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Abstract: Accurately predicting geomagnetic field is of great significance for space environment monitoring and space
weather forecasting worldwide. This paper proposes a vision Transformer (ViT) hybrid model that leverages aurora
images to predict local geomagnetic station component, breaking the spatial limitations of geomagnetic stations. Our
method utilizes the ViT backbone model in combination with convolutional networks to capture both the large-scale
spatial correlation and distinct local feature correlation between aurora images and geomagnetic station data.
Essentially, the model comprises a visual geometry group (VGG) image feature extraction network, a ViT-based
encoder network, and a regression prediction network. Our experimental findings indicate that global features of
aurora images play a more substantial role in predicting geomagnetic data than local features. Specifically, the hybrid
model achieves a 39.1% reduction in root mean square error compared to the VGG model, a 29.5% reduction
compared to the ViT model and a 35.3% reduction relative to the residual network (ResNet) model. Moreover, the

fitting accuracy of the model surpasses that of the VGG, ViT, and ResNet models by 2.14% 1.58%, and 4.1%,
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respectively.
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0 Introduction

Solar wind, influenced by the interplanetary
magnetic field, propagates through the vast space
between the Sun and Earth and subsequently inter-
acts with Earth’s magnetic field. This interaction
leads to a series of disturbances in the magneto-
sphere, ionosphere, and auroral zone, including
magnetic storms, substorms, and auroral phenome-
na. As a result, predicting solar-terrestrial phenome-
na and related magnetic activity has become a major
focus of space research''*. The impact of geomag-
netic disturbances such as magnetic storms and sub-
storms extends to various critical systems, including

satellites, space stations, power grids, communica-
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tions, navigation, and aviation. Consequently, the
monitoring and prediction of geomagnetic activity
and the development of relevant models are crucial
aspects of space weather research'**’.

The monitoring of geomagnetic stations is a
highly effective approach to continuously and com-
prehensively evaluate global magnetospheric activi-
ty with a high temporal resolution. This datum ob-
tained from the geomagnetic stations serves as a crit-
ical parameter for researchers, enabling them to
gain insights into the spatial environment and eluci-
date the energy coupling between the magneto-
sphere and the ionosphere. The geomagnetic index,
as determined from station measurements, is limit-

ed in its ability to assess geomagnetic disturbances

*Corresponding author, E-mail address: wangbo_nuaa@nuaa.edu.cn.
How to cite this article: WANG Bo, ZHANG Yuanshu, CHENG Wei, et al. Local geomagnetic component modeling of au-
roral images based on local-global feature[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2025, 42

(6):710-727.
http://dx.doi.org/10.16356/7.1005-1120.2025.06.002



No. 6 WANG Bo, et al. Local Geomagnetic Component Modeling of Auroral Images Based on--- 711

only within the coverage area of the station. Conse-
quently, significant aurora events occurring beyond
the station’s coverage area might not be detected'”.
Efforts have been made by Newell and others to en-
hance the spatial resolution and detection rate of sub-
storm indices by expanding the number of stations
and leveraging data from approximately 100 magnet-
ic observatories in the northern hemisphere ®'".
However, the pursuit of improved prediction accura-
cy of geomagnetic indices has been hindered by the
constraints of land availability, leading to a satura-
tion in the accuracy of geomagnetic index predic-
tion, and a difficulty in furthering the substorm iden-
tification rate'"’. Over the years, there has been sig-
nificant progress in monitoring geomagnetic changes
within specific areas at rapid speeds; however, the
challenge remains in providing such data on a global
scale. The process of substorm occurrence is often
accompanied by dramatic changes in aurora mor-
phology and brightness, revealing the connection be-
tween the aurora phenomenon and geomagnetic da-
ta. As a sensor of solar wind acting on the geomag-
netic field, the aurora is a significant manifestation
of geomagnetic disturbance, especially geomagnetic
substorms, and another manifestation of magneto-
spheric activity'"?!. Satellite-borne optical imagers,
for example POLAR and IMAGE, have the capa-
bility to obtain information that cannot be provided
by ground-based optical imagers, such as the polar
and equatorial boundaries of the aurora egg, the
overall morphology of the auroral oval, and the spa-
tial distribution of the intensity of the auroral oval.
Moreover, these satellites can perform multi-band
imaging of the aurora, detect plasma entering the
polar region and magnetotail of the magnetosphere,
plasma entering and exiting the ionosphere, and the
energy of particles sinking into the ionosphere and
the upper atmosphere™®. With the increase in the
number of stations and data processing capabilities,
correlating fixed-point observation of geomagnetic
with the large-scale imaging of aurora has become
an easier problem to deal with. The abundant satel-
lite aurora imaging data and geomagnetic station
monitoring data provide opportunities for construct-

ing new data-driven geomagnetic index models.

