航空航天学院，上海  200240, 中国）

摘要：大型空间结构（Large space structure， LSS）通常具有低固有频率特征，易在轨激励下产生振动振荡。随着

柔性结构尺度增大，结构振动控制与航天器姿态控制之间的耦合效应将显著削弱整体控制性能。为此，提出一

种用于压电叠堆作动器（Piezoelectric stack actuators， PSAs）网络的最优布局方法，以降低姿态‑振动控制系统间

的耦合影响。首先，面向分辨率敏感的成像任务，设计了一种蜂窝形柔性望远镜航天器结构，并基于有限元模型

（Finite element method， FEM）与浮动参考系方法（Floating frame of reference formulation， FFRF）建立其耦合动

力学模型。随后，构造了一种融合耦合矩阵的增强 Gramian 优化准则，在抑制耦合激励的同时兼顾系统可控性。

进一步地，提出一种阶梯式多层优化框架，以提升求解超大规模离散优化问题的效率与精度。最后，通过数值仿

真验证了所提方法在降低耦合效应与提升控制性能方面的有效性。

关键词：大型空间结构；挠性航天器控制；作动器布局优化；振动控制；刚柔耦合航天器

709


