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Abstract: Change detection (CD) plays a crucial role in numerous fields, where both convolutional neural networks
(CNNs) and Transformers have demonstrated exceptional performance in CD tasks. However, CNNs suffer from
limited receptive fields, hindering their ability to capture global features, while Transformers are constrained by high
computational complexity. Recently, Mamba architecture, which is based on state space models(SSMs), has shown
powerful global modeling capabilities while achieving linear computational complexity. Although some researchers
have incorporated Mamba into CD tasks, the existing Mamba-based remote sensing CD methods struggle to
effectively perceive the inherent locality of changed regions when flattening and scanning remote sensing images,
leading to limitations in extracting change features. To address these issues, we propose a novel Mamba-based CD
method termed difference feature fusion Mamba model (DFFMamba) by mitigating the loss of feature locality caused
by traditional Mamba-style scanning. Specifically, two distinct difference feature extraction modules are designed:
Difference Mamba (DMamba) and local difference Mamba (LDMamba) , where DMamba extracts difference
features by calculating the difference in coefficient matrices between the state-space equations of the bi-temporal
features. Building upon DMamba, LDMamba combines a locally adaptive state-space scanning (LLASS) strategy to
enhance feature locality so as to accurately extract difference features. Additionally, a fusion Mamba (FMamba)
module is proposed, which employs a spatial-channel token modeling SSM (SCTMS) unit to integrate
multi-dimensional spatio-temporal interactions of change features, thereby capturing their dependencies across both
spatial and channel dimensions. To verify the effectiveness of the proposed DFFMamba, extensive experiments are
conducted on three datasets of WHU-CD, LEVIR-CD, and CLCD. The results demonstrate that DFFMamba
significantly outperforms state-of-the-art CD methods, achieving intersection over union (IoU) scores of 90.67%,
85.04% , and 66.56% on the three datasets, respectively.
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0 Introduction

Change detection (CD) is the process of identi-
fying changes of an object or phenomenon by using

images acquired at different times but same geo-

]

graphic areas'!’. It plays a vital role in numerous

fields, including monitoring of land-use and land

cover®, urban sprawl”, and geological-hazard
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monitoring“*. In the past decade, the advances in
satellite observation technology have made it in-
creasingly feasible to acquire multi-temporal,
high-resolution optical imagery with enhanced spa-
tial detail and rich semantic features. However, how
to efficiently and rapidly extract useful features and
information from massive optical remote sensing

(RS) data still poses great challenges, especially
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for accurate multi-temporal image CD task'”’.

In the literature, most traditional CD methods
focus on detecting changed pixels and classifying
them to generate a change map'®’. While these meth-
ods have demonstrated promising results on certain
types of imagery, their effectiveness is highly depen-
dent on domain-specific knowledge, often resulting
in limited accuracy and poor generalization capabili-
ties. The emergence of deep learning (DL) has in-
troduced new models and paradigms for CD. Owing
to its exceptional feature representation and nonlin-
ear modeling capabilities, DL has substantially en-
hanced the efficiency and accuracy of CD, exerting
a profound influence on the field. Consequently,
deep learning-based change detection (DLCD) tech-
niques continue to emerge, including convolutional
neural network (CNN)-based methods'”, Trans-
former-based methods®' and Mamba-based meth-
ods'”'. Specifically, CNNs enable powerful automat-
ic feature extraction in CD, thereby capturing key
semantic features of changes from bi-temporal imag-
es. However, the capacities of modeling long-range
dependencies is severely constrained by limited re-
ceptive fields. Differently, based on self-attention
units, Transformer architectures inherently possess
global context modeling abilities. However, their
application potential on remote sensing (RS) imag-
es 1s significantly limited due to the quadratic com-
putational complexity, especially when processing
high-resolution remote sensing imagery for pixel-lev-
el prediction tasks.

Recently, inspired by the capabilities of
state-space models (SSMs)"" | especially Mam-
ba''', it is possible to effectively capture global in-
formation while maintaining linear computational
complexity across a variety of computer vision
tasks. Consequently, a growing body of research
has been dedicated to the development and adapta-
tion of Mamba-based architectures for remote sens-
ing change detection (RSCD) task. Particularly,
RS Mamba (RS-Mamba) **' introduces an omnidi-
rectional selective scan module (OSSM) to globally
model image context across multiple directions.
ChangeMamba'”’, building upon the visual state

)U3J

space model (VMamba architecture, employs a

cross—scanning mechanism to achieve effective mod-
eling of global contextual information of images.
While these methods broaden the perspective of
RSCD by incorporating global awareness, the em-
ployed image flattening approach easily leads to a
loss of locality in changed regions and compromises
spatial consistency. LocalMamba''"* introduces local-
ity by dividing the image into several fixed windows
that are scanned individually. However, this
fixed-window strategy not only introduces irrelevant
background locality but also results in incomplete in-
corporation of the locality of changes. CD-Lamba'"”
designed a locally adaptive state-space scanning
(LASS) strategy that employs dynamic and adap-
tive windows, which enhances the locality of chang-
es while preserving global context. The aforemen-
tioned methods primarily enhance global back-
ground modeling by refining the sequence scanning
mechanism for image data. However, they lack a
dedicated feature extraction mechanism for change
regions, which hinders their ability to accurately and
effectively capture discriminative change features for
improved change detection. Although CD-Lamba
successfully alleviates the feature locality loss associ-
ated with conventional scanning strategies, it simi-
larly suffers from the absence of a targeted mecha-
nism for extracting change-related features. As a re-
sult, it cannot reliably identify discriminative change
patterns, and thus fails to achieve significant perfor-
mance gains.

In addition, current bitemporal feature fusion
methods commonly employ concatenation or sub-
traction to integrate change features. The emer-
gence of Mamba has provided a new perspective for
change feature integration. In such context, visual
state space model for land cover change detection
(LCCDMamba)'"* introduces a multi-scale informa-
tion spatio-temporal fusion (MISF) module that in-
tegrates CNNs and Mamba to capture multi-scale
spatio-temporal change information. However, this
method merely concatenates bi-temporal features for
processing, failing to achieve sufficient interaction

[15]

between them. By contrast, CD-LLamba " designs a
cross-temporal state-space scanning (CTSS) strate-

gy, which allows any pixel in the bi-temporal data
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to integrate information from all other pixels across
different spatial directions and temporal states. How-
ever, CTSS only performs pixel-wise cross-connec-
tions for feature sequences in the spatial dimension,
neglecting pixel-level dependencies across channel di-
mensions. As a result, the representation at each pix-
el fails to adequately incorporate cross-spatial, cross-
channel, and cross-temporal information, which lim-
its effective multi-dimensional fusion.