The successful application of data-driven deep
learning methods in computer vision, natural lan-
guage processing, and other fields has paved the
way for a new technological trend in the field of re-
mote sensing: spatial-temporal data mining based
on deep learning methods. Auroral images, as typi-
cal spatial-temporal data, have the capability to cap-
ture a relatively complete auroral oval in a relatively
short period of time, making them highly desirable
for various purposes. Leveraging the powerful non-
linear mapping and learning abilities of artificial neu-
ral networks, a Satellite image data-driven model
between aurora intensity and geomagnetic data is es-
tablished as a significant supplement to traditional
methods. Aurora intensity variation has been exten-
sively studied and found to be modulated by inter-
planetary magnetic field and solar wind parame-

Iers[l4'15,

. Meng et al."" introduced the global auro-
ral power (GAP) as a new indicator of geospace ac-
tivities. Subsequent research has demonstrated a
strong correlation between the GAP index and the
one-minute rapid observation auroral electrojet (AE)

1."" conducted a comparative analy-

index. Liou et a
sis of a large number of auroral images and revealed
a robust correlation between the auroral power
(AP) and the AE index, particularly showing a bet-
ter correlation in winter than in summer. Liu et
al.""® found a high correlation coefficient of 0.76 be-
tween the mean energy of auroral precipitation parti-
cles (Pa) and the geomagnetic AE index, based on

¥ intro-

their analysis. In addition, Mitchell et al.
duced the OVATION-SM model, which divided
auroral intensity into a grid of 0.25 magnetic local
time (MLT) X0.5 magnetic latitude (MLAT).
The model utilizes multiple linear regression and
stepwise regression to express the auroral intensity
of each grid as a linear combination of the SME in-
dex, the time of the last substorm occurrence, and
the time of the next substorm occurrence. Howev-
er, OVATION-SM is constructed based on loca-
tion-independent variables and does not capture the
detailed auroral morphology, which is more closely
linked to MLT variables. Yang et al."*) employed
six space environmental parameters to model the
boundary of the auroral oval, enabling prediction of

its spatial location but not detailed information such
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as the spatial distribution of auroral intensity. In con-
trast, Hu et al.'”® characterized the distribution of
auroral intensity by using curve fitting methods and
grid method to construct a database of auroral inten-
sity characteristics in the polar region. From ultravi-
olet (UV) image data, they extracted the curve
characteristics of auroral intensity along the magnet-
ic latitude direction and constructed two auroral in-
tensity prediction models with interplanetary/solar
wind parameters and AE index as input parameters.
The correlation between the aurora phenomenon
and the geomagnetic index is evident in the research
findings, despite the absence of a direct causal rela-
tionship. To forecast the detailed characteristics of
the auroral oval, particularly its spatial intensity dis-
tribution, more refined data from geomagnetic sta-
tions with higher spatial resolution are necessary.
Conversely, the auroral oval encompasses a broader
spatial range, and the detailed spatial distribution of
aurora intensity offers assistance in predicting geo-
magnetic station data through aurora images.
Convolutional neural networks (CNNs) have
demonstrated outstanding performance in computer
vision tasks, largely attributed to their utilization of
the convolution operation. This operation facilitates
the collection of local features in a hierarchical man-
ner, ultimately leading to improved image represen-
tations. While CNNs excel in local feature extrac-
tion, they are often found deficient in their ability to
capture global representations. In recent years, the
Transformer model, which is based on the self-at-
tention mechanism, initially demonstrated remark-
able performance in the field of natural language pro-

Y This capability has sparked numerous

cessing
studies seeking to leverage the potent modeling ca-
pabilities of the Transformer model in computer vi-
sion and multimodal remote sensing data analysis
tasks #*/. The exceptional modeling ability of long-
distance correlation and emphasis on global features
in input data positions the Transformer model as an
exemplary solution for language translation and re-
lated domains. This relevance has been furthered
with the introduction of the visual Transformer
(ViT) structure, bringing the Transformer into the
arena of computer vision'”’. The ViT model repre-

sents a fully self-attention-based image classification

system and stands as the pioneering work that re-
places the standard convolution with the Transform-
er. The ViT method achieves this through the seg-
mentation of images into patches and the subsequent
generation of tokens with position embeddings, fol-
lowed by the extraction of parameterized vectors as
visual representations using a Transformer block.
This breakthrough has led to the emergence of sev-
eral visual Transformers, such as DeiT and Swin
Transformer, which have found applications in di-
verse computer vision-based tasks**/. Notably,
the performance of visual Transformers has been
found to be comparable to, or even surpassing, that
of CNN, thereby solidifying their importance in this
domain. However, Transformer focus on global fea-
tures leads to a neglect of local feature details, re-
sulting in decreased discriminability between back-
ground and foreground. Consequently, several ap-
proaches have emerged aiming to enhance represen-
tation learning by fusing local features from convolu-
tional neural networks with global representations
from Transformers. Notable models embodying this
integration include the Conformer model'®’, the
CMT model™, and so on.

The relationship between aurora image data
and geomagnetic station data manifests not only in
the broad spatial distribution of aurora intensity, but
also in the nuanced characteristics of aurora mor-
phology. As a result, this study utilizes the ViT
structure as the core model, integrates convolution-
al networks to capture aurora image features, and
employs regression prediction methods to forecast
geomagnetic station data. In contrast to convention-
al 1image classification, object extraction, and
change monitoring tasks, the prediction task in this
research can be segmented into two distinct compo-
nents: Feature extraction and regression prediction.
While the Transformer model has demonstrated effi-
cacy in a wide range of related tasks across different
disciplines, its direct application to the prediction of
geomagnetic data using aurora images as input pres-
ents the following challenges:

(1) Aurora data are a two-dimensional image
sequence obtained from satellite imaging, while geo-
magnetic data are a one-dimensional array sequence

composed of measurements from multiple ground
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stations, and these data do not correspond in lati-
tude. In order to predict geomagnetic data, the fea-
tures of the aurora image are initially extracted and
then encoded into a one-dimensional feature vector.

(2) There is a large spatial correlation and
time dependency between aurora images and magne-
tometer monitoring values, and the local variation
characteristics of aurora morphology and brightness
are also strongly correlated with the strength of mag-
netometer monitoring values. The Transformer
model structure has a natural and good modeling
ability for global features and long-distance correla-
tions of input information, but its ability to obtain lo-
cal information is not as strong as CNN.

