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Abstract: Accurately predicting geomagnetic field is of great significance for space environment monitoring and space 
weather forecasting worldwide. This paper proposes a vision Transformer （ViT） hybrid model that leverages aurora 
images to predict local geomagnetic station component， breaking the spatial limitations of geomagnetic stations. Our 
method utilizes the ViT backbone model in combination with convolutional networks to capture both the large-scale 
spatial correlation and distinct local feature correlation between aurora images and geomagnetic station data. 
Essentially， the model comprises a visual geometry group （VGG） image feature extraction network， a ViT-based 
encoder network， and a regression prediction network. Our experimental findings indicate that global features of 
aurora images play a more substantial role in predicting geomagnetic data than local features. Specifically， the hybrid 
model achieves a 39.1% reduction in root mean square error compared to the VGG model， a 29.5% reduction 
compared to the ViT model and a 35.3% reduction relative to the residual network （ResNet） model. Moreover， the 
fitting accuracy of the model surpasses that of the VGG， ViT， and ResNet models by 2.14% 1.58%， and 4.1%， 
respectively.
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0 Introduction 

Solar wind， influenced by the interplanetary 
magnetic field， propagates through the vast space 
between the Sun and Earth and subsequently inter‑
acts with Earth’s magnetic field. This interaction 
leads to a series of disturbances in the magneto‑
sphere， ionosphere， and auroral zone， including 
magnetic storms， substorms， and auroral phenome‑
na. As a result， predicting solar-terrestrial phenome‑
na and related magnetic activity has become a major 
focus of space research［1-3］. The impact of geomag‑
netic disturbances such as magnetic storms and sub‑
storms extends to various critical systems， including 
satellites， space stations， power grids， communica‑

tions， navigation， and aviation. Consequently， the 
monitoring and prediction of geomagnetic activity 
and the development of relevant models are crucial 
aspects of space weather research［4-6］.

The monitoring of geomagnetic stations is a 
highly effective approach to continuously and com ‑
prehensively evaluate global magnetospheric activi‑
ty with a high temporal resolution. This datum ob‑
tained from the geomagnetic stations serves as a crit‑
ical parameter for researchers， enabling them to 
gain insights into the spatial environment and eluci‑
date the energy coupling between the magneto‑
sphere and the ionosphere. The geomagnetic index， 
as determined from station measurements， is limit‑
ed in its ability to assess geomagnetic disturbances 
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only within the coverage area of the station. Conse‑
quently， significant aurora events occurring beyond 
the station’s coverage area might not be detected［7］. 
Efforts have been made by Newell and others to en‑
hance the spatial resolution and detection rate of sub‑
storm indices by expanding the number of stations 
and leveraging data from approximately 100 magnet‑
ic observatories in the northern hemisphere［8-10］. 
However， the pursuit of improved prediction accura‑
cy of geomagnetic indices has been hindered by the 
constraints of land availability， leading to a satura‑
tion in the accuracy of geomagnetic index predic‑
tion， and a difficulty in furthering the substorm iden‑
tification rate［11］. Over the years， there has been sig‑
nificant progress in monitoring geomagnetic changes 
within specific areas at rapid speeds； however， the 
challenge remains in providing such data on a global 
scale. The process of substorm occurrence is often 
accompanied by dramatic changes in aurora mor‑
phology and brightness， revealing the connection be‑
tween the aurora phenomenon and geomagnetic da‑
ta. As a sensor of solar wind acting on the geomag‑
netic field， the aurora is a significant manifestation 
of geomagnetic disturbance， especially geomagnetic 
substorms， and another manifestation of magneto‑
spheric activity［12］. Satellite-borne optical imagers， 
for example POLAR and IMAGE， have the capa‑
bility to obtain information that cannot be provided 
by ground-based optical imagers， such as the polar 
and equatorial boundaries of the aurora egg， the 
overall morphology of the auroral oval， and the spa‑
tial distribution of the intensity of the auroral oval. 
Moreover， these satellites can perform multi-band 
imaging of the aurora， detect plasma entering the 
polar region and magnetotail of the magnetosphere， 
plasma entering and exiting the ionosphere， and the 
energy of particles sinking into the ionosphere and 
the upper atmosphere［13］. With the increase in the 
number of stations and data processing capabilities， 
correlating fixed-point observation of geomagnetic 
with the large-scale imaging of aurora has become 
an easier problem to deal with. The abundant satel‑
lite aurora imaging data and geomagnetic station 
monitoring data provide opportunities for construct‑
ing new data-driven geomagnetic index models.

