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Abstract: Change detection （CD） plays a crucial role in numerous fields， where both convolutional neural networks 
（CNNs） and Transformers have demonstrated exceptional performance in CD tasks. However， CNNs suffer from 
limited receptive fields， hindering their ability to capture global features， while Transformers are constrained by high 
computational complexity. Recently， Mamba architecture， which is based on state space models（SSMs）， has shown 
powerful global modeling capabilities while achieving linear computational complexity. Although some researchers 
have incorporated Mamba into CD tasks， the existing Mamba⁃based remote sensing CD methods struggle to 
effectively perceive the inherent locality of changed regions when flattening and scanning remote sensing images， 
leading to limitations in extracting change features. To address these issues， we propose a novel Mamba⁃based CD 
method termed difference feature fusion Mamba model （DFFMamba） by mitigating the loss of feature locality caused 
by traditional Mamba⁃style scanning. Specifically， two distinct difference feature extraction modules are designed： 
Difference Mamba （DMamba） and local difference Mamba （LDMamba）， where DMamba extracts difference 
features by calculating the difference in coefficient matrices between the state⁃space equations of the bi⁃temporal 
features. Building upon DMamba， LDMamba combines a locally adaptive state⁃space scanning （LASS） strategy to 
enhance feature locality so as to accurately extract difference features. Additionally， a fusion Mamba （FMamba） 
module is proposed， which employs a spatial⁃channel token modeling SSM （SCTMS） unit to integrate 
multi⁃dimensional spatio⁃temporal interactions of change features， thereby capturing their dependencies across both 
spatial and channel dimensions. To verify the effectiveness of the proposed DFFMamba， extensive experiments are 
conducted on three datasets of WHU⁃CD， LEVIR⁃CD， and CLCD. The results demonstrate that DFFMamba 
significantly outperforms state⁃of⁃the⁃art CD methods， achieving intersection over union （IoU） scores of 90.67%， 
85.04%， and 66.56% on the three datasets， respectively.
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0 Introduction 

Change detection （CD） is the process of identi⁃
fying changes of an object or phenomenon by using 
images acquired at different times but same geo⁃
graphic areas［1］. It plays a vital role in numerous 
fields， including monitoring of land-use and land 
cover［2］， urban sprawl［3］， and geological-hazard 

monitoring［4］. In the past decade， the advances in 
satellite observation technology have made it in⁃
creasingly feasible to acquire multi⁃temporal， 
high⁃resolution optical imagery with enhanced spa⁃
tial detail and rich semantic features. However， how 
to efficiently and rapidly extract useful features and 
information from massive optical remote sensing 
（RS） data still poses great challenges， especially 
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for accurate multi⁃temporal image CD task［5］.
In the literature， most traditional CD methods 

focus on detecting changed pixels and classifying 
them to generate a change map［6］. While these meth⁃
ods have demonstrated promising results on certain 
types of imagery， their effectiveness is highly depen⁃
dent on domain⁃specific knowledge， often resulting 
in limited accuracy and poor generalization capabili⁃
ties. The emergence of deep learning （DL） has in⁃
troduced new models and paradigms for CD. Owing 
to its exceptional feature representation and nonlin⁃
ear modeling capabilities， DL has substantially en⁃
hanced the efficiency and accuracy of CD， exerting 
a profound influence on the field. Consequently， 
deep learning⁃based change detection （DLCD） tech⁃
niques continue to emerge， including convolutional 
neural network （CNN）⁃based methods［7］， Trans⁃
former-based methods［8］ and Mamba⁃based meth⁃
ods［9］. Specifically， CNNs enable powerful automat⁃
ic feature extraction in CD， thereby capturing key 
semantic features of changes from bi⁃temporal imag⁃
es. However， the capacities of modeling long⁃range 
dependencies is severely constrained by limited re⁃
ceptive fields. Differently， based on self⁃attention 
units， Transformer architectures inherently possess 
global context modeling abilities. However， their 
application potential on remote sensing （RS） imag⁃
es is significantly limited due to the quadratic com ⁃
putational complexity， especially when processing 
high⁃resolution remote sensing imagery for pixel-lev⁃
el prediction tasks.