This paper presents a deep learning model for
predicting local geomagnetic station component us-
ing aurora images, incorporating the ViT structure
as the foundational framework and integrating it
with convolutional networks. By leveraging this ap-
proach, the model has the capacity to effectively
capture both large-scale spatial correlations and
small-scale local features in the relationship between
aurora images and geomagnetic station data, achiev-
ing ground-based geomagnetic data prediction based

on aurora image sequences.

1 Data

This paper focuses on establishing a prelimi-
nary correlation between auroral images and the hor-
izontal H component of the magnetometers at local
geomagnetic stations. Auroral satellite images are
able to capture most, if not all, of the auroral eggs
and have a wide range of coverage, while local geo-
magnetic station component refer to the horizontal
H component of the magnetometers at geomagnetic
stations. It is important to note that only geomagnet-
ic data that correspond to the same moment of the
image capture can be obtained through predictive
models of geomagnetic data based on auroral imag-
es, and their temporal resolution is identical to that
of the auroral images. The variation curves of the
model’ s output data (geomagnetic data of each sta-
tion) throughout 1 January, 1997, are demonstrat-

ed in Fig.1, and the location information is shown in

Table 1. The goal of this paper is to focus on the ex-
traction of auroral image features based on deep
learning models for regression prediction of geomag-
netic data. The prediction task within this context
can be described as a regression prediction problem,
where a deep learning model is trained with large
amounts of image and geomagnetic data to predict
the corresponding geomagnetic data from a given au-
roral image. It is crucial to emphasize that the fore-
casts in this study do not include time lead times and
are not time series predictions in the traditional
sense.

As shown in Fig.2, the distribution of high-lati-
tude stations in the Arctic region is uneven due to
land availability constraints, with a limited number
of stations distributed within the range of 12UT—
21UT. In addition, the lack of data from most sta-
tions in 1997 has resulted in a limited number of
available station data. Therefore, where data are
available, the stations selected in this article are
evenly distributed along magnetic longitude as far as
possible, and the data from stations at the same
magnetic longitude will be compared and discussed.
The distribution of the 12 stations selected in this ar-
ticle is shown as the green origin in Fig.2. The local
geomagnetic data is obtained from the World Data
Center (WDC, http://wdc. kugi. kyoto-u.ac.ip/) ,
with a time resolution of 1 min. The preprocessing
of local geomagnetic station component adopts the
same baseline removal method as the AE index, us-
ing the average change of the five international mag-
netic quiet days per month to eliminate the change
of quiet days. Before model training, it is also neces-
sary to perform time matching between aurora imag-
es and local geomagnetic station component.

NASA’s SPDF website (https://spdf. gsfc.
nasa. gov/pub/data/polar/) provides the ultraviolet
index (UVI) level data product under the UVT sen-
sor carried by the POLAR satellite. The image size
of the auroral oval in this product measures 200 pix-
el X228 pixel, with a spatial resolution of approxi-
mately 0.04° per pixel. Due to the significant impact
of oxygen Schumann Rungeband absorption on the
Lyman-Birge-Hopfield short (LBHS) band, this
study utilizes the Lyman-Birge-Hopfield long (LB-
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(b) Composite time-varying curves of geomagnetic data from multiple stations and derived AU/AL indices during the period of 28 January, 1997

Fig.1 Time-varying geomagnetic variations at multiple stations and derived indices on 28 January, 1997

Table 1 Detailed information of geomagnetic stations

Geomagnetic Geographic

Observatory(Abbr.)  Lati- Longi- Lati- Longi-
tude tude tude tude

Hornsund (HRN) 74.17 123.95 77.00 15.55
Abisko(ABK) 66.14 113.53 68.35 18.82
Leirvogur(LRV) 68.75 69.83 64.18 338.30
Narsarsuaq(NAQ) 68.99 38.25 61.20 314.60
Godhavn(GDH) 77.64 33.10 69.25 306.47
Iqaluit(IQA) 7297 6.33  63.75 291.48
Fort Churchil(FCC)  67.12 330.71 58.75 265.91
Baker Lake(BLC) 72.44 325.12 64.31 263.98
Cambridge Bay(CBB)  76.05 307.29 69.12 254.96
Yellowknife(YKC) 68.48 302.44 62.48 245.51
College(CMO) 65.50 264.45 64.87 212.14
Barrow(BRW) 69.97 249.27 71.32 203.38

Fig.2 Distribution of geomagnetic stations
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HL) band (160—180 nm) of the POLAR satellite.
In the normal observation mode, the time resolution
between two consecutive LBHL image ranges from
0.5 min to 3 min. To mitigate the effects of solar
glare on the UVI image data, the dataset comprises
32 603 LBHL band (~170 nm) UVI images depict-
ing complete auroral ovals over a three-month peri-
od from January to December 1997. Importantly,
the auroral oval region in the northern hemisphere is
situated in the polar night zone during this period,
thereby minimizing the impact of solar glare on the
aurora image. Prior to utilizing UVI data for model-
ing purposes, it is imperative to conduct preprocess-
ing measures. Using the ENVI software and the in-
teractive data language (IDL), we imported the im-
“edf” files.
By selecting the LBHL filter, we obtained image

age and sensor platform data from the

data in the LBHL wavelength band at each time
step. The extracted data included five variables: im-
age_t (image intensity) , glat_t (geographic lati-
tude), glon_t (geographic longitude), mlat_t (mag-
netic latitude) , and mlon_t (magnetic longitude) ,
all represented as 200X 228 matrices. Due to satel-
lite noise, the image_t data may contain negative
values, which were reset to zero. Given that each
pixel in the image is associated with corresponding
magnetic coordinates, the coordinate transformation
was applied to project the images onto the magnetic
coordinate system. The transformed auroral images
are uniformly represented in the magnetic coordinate
frame, with magnetic latitudes ranging from 50° to
90° MLAT and magnetic local times spanning from
0 to 24 MLT. The final image resolution is 241 pix-
el X 241 pixel. Fig.3 serves to illustrate a compari-
son between the aurora image before and after pre-

processing.