The successful application of data-driven deep 
learning methods in computer vision， natural lan‑
guage processing， and other fields has paved the 
way for a new technological trend in the field of re‑
mote sensing： spatial-temporal data mining based 
on deep learning methods. Auroral images， as typi‑
cal spatial-temporal data， have the capability to cap‑
ture a relatively complete auroral oval in a relatively 
short period of time， making them highly desirable 
for various purposes. Leveraging the powerful non‑
linear mapping and learning abilities of artificial neu‑
ral networks， a Satellite image data-driven model 
between aurora intensity and geomagnetic data is es‑
tablished as a significant supplement to traditional 
methods. Aurora intensity variation has been exten‑
sively studied and found to be modulated by inter‑
planetary magnetic field and solar wind parame‑
ters［14-15］. Meng et al.［16］ introduced the global auro‑
ral power （GAP） as a new indicator of geospace ac‑
tivities. Subsequent research has demonstrated a 
strong correlation between the GAP index and the 
one-minute rapid observation auroral electrojet （AE） 
index. Liou et al.［17］ conducted a comparative analy‑
sis of a large number of auroral images and revealed 
a robust correlation between the auroral power 
（AP） and the AE index， particularly showing a bet‑
ter correlation in winter than in summer. Liu et 
al.［18］ found a high correlation coefficient of 0.76 be‑
tween the mean energy of auroral precipitation parti‑
cles （Pa） and the geomagnetic AE index， based on 
their analysis. In addition， Mitchell et al.［19］ intro‑
duced the OVATION-SM model， which divided 
auroral intensity into a grid of 0.25 magnetic local 
time （MLT）×0.5 magnetic latitude （MLAT）. 
The model utilizes multiple linear regression and 
stepwise regression to express the auroral intensity 
of each grid as a linear combination of the SME in‑
dex， the time of the last substorm occurrence， and 
the time of the next substorm occurrence. Howev‑
er， OVATION-SM is constructed based on loca‑
tion-independent variables and does not capture the 
detailed auroral morphology， which is more closely 
linked to MLT variables. Yang et al.［15］ employed 
six space environmental parameters to model the 
boundary of the auroral oval， enabling prediction of 
its spatial location but not detailed information such 
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as the spatial distribution of auroral intensity. In con‑
trast， Hu et al.［20］ characterized the distribution of 
auroral intensity by using curve fitting methods and 
grid method to construct a database of auroral inten‑
sity characteristics in the polar region. From ultravi‑
olet （UV） image data， they extracted the curve 
characteristics of auroral intensity along the magnet‑
ic latitude direction and constructed two auroral in‑
tensity prediction models with interplanetary/solar 
wind parameters and AE index as input parameters. 
The correlation between the aurora phenomenon 
and the geomagnetic index is evident in the research 
findings， despite the absence of a direct causal rela‑
tionship. To forecast the detailed characteristics of 
the auroral oval， particularly its spatial intensity dis‑
tribution， more refined data from geomagnetic sta‑
tions with higher spatial resolution are necessary. 
Conversely， the auroral oval encompasses a broader 
spatial range， and the detailed spatial distribution of 
aurora intensity offers assistance in predicting geo‑
magnetic station data through aurora images.

Convolutional neural networks （CNNs） have 
demonstrated outstanding performance in computer 
vision tasks， largely attributed to their utilization of 
the convolution operation. This operation facilitates 
the collection of local features in a hierarchical man‑
ner， ultimately leading to improved image represen‑
tations. While CNNs excel in local feature extrac‑
tion， they are often found deficient in their ability to 
capture global representations. In recent years， the 
Transformer model， which is based on the self-at‑
tention mechanism， initially demonstrated remark‑
able performance in the field of natural language pro‑
cessing［21］. This capability has sparked numerous 
studies seeking to leverage the potent modeling ca‑
pabilities of the Transformer model in computer vi‑
sion and multimodal remote sensing data analysis 
tasks［22-24］. The exceptional modeling ability of long-

distance correlation and emphasis on global features 
in input data positions the Transformer model as an 
exemplary solution for language translation and re‑
lated domains. This relevance has been furthered 
with the introduction of the visual Transformer 
（ViT） structure， bringing the Transformer into the 
arena of computer vision［25］. The ViT model repre‑
sents a fully self-attention-based image classification 

system and stands as the pioneering work that re‑
places the standard convolution with the Transform ‑
er. The ViT method achieves this through the seg‑
mentation of images into patches and the subsequent 
generation of tokens with position embeddings， fol‑
lowed by the extraction of parameterized vectors as 
visual representations using a Transformer block. 
This breakthrough has led to the emergence of sev‑
eral visual Transformers， such as DeiT and Swin 
Transformer， which have found applications in di‑
verse computer vision-based tasks［26-28］. Notably， 
the performance of visual Transformers has been 
found to be comparable to， or even surpassing， that 
of CNN， thereby solidifying their importance in this 
domain. However， Transformer focus on global fea‑
tures leads to a neglect of local feature details， re‑
sulting in decreased discriminability between back‑
ground and foreground. Consequently， several ap‑
proaches have emerged aiming to enhance represen‑
tation learning by fusing local features from convolu‑
tional neural networks with global representations 
from Transformers. Notable models embodying this 
integration include the Conformer model［29］， the 
CMT model［30］， and so on.

The relationship between aurora image data 
and geomagnetic station data manifests not only in 
the broad spatial distribution of aurora intensity， but 
also in the nuanced characteristics of aurora mor‑
phology. As a result， this study utilizes the ViT 
structure as the core model， integrates convolution‑
al networks to capture aurora image features， and 
employs regression prediction methods to forecast 
geomagnetic station data. In contrast to convention‑
al image classification， object extraction， and 
change monitoring tasks， the prediction task in this 
research can be segmented into two distinct compo‑
nents： Feature extraction and regression prediction. 
While the Transformer model has demonstrated effi‑
cacy in a wide range of related tasks across different 
disciplines， its direct application to the prediction of 
geomagnetic data using aurora images as input pres‑
ents the following challenges：

（1） Aurora data are a two-dimensional image 
sequence obtained from satellite imaging， while geo‑
magnetic data are a one-dimensional array sequence 
composed of measurements from multiple ground 
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stations， and these data do not correspond in lati‑
tude. In order to predict geomagnetic data， the fea‑
tures of the aurora image are initially extracted and 
then encoded into a one-dimensional feature vector.

（2） There is a large spatial correlation and 
time dependency between aurora images and magne‑
tometer monitoring values， and the local variation 
characteristics of aurora morphology and brightness 
are also strongly correlated with the strength of mag‑
netometer monitoring values. The Transformer 
model structure has a natural and good modeling 
ability for global features and long-distance correla‑
tions of input information， but its ability to obtain lo‑
cal information is not as strong as CNN.

This paper presents a deep learning model for 
predicting local geomagnetic station component us‑
ing aurora images， incorporating the ViT structure 
as the foundational framework and integrating it 
with convolutional networks. By leveraging this ap‑
proach， the model has the capacity to effectively 
capture both large-scale spatial correlations and 
small-scale local features in the relationship between 
aurora images and geomagnetic station data， achiev‑
ing ground-based geomagnetic data prediction based 
on aurora image sequences.