Recently， inspired by the capabilities of 
state⁃space models （SSMs）［10］ ， especially Mam ⁃
ba［11］， it is possible to effectively capture global in⁃
formation while maintaining linear computational 
complexity across a variety of computer vision 
tasks. Consequently， a growing body of research 
has been dedicated to the development and adapta⁃
tion of Mamba⁃based architectures for remote sens⁃
ing change detection （RSCD） task. Particularly， 
RS Mamba （RS⁃Mamba）［12］ introduces an omnidi⁃
rectional selective scan module（OSSM） to globally 
model image context across multiple directions. 
ChangeMamba［9］， building upon the visual state 
space model （VMamba）［13］ architecture， employs a 

cross⁃scanning mechanism to achieve effective mod⁃
eling of global contextual information of images. 
While these methods broaden the perspective of 
RSCD by incorporating global awareness， the em⁃
ployed image flattening approach easily leads to a 
loss of locality in changed regions and compromises 
spatial consistency. LocalMamba［14］ introduces local⁃
ity by dividing the image into several fixed windows 
that are scanned individually. However， this 
fixed⁃window strategy not only introduces irrelevant 
background locality but also results in incomplete in⁃
corporation of the locality of changes. CD⁃Lamba［15］ 
designed a locally adaptive state⁃space scanning 
（LASS） strategy that employs dynamic and adap⁃
tive windows， which enhances the locality of chang⁃
es while preserving global context. The aforemen⁃
tioned methods primarily enhance global back⁃
ground modeling by refining the sequence scanning 
mechanism for image data. However， they lack a 
dedicated feature extraction mechanism for change 
regions， which hinders their ability to accurately and 
effectively capture discriminative change features for 
improved change detection. Although CD⁃Lamba 
successfully alleviates the feature locality loss associ⁃
ated with conventional scanning strategies， it simi⁃
larly suffers from the absence of a targeted mecha⁃
nism for extracting change⁃related features. As a re⁃
sult， it cannot reliably identify discriminative change 
patterns， and thus fails to achieve significant perfor⁃
mance gains.

In addition， current bitemporal feature fusion 
methods commonly employ concatenation or sub⁃
traction to integrate change features. The emer⁃
gence of Mamba has provided a new perspective for 
change feature integration. In such context， visual 
state space model for land cover change detection 
（LCCDMamba）［16］ introduces a multi⁃scale informa⁃
tion spatio⁃temporal fusion （MISF） module that in⁃
tegrates CNNs and Mamba to capture multi⁃scale 
spatio⁃temporal change information. However， this 
method merely concatenates bi⁃temporal features for 
processing， failing to achieve sufficient interaction 
between them. By contrast， CD⁃Lamba［15］ designs a 
cross⁃temporal state⁃space scanning （CTSS） strate⁃
gy， which allows any pixel in the bi⁃temporal data 
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to integrate information from all other pixels across 
different spatial directions and temporal states. How⁃
ever， CTSS only performs pixel⁃wise cross-connec⁃
tions for feature sequences in the spatial dimension， 
neglecting pixel⁃level dependencies across channel di⁃
mensions. As a result， the representation at each pix⁃
el fails to adequately incorporate cross-spatial， cross-

channel， and cross-temporal information， which lim⁃
its effective multi-dimensional fusion.

To address the aforementioned challenges， we 
propose a difference feature fusion Mamba（DFF⁃
Mamba） model ， which retains the core advantages 
of Mamba in state space modeling while effectively 
enhancing the locality of early⁃stage features. By in⁃
tegrating the multi⁃dimensional spatio⁃temporal in⁃
teractions of change features to enhance interactions 
across dimensions， DFFMamba can effectively de⁃
tect dynamic changes in complex spatio⁃temporal en⁃
vironments， thereby significantly improving the ac⁃
curacy and reliability of CD. Specifically， to address 
the issue that current Mamba⁃based change detec⁃
tion methods lack a dedicated feature extraction 
mechanism for change regions， we design a differ⁃
ence Mamba （DMamba） module， which effectively 
extracts change features by computing the difference 
between coefficient matrices in the state space equa⁃
tions. To further mitigate the loss of locality in 
early⁃stage features， we introduce LASS into 
DMamba and propose a local difference Mamba 
（LDMamba） module， which enhances feature local⁃
ity and strengthens the extraction of discriminative 
change features by separating the input features into 
local⁃related and background⁃related components 
and individually scanning them. Finally， to address 
CTSS’s inability to integrate pixel⁃level informa⁃
tion from both spatial and channel dimensions， we 
construct a fusion Mamba （FMamba） module incor⁃
porating a spatial⁃channel token modeling SSM
（SCTMS）， which allows the model to interact the 
multi⁃dimensional spatio⁃temporal interactions of 
change features， effectively learning global contex⁃
tual information. It promotes the unified fusion of 
spatio⁃temporal features and captures dependencies 
of change features across both spatial and channel di⁃
mensions， thereby enabling the network to accurate⁃