W
3
Photon / (cm™ * s

Fig.3 Comparison of ultraviolet aurora images before and

after preprocessing

After data preprocessing and cleaning, the da-
taset used in this study consists of 32 603 auroral im-
ages along with the corresponding magnetometer
readings from 12 ground stations at the same time
points. From this dataset, auroral images and the
matching magnetometer data from January 28,
1997, were separated for model validation, while
the remaining data were reserved for model training.
To address the limited data volume, the separated
dataset was further partitioned using the K-fold
cross-validation method. Specifically, the dataset
was randomly shuffled and divided into eight equal
parts, each containing 12.5% of the original data. In
each iteration, seven parts were used for training
and one part for validation. This process was repeat-
ed such that each fold served as the validation set ex-
actly once. Fig.4 illustrates the schematic of the K-

fold cross-validation procedure.

Train |

Data

Fig.4 K-fold cross-validation procedure

2 Methods

The imaging range of the aurora imaging data
covers the entire polar region, with a specific spatial
resolution and a minimum latitude of 50°, resulting
in image sequence data denoted as I € R" ™" at a giv-
en time. Concurrently, the ground magnetic data
comprises an array sequence from 12 stations within
the polar region, where at a given time, a vector
y=(y1, 2, ==, y12)E R" represents the geomagnet-
ic data of these stations. Consequently, the predic-
tion task addressed in this paper formulates as a re-
gression prediction problem, entailing the training
of a deep learning model with substantial quantities
of both image and magnetic data. The objective is to
enable the model to predict the corresponding local
geomagnetic station component from a given aurora

image.
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The model proposed in this article comprises
three main components, as depicted in Fig.5. They
are the visual geometry group (VGG) image fea-
ture extraction network, the ViT-based encoder net-
work, and the regression prediction network. Initial-
ly, the VGG image feature extraction network em-
ploys a serial convolutional neural network to ex-
tract local features from aurora images while pre-
serving position information, yielding the deep fea-

ture map for time 7. Subsequently, the feature map

is flattened into a two-dimensional feature matrix,
which is then fed into the Transformer encoding
module to model large-scale spatial dependencies
within the aurora data, resulting in an encoder fea-
ture map of the same shape. Finally, a three-layer
fully connected network is employed to transform
the two-dimensional feature matrix into a one-di-
mensional feature vector, and the output sequence y
is ultimately predicted through the hidden layer and

output layer regression.

Local feature extraction Global feature fusion Regression prediction
= = 1
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Fig.5 Framework of the model

2.1 Image feature extraction network based on

VGG

In order to preserve the positional relationships
in the image and extract local features, a serial con-
volutional neural network structure is employed.
VGG, imtroduced by the University of Oxford in
2014, demonstrated strong performance in the Ima-
geNet Large Scale Visual Recognition Challenge in
the same year and has since gained extensive adop-
tion"®". VGG-16 typically denotes a network archi-
tecture incorporating 13 convolutional layers and
three fully connected layers. It utilizes a concise and
stackable pattern of convolutional blocks, which has
proven effective on various datasets. The VGG net-
work represents the maximum depth achievable by
traditional serial networks and its significant innova-
tion lies in the widespread use of small-sized convo-
lutional kernels. This involves replacing a 5X5 con-

volutional kernel with two stacked 3X3 convolu-

tional kernels, and replacing a 7X7 convolutional
kernel with three stacked 3<X3 convolutional ker-
nels, thereby reducing the network’s parameters
without compromising the receptive field.

The VGG network consists of five blocks,
each of which includes convolutional and pooling
layers. Finally, three fully connected layers are
linked for classification. In fact, the convolutional
layers of the VGG network have good feature ex-
traction capabilities. The network structure of the
convolutional and pooling layers of the VGG net-
work is considered as the feature extraction network
in this paper. To transform an image of 224X 224X
3 into a 14X 14X 512 feature map, the standard
VGG network is truncated in this paper to create a
new feature extraction network. The network struc-
ture is shown in the Fig.5. The output feature di-
mensions of this network can be transformed into

fixed-length embedding vectors through linear map-
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ping, aligning with the input paradigm of the ViT
model and facilitating subsequent processing.

The feature extraction network in this article re-
tains the convolutional and pooling layers of the
VGG network to extract local features of aurora im-
ages. After five blocks, the 224X 224X 3 image is
transformed into a 14X 14X 512 feature map. The
network structure is shown in the Fig.6. Compared
with the first five blocks of VGG-16, the network in
this article removes the last pooling layer, which re-
fers to the data shape when the ViT model enters
the encoder, and is convenient for subsequent com-

parative experiments.