To address the aforementioned challenges, we
propose a difference feature fusion Mamba (DFF-
Mamba) model , which retains the core advantages
of Mamba in state space modeling while effectively
enhancing the locality of early-stage features. By in-
tegrating the multi-dimensional spatio-temporal in-
teractions of change features to enhance interactions
across dimensions, DFFMamba can effectively de-
tect dynamic changes in complex spatio-temporal en-
vironments, thereby significantly improving the ac-
curacy and reliability of CD. Specifically, to address
the issue that current Mamba-based change detec-
tion methods lack a dedicated feature extraction
mechanism for change regions, we design a differ-
ence Mamba (DMamba) module, which effectively
extracts change features by computing the difference
between coefficient matrices in the state space equa-
tions. To further mitigate the loss of locality in
early-stage features, we introduce LASS into
DMamba and propose a local difference Mamba
(LDMamba) module, which enhances feature local-
ity and strengthens the extraction of discriminative
change features by separating the input features into
local-related and background-related components
and individually scanning them. Finally, to address
CTSS’ s inability to integrate pixel-level informa-
tion from both spatial and channel dimensions, we
construct a fusion Mamba (FMamba) module incor-
porating a spatial-channel token modeling SSM
(SCTMS) , which allows the model to interact the
multi-dimensional spatio-temporal interactions of
change features, effectively learning global contex-
tual information. It promotes the unified fusion of
spatio—temporal features and captures dependencies
of change features across both spatial and channel di-

mensions, thereby enabling the network to accurate-

ly identify dynamic changes and correlated character-
istics in complex spatio-temporal scenarios.

The primary contributions of this work are as
follows:

(1) This paper proposes a novel DFFMamba
for CD task where change-related features are effec-
tively captured through the DMamba, while the loss
of locality in early-stage features is mitigated via the
LDMamba. Ultimately, the multi-dimensional spa-
tio-temporal interactions of change features are inte-
grated through the FMamba module. This integrat-
ed design significantly enhances the model capability
to capture and identify change information, leading
to competitive CD performance.

(2) A DMamba module is proposed to obtain
reliable difference information by computing the dif-
ference between the coefficient matrices within the
state-space equations. Building upon DMamba, an
LLDMamba module is proposed to address the loss
of feature locality caused by conventional scanning
mechanisms. In such a way, the global contextual
information is preserved while the locality of early-
stage features is enhanced, enabling precise extrac-
tion of change features.

(3) To integrate multi-dimensional spatio-tem-
poral interactions of change features and enhance
their cross-dimensional coupling, we introduce the
FMamba module. This module employs the SCT-
MS method to interleave features across spatial and
channel dimensions, enabling each pixel to integrate
information from all other pixels across spatial,

channel, and temporal dimensions.

1 Related Work

1.1 CNN-based change detection

Due to the exceptional capability in extracting
local features, CNN architectures have been widely
used to address CD tasks. Refl.[7] pioneered a
UNet-based architecture named fully convolutional
early fusion (FC-EF) by introducing a fully convo-
lutional network. This approach concatenates
bi-temporal images along the channel dimension be-
fore inputting them into the network. Two variants

of fully convolutional Siamese-concatenation (FC-
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Siam-Conc) and fully convolutional Siamese-differ-
ence (FC-Siam-Diff) are further developed by em-
ploying twin Siamese branches with shared weights.
However, such methods struggle to efficiently learn
highly discriminative change features. To this end,
Siamese network and NestedUNet (SNUNet)"”
was introduced, which employed a densely connect-
ed Siamese network to mitigate the loss of deep spa-
tial information. In Ref.[ 18], a deeply supervised
image fusion network (DSIFN) was proposed to en-
hance learning of discriminative change characteris-
tics. Similarly, an attention-based deeply supervised
network (ADS-Net)""*’ was proposed by devising an
adaptive spatial and channel fusion attention (ASC-
FA) mechanism, which concurrently enhanced
change features in both spatial and channel dimen-
sions. In addition, it is challenging to mitigate the in-
terference from pseudo-changes. To address this
limitation, a feature-output space dual-alignment
(FODA) framework is proposed to suppress spuri-
ous variations by modeling relational constraints in
invariant regions across multi-temporal images'®"’.
In Ref.[21], a weighted double-margin contrastive
loss was introduced to encourage the focus on
change features while penalizing attention to invari-
ant features, thereby effectively mitigating interfer-
ence from spurious variations.

Despite achieving promising results, CNN-
based approaches suffer from limited receptive fields
due to fixed kernel sizes, which hinders global de-
pendency capture and compromises consistency be-
tween local and global representations. In this pa-
per, we adopt the recently proposed Mamba frame-
work to leverage its exceptional global modeling ca-

pabilities, thereby attaining compelling performance.
1.2 Transformer-based change detection

Due to its powerful long-range dependencies
modeling capabilities, vision Transformers (ViT)"**
have been extensively introduced into CD task,
achieving superior performance against CNN-based
counterparts. In a pioneer work, Ref.[23] em-
ployed Transformer encoders to capture rich contex-
tual information from images, a Transformer decod-

er was subsequently used to refine the original fea-

ture representations. Ref.[8] introduced a pure
Transformer-based Siamese network architecture
for CD. This framework unifies hierarchically struc-
tured Transformer encoders with multilayer percep-
tron (MLP) decoders, eliminating the need for
CNN-based feature extractors. In a similar work,
Ref.[24] used Swin Transformer blocks as founda-
tional units for both the encoders and decoders.
While effectively mitigating the receptive field limi-
tation of CNNs, these methods introduce substan-
tial computational costs. To address this issue, ex-
isting research has focused on refining attention
mechanisms to substantially reduce computational
costs. Among these efforts, Refl.[25] proposed a
lightweight structure-aware Transformer network
(LSAT), which replaced the standard self-attention
(SA) module in ViT with a cross-dimension inter-
active self-attention (CISA) module that operated
with linear computational complexity, thereby sig-
nificantly decreasing computational overhead. Simi-
larly, Refl.[ 26] used a lightweight multi-head atten-
tion mechanism to optimize computational efficien-
cy. Despite improvements in computational efficien-
cy, striking a balance between efficiency and high
accuracy remains a major challenge for Transformer-

based approaches.
1.3 Mamba-based change detection

Mamba architectures, which are based on
structured state space sequence models (S4) have
recently garnered significant research attention due
to their efficient contextual modeling capabilities
with linear complexity. Particularly, VMamba'"' ef-
fectively adapts SSMs to visual domains through
the introduction of the state space for 2D (SS2D)
module. By using a cross-scanning module that tra-
verses image spaces, SS2D converts non-causal vi-
sual data into ordered patch sequences for efficient
processing. Note that a fundamental challenge in
Mamba-based CD lies in optimizing scanning strate-
gies for sequence modeling. While VMamba’ s
cross—scanning approach mitigates directional sensi-
tivity, it flattens spatial tokens and increases distanc-
es between adjacent elements, resulting in a loss of

locality in regions of change. To mitigate this issue,
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LocalMamba''' is proposed by segmenting images
into fixed-size windows and performing independent
scans within each partition. However, this fixed-
window strategy not only introduces irrelevant back-
ground locality, misleading the identification of
changed regions, but also leads to incomplete inte-
gration of change locality. To address these limita-
tions, CD-Lamba™ designed a LASS strategy that
employs dynamic and adaptive windows, which en-
hanced the locality of changes while preserving glob-
al context. However, due to the limitation of scan-
ning mechanism, Mamba-based CD methods strug-
gle to capture detail information. To overcome this
drawback, the scaled residual ConvMamba (SRCM)??
was proposed by synergistically harnessing Mamba
for global context modeling while employing convo-
lutional operations to enhance local details, thereby
mitigating the deficiency of detail-specific cues.
Ref.[ 28] first explored the potential of hybrid
CNN-SSM by introducing a simple feature interac-
tion module (FIM) , enabling the simultaneous cap-
ture of global information and local features. Similar-
ly, Ref.[ 29] designed CWMamba by utilizing Mam-
ba modules for global feature integration and CNN-
based feature extraction block (BCGF) for local fea-
ture enhancement. In Ref.[15] , LLASS was pro-
posed to compensate for the missing of local informa-
tion. However, it fails to capture change-specific fea-
tures, leading to suboptimal CD performance. In-
stead, by incorporating the LASS concept into L.LD-
Mamba module, significant performance gain is ob-

served in our proposed DFFMamba.