1 Data 

This paper focuses on establishing a prelimi‑
nary correlation between auroral images and the hor‑
izontal H component of the magnetometers at local 
geomagnetic stations. Auroral satellite images are 
able to capture most， if not all， of the auroral eggs 
and have a wide range of coverage， while local geo‑
magnetic station component refer to the horizontal 
H component of the magnetometers at geomagnetic 
stations. It is important to note that only geomagnet‑
ic data that correspond to the same moment of the 
image capture can be obtained through predictive 
models of geomagnetic data based on auroral imag‑
es， and their temporal resolution is identical to that 
of the auroral images. The variation curves of the 
model’s output data （geomagnetic data of each sta‑
tion） throughout 1 January， 1997， are demonstrat‑
ed in Fig.1， and the location information is shown in 

Table 1. The goal of this paper is to focus on the ex‑
traction of auroral image features based on deep 
learning models for regression prediction of geomag‑
netic data. The prediction task within this context 
can be described as a regression prediction problem， 
where a deep learning model is trained with large 
amounts of image and geomagnetic data to predict 
the corresponding geomagnetic data from a given au‑
roral image. It is crucial to emphasize that the fore‑
casts in this study do not include time lead times and 
are not time series predictions in the traditional 
sense.

As shown in Fig.2， the distribution of high-lati‑
tude stations in the Arctic region is uneven due to 
land availability constraints， with a limited number 
of stations distributed within the range of 12UT—

21UT. In addition， the lack of data from most sta‑
tions in 1997 has resulted in a limited number of 
available station data. Therefore， where data are 
available， the stations selected in this article are 
evenly distributed along magnetic longitude as far as 
possible， and the data from stations at the same 
magnetic longitude will be compared and discussed. 
The distribution of the 12 stations selected in this ar‑
ticle is shown as the green origin in Fig.2. The local 
geomagnetic data is obtained from the World Data 
Center （WDC， http：//wdc. kugi. kyoto-u. ac. jp/）， 
with a time resolution of 1 min. The preprocessing 
of local geomagnetic station component adopts the 
same baseline removal method as the AE index， us‑
ing the average change of the five international mag‑
netic quiet days per month to eliminate the change 
of quiet days. Before model training， it is also neces‑
sary to perform time matching between aurora imag‑
es and local geomagnetic station component.

NASA’s SPDF website （https：//spdf. gsfc.
nasa. gov/pub/data/polar/） provides the ultraviolet 
index （UVI） level data product under the UVI sen‑
sor carried by the POLAR satellite. The image size 
of the auroral oval in this product measures 200 pix‑
el ×228 pixel， with a spatial resolution of approxi‑
mately 0.04° per pixel. Due to the significant impact 
of oxygen Schumann Rungeband absorption on the 
Lyman-Birge-Hopfield short （LBHS） band， this 
study utilizes the Lyman-Birge-Hopfield long （LB‑
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Fig.1　Time-varying geomagnetic variations at multiple stations and derived indices on 28 January, 1997

Fig.2　Distribution of geomagnetic stations

Table 1　Detailed information of geomagnetic stations

Observatory（Abbr.）

Hornsund（HRN）

Abisko（ABK）

Leirvogur（LRV）

Narsarsuaq（NAQ）

Godhavn（GDH）

Iqaluit（IQA）

Fort Churchil（FCC）
Baker Lake（BLC）

Cambridge Bay（CBB）
Yellowknife（YKC）

College（CMO）

Barrow（BRW）

Geomagnetic
Lati‑
tude

74.17
66.14
68.75
68.99
77.64
72.97
67.12
72.44
76.05
68.48
65.50
69.97

Longi‑
tude

123.95
113.53
69.83
38.25
33.10
6.33

330.71
325.12
307.29
302.44
264.45
249.27

Geographic
Lati‑
tude

77.00
68.35
64.18
61.20
69.25
63.75
58.75
64.31
69.12
62.48
64.87
71.32

Longi‑
tude

15.55
18.82

338.30
314.60
306.47
291.48
265.91
263.98
254.96
245.51
212.14
203.38
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HL） band （160—180 nm） of the POLAR satellite. 
In the normal observation mode， the time resolution 
between two consecutive LBHL image ranges from 
0.5 min to 3 min. To mitigate the effects of solar 
glare on the UVI image data， the dataset comprises 
32 603 LBHL band （~170 nm） UVI images depict‑
ing complete auroral ovals over a three-month peri‑
od from January to December 1997. Importantly， 
the auroral oval region in the northern hemisphere is 
situated in the polar night zone during this period， 
thereby minimizing the impact of solar glare on the 
aurora image. Prior to utilizing UVI data for model‑
ing purposes， it is imperative to conduct preprocess‑
ing measures. Using the ENVI software and the in‑
teractive data language （IDL）， we imported the im ‑
age and sensor platform data from the “. cdf” files. 
By selecting the LBHL filter， we obtained image 
data in the LBHL wavelength band at each time 
step. The extracted data included five variables： im‑
age_t （image intensity）， glat_t （geographic lati‑
tude）， glon_t （geographic longitude）， mlat_t （mag‑
netic latitude）， and mlon_t （magnetic longitude）， 
all represented as 200×228 matrices. Due to satel‑
lite noise， the image_t data may contain negative 
values， which were reset to zero. Given that each 
pixel in the image is associated with corresponding 
magnetic coordinates， the coordinate transformation 
was applied to project the images onto the magnetic 
coordinate system. The transformed auroral images 
are uniformly represented in the magnetic coordinate 
frame， with magnetic latitudes ranging from 50° to 
90° MLAT and magnetic local times spanning from 
0 to 24 MLT. The final image resolution is 241 pix‑
el×241 pixel. Fig.3 serves to illustrate a compari‑
son between the aurora image before and after pre‑
processing.