200 224x224x64

112x112x128

56x56%256
77 228512 14x14x512
X X

([t

(7 Convolution+tReLU
/) Max pooling

W
(=3

Pixel index
Rl
(=]
S

200

Fig.6 VGG image feature extraction network structure

2.2 Encoder network based on ViT

The Transformer encoder network performs
global interaction on the local features extracted by
the VGG feature extraction network to further learn
the large-scale spatial dependencies between data.
Transformer was originally proposed in natural lan-
guage processing and had subsequently been widely
applied to time series, computer vision, and other
fields. The Transformer model, in comparison to
CNN-based methods, excels at capturing complex
spatial transformations and long-distance feature de-
pendencies. It achieves this by effectively learning
the relationship between input elements, enabling it
to capture global interactions. Additionally, the
Transformer model has the ability to flexibly adjust
its receptive field to combat interference in the data
and learn effective feature representations.

The Transformer model’ s core is the attention

mechanism, which can be described as the process

of mapping a query and a set of key-value pairs to an
N, X d

output. Given a query matrix Q € R™
ue matrices K, VERY“, with N, denoting the

and key-val-

number of query tokens, N, the number of key-val-
ue tokens, and d the dimensionality of the feature
embeddings, the output matrix is calculated by ap-

plying the attention function as follows

T

Attention(Q,K,V )= softmax( QK )V (1)

Vd

Multi-head attention is an extension of atten-
tion mechanism that parallelly runs £ attention opera-
tions by projecting queries, keys, and values into %
different subspaces through % learnable linear trans-
formations. Then, the outputs of these £ attentions
are concatenated and transformed by another learn-
able linear transformation to obtain the final output

MultiHeadAttentions(Q,K,V )=
Concat( Ay, hy, +o+  h )W (2)
h,= Attention( QW S, KWS, VW) (3)
where W2, W5, W€ R “ are the parameter ma-
trices for the linear transformations of the query,
key, and value, respectively, and W€ R is
the parameter matrix for the final linear transforma-
tion of the multi-head attention mechanism. Typical-
ly, d, is set to d/k.

The difficulty of applying Transformer to the
field of CV mainly lies in how to convert 2D image
data into 1D data. In 2020, Dosovitskiy et al."* pro-
posed a visual transformer. This model constructs a
series of tokens by segmenting each image into
patches with position embeddings, and then extracts
parameterized vectors as visual representations us-
ing Transformer blocks. Taking ViT-B/16 as an ex-
ample, a convolutional layer with a convolution ker-
nel size of 16 X 16, a stride of 16, and a convolu-
tion kernel number of 768 can be used to achieve
this. Through convolution, each 16X16X3 patch
maps to a 768-dimensional vector, termed as a to-
ken, which is then transformed into a fixed-length
embedding vector through linear mapping and fed in-
to a standard Transformer module. When the input
image size 1s 224X224X 3, the resulting embed-
ding vector dimension from the embedding layer is
196X 768. Additionally, the aurora image feature
map extracted by the VGG network can be input as
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a token to the Transformer enconder, ensuring that
the resulting embedding vector dimension aligns
with the input paradigm. Furthermore, the feature
matrix F'€ RY"“ undergoes a standard multi-head at-
tention function, and the results of the attention op-
eration are rearranged to obtain two-dimensional en-
coder features. Notably, for optimal utilization of
image features, this study reformulates all the out-
puts of the encoder as encoder features for subse-
quent regression prediction, in contrast to classifica-
tion tasks.

The ViT encoder network, as depicted in
Fig.7, comprises an embedding layer and an encod-
ing layer. Initially, the VGG deep feature map is
converted into fixed-length embedding vectors by
the embedding layer. Subsequently, in order to re-
tain positional information, each patch undergoes

the addition of positional encoding information prior

Transformer encoder

setiig [ﬂl | | | [

Expand

Sloood - o

to being input into the transformer encoder. The en-
coding layer then executes multi-head attention in
order to process the embedded vectors. Specifically,
the Transformer encoding layer is composed of L,
standard Transformer Encoder modules (where x
denotes the number of repeated layers in the Trans-
former encoder) , with each module being com-
prised of the layer normalization (LN) , a multi-
head self-attention module (MHSA) , a multi-layer
perceptron (MLP) , and residual connections. The
MLP further encompasses two convolutional func-
tions along with a rectified linear unit (Rel.U) acti-
vation function. In Fig.7, 7, and Z, represent the
output features of MHSA and MLP in the /th mod-
ule, and the calculation process is as follows

Z/=MHSA(LN(Z,.,))+ Z, (4)
Z,=MLP(LN(Z)))+ Z/ (5)

Transformer encoder

Multi-head
attention

Embedded
patches

Fig.7 ViT encoder network

2.3 Regression prediction network

The encoded features obtained by the ViT
module are expanded and then enter the three-layer
fully connected regression prediction network, con-
sisting of two hidden layers and an output layer,
with the number of neurons being 1 024, 1 024, and
12, respectively. This network is responsible for
generating the geomagnetic monitoring values of 12
stations. To optimize the performance of the net-
work, a standard ADAM optimizer is employed,
with a learning rate set to 0.000 2 and a batch size

set to 24. When y, represents the true sequence of

geomagnetic station data and y, represents the pre-
dicted sequence, the loss function is defined as the
mean squared error between the predicted value and
the true value of the geomagnetic station data,

shown as

Losszli(y,—yi)z (6)

ni=

2.4 Accuracy evaluation
The model evaluation criteria include root
mean square error (RMSE) , average relative vari-

ance (ARV), and coefficient of determination (R?).