2 Methodology

2.1 Preliminaries

Mamba is an emerging sequence modeling ar-
chitecture that is attracting growing attention in the
field of deep learning. This architecture exhibits
close connections to CNNs, recurrent neural net-
works (RNNs) , and classical SSMs. Particularly,
SSMs are typically formulated as linear time-invari-
ant (LTI) systems, mathematically grounded in a
set of linear ordinary differential equations (ODEs),

shown as

Vol. 42
h(t)=Ah(t)+ Bx(z) (1)
y(t)=Ch(t)+ Dx(t) (2)

where x(1)ER, h(t)ERY, y(1)ER represent the
input sequence, the hidden state, and the output se-
and A€RY Y, BERY' ", CER", DER

the learnable parameters. N is the state size and L

quence;

the input dimension.

In addition, to address the challenge of dis-
cretizing continuous systems for integration into
deep learning, S4 is proposed by introducing a tim-
escale parameter A. In such case, the continuous pa-
rameters A and B are converted into discrete param-
eters A and B, leading to a commonly used discreti-
zation method of zero-order hold (ZOH), shown as

A=exp(AA) (3)

B=(AA) (expAA —1)X AB (4)

where [ 1s the identity matrix. Therefore, the contin-

uous ODE can be converted into a discrete form,

ie.

h(t)=Ah,_,+ Bx(t) (5)

y(¢)=Ch(1)+ Dx(1) (6)

where D acts as a residual connection and is often
omitted from the equation, i.e.

y(1)=Ch(1) (7)

Finally, the output is obtained via a global con-

volution, shown as
K=(CB.C(AB),-.CA" 'B) (8
y=x*K 9)
where M is the length of the input sequence;
K € R" the structured convolution kernel, and * the
convolution operation.

Note that Mamba achieves a breakthrough en-
hancement over classical SSMs by introducing a se-
lective scan mechanism. By dynamically adjusting
model parameters according to the current input,
this mechanism selectively propagates or forgets in-
formation, effectively overcoming limitations of tra-
ditional models in handling discrete and information-

dense data.
2.2 Overall network architecture

DFFMamba consists of two weight-sharing en-
coders, three intermediate modules, and one decod-

er, as illustrated in Fig.1. The encoders are imple-
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mented using VMamba V2 pre-trained on the Ima-
geNet-1K dataset, which are composed of patch em-
bedding layers, patch merging layers, and visual
state space (VSS) block. The intermediate modules
consist of DiffMamba, LDMamba, and FMamba.
Specifically, DMamba and .LDMamba are dedicated
to enhance the locality of early-stage features and ex-
tract discriminative change features, while FMamba
aims to integrate multi-dimensional spatio-temporal
interactions of change features, enabling the model
to effectively capture change characteristics in com-
plex spatio-temporal environments. It should be not-
ed that LDMamba, due to its unique scanning mech-
anism, is specifically employed to enhance the local-
ity of shallow features and is therefore used only at
the first stage. Meanwhile, DMamba also faces chal-
lenges in accurately localizing discriminative infor-
mation within deep features. Therefore, we apply
DMamba to extract difference information from the
two intermediate sets of features. In addition, in-
spired by multi-scale Mamba  UNet
(MSVM-UNet) " model, the decoder consists of

vision

large kernel patch expanding (LKPE) layers and
multi-scale visual state space (MSVSS) blocks.
The LKPE layer performs up-sampling on the fea-

ture maps, which incorporates large-kernel depth-

_____________________________

Patch merging

VSS block

VSS block

VSS block

Patch merging

VSS block

Patch merging

___________________

H W c
616" 3273
Fig.1

wise convolution prior to expanding the channel di-
mension to obtain more discriminative feature repre-
sentations. MSVSS block captures and aggregates
fine-grained multi-scale information while learning
multi-dimensional spatio-temporal interactions from
spatio-temporal features provided through skip con-
nections, which mitigates directional sensitivity is-
sues in 2D visual data and enhances the model’ s
ability to comprehensively capture the features of
the changed regions.

In general, bi-temporal images are processed
by the encoder to generate multi-scale features,
which are subsequently delivered to intermediate
modules. Specifically, the LDMamba module en-
hances the locality of the first set of features to
achieve more accurate extraction of difference infor-
mation. These features are subsequently fed into the
FMamba module to integrate multi-dimensional
spatio-temporal interactions of change features, re-
sulting in interactive spatio-temporal features. The
second and third sets of features are processed by
the DMamba module to extract difference informa-
tion and are then passed to the FMamba module.
The last set of features is directly input into the
FMamba module to generate spatio-temporal fea-

tures. These multi-scale spatio-temporal features

=

@ Concatenation
--» Skip connections

Encoder

G

Overall framework of DFFMamba
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are delivered to the corresponding layers in the de-
coder. Subsequently, the MSVSS blocks capture
and aggregate fine-grained multi-scale information
from the contracting path, while learning multi-di-
mensional spatio-temporal interactions from the skip
connections. Finally, the CD map 1s obtained
through the final LKPE (FLKPE) layer.

2.3 DMamba and LDMamba

Accurate extraction of difference information
from bi-temporal images is essential for the decoder
to capture robust change features. To this end, we
propose the DMamba module. Furthermore, to ad-
dress the loss of feature locality inherent in tradition-
al Mamba scanning mechanisms, we introduce the
LLDMamba module. LDMamba separates features
into local-related and background-related compo-
nents. Each part is processed independently by
DMamba for differential feature extraction. This
strategy effectively preserves global contextual infor-

mation while strengthening local feature coherence,

leading to significant improvements in the discrimi-
native capability of change representations.
2.3.1 DMamba
The DMamba module is integrated into the
skip connections of the network, where it processes
feature representations from the second and third en-
coder stages and performs specialized extraction of
difference information. Assuming the feature repre-
sentation from the kth encoder block is denoted as
fr o €RMIVSC T the entire process can be ex-
pressed as
FD ., FD ;= DMamba( Fiy, F)  (10)
As shown in Fig.2, DMamba consumes corre-
sponding bi-temporal features as input and produces
two outputs while retaining the original spatial di-
mensions of the features. The input features are first
processed through a linear projection layer (Linear)
and a depthwise separable convolution (DWConv)
layer, and are then fed into the difference selective
scan (DSS) module.