After data preprocessing and cleaning， the da‑
taset used in this study consists of 32 603 auroral im ‑
ages along with the corresponding magnetometer 
readings from 12 ground stations at the same time 
points. From this dataset， auroral images and the 
matching magnetometer data from January 28， 
1997， were separated for model validation， while 
the remaining data were reserved for model training. 
To address the limited data volume， the separated 
dataset was further partitioned using the K-fold 
cross-validation method. Specifically， the dataset 
was randomly shuffled and divided into eight equal 
parts， each containing 12.5% of the original data. In 
each iteration， seven parts were used for training 
and one part for validation. This process was repeat‑
ed such that each fold served as the validation set ex‑
actly once. Fig.4 illustrates the schematic of the K-

fold cross-validation procedure.

2 Methods 

The imaging range of the aurora imaging data 
covers the entire polar region， with a specific spatial 
resolution and a minimum latitude of 50°， resulting 
in image sequence data denoted as I∈ Rm × n at a giv‑
en time. Concurrently， the ground magnetic data 
comprises an array sequence from 12 stations within 
the polar region， where at a given time， a vector 
y= ( y1，y2，⋯，y12 )∈ R 12 represents the geomagnet‑
ic data of these stations. Consequently， the predic‑
tion task addressed in this paper formulates as a re‑
gression prediction problem， entailing the training 
of a deep learning model with substantial quantities 
of both image and magnetic data. The objective is to 
enable the model to predict the corresponding local 
geomagnetic station component from a given aurora 
image.

Fig.3　Comparison of ultraviolet aurora images before and 
after preprocessing

Fig.4　K-fold cross-validation procedure
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The model proposed in this article comprises 
three main components， as depicted in Fig.5. They 
are the visual geometry group （VGG） image fea‑
ture extraction network， the ViT-based encoder net‑
work， and the regression prediction network. Initial‑
ly， the VGG image feature extraction network em ‑
ploys a serial convolutional neural network to ex‑
tract local features from aurora images while pre‑
serving position information， yielding the deep fea‑
ture map for time t. Subsequently， the feature map 

is flattened into a two-dimensional feature matrix， 
which is then fed into the Transformer encoding 
module to model large-scale spatial dependencies 
within the aurora data， resulting in an encoder fea‑
ture map of the same shape. Finally， a three-layer 
fully connected network is employed to transform 
the two-dimensional feature matrix into a one-di‑
mensional feature vector， and the output sequence y 
is ultimately predicted through the hidden layer and 
output layer regression.

2. 1 Image feature extraction network based on 
VGG

In order to preserve the positional relationships 
in the image and extract local features， a serial con‑
volutional neural network structure is employed. 
VGG， introduced by the University of Oxford in 
2014， demonstrated strong performance in the Ima‑
geNet Large Scale Visual Recognition Challenge in 
the same year and has since gained extensive adop‑
tion［31］. VGG-16 typically denotes a network archi‑
tecture incorporating 13 convolutional layers and 
three fully connected layers. It utilizes a concise and 
stackable pattern of convolutional blocks， which has 
proven effective on various datasets. The VGG net‑
work represents the maximum depth achievable by 
traditional serial networks and its significant innova‑
tion lies in the widespread use of small-sized convo‑
lutional kernels. This involves replacing a 5×5 con‑
volutional kernel with two stacked 3×3 convolu‑

tional kernels， and replacing a 7×7 convolutional 
kernel with three stacked 3×3 convolutional ker‑
nels， thereby reducing the network’s parameters 
without compromising the receptive field.

The VGG network consists of five blocks， 
each of which includes convolutional and pooling 
layers. Finally， three fully connected layers are 
linked for classification. In fact， the convolutional 
layers of the VGG network have good feature ex‑
traction capabilities. The network structure of the 
convolutional and pooling layers of the VGG net‑
work is considered as the feature extraction network 
in this paper. To transform an image of 224×224×
3 into a 14×14×512 feature map， the standard 
VGG network is truncated in this paper to create a 
new feature extraction network. The network struc‑
ture is shown in the Fig.5. The output feature di‑
mensions of this network can be transformed into 
fixed-length embedding vectors through linear map‑

Fig.5　Framework of the model
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ping， aligning with the input paradigm of the ViT 
model and facilitating subsequent processing.

The feature extraction network in this article re‑
tains the convolutional and pooling layers of the 
VGG network to extract local features of aurora im ‑
ages. After five blocks， the 224×224×3 image is 
transformed into a 14×14×512 feature map. The 
network structure is shown in the Fig.6. Compared 
with the first five blocks of VGG-16， the network in 
this article removes the last pooling layer， which re‑
fers to the data shape when the ViT model enters 
the encoder， and is convenient for subsequent com ‑
parative experiments.

2. 2 Encoder network based on ViT　

The Transformer encoder network performs 
global interaction on the local features extracted by 
the VGG feature extraction network to further learn 
the large-scale spatial dependencies between data.
Transformer was originally proposed in natural lan‑
guage processing and had subsequently been widely 
applied to time series， computer vision， and other 
fields. The Transformer model， in comparison to 
CNN-based methods， excels at capturing complex 
spatial transformations and long-distance feature de‑
pendencies. It achieves this by effectively learning 
the relationship between input elements， enabling it 
to capture global interactions. Additionally， the 
Transformer model has the ability to flexibly adjust 
its receptive field to combat interference in the data 
and learn effective feature representations.

The Transformer model’s core is the attention 
mechanism， which can be described as the process 

of mapping a query and a set of key-value pairs to an 
output. Given a query matrix Q ∈ RNq × d and key-val‑
ue matrices K，V ∈ RNk × d， with N q denoting the 
number of query tokens， N k the number of key‑val‑
ue tokens， and d the dimensionality of the feature 
embeddings， the output matrix is calculated by ap‑
plying the attention function as follows

Attention (Q,K,V ) = softmax ( QK T

d )V （1）

Multi-head attention is an extension of atten‑
tion mechanism that parallelly runs k attention opera‑
tions by projecting queries， keys， and values into k 
different subspaces through k learnable linear trans‑
formations. Then， the outputs of these k attentions 
are concatenated and transformed by another learn‑
able linear transformation to obtain the final output

MultiHeadAttentions (Q,K,V ) =
Concat ( )h1,h2,⋯,hk W O （2）

hi = Attention (QW Q
i ,KW K

i ,VW V
i ) （3）

where W Q
i ，W K

i ，W V
i ∈ R d × dh are the parameter ma‑

trices for the linear transformations of the query， 
key， and value， respectively， and W O ∈ R kdh × d is 
the parameter matrix for the final linear transforma‑
tion of the multi-head attention mechanism. Typical‑
ly， dh is set to d/k.