ly identify dynamic changes and correlated character⁃
istics in complex spatio⁃temporal scenarios.

The primary contributions of this work are as 
follows：

（1） This paper proposes a novel DFFMamba 
for CD task where change⁃related features are effec⁃
tively captured through the DMamba， while the loss 
of locality in early⁃stage features is mitigated via the 
LDMamba. Ultimately， the multi⁃dimensional spa⁃
tio-temporal interactions of change features are inte⁃
grated through the FMamba module. This integrat⁃
ed design significantly enhances the model capability 
to capture and identify change information， leading 
to competitive CD performance.

（2） A DMamba module is proposed to obtain 
reliable difference information by computing the dif⁃
ference between the coefficient matrices within the 
state⁃space equations. Building upon DMamba， an 
LDMamba module is proposed to address the loss 
of feature locality caused by conventional scanning 
mechanisms. In such a way， the global contextual 
information is preserved while the locality of early-

stage features is enhanced， enabling precise extrac⁃
tion of change features.

（3） To integrate multi⁃dimensional spatio-tem⁃
poral interactions of change features and enhance 
their cross⁃dimensional coupling， we introduce the 
FMamba module. This module employs the SCT⁃
MS method to interleave features across spatial and 
channel dimensions， enabling each pixel to integrate 
information from all other pixels across spatial， 
channel， and temporal dimensions.

1 Related Work 

1. 1 CNN‑based change detection　

Due to the exceptional capability in extracting 
local features， CNN architectures have been widely 
used to address CD tasks. Ref.［7］ pioneered a 
UNet⁃based architecture named fully convolutional 
early fusion （FC⁃EF） by introducing a fully convo⁃
lutional network. This approach concatenates 
bi⁃temporal images along the channel dimension be⁃
fore inputting them into the network. Two variants 
of fully convolutional Siamese⁃concatenation （FC-
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Siam-Conc） and fully convolutional Siamese-differ⁃
ence（FC⁃Siam⁃Diff） are further developed by em ⁃
ploying twin Siamese branches with shared weights. 
However， such methods struggle to efficiently learn 
highly discriminative change features. To this end， 
Siamese network and NestedUNet （SNUNet）［17］ 
was introduced， which employed a densely connect⁃
ed Siamese network to mitigate the loss of deep spa⁃
tial information. In Ref.［18］， a deeply supervised 
image fusion network （DSIFN） was proposed to en⁃
hance learning of discriminative change characteris⁃
tics. Similarly， an attention⁃based deeply supervised 
network（ADS⁃Net）［19］ was proposed by devising an 
adaptive spatial and channel fusion attention （ASC⁃
FA） mechanism， which concurrently enhanced 
change features in both spatial and channel dimen⁃
sions. In addition， it is challenging to mitigate the in⁃
terference from pseudo⁃changes. To address this 
limitation， a feature-output space dual-alignment
（FODA） framework is proposed to suppress spuri⁃
ous variations by modeling relational constraints in 
invariant regions across multi-temporal images［20］. 
In Ref.［21］， a weighted double-margin contrastive 
loss was introduced to encourage the focus on 
change features while penalizing attention to invari⁃
ant features， thereby effectively mitigating interfer⁃
ence from spurious variations.

Despite achieving promising results， CNN-

based approaches suffer from limited receptive fields 
due to fixed kernel sizes， which hinders global de⁃
pendency capture and compromises consistency be⁃
tween local and global representations. In this pa⁃
per， we adopt the recently proposed Mamba frame⁃
work to leverage its exceptional global modeling ca⁃
pabilities， thereby attaining compelling performance.