B, C, 4,

|

\

4, B, = exp(dndr), 4B
hn= ‘IDlh;‘—ll = Enx;'l

Vh=Crbly + Doty

Xp T A_na En=exp(AnAn)>Aan o e ™

hi, = Ak + Brx,

Y= Cphy, + Dpx;,

DSS

Fig.2 Overall structure of DMamba

Following the selective mechanism of Mamba,
the coefficient matrices B, C,and A are generated
from the input to enable the model’ s context-aware
capabilities. Here, linear projection layers are uti-
lized to generate these coefficient matrices. Accord-
ing to Eq.(5), matrix A is used to capture informa-
tion from previous states in order to construct new

states. To extract the difference information from

the bi-temporal features, our study computes the dif-
ference of the coefficient matrix A to serve as the

new coefficient matrix. The formula is as follows

An,Bn=exp(AnAn),AnBn (11)
A, Br=exp(ArArn),ArnBr (12)
Ap=An—Ap (13)
Ap=A,—Aqn (14)
W=Aphnt+ Bnah (15)
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trzzfir)zh['r;lJVBTzl'frz (16)
y{n =Cpnhn +Dpnay (17)
y{rz: Crh', +Dpxy (18)

where a7, and xi, represent the inputs at time step
t; A, and A,, the computed difference coefficient
matrices; and y7, and y7, the outputs of the selec-
tive scan representing the extracted difference fea-
tures. The difference features are first subjected to
layer normalization (LN), then linearly projected
back to the original dimension, and finally com-
bined with the original input via a residual connec-
tion. Residual connections are employed as the un-
treated features retain richer semantic information.
The combination of treated and untreated features
facilitates the integration of differential information
across temporal dimensions, while also helping mit-
igate gradient vanishing and explosion issues.
2.3.2 LDMamba

The LDMamba module, as shown in Fig.3, is
situated within the skip connections of the model,
which processes the bi-temporal features extracted
from the first stage of the encoder and produces two
output representations while preserving the original
spatial resolution of the features. This operational
flow 1s formally expressed as

FD,, FD,, = LDMamba( Fi,Fb)  (19)

The mnput features are first processed through
a linear projection layer and a DWconv layer, and
are then fed into the local difference selective scan
(LDSS) module. Within the LDSS module, input

features are initially partitioned by the local adap-

(LADS)

local-related and background-related components.

tive difference  split module into
These components are subsequently processed by
the DSS module to extract corresponding difference
features. Finally, the extracted difference features
are merged to the original feature dimension
through the local adaptive difference split merge
(LADS merge) module. Note that the LADS mod-
ule consists of three main steps. First, to roughly
identify regions rich in locality within the
bi-temporal difference features, the absolute differ-
ence of the input features is computed and a
(1/4, 1/4) average pooling is applied to construct a
score window, where Gumbel Softmax is applied
to introduce a differentiable approximation for dis-
crete selection when identifying the Top_ %4 win-
dows with the highest scores as
Score, ..y, = o (AP(abs( X — X)) (20)
where ¢(+) denotes the Gumbel-Softmax operation,
AP(+) the averaging pooling, and X5, and X, are the
input features. Subsequently, this score is utilized to
reorganize the input features. Connected compo-
nents within the Top_k windows are identified and
merged to accommodate local change regions of
varying shapes and sizes, as expressed by
W.=Re( X, Top_k(Score,.,)) (21)
where Re(s) represents the operation that merges
connected components into connected windows,
and Xy the input features. The matrix Wy consists

of the Top_k windows, renumbered by connected

windows, which are assigned values from the set of

LDMamba

Local,, Background,,

LDSS

Fig.3 Overall structure of LDMamba
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{1, 2,---, £ }. Finally, windows outside the Top_k
are treated as a unified set and detached from the
matrix to form the background component. Mean-
while, the Top_k windows are rearranged in ascend-
ing order based on their values and constitute the lo-
cal component. This process is formally expressed
as
F.=Ar(Wy) (22)
F,=Re(X;,NonTop_k(Score,..,)) (23)
where F, and Fy represent local-related and back-
ground-related components; Ar(s) represents a sort-
ing procedure and NonTop_k the windows outside

the Top_k.
2.4 FMamba

To leverage these difference features, we de-
sign the FMamba module to integrate spatio- tempo-
ral interactions across dimensions. This allows the
model to not only learn the complex dynamics of
change features holistically but also capture their in-
trinsic relationships. As shown in Fig.4, the FMam-
ba module takes three features as inputs: The
bi-temporal features F%, FL from the correspond-

ing stage, together with the extracted difference fea-

—k
ture FD,. The input features are first processed
through a linear projection layer and a DWconv lay-
er, and are then fed into the fusion selective scan

(FSS) module.

This operational flow is formally expressed as
—y — e
FD ,,FD ,=FSS| F;, F1,, FD, (24)

~ ~ —_—
where F%, F},, and FD, represent the processed

input  features.  Subsequently, the feature
ﬁ;, E;ZGRH*XW‘”‘ output by the FSS mod-
ule , are multiplied with two scaling parameters and
concatenated in the channel dimension, forming a
combined feature of shape R™ " "*** % Finally, a
linear projection layer is used to reduce the feature
shape to R" W &,

Within the FSS module, the input features are
first fused with their corresponding source
bi-temporal features to retain essential contextual in-
formation. The resulting features are subsequently
processed by the SCTMS module. Here, the fea-
tures are reshaped across spatial and channel dimen-
sions, enabling each pixel to comprehensively inte-
grate information from all others across spatial,
channel, and temporal domains. Subsequently, the
features are fed into a specially designed VSS
block, which learns different aspects of spatio-tem-
poral relationships within change features, capturing
the intrinsic connections of change information de-
rived from spatio-temporal sequences. Finally,
spatio-temporal features are restored to their original

dimensions via SCTMS inverse. This process is de-

scribed as

SCTMS inverse

VSS block
scTus

Fig.4 Overall structure of FMamba
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~ —r ~ —_—r
F.,F,— SCTMS(F% +FD,,Fk +FD ,)> (25)

—_—k
FD ,,,FD ,, = Inverse( F, F,) (26)
where Inverse(s) represents the SCTMS inverse op-

eration.
2.5 Loss function

For the binary change detection task, a simple
binary cross-entropy loss is adopted to formulate the
objective function, which can be expressed as

Lie=—>ylgy, +(1—y)lg(1—y,) (27)
where y, denotes the ground-truth change map and

v, the predicted change map.
3 Experimental Settings

3.1 Datasets

To verily the effectiveness of our proposed
DFFMamba, three CD datasets are employed,
namely WHU-CD dataset”’, LEVIR-CD datas-
et™, and CLCD dataset™, the detailed descrip-
tions of these datasets are as follows.

WHU-CD: This dataset focuses on building
changes with different scales, it consists of two high-
resolution aerial images, with a size of 32 507 pixel X
153 54 pixel and a spatial resolution of 0.3 m. The
images were captured in April 2012 and April 2016,
covering the same region in Christchurch, New Zea-
land. To facilitate GPU training, images were
cropped into 256 pixel X 256 pixel, which were
then randomly partitioned into a training set
(5947 images) , a validation set (743 images) , and
a test set (744 images).

LEVIR-CD: This dataset is a widely used bi-
nary change detection dataset containing 637 pairs
of Google Earth images with a size of 1 024 pixel X
1 024 pixel and a resolution of 0.5 m. This dataset
primarily focuses on changes of building construc-
tion and demolition. To facilitate GPU training, im-
ages were cropped into 256 pixel X 256 pixel, which
were randomly divided into a training set (7 120 im-
ages) , a validation set (1 024 images) , and a test
set (2 048 images).