The difficulty of applying Transformer to the 
field of CV mainly lies in how to convert 2D image 
data into 1D data. In 2020， Dosovitskiy et al.［25］ pro‑
posed a visual transformer. This model constructs a 
series of tokens by segmenting each image into 
patches with position embeddings， and then extracts 
parameterized vectors as visual representations us‑
ing Transformer blocks.Taking ViT-B/16 as an ex‑
ample， a convolutional layer with a convolution ker‑
nel size of 16 ×16， a stride of 16， and a convolu‑
tion kernel number of 768 can be used to achieve 
this. Through convolution， each 16×16×3 patch 
maps to a 768-dimensional vector， termed as a to‑
ken， which is then transformed into a fixed-length 
embedding vector through linear mapping and fed in‑
to a standard Transformer module. When the input 
image size is 224×224×3， the resulting embed‑
ding vector dimension from the embedding layer is 
196×768. Additionally， the aurora image feature 
map extracted by the VGG network can be input as 

Fig.6　VGG image feature extraction network structure
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a token to the Transformer enconder， ensuring that 
the resulting embedding vector dimension aligns 
with the input paradigm. Furthermore， the feature 
matrix F ∈ RN × d undergoes a standard multi-head at‑
tention function， and the results of the attention op‑
eration are rearranged to obtain two-dimensional en‑
coder features. Notably， for optimal utilization of 
image features， this study reformulates all the out‑
puts of the encoder as encoder features for subse‑
quent regression prediction， in contrast to classifica‑
tion tasks.

The ViT encoder network， as depicted in 
Fig.7， comprises an embedding layer and an encod‑
ing layer. Initially， the VGG deep feature map is 
converted into fixed-length embedding vectors by 
the embedding layer. Subsequently， in order to re‑
tain positional information， each patch undergoes 
the addition of positional encoding information prior 

to being input into the transformer encoder. The en‑
coding layer then executes multi-head attention in 
order to process the embedded vectors. Specifically， 
the Transformer encoding layer is composed of Lx 
standard Transformer Encoder modules （where x 
denotes the number of repeated layers in the Trans‑
former encoder）， with each module being com ‑
prised of the layer normalization （LN）， a multi-
head self-attention module （MHSA）， a multi-layer 
perceptron （MLP）， and residual connections. The 
MLP further encompasses two convolutional func‑
tions along with a rectified linear unit （ReLU） acti‑
vation function. In Fig.7， Zl ' and Zl represent the 
output features of MHSA and MLP in the lth mod‑
ule， and the calculation process is as follows

Z 'l = MHSA ( LN ( Zl - 1 ) ) + Zl - 1 （4）

Zl = MLP ( LN ( Z 'l ) ) + Z 'l （5）

2. 3 Regression prediction network　

The encoded features obtained by the ViT 
module are expanded and then enter the three-layer 
fully connected regression prediction network， con‑
sisting of two hidden layers and an output layer， 
with the number of neurons being 1 024， 1 024， and 
12， respectively. This network is responsible for 
generating the geomagnetic monitoring values of 12 
stations. To optimize the performance of the net‑
work， a standard ADAM optimizer is employed， 
with a learning rate set to 0.000 2 and a batch size 
set to 24. When yi represents the true sequence of 

geomagnetic station data and ŷ i represents the pre‑
dicted sequence， the loss function is defined as the 
mean squared error between the predicted value and 
the true value of the geomagnetic station data， 
shown as

Loss = 1
n ∑

i = 1

n

( ŷ i - yi )
2

（6）

2. 4 Accuracy evaluation　

The model evaluation criteria include root 
mean square error （RMSE）， average relative vari‑
ance （ARV）， and coefficient of determination （R2）. 
The closer R2 is to 1， the better the fit of the regres‑

Fig.7　ViT encoder network
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sion line to the observed values. The criteria can be 
defined as

RMSE =
∑
i = 0

n - 1

( )yi - ŷ i

2

n
（7）

ARV =
∑
i = 0

n - 1

( )yi - ŷ i

2

∑
i = 0

n - 1
æ

è
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ç
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ç
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（9）

3 Discussion 

In order to assess model effectiveness and per‑
formance， a comparative analysis of the prediction 
results from eight models was conducted， including 
the VGG network， the ViT network， and the hy‑
brid model proposed in this article. The models eval‑
uated encompass ViT-B/16， ViT-L/16， VGG-16， 
VGG-19， VGG-16+ViT-B/16， VGG-16+ViT-

L/16， VGG-19+ViT-B/16， and VGG-19+ViT-

L/16. Given the inherently limited size of the auro‑
ral image dataset， it was crucial to ensure that each 
model could achieve effective feature learning de‑
spite the scarcity of training samples. However， 
since all auroral images were projected onto a uni‑
fied geomagnetic coordinate grid before being fed in‑
to the network， each image inherently contained 
consistent geographic priors. Under such condi‑
tions， conventional data augmentation techniques 
（e. g.， rotation， translation， scaling） would disrupt 
the coordinate consistency and completeness of the 
data rather than enhance its diversity. Moreover， 
since auroral images exhibit highly variable noise 
levels depending on atmospheric and instrumental 
conditions， introducing additional synthetic noise 
would not yield meaningful augmentation and could 
even degrade data fidelity. To address these limita‑
tions and improve model generalization， all back‑
bone networks （both VGG and ViT） were initial‑
ized with pre-trained weights from the ImageNet da‑
taset. This transfer learning strategy effectively com ‑
pensated for the restricted data diversity by endow‑