1. 2 Transformer‑based change detection　

Due to its powerful long⁃range dependencies 
modeling capabilities， vision Transformers （ViT）［22］ 
have been extensively introduced into CD task， 
achieving superior performance against CNN⁃based 
counterparts. In a pioneer work， Ref.［23］ em⁃
ployed Transformer encoders to capture rich contex⁃
tual information from images， a Transformer decod⁃
er was subsequently used to refine the original fea⁃

ture representations. Ref.［8］ introduced a pure 
Transformer-based Siamese network architecture 
for CD. This framework unifies hierarchically struc⁃
tured Transformer encoders with multilayer percep⁃
tron （MLP） decoders， eliminating the need for 
CNN⁃based feature extractors. In a similar work， 
Ref.［24］ used Swin Transformer blocks as founda⁃
tional units for both the encoders and decoders. 
While effectively mitigating the receptive field limi⁃
tation of CNNs， these methods introduce substan⁃
tial computational costs. To address this issue， ex⁃
isting research has focused on refining attention 
mechanisms to substantially reduce computational 
costs. Among these efforts， Ref.［25］ proposed a 
lightweight structure⁃aware Transformer network
（LSAT）， which replaced the standard self⁃attention
（SA） module in ViT with a cross⁃dimension inter⁃
active self⁃attention（CISA） module that operated 
with linear computational complexity， thereby sig⁃
nificantly decreasing computational overhead. Simi⁃
larly， Ref.［26］ used a lightweight multi⁃head atten⁃
tion mechanism to optimize computational efficien⁃
cy. Despite improvements in computational efficien⁃
cy， striking a balance between efficiency and high 
accuracy remains a major challenge for Transformer-

based approaches.

1. 3 Mamba‑based change detection　

Mamba architectures， which are based on 
structured state space sequence models （S4） have 
recently garnered significant research attention due 
to their efficient contextual modeling capabilities 
with linear complexity. Particularly， VMamba［13］ ef⁃
fectively adapts SSMs to visual domains through 
the introduction of the state space for 2D （SS2D） 
module. By using a cross⁃scanning module that tra⁃
verses image spaces， SS2D converts non⁃causal vi⁃
sual data into ordered patch sequences for efficient 
processing. Note that a fundamental challenge in 
Mamba-based CD lies in optimizing scanning strate⁃
gies for sequence modeling. While VMamba’s 
cross-scanning approach mitigates directional sensi⁃
tivity， it flattens spatial tokens and increases distanc⁃
es between adjacent elements， resulting in a loss of 
locality in regions of change. To mitigate this issue， 
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LocalMamba［14］ is proposed by segmenting images 
into fixed⁃size windows and performing independent 
scans within each partition. However， this fixed-

window strategy not only introduces irrelevant back⁃
ground locality， misleading the identification of 
changed regions， but also leads to incomplete inte⁃
gration of change locality. To address these limita⁃
tions， CD⁃Lamba［15］ designed a LASS strategy that 
employs dynamic and adaptive windows， which en⁃
hanced the locality of changes while preserving glob⁃
al context. However， due to the limitation of scan⁃
ning mechanism， Mamba⁃based CD methods strug⁃
gle to capture detail information. To overcome this 
drawback， the scaled residual ConvMamba （SRCM）［27］ 
was proposed by synergistically harnessing Mamba 
for global context modeling while employing convo⁃
lutional operations to enhance local details， thereby 
mitigating the deficiency of detail⁃specific cues. 
Ref.［28］ first explored the potential of hybrid 
CNN⁃SSM by introducing a simple feature interac⁃
tion module （FIM）， enabling the simultaneous cap⁃
ture of global information and local features. Similar⁃
ly， Ref.［29］ designed CWMamba by utilizing Mam ⁃
ba modules for global feature integration and CNN-

based feature extraction block （BCGF） for local fea⁃
ture enhancement. In Ref.［15］， LASS was pro⁃
posed to compensate for the missing of local informa⁃
tion. However， it fails to capture change⁃specific fea⁃
tures， leading to suboptimal CD performance. In⁃
stead， by incorporating the LASS concept into LD⁃
Mamba module， significant performance gain is ob⁃
served in our proposed DFFMamba.