CLCD: It is designed for cropland CD and con-
tains 600 pairs of remote sensing images with a size

of 512 pixel X 512 pixel and a spatial resolution rang-

ing from 0.5 m to 2 m. The images were also
cropped into clips of 256 pixel X 256 pixel, which
were randomly split into a training set (1 440 imag-
es) , a validation set (480 images) , and a test set
(480 images).

3.2 Implementation details

The proposed DFFMamba was implemented
using the PyTorch framework powered by an
NVIDIA GeForce RTX 4060 Ti 16GB GPU. Dur-
ing training, the AdamW optimizer was used for all
three datasets with an initial learning rate of 6 X107
and a weight decay coefficient of 1X10 % After a
linear warm-up phase, the learning rate decays poly-
nomially based on the number of training epochs,
shown as

Ir =1Ir, X(1 — epoch/150 )" (28)
where Ir, denotes the initial learning rate, and
Ir_power the polynomial decay exponent and is set
to 0.9. The batch size was uniformly set to 10, and
the number of epochs was set to 150. Furthermore,
the model random seed is set to 3 407, and the mod-
el weights are initialized using the Kaiming normal
distribution to prevent gradient explosion or vanish-
ing issues. In terms of data preprocessing, the
three—channel data are first normalized using pre-
defined mean and standard deviation values from the
ImageNet dataset. Then, data augmentation tech-
niques, such as random cropping, horizontal flip-
ping, and vertical flipping, are applied to enhance

the model’s generalization capability.

3.3 Comparative methods and evaluation met-
rics

To demonstrate the superiority of the proposed
DFFMamba model, a comparative study was con-
ducted with the following nine classic deep
learning-based change detection methods.

(1) SNUNet'"". SNUNet incorporates a sia-
mese network structure based on the NestedUNet
encoder, and employs an integrated channel atten-
tion module to aggregate and refine the four output
features from the decoder.

(2) DSIFN". DSIFN employs a siamese
convolutional encoder and a decoder enhanced with

a spatial-channel attention mechanism for feature fu-
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sion, while implementing deep supervision on each
decoding layer.

(3) Spatial-temporal attention network (STA-
Net) ™', STANet employs a siamese convolutional
network as its encoder. In the decoder, a pyramidal
spatio-temporal attention mechanism is incorporated
to capture multi-scale spatio-temporal features. Ad-
ditionally, a metric learning approach is adopted to
compute the change map.

(4) Bi-temporal image Transformer (BIT)"*'.
BIT employs a siamese convolutional network as its
encoder and introduces semantic tokens to leverage
Transformer modules for semantically enhancing
bi-temporal features.

(5) ChangeFormer®': ChangeFormer employs
a siamese Transformer encoder to extract deep fea-
tures from multi-temporal images, while a MLP in
the decoder produces the change map.

(6) ChangeViT"*'. ChangeViT employs a
plain ViT to extract high-level semantic features,
while a detail-capture module extracts low-level de-
tailed information. Subsequently a feature injector is
introduced to inject the low-level details into
high-level features.

(7) RS-Mamba'"¥’; RS-Mamba incorporates
OSSM, which globally models image context by
scanning in multiple directions, thereby capturing
large spatial features from diverse orientations.

(8) ChangeMamba'”': ChangeMamba building
the VMamba

crossscanning mechanism to achieve effective mod-

upon architecture, employs a

eling of global contextual information of images.

(9) CD-Lamba ™ : CD-Lamba introduces the
LLASS to overcome the local perception limitations
Mamba,
bi-temporal feature fusion through a CTSS strategy.

of  conventional while  facilitating

To evaluate the performance of our model, five
metrics of precision (Pre), recall (Rec), overall ac-
curacy (OA), F-score (F,), and intersection over

union (IoU) are employed, which are defined as

TP
Precision = TP+ FP (29)
TP
Recall = TP+ FN (30)
B TP
U=y N T FP (31)
TP+ TN

OA (32)

" TP+ TN+ FP + FN
Precision X Recall

F,=2X 33
' Precision + Recall (33)

where true positive (TP) refers to the cases that are

correctly classified as positive instances of change;
false positive (FP) the cases that are incorrectly
classified as positive instances of change; true nega-
tive (TN) the cases that are correctly classified as
negative instances of no change and false negative
(FN) the cases that are incorrectly classified as neg-

ative instances of change.
4 Experimental Results

4.1 Experimental results on WHU-CD dataset
As shown in Table 1, SNUNet effectively re-

stores fine-grained information and achieves compet-

Table 1 Quantitative comparisons of different CD methods on WHU-CD, LEVIR-CD, and CLCD datasets(The top two
optimal values are highlighted in red and blue) %
WHU-CD LEVIR-CD CLCD
Type Method
IoU F, OA Pre Rec IoU F, OA Pre Rec IoU F, OA Pre Rec
SNUNet"" 76.95 86.98 98.92 83.47 90.78 79.83 88.79 97.79 89.98 87.63 41.20 58.95 93.74 57.78 58.95
CNN-based DSIFN™ 79.31 88.46 99.13 92.94 84.40 81.18 89.61 97.80 93.30 86.21 44.27 61.37 94.08 59.65 63.19
STANet™ 73.61 84.80 98.73 80.97 89.00 78.70 88.10 98.70 85.00 91.40 47.52 64.43 94.58 62.30 65.92
Transformer- BIT™ 69.70 82.15 98.45 75.74 89.74 81.75 89.96 98.89 90.50 89.42 46.29 63.29 94.93 68.62 58.73
based ChangFormer®  75.79 86.22 98.95 89.72 82.99 82.48 90.40 99.04 92.05 88.81 41.56 58.72 94.03 60.42 57.11

ChangeViT™

89.66 94.55 99.57 95.61 93.51 84.65 91.69 99.16 92.41 90.98 63.54 77.70 96.77 79.95 75.58

RS-Mamba"?

81.79 89.99 99.22 92.16 87.91 82.48 90.40 99.03 91.39 89.42 55.54 71.42 96.02 76.65 66.86

ChangeMamba(B)" 89.99 94.73 99.59 96.25 93.25 84.31 91.49 99.14 92.81 90.20 65.68 79.28 97.01 81.76 76.96

Mamba-based 0s)
CD-Lamba™

DFFMamba

86.49 92.76 99.44 94.38 91.18 81.79 89.98 98.98 89.69 90.28 62.53 76.94 96.68 74.35 76.94
90.67 95.11 99.62 95.83 94.39 85.04 91.91 99.19 92.96 90.90 66.56 79.92 97.17 84.79 75.59
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itive quantitative results with an F,-score of 86.98%
by leveraging dense connections to propagate fea-
tures to the decoder. DSIFN further improves detec-
tion accuracy by incorporating an attention mecha-
nism to enhance focus on changed regions, reaching
an F~score of 88.46% . However, it still falls short
in capturing global contextual information. To mod-
el global context, ChangeViT introduces a plain
VIiT architecture and achieves a higher F-score of
94.55% among the compared methods. Meanwhile,
ChangeMamba, built upon the VMamba architec-
ture, incorporates a cross-scanning mechanism that
better facilitates global contextual modeling, lead-
ing to a further improved F,-score of 94.73% . Nota-
bly, DFFMamba employs an .LDMamba module to
mitigate the loss of feature locality caused by tradi-
tional scanning strategies while retaining global con-
textual understanding. Consequently, it obtains the
best performance with values of 90.67% for IoU,
95.11% for F,~score, 99.62% for OA, and 94.39%
for Recall.