ing the models with rich， transferable visual repre‑
sentations， thereby providing a robust foundation 
for subsequent fine-tuning on auroral imagery. The 
two network structures under the VGG framework 
are shown in Table 2. The two model parameters 
under the ViT framework are shown in Table 3， 
comprising layer， hidden size， MLP size， and head. 
Layer denotes the number of times the encoder 
block is repeatedly stacked in the Transformer；Hid‑
den size signifies the dimension （vector length） of 
each token after passing through the embedding lay‑
er；MLP size corresponds to the number of fully con‑
nected nodes in the first MLP block of the Trans‑
former encoder （four times the hidden size）； Head 
represents the number of heads in the multi-head at‑
tention of the Transformer. Notably， all three mod‑
el types leverage a three-layer fully connected re‑
gression prediction network， following the feature 
learning from the aurora images， to achieve the pre‑
diction task of geomagnetic data from 12 stations. 
This article uses the 11th Gen Intel（R） Core（TM） 
i9-11900KF processor， Nvidia GeForce RTX3080 
graphics processor， with a clock speed of 3.5 GHz， 
32 GB of memory， and the operating system is Win‑
dows10.

Table 2　VGG model structure

VGG‑16
13 weight layers

Input（224×224×3 image）
Conv3‑64
Conv3‑64
Maxpool

Conv3‑128
Conv3‑128
Maxpool

Conv3‑256
Conv3‑256
Conv3‑256

Maxpool

Conv3‑512
Conv3‑512
Conv3‑512

Maxpool（14×14×512）
FC‑1 024
FC‑1 024

FC‑12

VGG‑19
16 weight layers

Input（224×224×3 image）
Conv3‑64
Conv3‑64
Maxpool

Conv3‑128
Conv3‑128
Maxpool

Conv3‑256
Conv3‑256
Conv3‑256
Conv3‑256
Maxpool

Conv3‑512
Conv3‑512
Conv3‑512
Conv3‑512

Maxpool（14×14×512）
FC‑1 024
FC‑1 024

FC‑12
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Table 4 presents the normalized RMSE values 
between the predicted and actual values of geomag‑
netic data at 12 stations across different models. 
The error curves depicting the performance of these 
models are provided in Fig.8. The results demon‑
strate that the model leveraging ViT excels com ‑
pared to the convolutional network model. The su‑
perior performance of the ViT model can be attribut‑

ed to its adeptness in modeling global features and 
long-range dependencies within the input data. The 
pre-trained ViT model enables good performance 
even for prediction tasks with small data sizes. Con‑
versely， the inherent inductive bias inherent in con‑
volutional networks restricts their capacity to en‑
hance model performance， as they are constrained 
to focusing solely on local image features. Empirical 
evidence further indicates that the predictive influ‑
ence of large-scale global features within aurora im ‑
ages outweighs that of local features in modeling 
geomagnetic data.

Furthermore， compared with single-architec‑
ture models， the hybrid model proposed in this 
study exhibits a stronger ability to capture auroral 
image characteristics， which results in overall lower 
prediction errors. This finding suggests that combin‑
ing convolutional locality with Transformer-based 
global reasoning provides a more balanced and effec‑

tive representation， thereby enhancing prediction ac‑
curacy.

On 28 January， 1997， the predicted results of 
the mixed model VGG-19+ViT-L/16 are dis‑
played in Fig.9， where the orange curve depicts the 
true values and the blue curve represents the model’s 
predictions. The prediction results indicate that the 
hybrid model’s predictive values closely align with 
the overall trends of data from various magnetic sta‑
tions， demonstrating good performance even during 
strong geomagnetic disturbances. It is evident that 
the model exhibits a smaller prediction error during 
stationary periods of magnetic field disturbances， 
while a larger prediction error is observed during 
substorm expansion periods. Fig.10 depicts the scat‑
ter density plot of the mixed model VGG-19+ViT-

L/16 for predicting data from 12 stations， with the 
true values on the horizontal axis and the model’s 
predicted values on the vertical axis. The plot re‑
veals a strong linear relationship between the pre‑

Table 3　ViT model parameters

Model
ViT‑B/16
ViT‑L/16

Layer
12
24

Hidden size
768

1 024

MLP size
3 072
4 096

Head
12
16

Table 4　RMSE of geomagnetic data from 12 stations in the predicted results of each model

Model
VGG‑16
VGG‑19

ViT‑B/16
ViT‑L/16

VGG‑16+ ViT‑B/16
VGG‑16+ ViT‑L/16
VGG‑19+ ViT‑B/16
VGG‑19+ ViT‑L/16

HRN
0.065 4
0.062 2
0.053 8
0.052 7
0.046 6
0.045 0
0.041 9
0.040 3

ABK
0.060 4
0.058 5
0.050 3
0.049 8
0.039 7
0.042 6
0.036 5
0.035 7

LRV
0.063 6
0.060 9
0.056 8
0.053 1
0.043 0
0.041 7
0.037 6
0.036 4

NAQ
0.054 1
0.051 2
0.046 3
0.045 2
0.035 0
0.033 6
0.076 5
0.026 8

GDH
0.073 1
0.071

0.066 3
0.065 4
0.053 1
0.052 0
0.048 5
0.046 9

IQA
0.051 7
0.045 2
0.045 9
0.039 8
0.029 9
0.026 7
0.020 7

0.021 9

FCC
0.054 7
0.054 2
0.050 8
0.048 4
0.040 8
0.038 9
0.032 0
0.031 3

BLC
0.069 1
0.064 7
0.061 3
0.055 6
0.049 1
0.048 5
0.043 1
0.042 4

CBB
0.064 8
0.064

0.060 3
0.055 9
0.048 3
0.044 9
0.040 5
0.039 4

YKC
0.068 9
0.066 8
0.062 8
0.060 2
0.049 7
0.048 6
0.044 2

0.045 1

CMO
0.048 8
0.047 3
0.044 5
0.042 9
0.032 3
0.031 2
0.028 9

0.029 6

BRW
0.067 7
0.064 6
0.061 1
0.058 4
0.049 6
0.047 9
0.041 1

0.044 6

Fig.8　Error curves depicting the performance of each models
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dicted results of each station and the true values， 
with the majority of the predicted results concentrat‑
ed near the y=x line， indicative of a high correla‑
tion between the model’s predictions and the true 
values. Notably， the areas with the highest scat‑
tered point density at each station are centered near 
0 nT， attributed to the baseline processing of geo‑
magnetic station data to eliminate diurnal variations. 
Among them， the fitted lines for GDH， NAQ， 
CMO， and BRW show significant deviations from 
the y = x line， while FCC， CBB， and YKC exhib‑
it minor offsets. The results for LRV are the most 
accurate.