2 Methodology 

2. 1 Preliminaries　

Mamba is an emerging sequence modeling ar⁃
chitecture that is attracting growing attention in the 
field of deep learning. This architecture exhibits 
close connections to CNNs， recurrent neural net⁃
works （RNNs）， and classical SSMs. Particularly， 
SSMs are typically formulated as linear time-invari⁃
ant （LTI） systems， mathematically grounded in a 
set of linear ordinary differential equations （ODEs），

shown as

h'( t ) = Ah ( t ) + Bx ( t ) (1)
y ( t ) = Ch ( t ) + Dx ( t ) (2)

where x ( t ) ∈ R，h ( t ) ∈ RN，y ( t ) ∈ R represent the 
input sequence， the hidden state， and the output se⁃
quence； and A ∈ RN × N，B ∈ RN × L，C ∈ RN，D ∈ R 
the learnable parameters. N is the state size and L 
the input dimension.

In addition， to address the challenge of dis⁃
cretizing continuous systems for integration into 
deep learning， S4 is proposed by introducing a tim ⁃
escale parameter ∆∆. In such case， the continuous pa⁃
rameters A and B are converted into discrete param ⁃
eters Ā and B̄， leading to a commonly used discreti⁃
zation method of zero⁃order hold （ZOH）， shown as

Ā= exp ( ∆∆A ) (3)
B̄= ( ∆∆A )-1( exp ∆∆A- I ) × ∆∆B (4)

where I is the identity matrix. Therefore， the contin⁃
uous ODE can be converted into a discrete form， 
i.e.

h ( t ) = Āh t - 1 + B̄x ( t ) (5)
y ( t ) = Ch ( t ) + Dx ( t ) (6)

where D acts as a residual connection and is often 
omitted from the equation， i.e.

y ( t ) = Ch ( t ) (7)
Finally， the output is obtained via a global con⁃

volution， shown as
K̄= (CB̄,C ( ĀB̄ ),…,CĀM - 1 B̄) (8)

y= x*K̄ (9)
where M is the length of the input sequence； 
K̄ ∈ RM the structured convolution kernel， and * the 
convolution operation.

Note that Mamba achieves a breakthrough en⁃
hancement over classical SSMs by introducing a se⁃
lective scan mechanism. By dynamically adjusting 
model parameters according to the current input， 
this mechanism selectively propagates or forgets in⁃
formation， effectively overcoming limitations of tra⁃
ditional models in handling discrete and information-

dense data.

2. 2 Overall network architecture　

DFFMamba consists of two weight⁃sharing en⁃
coders， three intermediate modules， and one decod⁃
er， as illustrated in Fig.1. The encoders are imple⁃
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mented using VMamba V2 pre⁃trained on the Ima⁃
geNet⁃1K dataset， which are composed of patch em ⁃
bedding layers， patch merging layers， and visual 
state space （VSS） block. The intermediate modules 
consist of DiffMamba， LDMamba， and FMamba. 
Specifically， DMamba and LDMamba are dedicated 
to enhance the locality of early⁃stage features and ex⁃
tract discriminative change features， while FMamba 
aims to integrate multi⁃dimensional spatio-temporal 
interactions of change features， enabling the model 
to effectively capture change characteristics in com ⁃
plex spatio⁃temporal environments. It should be not⁃
ed that LDMamba， due to its unique scanning mech⁃
anism， is specifically employed to enhance the local⁃
ity of shallow features and is therefore used only at 
the first stage. Meanwhile， DMamba also faces chal⁃
lenges in accurately localizing discriminative infor⁃
mation within deep features. Therefore， we apply 
DMamba to extract difference information from the 
two intermediate sets of features. In addition， in⁃
spired by multi⁃scale vision Mamba UNet 
（MSVM⁃UNet）［30］ model， the decoder consists of 
large kernel patch expanding（LKPE） layers and 
multi⁃scale visual state space （MSVSS） blocks. 
The LKPE layer performs up⁃sampling on the fea⁃
ture maps， which incorporates large⁃kernel depth⁃

wise convolution prior to expanding the channel di⁃
mension to obtain more discriminative feature repre⁃
sentations. MSVSS block captures and aggregates 
fine⁃grained multi⁃scale information while learning 
multi⁃dimensional spatio⁃temporal interactions from 
spatio⁃temporal features provided through skip con⁃
nections， which mitigates directional sensitivity is⁃
sues in 2D visual data and enhances the model’s 
ability to comprehensively capture the features of 
the changed regions.