For a qualitative comparison of the CD perfor-
mance across different methods, several typical
scenes are selected, as shown in Fig.5. The first

and the second rows in Fig.5 illustrate the complex

Ground

truth SNUNet DSIFN

STANet

TP TN

building change scenario. It can be observed that
DFFMamba accurately extracts changes in intricate
building structures, whereas other models fail to
precisely localize building boundaries, resulting in a
significant number of false positives. The third row
in Fig.5 illustrates middle-scale building changes
within a simple environment. It can be observed that
RSMamba, ChangeMamba, and CD-Lamba all de-
liver visually plausible results with clearly delineat-
ed building boundaries. Additionally, SNUNet,
with its densely connected architecture, effectively
restores fine-grained details, resulting in CD results
with relatively refined edges. However, due to the
inability to establish global contextual relationships,
it exhibits certain missed detections within building
interiors. The fourth row in Fig.5 demonstrates the
exceptional capability of DFFMamba in detecting
minute structural changes, while other methods ex-
hibit noticeable missed detections. This superiority
can be attributed to DFFMamba’s enhanced extrac-
tion of difference features through LDMamba and
DMamba. FMamba further leverages these differ-
ence representations to  holistically  model
spatio-temporal dependencies, enabling the model

to accurately identify change features.

FN

Fig.5 Visual comparison of different CD methods on the WHU-CD dataset

4.2 Experimental results on LEVIR-CD dataset

The quantitative evaluation results of different
methods are presented in Table 1. DFFMamba
achieved the highest scores with values of 85.04%
for ToU, 91.91% for F,-score and 99.19% for OA.

ChangeViT achieves the second-best performance

by injecting low-level details into high-level fea-
tures, thereby enhancing the detection of changes at
different scales. Compared to attention-based meth-
ods such as DSIFN and STANet, BIT and Change-
Former, which incorporate Transformer structures

into the encoder, can more effectively model global
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contextual information, resulting in higher accuracy.

For visual comparisons, several typical scenes
are also selected, as shown in Fig.6. Specially, The
first and the second rows in Fig. 6 illustrate dense
building change scenarios. The results demonstrate
that DFFMamba effectively captures clustered struc-
tural changes, whereas other models fail to accurate-
ly localize building boundaries, resulting in numer-

ous false positive pixels between adjacent struc-

X

DSIFN STANet B

.

T1

A

599999

tures. The third and the fourth rows in Fig.6 depict
large-scale building change scenarios. Compared to
other methods, DFFMamba demonstrates stronger
local detail extraction capability, more accurately lo-
cates building boundaries, and finer edge structures.
This improvement can be attributed to the LDMam-
ba module in DFFMamba, which enhances feature
locality and mitigates the loss of feature locality

caused by conventional scanning mechanisms.

HHHH1
RIRTRIRIRY
YN9N9N9

A

Change

Change  (angeViT RS-Mamba Mamba(B) CD-Lamba DFFMamba

Former

v FN

Fig.6 Visual comparison of different CD methods on the LEVIR-CD dataset

4.3 Experimental results on CLCD dataset

The quantitative evaluation results of different
CD methods are presented in Table 1. DFFMamba
achieved the highest scores across four quantitative
metrics, with values of 66.56% for IoU, 79.92%
for F~score, 97.17% for OA, and 84.79% for Pre-
cision. ChangeMamba employs a cross-scanning
mechanism to achieve effective modeling of global
contextual information, achieving the second-best
accuracy among the compared methods. Notably,
RS-Mamba utilizes an OSSM module to globally
model image context through multi-directional scan-
ning, yielding competitive accuracy. Furthermore,
CD-Lamba addresses the loss of feature locality
caused by conventional scanning mechanisms by us-
ing a LASS module, which enhances local feature
representation and achieves superior accuracy com-
pared to RS-Mamba.

For qualitative analysis, four typical sets are se-
lected, as shown in Fig.7. The first and the second
rows in Fig.7 depict change scenarios in lakes and

bare soil lands, respectively. The results demon-

strate that DFFMamba effectively identifies lake
and bare soil lands changes, indicating strong gener-
alization capability. As shown in the first row in
Fig.7, methods such as SNUNet, DSIFN, BIT,
ChangeFormer, RS-Mamba, and CD-L.amba fail to
accurately locate lake change regions. In contrast,
STANet, ChangeViT, and ChangeMamba suffer
from severe missed detections and false alarms. The
third and the fourth rows in Fig.7 depict buidings
change scenarios. It can be observed that, compared
to lake changes, all models have demonstrated im-
proved performance in detecting building changes.
As shown in the third row in Fig.7, ChangeMamba
achieves relatively refined performance on edges.
CD-Lamba mitigates the loss of feature locality by
leveraging a LASS module, resulting in finer edge
structures. By incorporating LASS to enhance fea-
ture locality, along with LDMamba and DMamba
to improve the extraction of differential features,
and further integrating spatio-temporal interaction

mechanisms across different dimensions via FMam-
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FN

Fig.7 Visual comparison of different CD methods on the CLCD dataset

ba, DFFMamba effectively identifies change charac-
teristics and produces the most precise edge details.
To clarify the limited accuracy of various CD
methods on the CLLCD dataset, Fig.8 presents four
representative samples with poor CD performance.
The first and the second rows in Fig.8 illustrate
change scenarios in medium-and large-scale bare
soil areas, respectively. The results indicate that all
methods exhibit substantial omission and commis-
sion errors. This challenge arises because bare soil
areas, in contrast to well-defined structures with
high-contrast textures, often exhibit blurred edges,
low contrast, and large homogeneous expanses,
making precise feature extraction difficult. In
large-scale bare soil scenario, methods such as
RS-Mamba, ChangeMamba, and CD-Lamba capi-
talize on the Mamba architecture to effectively mod-

el global context. This allows them to surpass the

DSIFN

.

STANet

TP

performance of CNN-based methods, which are
constrained by limited receptive fields and thus un-
able to capture comprehensive contextual informa-
tion. By integrating multi- dimensional spatiotempo-
ral interactions of change features via FMamba,
DFFMamba enhances the model’ s ability to identi-
fy dynamic changes in complex scenarios, thus
achieving superior results. The third and the fourth
rows in Fig.8 illustrate a change scenario involving
roads. As shown, all CD methods fail to detect the
target area effectively. This challenge may stem
from the agricultural settings of roads in the CLCD
dataset, where pronounced seasonal dynamics in
background factors are easily captured by models,
thereby compromising CD accuracy. Note that
DFFMamba improves the extraction of change fea-
tures through its DMamba and LDMamba mod-
while the FMamba module

ules, integrates

FN

Fig.8 Visual comparison of failure cases for different CD methods on the CLCD dataset
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multi-dimensional  spatio-temporal  interactions
among these features. This design mitigates issues
like inadequate change feature extraction and back-
ground noise interference. Nevertheless, it still fails
to fundamentally resolve the core challenges posed
by highly dynamic background variations and the in-
trinsic difficulty in obtaining discriminative change