The emergence of Transformer in the visual 
domain has posed a significant challenge to the long-

standing dominance of convolutional networks in 
this area. This is primarily attributed to Transform ‑
er’s larger receptive field， more flexible weight set‑
tings， and stronger global feature modeling capabili‑
ties in feature learning， compared to convolutional 
networks. Consequently， backbone networks based 
on Transformer hold the potential to deliver higher 
quality feature inputs for downstream tasks. Nota‑
bly， ViT stands out as a prominent algorithm that 
leverages Transformer as a backbone network to en‑
code image features［25］. ViT’s global interaction 

Fig.9　Predicted results of the mixed model VGG-19+ViT-L/16 on 28 January, 1997
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ability with the serialized image input allows for the 
encoding of image features on a global scale. More‑
over， integrating Transformer’s global interaction 
capacity with the spatial locality of convolutional 
networks presents an opportunity to enhance feature 
diversity.

In the context of auroral image-driven geomag‑
netic prediction， VGGs are particularly effective in 
capturing local spatial textures， brightness gradi‑

ents， and fine-scale auroral arcs， which are closely 
related to localized energy precipitation and short-
range geomagnetic perturbations. In contrast， the 
Transformer component excels at modeling large-

scale morphological structures and global spatial cor‑
relations across the auroral oval， which are essential 
for representing the overall geomagnetic field re‑
sponse. Therefore， integrating the convolutional 
network’s spatial locality with the Transformer’s 

Fig.10　Scatter density plot of the mixed model VGG-19+ViT-L/16 for predicting data from 12 stations
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global interaction capacity enables the model to 
learn a more comprehensive and physically consis‑
tent representation of auroral patterns.

To further substantiate the advantages of the 
hybrid VGG-ViT design， an additional comparison 
was conducted by selecting another convolution-

based residual network （ResNet-50 and ResNet-
34） as the local feature extractor. Compared with 
VGG， which extracts features through a strictly hi‑
erarchical and spatially smooth convolutional pro‑
cess， ResNet enhances feature extraction by intro‑
ducing identity skip connections that allow multi-lev‑
el feature reuse and deeper gradient propagation. 
This design enables ResNet to capture richer high-

level semantic representations［32］， while VGG tends 
to preserve more fine-grained spatial and texture in‑
formation in its feature maps［31］.

As shown in Table 5， the experimental results 
illustrate the comparative performance of different 
hybrid structures. When used individually， the 
ResNet models outperform the VGG models but re‑
main slightly inferior to the ViT models in all three 
metrics. However， when ResNet is combined with 
ViT， the hybrid models exhibit a decline in perfor‑
mance across RMSE， ARV， and R². In this specif‑
ic application—Predicting local geomagnetic compo‑
nents from auroral images， this phenomenon can be 
attributed to the inherent characteristics of the 
ResNet architecture. While ResNet’s residual con‑
nections facilitate deeper feature extraction and im ‑
prove gradient propagation， thereby enhancing 
standalone performance， they also tend to empha‑
size high-level semantic abstraction at the expense 
of spatial precision. When integrated with ViT， 
which already captures global contextual dependen‑
cies， this redundancy in abstract feature representa‑
tion may reduce the diversity of complementary in‑
formation between the convolutional and Transform ‑
er components. In contrast， the VGG backbone， 
with its strictly hierarchical and spatially smooth 
convolutional structure， preserves more fine-

grained spatial and texture details. These localized 
cues are particularly valuable in this application， as 
geomagnetic disturbances are often reflected in sub‑

tle spatial variations of auroral emissions. Such fea‑
tures complement ViT’s global feature reasoning 
more effectively， leading to better overall integra‑
tion and the superior performance observed in the 
VGG-ViT hybrid models.

Table 5 highlights that the VGG-ViT hybrid 
architectures achieve the best overall performance 
among all tested models， with the lowest RMSE， 
ARV， and the highest R² values. Specifically， the 
hybrid model reduces the RMSE by approximately 
39.1% compared to the VGG model， 29.5% com‑
pared to the ViT model and 35.3% compared to the 
ResNet model. Additionally， the goodness of fit of 
the model is enhanced by approximately 2.14% 
compared to the VGG model，1.58% compared to 
the ViT model， and 4.1% compared to the ResNet 
model.

In conclusion， this study utilizes aurora satel‑
lite images to forecast geomagnetic indices and em ‑
ploys deep learning models to extract features from 
the images. The research findings indicate that this 
approach can effectively predict geomagnetic data at 
specific locations when sufficient data are available. 
Furthermore， aurora satellite images have the poten‑
tial to forecast geomagnetic indices at any latitude 
and longitude within their coverage range. Future re‑
search endeavors could involve the utilization of 

Table 5　Performance of various models in predicting 
geomagnetic data for 12 stations

Model
Resnet‑34
Resnet‑50
VGG‑16
VGG‑19

ViT‑B/16
ViT‑L/16

ResNet‑34+ViT‑B/16
ResNet‑34+ViT‑L/16
ResNet‑50+ViT‑B/16
ResNet‑50+ViT‑L/16
VGG‑16+ViT‑B/16
VGG‑16+ViT‑L/16
VGG‑19+ViT‑B/16
VGG‑19+ViT‑L/16