The closer R* is to 1, the better the fit of the regres-
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sion line to the observed values. The criteria can be

defined as

(7)
(8)
I
E(yf*y/)z
Ri=1—|"— (9)

3 Discussion

In order to assess model effectiveness and per-
formance, a comparative analysis of the prediction
results from eight models was conducted, including
the VGG network, the ViT network, and the hy-
brid model proposed in this article. The models eval-
uated encompass ViT-B/16, ViT-L/16, VGG-16,
VGG-19, VGG-16+ViT-B/16, VGG-16+ViT-
L/16, VGG-19+ViT-B/16, and VGG-19+ViT-
L./16. Given the inherently limited size of the auro-
ral image dataset, it was crucial to ensure that each
model could achieve effective feature learning de-
spite the scarcity of training samples. However,
since all auroral images were projected onto a uni-
fied geomagnetic coordinate grid before being fed in-
to the network, each image inherently contained
consistent geographic priors. Under such condi-
tions, conventional data augmentation techniques
(e.g., rotation, translation, scaling) would disrupt
the coordinate consistency and completeness of the
data rather than enhance its diversity. Moreover,
since auroral images exhibit highly variable noise
levels depending on atmospheric and instrumental
conditions, introducing additional synthetic noise
would not yield meaningful augmentation and could
even degrade data fidelity. To address these limita-
tions and improve model generalization, all back-
bone networks (both VGG and ViT) were initial-
ized with pre-trained weights from the ImageNet da-
taset. This transfer learning strategy effectively com-

pensated for the restricted data diversity by endow-

ing the models with rich, transferable visual repre-
sentations, thereby providing a robust foundation
for subsequent fine-tuning on auroral imagery. The
two network structures under the VGG framework
are shown in Table 2. The two model parameters
under the ViT framework are shown in Table 3,
comprising layer, hidden size, MLP size, and head.
Layer denotes the number of times the encoder
block is repeatedly stacked in the Transformer; Hid-
den size signifies the dimension (vector length) of
each token after passing through the embedding lay-
er; MLLP size corresponds to the number of fully con-
nected nodes in the first MLP block of the Trans-
former encoder (four times the hidden size) ; Head
represents the number of heads in the multi-head at-
tention of the Transformer. Notably, all three mod-
el types leverage a three-layer fully connected re-
gression prediction network, following the feature
learning from the aurora images, to achieve the pre-
diction task of geomagnetic data from 12 stations.
This article uses the 11th Gen Intel(R) Core (TM)
19-11900KF processor, Nvidia GeForce RTX3080
graphics processor, with a clock speed of 3.5 GHz,
32 GB of memory, and the operating system is Win-
dows10.

Table 2 VGG model structure

VGG-16 VGG-19

13 weight layers
Input(224 X 224 X 3 image)

16 weight layers
Input(224 X 224 X 3 image)

Conv3-64 Conv3-64
Conv3-64 Conv3-64
Maxpool Maxpool
Conv3-128 Conv3-128
Conv3-128 Conv3-128
Maxpool Maxpool
Conv3-256
Conv3-256
Conv3-256
Conv3-256
Conv3-256
Conv3-256
Conv3-256
Maxpool Maxpool
Conv3-512
Conv3-512
Conv3-512
Conv3-512
Conv3-512
Conv3-512
Conv3-512
Maxpool( 14X 14X 512) Maxpool( 14X 14X 512)
FC-1024 FC-1024
FC-1024 FC-1024
FC-12 FC-12
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Table 3 ViT model parameters

Model Layer Hidden size MLP size Head
ViT-B/16 12 768 3072 12
ViT-L/16 24 1024 4 096 16

Table 4 presents the normalized RMSE values
between the predicted and actual values of geomag-
netic data at 12 stations across different models.
The error curves depicting the performance of these
models are provided in Fig.8. The results demon-
strate that the model leveraging ViT excels com-
pared to the convolutional network model. The su-

perior performance of the ViT model can be attribut-

ed to its adeptness in modeling global features and
long-range dependencies within the input data. The
pre-trained ViT model enables good performance
even for prediction tasks with small data sizes. Con-
versely, the inherent inductive bias inherent in con-
volutional networks restricts their capacity to en-
hance model performance, as they are constrained
to focusing solely on local image features. Empirical
evidence further indicates that the predictive influ-
ence of large-scale global features within aurora im-
ages outweighs that of local features in modeling

geomagnetic data.

Table 4 RMSE of geomagnetic data from 12 stations in the predicted results of each model

Model HRN ABK LRV NAQ GDH IQA FCC BLC CBB YKC CMO BRW
VGG-16 0.0654 0.0604 0.0636 0.0541 0.0731 0.0517 0.0547 0.0691 0.0648 0.0689 0.048 8 0.067 7
VGG-19 0.062 2 0.058 5 0.0609 0.0512 0.071 0.0452 0.054 2 0.064 7 0.064 0.0668 0.047 3 0.064 6
ViT-B/16 0.053 8 0.050 3 0.056 8 0.046 3 0.066 3 0.0459 0.0508 0.061 3 0.060 3 0.062 8 0.044 5 0.061 1
ViT-L/16 0.052 7 0.049 8 0.0531 0.0452 0.0654 0.0398 0.0484 0.0556 0.0559 0.0602 0.0429 0.058 4

VGG-16+ VIT-B/16 0.046 6 0.039 7 0.0430 0.0350 0.0531 0.0299 0.040 8 0.049 1 0.048 3 0.049 7 0.032 3 0.049 6
VGG-16+ ViT-L/16 0.0450 0.042 6 0.0417 0.033 6 0.0520 0.026 7 0.0389 0.048 5 0.044 9 0.048 6 0.031 2 0.047 9
VGG-19+ VIT-B/16 0.0419 0.036 5 0.037 6 0.076 5 0.048 5 0.0207 0.0320 0.043 1 0.0405 0.044 2 0.028 9 0.041 1
VGG-19+ VIiT-L/16 0.0403 0.0357 0.036 4 0.026 8 0.046 9 0.021 9 0.0313 0.0424 0.0394 0.0451 0.029 6 0.044 6
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Fig.8 Error curves depicting the performance of each models

Furthermore, compared with single-architec-
ture models, the hybrid model proposed in this
study exhibits a stronger ability to capture auroral
image characteristics, which results in overall lower
prediction errors. This finding suggests that combin-
ing convolutional locality with Transformer-based

global reasoning provides a more balanced and effec-

tive representation, thereby enhancing prediction ac-
curacy.