features.
4.4 Ablation study

4.4.1 Impact of different modules in DFFMam-
ba

DFFMamba utilizes LDMamba to enhance fea-
ture locality, thereby improving DMamba’ s ability
to extract difference information from bi-temporal
features. Furthermore, FMamba leverages these dif-
ference representations to integrate spatio-temporal
interaction mechanisms across different dimensions,
enabling a comprehensive understanding of various
aspects of spatio-temporal dependencies in change
features. This allows the model to accurately identi-
fy change characteristics. To evaluate the impact of
the aforementioned modules on CD performance,
ablation studies were conducted on the WHU-CD
and CLCD datasets, respectively. The results of
these experiments for DFFMamba are presented in
Table 2. As observed, the
FMamba module leads to improved accuracy across
CD metrics. On the WHU-CD dataset, IoU and
Fi-score increased by 2.17% and 1.21%, respec-
tively, while on the CLLCD dataset, the correspond-

introduction of the

ing improvements reached 5.61% and 4.21%.
These gains can be attributed to FMamba’s employ-

ment of SCTMS, which enables a comprehensive

learning of spatiotemporal dependencies and en-
hances the fusion of bi-temporal representations. By
incorporating either the DMamba or LLDMamba
module, we observed a comprehensive improve-
ment On the
WHU-CD dataset, IoU increased by 1.68% and
1.89%, while the F-score increased by 0.94% and
1.06% , respectively. On the CLCD dataset, the
standalone use of DMamba led to an increase of
0.96% in IoU and 0.73% in F,~score, which can be

attributed to its enhanced ability to extract change-

in all evaluation CD metrics.

related features. However, it should be noted that
the separate introduction of the LDMamba module
resulted in a decrease in model accuracy on the
CLCD dataset. This decline is likely due to the low
contrast and blurred boundaries characteristic of
CLCD data, which hinder LDMamba from effec-
tively capturing localized regions and thus weaken
its change feature extraction capability. In addition,
the joint integration of the DMamba and .LDMamba
modules yielded improvements across all change de-
tection metrics, outperforming the use of either
module alone. Compared to using only the DMamba
module, the IoU increased by 0.38% and 0.31% on
the WHU-CD and CLCD datasets, respectively.
This improvement stems from the LDMamba mod-
ule’ s ability to preserve locality in early-stage fea-
tures, which in turn strengthens the model’ s extrac-
tion of change-related features. Compared to using
only the LDMamba module, the ToU improved by
0.17% and 3.4% on the WHU-CD and CLCD data-
sets, respectively. This gain stems from the fact

that while the LDMamba module may lose locality

Table 2 Ablation studies on WHU-CD and CLCD datasets(The top two optimal values are highlighted in red and blue)

Method WHU-CD/% CLCD/% FLOPs/ Parameter
10 number/10°
FMamba DMamba LDMamba IoU F, OA Pre Rec IoU F, OA Pre Rec

88.20 93.73 99.50 93.81 93.65 60.43 75.34 96.56 80.64 70.69 16.66 92.96
N 90.37 94.94 99.60 96.11 93.84 66.04 79.55 97.12 84.46 75.17 18.71 101.97
N 89.88 94.67 99.58 95.46 93.90 61.39 76.07 96.69 82.20 70.80 17.86 99.74
NG 90.09 94.79 99.59 95.80 93.79 58.30 73.66 96.40 80.94 67.58 17.86 104.85
N NG 90.26 94.88 99.60 96.19 93.61 61.70 76.31 96.67 80.94 72.19 17.86 104.85
NG NG 90.24 94.87 99.60 95.97 93.79 63.84 77.93 96.83 80.92 75.15 20.38 113.86
N N/ 90.49 95.01 99.61 95.77 94.26 66.26 79.71 97.15 84.76 75.22 20.38 108.75
N N N 90.67 95.11 99.62 95.83 94.39 66.56 79.92 97.17 84.79 75.59 20.38 113.86
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when processing deep features, impairing change
feature extraction, the DMamba module overcomes
this by preserving local details, leading to more ef-
fective feature extraction for change detection.
Furthermore, combining the DMamba and 1.D-
Mamba modules with the FMamba module led to
consistent improvements across all change detection
metrics. When combined with the FMamba mod-
ule, DMamba increased IoU by 0.61% (WHU-
CD) and 4.87% (CLCD) , while LDMamba im-
proved it by 0.15% and 5.54%, respectively, out-
performing their standalone use. This improvement
stems from FMamba’s capacity to effectively model
the multi-dimensional spatio-temporal interactions
within the difference representations it receives,
which in turn enhances the model’ s recognition of
dynamic changes in complex scenes. The integra-
tion of all three modules (FMamba, DMamba, and
LDMamba) attained optimal performance. This full
yielded further
two-module baselines: (1) Compared to FMam-
ba-+DMamba, adding LDMamba improved IoU by
0.18% and the Fy-score by 0.10% on WHU-CD,
and by 0.30% and 0.21% on CLCD. This gain is at-
tributable to the LDMamba module alleviating local~

combination gains over the

ity loss in early-stage features and enhancing
change-related feature extraction; (2) compared to
FMamba+LDMamba, replacing LDMamba with
DMamba for deep-feature processing increased loU
by 0.43% and F,-score by 0.24% on WHU-CD,
and by 2.72% and 1.99% on CLCD. This improve-
ment stems from DMamba’ s superior capacity to
strengthen locality in deep features, which mitigates
a limitation of LDMamba in this stage. Finally, in-
corporating the FMamba module on top of the
DMamba and LDMamba combination yielded fur-
ther improvements: IoU increased by 0.41% and
the F,-score by 0.23% on the WHU-CD dataset,
and by 4.86% and 3.61% on the CLCD dataset.
These gains result from FMamba’ s role in holisti-
cally modeling the spatio—channel interactions of the
change features extracted by the preceding modules,
which strengthens the model’ s capacity to identify
dynamic changes in complex spatio-temporal scenes.

It is worth noting that, with the sequential incorpora-

tion of the DMamba, LDMamba, and FMamba mod-
ules, the overall parameters and floating-point opera-
tions (FLLOPs) of the model maintain a moderate
growth trend. After integrating all the proposed mod-
ules, DFFMamba exhibits an increase of 20.9 X 10°
parameters and 3.72X10° FLOPs compared to the
baseline model, while still operating with high effi-
ciency.

To qualitatively compare the impact of differ-
ent modules on CD performance, we conducted a vi-
sual analysis of the DFFMamba model by incremen-
tally adding modules and configuring different mod-
ule combinations, as shown in Fig.9. It can be ob-
served that the progressive integration of the pro-
posed modules leads to significant improvements in
change detection performance, with a marked reduc-
tion in both false positives and missed detections.
Specifically, as illustrated in Figs.9(a, d) , the full
three-module combination achieves the most sub-
stantial reduction in both error types across challeng-
ing areas. By contrast, the incomplete module com-
binations exhibit distinct shortcomings: (1) Using
only FMamba lacks a dedicated mechanism for ex-
tracting change regions, failing to capture discrimi-
native change features effectively; (2) the DMamba
and LDMamba combination can extract change fea-
tures but cannot integrate multi-dimensional change
information in a unified manner, limiting its capacity
to recognize dynamic changes in complex spatio-
temporal scenes; (3) the FMamba and DMamba
combination still suffers from locality loss in
early-stage features, which weakens feature extrac-
tion and hinders the identification of changes in spe-
cific regions. As shown in Fig.9(c), compared with
the baseline method, adding the DMamba module
significantly reduces false positives along building
boundaries. This improvement is attributed to
DMamba’s specialized design for extracting discrim-
inative change features. When further combining
DMamba with LLDMamba, false positives along
building boundaries are greatly reduced, while
missed detections still occur inside buildings. When
only the FMamba module is added, the model strug-
gles to fully learn multi-dimensional spatio-temporal

interactions of change features due to the lack of ac-
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curate change representations, leading to missed de-
tections within buildings. However, after progres-
sively integrating DMamba and LDMamba, missed
detections inside buildings are markedly reduced.