RMSE
0.061 9
0.061 0
0.064 8
0.064 0
0.060 3
0.055 9
0.066 8
0.069 1
0.065 4
0.071 3
0.048 3
0.044 9
0.040 5
0.039 4

ARV
0.282 4
0.269 1
0.270 7
0.254 8
0.253 2
0.270 3
0.293 0
0.279 9
0.280 1
0.315 1
0.288 6
0.273 6
0.261 8
0.250 3

R2

0.699 3
0.710 1
0.706 3
0.723 8
0.727 8
0.707 4
0.672 7
0.700 1
0.699 8
0.613 2
0.698 2
0.734 5
0.739 1
0.739 3
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time series models to unlock the long-term memory 
characteristics of the data， contributing to advanced 
predictions spanning 1 h， 2 h， or even longer. Addi‑
tionally， broader validation on a more extensive da‑
taset would enhance the robustness of the findings. 
Given that aurora satellite images provide wide spa‑
tial coverage， while local geomagnetic station com ‑
ponent offer continuous temporal observations， they 
complement each other. In the future， the joint in‑
dex of aurora satellite images and geomagnetic sta‑
tion data may be able to leverage the advantages of 
both and compensate for the limitations of both.This 
index could potentially resolve the index saturation 
problem arising from the non-uniform distribution of 
geomagnetic stations， thereby enhancing the accura‑
cy of predicting the timing and location of substorm 
events.

4 Conclusions 

Based on the local and global feature correla‑
tions between aurora images and geomagnetic varia‑
tions， this paper proposes a ViT-based hybrid 
framework for predicting local geomagnetic station 
components from auroral observations. The experi‑
mental evaluation is conducted using a combined da‑
taset consisting of POLAR satellite LBHL-band au‑
rora images and geomagnetic monitoring data col‑
lected from 12 stations located in the high- and mid-

latitude regions of the Arctic. By integrating convo‑
lutional neural networks for local feature extraction 
with a Transformer encoder for global feature mod‑
eling， the proposed model is able to capture both 
fine-scale spatial details and large-scale auroral mor‑
phological structures in a unified manner. The exper‑
imental results indicate that geomagnetic prediction 
benefits more substantially from the global morpho‑
logical characteristics of aurora images than from lo‑
cal features alone， highlighting the importance of 
large-scale spatial context in aurora-geomagnetic 
coupling. Moreover， the complementary integration 
of convolutional inductive bias and transformer-

based global attention enables the model to effective‑
ly integrate local feature sensitivity with global auro‑
ral morphology representation， resulting in more ro‑

bust feature representations. Overall， the proposed 
hybrid architecture demonstrates consistent advan‑
tages over single-model approaches， underscoring 
its effectiveness for geomagnetic parameter estima‑
tion based on auroral imaging data. These findings 
suggest that hybrid CNN-Transformer frameworks 
offer a promising and extensible paradigm for data-

driven space weather analysis and related geospace 
monitoring tasks.

The main contributions of this study can be 
summarized as follows：

（1） This work is the first to propose a model 
that predicts local geomagnetic station components 
directly from auroral images， establishing a reverse 
mapping from optical auroral observations to geo‑
magnetic responses. This approach complements ex‑
isting research that primarily focuses on predicting 
auroral intensity from geomagnetic data.

（2） The proposed framework overcomes the 
geographical constraints of ground-based geomag‑
netic stations， enabling geomagnetic variation pre‑
diction even in regions without dense observational 
networks.

（3） A hybrid ViT-based architecture is intro‑
duced， combining the fine-grained local feature ex‑
traction capability of convolutional networks with 
the global contextual modeling power of the Trans‑
former， resulting in improved prediction accuracy 
and generalization performance.

Although the auroral image dataset spans full 
year， it is important to note that not all images are 
equally suitable for modeling. In particular， the pres‑
ence of solar glare （dayglow） during periods of sun‑
light exposure introduces significant interference in 
the ultraviolet auroral observations， thereby affect‑
ing data quality and reducing model accuracy. This 
limitation restricts the effective use of data to night‑
time auroral observations， particularly in the polar 
night region. To further improve the robustness and 
generalization of the model， future work will focus 
on implementing additional preprocessing steps to 
identify and remove solar contamination. Tech‑
niques such as radiometric correction， dayglow fil‑
tering， or machine-learning-based noise detection 
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will be explored to mitigate these effects. By enhanc‑
ing data quality， we aim to extend the temporal 
availability of usable auroral images and improve the 
consistency of geomagnetic prediction across sea‑
sons.
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基于局部‑全局特征的极光图像中局部地磁场分量建模

王 博 1， 张元舒 1， 成 巍 2， 田馨沁 1， 盛庆红 1， 
李 俊 1， 凌 霄 1， 刘 祥 1

（1.南京航空航天大学航天学院, 南京  211106, 中国； 2.北京应用气象研究所，北京  100029, 中国）

摘要：准确预测地磁场对于全球范围内的空间环境监测和空间天气预报具有重要意义。本文提出了一种利用极

光图像来预测当地地磁站分量的 ViT（Vision Transformer）混合模型，打破了地磁站的空间局限性。本文方法将

ViT 骨干模型与卷积网络相结合，以捕捉极光图像与地磁站数据之间的大规模空间相关性和明显的局部特征相

关性。本质上，该模型由 1 个 VGG （Visual geometry group）图像特征提取网络、1 个基于 ViT 的编码器网络和

1 个回归预测网络组成。本文实验结果表明，极光图像的全局特征在预测地磁数据方面比局部特征发挥的作用

更为显著。具体而言，该混合模型与 VGG 模型相比，均方根误差降低了 39.1%，与 ViT 模型相比降低了 29.5%，

与 ResNet （Residual network）模型相比降低了 35.3%。此外，该模型的拟合精度分别比 VGG、ViT 和 ResNet 模
型高出 2.14%、1.58% 和 4.1%。

关键词：紫外极光图像；地磁场预测；ViT 混合模型
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