In general， bi⁃temporal images are processed 
by the encoder to generate multi⁃scale features， 
which are subsequently delivered to intermediate 
modules. Specifically， the LDMamba module en⁃
hances the locality of the first set of features to 
achieve more accurate extraction of difference infor⁃
mation. These features are subsequently fed into the 
FMamba module to integrate multi⁃dimensional 
spatio⁃temporal interactions of change features， re⁃
sulting in interactive spatio⁃temporal features. The 
second and third sets of features are processed by 
the DMamba module to extract difference informa⁃
tion and are then passed to the FMamba module. 
The last set of features is directly input into the 
FMamba module to generate spatio⁃temporal fea⁃
tures. These multi⁃scale spatio⁃temporal features 

Fig.1　Overall framework of DFFMamba

733



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

are delivered to the corresponding layers in the de⁃
coder. Subsequently， the MSVSS blocks capture 
and aggregate fine⁃grained multi⁃scale information 
from the contracting path， while learning multi-di⁃
mensional spatio⁃temporal interactions from the skip 
connections. Finally， the CD map is obtained 
through the final LKPE （FLKPE） layer.

2. 3 DMamba and LDMamba　

Accurate extraction of difference information 
from bi⁃temporal images is essential for the decoder 
to capture robust change features. To this end， we 
propose the DMamba module. Furthermore， to ad⁃
dress the loss of feature locality inherent in tradition⁃
al Mamba scanning mechanisms， we introduce the 
LDMamba module. LDMamba separates features 
into local⁃related and background⁃related compo⁃
nents. Each part is processed independently by 
DMamba for differential feature extraction. This 
strategy effectively preserves global contextual infor⁃
mation while strengthening local feature coherence， 

leading to significant improvements in the discrimi⁃
native capability of change representations.
2. 3. 1 DMamba　

The DMamba module is integrated into the 
skip connections of the network， where it processes 
feature representations from the second and third en⁃
coder stages and performs specialized extraction of 
difference information. Assuming the feature repre⁃
sentation from the kth encoder block is denoted as 
F k

T1，T2 ∈ RH k × W k × Ck， the entire process can be ex⁃
pressed as

FD
k

T1,FD
k

T2 = DMamba ( F k
T1,F k

T2 ) (10)
As shown in Fig.2， DMamba consumes corre⁃

sponding bi⁃temporal features as input and produces 
two outputs while retaining the original spatial di⁃
mensions of the features. The input features are first 
processed through a linear projection layer （Linear）
and a depthwise separable convolution （DWConv） 
layer， and are then fed into the difference selective 
scan （DSS） module.

Following the selective mechanism of Mamba， 
the coefficient matrices B，C，and ∆∆ are generated 
from the input to enable the model’s context⁃aware 
capabilities. Here， linear projection layers are uti⁃
lized to generate these coefficient matrices. Accord⁃
ing to Eq.（5）， matrix Ā is used to capture informa⁃
tion from previous states in order to construct new 
states. To extract the difference information from 

the bi-temporal features， our study computes the dif⁃
ference of the coefficient matrix Ā to serve as the 
new coefficient matrix. The formula is as follows

ĀT1,B̄T1 = exp ( ∆∆T1AT1 ),∆∆T1BT1 (11)
ĀT2,B̄T2 = exp ( ∆∆T2AT2 ),∆∆T2BT2 (12)

ĀD1 = ĀT1 - ĀT2 (13)
ĀD2 = ĀT2 - ĀT1 (14)

h t
T1 = ĀD1h t - 1

T1 + B̄T1 x t
T1 (15)

Fig.2　Overall structure of DMamba
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h t
T2 = ĀD2h t - 1

T2 + B̄T2 x t
T2 (16)

y t
T1 = CT1h t

T1 + DT1 x t
T1 (17)

y t
T2 = CT2h t

T2 + DT2 x t
T2 (18)

where x t
T1 and x t

T2 represent the inputs at time step 
t； ĀD1 and ĀD2 the computed difference coefficient 
matrices； and y t

T1 and y t
T2 the outputs of the selec⁃

tive scan representing the extracted difference fea⁃
tures. The difference features are first subjected to 
layer normalization （LN）， then linearly projected 
back to the original dimension， and finally com ⁃
bined with the original input via a residual connec⁃
tion. Residual connections are employed as the un⁃
treated features retain richer semantic information. 
The combination of treated and untreated features 
facilitates the integration of differential information 
across temporal dimensions， while also helping mit⁃
igate gradient vanishing and explosion issues.
2. 3. 2 LDMamba　