On 28 January, 1997, the predicted results of
the mixed model VGG-19+ViT-L/16 are dis-
played in Fig.9, where the orange curve depicts the
true values and the blue curve represents the model’s
predictions. The prediction results indicate that the
hybrid model’ s predictive values closely align with
the overall trends of data from various magnetic sta-
tions, demonstrating good performance even during
strong geomagnetic disturbances. It is evident that
the model exhibits a smaller prediction error during
stationary periods of magnetic field disturbances,
while a larger prediction error is observed during
substorm expansion periods. Fig.10 depicts the scat-
ter density plot of the mixed model VGG-19+ ViT-
L./16 for predicting data from 12 stations, with the
true values on the horizontal axis and the model’s
predicted values on the vertical axis. The plot re-

veals a strong linear relationship between the pre-
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Fig.9 Predicted results of the mixed model VGG-19+ViT-1./16 on 28 January, 1997

dicted results of each station and the true values,
with the majority of the predicted results concentrat-
ed near the y=x line, indicative of a high correla-
tion between the model’s predictions and the true
values. Notably, the areas with the highest scat
tered point density at each station are centered near
0 nT, attributed to the baseline processing of geo-
magnetic station data to eliminate diurnal variations.
Among them, the fitted lines for GDH, NAQ,
CMO, and BRW show significant deviations from
the y = x line, while FCC, CBB, and YKC exhib-
it minor offsets. The results for LRV are the most

accurate.

The emergence of Transformer in the visual
domain has posed a significant challenge to the long-
standing dominance of convolutional networks in
this area. This is primarily attributed to Transform-
er’s larger receptive field, more flexible weight set-
tings, and stronger global feature modeling capabili-
ties in feature learning, compared to convolutional
networks. Consequently, backbone networks based
on Transformer hold the potential to deliver higher
quality feature inputs for downstream tasks. Nota-
bly, ViT stands out as a prominent algorithm that
leverages Transformer as a backbone network to en-

[25]

code image features ViT’s global interaction
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Fig.10 Scatter density plot of the mixed model VGG-19-+ ViT-L/16 for predicting data from 12 stations

ability with the serialized image input allows for the
encoding of image features on a global scale. More-
over, integrating Transformer’ s global interaction
capacity with the spatial locality of convolutional
networks presents an opportunity to enhance feature
diversity.

In the context of auroral image-driven geomag-
netic prediction, VGGs are particularly effective in

capturing local spatial textures, brightness gradi-

ents, and fine-scale auroral arcs, which are closely
related to localized energy precipitation and short-
range geomagnetic perturbations. In contrast, the
Transformer component excels at modeling large-
scale morphological structures and global spatial cor-
relations across the auroral oval, which are essential
for representing the overall geomagnetic field re-
sponse. Therefore, integrating the convolutional

network’ s spatial locality with the Transformer’ s



No. 6 WANG Bo, et al. Local Geomagnetic Component Modeling of Auroral Images Based on--- 723

global interaction capacity enables the model to
learn a more comprehensive and physically consis-
tent representation of auroral patterns.

To further substantiate the advantages of the
hybrid VGG-VIiT design, an additional comparison
was conducted by selecting another convolution-
based residual network (ResNet-50 and ResNet-
34) as the local feature extractor. Compared with
VGG, which extracts features through a strictly hi-
erarchical and spatially smooth convolutional pro-
cess, ResNet enhances feature extraction by intro-
ducing identity skip connections that allow multi-lev-
el feature reuse and deeper gradient propagation.
This design enables ResNet to capture richer high-
level semantic representations ™', while VGG tends
to preserve more fine-grained spatial and texture in-
formation in its feature maps™"".

As shown in Table 5, the experimental results
illustrate the comparative performance of different
hybrid structures. When used individually, the
ResNet models outperform the VGG models but re-
main slightly inferior to the ViT models in all three
metrics. However, when ResNet is combined with
ViT, the hybrid models exhibit a decline in perfor-
mance across RMSE, ARV, and R” In this specif-
ic application—Predicting local geomagnetic compo-
nents from auroral images, this phenomenon can be
attributed to the inherent characteristics of the
ResNet architecture. While ResNet’ s residual con-
nections facilitate deeper feature extraction and im-
prove gradient propagation, thereby enhancing
standalone performance, they also tend to empha-
size high-level semantic abstraction at the expense
of spatial precision. When integrated with ViT,
which already captures global contextual dependen-
cies, this redundancy in abstract feature representa-
tion may reduce the diversity of complementary in-
formation between the convolutional and Transform-
er components. In contrast, the VGG backbone,
with its strictly hierarchical and spatially smooth
convolutional  structure, preserves more fine-
grained spatial and texture details. These localized

cues are particularly valuable in this application, as

geomagnetic disturbances are often reflected in sub-

Table 5 Performance of various models in predicting

geomagnetic data for 12 stations

Model RMSE ARV R
Resnet-34 0.0619 0.2824 0.6993
Resnet-50 0.0610 0.2691 0.7101
VGG-16 0.0648 0.2707 0.706 3
VGG-19 0.0640 0.2548 0.7238
ViT-B/16 0.0603 0.2532 0.7278
ViT-L/16 0.0559 0.2703 0.7074