This is because FMamba, when supplied with accu-

rate and reliable change features, can effectively
capture dependencies across both spatial and chan-
nel dimensions, thereby strengthening the model’ s
ability to identify dynamic changes in complex

spatio-temporal scenes.

G d — S Base+FMamba+
Toun aset+tDMamba+ asetFMamba+ DMamba+
T1 2 truth Base  BasetDMamba LDMamba Base+FMamba DMamba T Ma.nibe

(a) Lake changes in CLCD test sets

PP

(b) Road changes in CLCD test sets

1
—

(c) Medium-scale building changes in WHU-CD test sets

(d) Small-scale building changes in WHU-CD test sets

v [~

- FN

Fig.9 Visualization results of ablation studies on the CLCD and WHU-CD test sets

4.4.2 Impact of different Top_% in LDMamba
To approximately locate regions with strong lo-
cality, we performed a preliminary study to determine
the key hyperparameter Top _% in the LADS compo-
nent of LDMamba. Since change regions typically oc-

cupy a small image area, we evaluated three candidate

values: Top_kE{4, 6, 8}. As summarized in Table 3,
setting Top_%.=8 yields the best performance on both
datasets: ToU reaches 66.56% and F,~score 79.92%
on CLCD, while on WHU-CD, 10U is 90.67% and
95.11%. These
Top_k=8isthe optimal choice for the model.

F-score results indicate that

Table 3 Ablation study of Top_k on WHU-CD and CLCD datasets %
Top WHU-CD CLCD
ToU F, OA Pre ToU F, OA Pre Rec
Top_4 90.41 94.96 99.60 95.85 94.09 64.71 78.57 96.99 83.66 74.07
Top_6 90.03 94.76 99.59 95.67 93.86 64.63 78.52 97.02 84.79 73.11
Top_8 90.67 95.11 99.62 95.83 94.39 66.56 79.92 97.17 84.79 75.59

4.4.3 Quantitative visualization

Fig.10 visualizes intermediate feature represen-
tations across three critical processing stages: The
LDMamba module, DMamba module, and FMam-
ba module. As presented in Fig.10, high-re- ponse

regions progressively converge toward change areas
after the processing of LDMamba and DMamba,
yet exhibit limited spatial precision at change bound-
aries. It indicates that these modules are capable of

effectively focusing model attention on change-rele-
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vant regions while lacking pixel-accurate localization
capability. Furthermore, subsequent FMamba pro-
cessing leads distinct high-response activation pre-
cisely within change boundaries. This confirms that

FMamba improves the model’ s capability to accu-

Stage 1

2 Ground truth

rately detect change characteristics by incorporating
multi-dimensional spatio-temporal interactions and
enabling a holistic capture of multiple aspects of the
spatio-temporal dependencies within change fea-

tures.

Stage 3

Fig.10  Visualization of the intermediate features on the WHU-CD dataset

4.5 Efficiency analysis

To comprehensively compare the efficiency of
different CD methods, we conduct the computation-
al efficiency by calculating the model’ s parameters,
FLOPs and IoU on the WHU-CD dataset. As
shown in Table 4, CNN-based models demonstrate
higher cost-effectiveness under computational re-
source constraints due to their relatively smaller pa-
rameter counts. For instance, SNUNet achieves an
IoU of 76.95% with only 12.03X10° parameters by
leveraging a densely connected architecture. DSIFN
incorporates an attention mechanism at the expense

of increased computational overhead, achieving

slight performance gain but large increase in model
parameters and computational complexity. Different-
ly, Transformer-based models excel in global fea-
ture modeling and achieve higher accuracy. Change-
ViT, for example, employs a plain vision Trans-
former to extract high-level semantic features, at-
taining an IoU of 89.66% with 38.80X 10" FLOPs
and 32.13X10° parameters. By contrast, through
optimized selective scanning strategy with enhanced
global modeling capacity, Mamba-based models
strike a balance between performance and efficiency.
For instance, RS-Mamba and CD-Lamba achieve

an IoU of 81.79% and 86.49% , respectively, with

Table 4 Comparisons of model complexity and accuracy on the WHU-CD dataset

Type Model FLOPs/10’ Parameter number/10° ToU/%
SNUNet 54.82 12.03 76.95

CNN-based DSIFN 82.26 50.44 79.31
STANet 13.14 16.93 73.61

BIT 10.63 3.49 69.70

Transformer-based ChangeFormer 202.86 41.01 75.79
ChangeViT 38.80 32.13 89.66

RS-Mamba 15.7 27.9 81.79

ChangeMamba(B) 179.32 84.70 89.99

Mamba-based

CD-Lamba 15.26 28.74 86.49

DFFMamba 20.38 113.86 90.67
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only a modest increase in model complexity (15.7 X
10’ FLOPs and 15.26 X 10° FLLOPs).

Note that DFFMamba achieves new state-of-
the-art IoU score while maintaining competitive
computational efficiency, although it requires rela-
tively higher parameters due to its use of a powerful

yet parameter-dense VMamba V2 backbone.

5 Conclusions

In this paper, we propose DFFMamba, a nov-
el Mamba-based difference feature fusion model for
CD. To accurately extract difference information in
bi-temporal features, an intermediate module
termed DMamba is introduced, where differential
information is derived by calculating the disparity be-
tween state equation coefficient matrices. To miti-
gate the loss of feature locality caused by conven-
tional scanning mechanisms, a LASS module is in-
corporated into DMamba, resulting in the proposed
LLDMamba module, which specifically enhances lo-
cality in early-stage features. Additionally, a FMam~-
ba module with the SCTMS unit is proposed to en-
able a holistic capture of spatio-temporal dependen-
cies in change features, leading to improved capabil-
ity to identify change features. To validate the effec-
tiveness of the proposed DFFMamba, extensive ex-
periments were conducted on three public datasets.
The quantitative results demonstrate that the DFF -
Mamba achieves the best accuracy metrics across all
datasets. Visual comparisons indicate that the pro-
posed method effectively captures fine details such
as edge structures and small object changes, while
significantly reducing both the missed detections and
false alarms. Furthermore, ablation studies confirm
the contribution of each component in the network.
It should be noted that the advanced performance of
DFFMamba relies on a large amount of high-quality
labeled data. However, acquiring high-quality anno-
tations for change detection is both time-consuming
and labor-intensive, which significantly limits the
model’ s practicality in real-world scenarios. In fu-
ture work, we plan to incorporate semi-supervised
learning techniques to reduce the dependency on la-

beled data while maintaining model accuracy.
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