The LDMamba module， as shown in Fig.3， is 
situated within the skip connections of the model， 
which processes the bi⁃temporal features extracted 
from the first stage of the encoder and produces two 
output representations while preserving the original 
spatial resolution of the features. This operational 
flow is formally expressed as

FD
k

T1,FD
k

T2 = LDMamba ( F k
T1,F k

T2 ) (19)
The input features are first processed through 

a linear projection layer and a DWconv layer， and 
are then fed into the local difference selective scan 
（LDSS） module. Within the LDSS module， input 
features are initially partitioned by the local adap⁃

tive difference split （LADS） module into 
local⁃related and background⁃related components. 
These components are subsequently processed by 
the DSS module to extract corresponding difference 
features. Finally， the extracted difference features 
are merged to the original feature dimension 
through the local adaptive difference split merge 
（LADS merge） module. Note that the LADS mod⁃
ule consists of three main steps. First， to roughly 
identify regions rich in locality within the 
bi⁃temporal difference features， the absolute differ⁃
ence of the input features is computed and a 
( 1/4， 1/4 ) average pooling is applied to construct a 
score window， where Gumbel Softmax is applied 
to introduce a differentiable approximation for dis⁃
crete selection when identifying the Top_k win⁃
dows with the highest scores as

Score4 × 4 = σ ( AP ( abs( XT1 - XT2 ) ) ) (20)
where σ (⋅) denotes the Gumbel⁃Softmax operation， 
AP(⋅) the averaging pooling， and XT1 and XT2 are the 
input features. Subsequently， this score is utilized to 
reorganize the input features. Connected compo⁃
nents within the Top_k windows are identified and 
merged to accommodate local change regions of 
varying shapes and sizes， as expressed by

W R = Re( XT,Top_k ( Score4 × 4 ) ) (21)
where Re(⋅) represents the operation that merges 
connected components into connected windows， 
and XT the input features. The matrix W R consists 
of the Top_k windows， renumbered by connected 
windows， which are assigned values from the set of 

Fig.3　Overall structure of LDMamba
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{ 1， 2，…， k }. Finally， windows outside the Top_k 
are treated as a unified set and detached from the 
matrix to form the background component. Mean⁃
while， the Top_k windows are rearranged in ascend⁃
ing order based on their values and constitute the lo⁃
cal component. This process is formally expressed 
as

FL = Ar (W R ) (22)
FB = Re( XT,NonTop_k ( Score4 × 4 ) ) (23)

where FL and FB represent local⁃related and back⁃
ground-related components； Ar (⋅) represents a sort⁃
ing procedure and NonTop_k the windows outside 
the Top_k.

2. 4 FMamba　

To leverage these difference features， we de⁃
sign the FMamba module to integrate spatio⁃ tempo⁃
ral interactions across dimensions. This allows the 
model to not only learn the complex dynamics of 
change features holistically but also capture their in⁃
trinsic relationships. As shown in Fig.4， the FMam ⁃
ba module takes three features as inputs： The 
bi⁃temporal features F̂ k

T1， F̂ k
T2 from the correspond⁃

ing stage， together with the extracted difference fea⁃

ture FD
k

D. The input features are first processed 
through a linear projection layer and a DWconv lay⁃
er， and are then fed into the fusion selective scan 
（FSS） module.

This operational flow is formally expressed as
- -----
FD

k

T1,
- -----
FD

k

T2 = FSS ( F͂ k
T1,F͂ k

T2,
~
FD

k

D ) (24)

where F͂ k
T1， F͂ k

T2， and ~FD
k

D represent the processed 
input features. Subsequently， the feature 
- -----
FD

k

T1，
- -----
FD

k

T2 ∈ RH k × W k × Ck output by the FSS mod⁃
ule ， are multiplied with two scaling parameters and 
concatenated in the channel dimension， forming a 
combined feature of shape RH k × W k ×( 2 × Ck ). Finally， a 
linear projection layer is used to reduce the feature 
shape to RH k × W k × Ck.