ResNet-34+ViT-B/16 0.066 8 0.2930 0.6727
ResNet-34+ViT-L/16 0.0691 0.2799 0.7001
ResNet-50+ViT-B/16 0.0654 0.2801 0.6998
ResNet-50+ViT-1L/16 0.0713 0.3151 0.6132
VGG-16+ViT-B/16 0.0483 0.2886 0.698 2
VGG-16+ViIT-L/16 0.0449 0.2736 0.7345
VGG-19+ViT-B/16 0.0405 0.2618 0.7391
VGG-19+ViT-L/16 0.0394 0.2503 0.7393

tle spatial variations of auroral emissions. Such fea-
tures complement ViT’ s global feature reasoning
more effectively, leading to better overall integra-
tion and the superior performance observed in the
VGG-VIT hybrid models.

Table 5 highlights that the VGG-ViT hybrid
architectures achieve the best overall performance
among all tested models, with the lowest RMSE,
ARV, and the highest R? values. Specifically, the
hybrid model reduces the RMSE by approximately
39.1% compared to the VGG model, 29.5% com-
pared to the ViT model and 35.3% compared to the
ResNet model. Additionally, the goodness of fit of
the model is enhanced by approximately 2.14%
compared to the VGG model, 1.58% compared to
the ViT model, and 4.1% compared to the ResNet
model.

In conclusion, this study utilizes aurora satel-
lite images to forecast geomagnetic indices and em-
ploys deep learning models to extract features from
the images. The research findings indicate that this
approach can effectively predict geomagnetic data at
specific locations when sufficient data are available.
Furthermore, aurora satellite images have the poten-
tial to forecast geomagnetic indices at any latitude
and longitude within their coverage range. Future re-

search endeavors could involve the utilization of
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time series models to unlock the long-term memory
characteristics of the data, contributing to advanced
predictions spanning 1 h, 2 h, or even longer. Addi-
tionally, broader validation on a more extensive da-
taset would enhance the robustness of the findings.
Given that aurora satellite images provide wide spa-
tial coverage, while local geomagnetic station com-
ponent offer continuous temporal observations, they
complement each other. In the future, the joint in-
dex of aurora satellite images and geomagnetic sta-
tion data may be able to leverage the advantages of
both and compensate for the limitations of both.This
index could potentially resolve the index saturation
problem arising from the non-uniform distribution of
geomagnetic stations, thereby enhancing the accura-
cy of predicting the timing and location of substorm

events.

4 Conclusions

Based on the local and global feature correla-
tions between aurora images and geomagnetic varia-
tions, this paper proposes a ViT-based hybrid
framework for predicting local geomagnetic station
components from auroral observations. The experi-
mental evaluation is conducted using a combined da-
taset consisting of POL AR satellite LBHIL.-band au-
rora images and geomagnetic monitoring data col-
lected from 12 stations located in the high- and mid-
latitude regions of the Arctic. By integrating convo-
lutional neural networks for local feature extraction
with a Transformer encoder for global feature mod-
eling, the proposed model is able to capture both
fine-scale spatial details and large-scale auroral mor-
phological structures in a unified manner. The exper-
imental results indicate that geomagnetic prediction
benefits more substantially from the global morpho-
logical characteristics of aurora images than from lo-
cal features alone, highlighting the importance of
large-scale spatial context in aurora-geomagnetic
coupling. Moreover, the complementary integration
of convolutional inductive bias and transformer-
based global attention enables the model to effective-
ly integrate local feature sensitivity with global auro-

ral morphology representation, resulting in more ro-

bust feature representations. Overall, the proposed
hybrid architecture demonstrates consistent advan-
tages over single-model approaches, underscoring
its effectiveness for geomagnetic parameter estima-
tion based on auroral imaging data. These findings
suggest that hybrid CNN-Transformer frameworks
offer a promising and extensible paradigm for data-
driven space weather analysis and related geospace
monitoring tasks.

The main contributions of this study can be
summarized as follows:

(1) This work is the first to propose a model
that predicts local geomagnetic station components
directly from auroral images, establishing a reverse
mapping from optical auroral observations to geo-
magnetic responses. This approach complements ex-
isting research that primarily focuses on predicting
auroral intensity from geomagnetic data.

(2) The proposed framework overcomes the
geographical constraints of ground-based geomag-
netic stations, enabling geomagnetic variation pre-
diction even in regions without dense observational
networks.

(3) A hybrid ViT-based architecture is intro-
duced, combining the fine-grained local feature ex-
traction capability of convolutional networks with
the global contextual modeling power of the Trans-
former, resulting in improved prediction accuracy
and generalization performance.

Although the auroral image dataset spans full
year, it is important to note that not all images are
equally suitable for modeling. In particular, the pres-
ence of solar glare (dayglow) during periods of sun-
light exposure introduces significant interference in
the ultraviolet auroral observations, thereby affect-
ing data quality and reducing model accuracy. This
limitation restricts the effective use of data to night-
time auroral observations, particularly in the polar
night region. To further improve the robustness and
generalization of the model, future work will focus
on implementing additional preprocessing steps to
identify and remove solar contamination. Tech-
niques such as radiometric correction, dayglow fil-

tering, or machine-learning-based noise detection
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will be explored to mitigate these effects. By enhanc-

ing data quality, we aim to extend the temporal

availability of usable auroral images and improve the

consistency of geomagnetic prediction across sea-

sons.
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