Within the FSS module， the input features are 
first fused with their corresponding source 
bi⁃temporal features to retain essential contextual in⁃
formation. The resulting features are subsequently 
processed by the SCTMS module. Here， the fea⁃
tures are reshaped across spatial and channel dimen⁃
sions， enabling each pixel to comprehensively inte⁃
grate information from all others across spatial， 
channel， and temporal domains. Subsequently， the 
features are fed into a specially designed VSS 
block， which learns different aspects of spatio-tem⁃
poral relationships within change features， capturing 
the intrinsic connections of change information de⁃
rived from spatio⁃temporal sequences. Finally， 
spatio⁃temporal features are restored to their original 
dimensions via SCTMS inverse. This process is de⁃
scribed as

Fig.4　Overall structure of FMamba
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F 1,F 2 = SCTMS ( F͂ k
T1 +~FD

k

D,F͂ k
T2 +~FD

k

D ) (25)
- -----
FD

k

T1,
- -----
FD

k

T2 = Inverse ( F 1,F 2 ) (26)
where Inverse (⋅) represents the SCTMS inverse op⁃
eration.

2. 5 Loss function　

For the binary change detection task， a simple 
binary cross⁃entropy loss is adopted to formulate the 
objective function， which can be expressed as

L bce = -∑y t lg yp +( 1 - y t ) lg ( 1 - yp ) (27)
where y t denotes the ground⁃truth change map and 
yp the predicted change map.

3 Experimental Settings 

3. 1 Datasets　

To verify the effectiveness of our proposed 
DFFMamba， three CD datasets are employed， 
namely WHU⁃CD dataset［31］， LEVIR⁃CD datas⁃
et［32］， and CLCD dataset［33］， the detailed descrip⁃
tions of these datasets are as follows.

WHU⁃CD： This dataset focuses on building 
changes with different scales， it consists of two high-

resolution aerial images， with a size of 32 507 pixel × 
153 54 pixel and a spatial resolution of 0.3 m. The 
images were captured in April 2012 and April 2016， 
covering the same region in Christchurch， New Zea⁃
land. To facilitate GPU training， images were 
cropped into 256 pixel × 256 pixel， which were 
then randomly partitioned into a training set 
（5 947 images）， a validation set （743 images）， and 
a test set （744 images）.

LEVIR⁃CD： This dataset is a widely used bi⁃
nary change detection dataset containing 637 pairs 
of Google Earth images with a size of 1 024 pixel × 
1 024 pixel and a resolution of 0.5 m. This dataset 
primarily focuses on changes of building construc⁃
tion and demolition. To facilitate GPU training， im⁃
ages were cropped into 256 pixel×256 pixel， which 
were randomly divided into a training set （7 120 im⁃
ages）， a validation set （1 024 images）， and a test 
set （2 048 images）.

CLCD： It is designed for cropland CD and con⁃
tains 600 pairs of remote sensing images with a size 
of 512 pixel×512 pixel and a spatial resolution rang⁃

ing from 0.5 m to 2 m. The images were also 
cropped into clips of 256 pixel × 256 pixel， which 
were randomly split into a training set （1 440 imag⁃
es）， a validation set （480 images）， and a test set 
（480 images）.

3. 2 Implementation details　

The proposed DFFMamba was implemented 
using the PyTorch framework powered by an 
NVIDIA GeForce RTX 4060 Ti 16GB GPU. Dur⁃
ing training， the AdamW optimizer was used for all 
three datasets with an initial learning rate of 6×10⁻⁵ 
and a weight decay coefficient of 1×10-2. After a 
linear warm⁃up phase， the learning rate decays poly⁃
nomially based on the number of training epochs， 
shown as

lr = lr0 ×( 1 - epoch/150 )lr_power (28)
where lr0 denotes the initial learning rate， and 
lr_power the polynomial decay exponent and is set 
to 0.9. The batch size was uniformly set to 10， and 
the number of epochs was set to 150. Furthermore， 
the model random seed is set to 3 407， and the mod⁃
el weights are initialized using the Kaiming normal 
distribution to prevent gradient explosion or vanish⁃
ing issues. In terms of data preprocessing， the 
three⁃channel data are first normalized using pre⁃
defined mean and standard deviation values from the 
ImageNet dataset. Then， data augmentation tech⁃
niques， such as random cropping， horizontal flip⁃
ping， and vertical flipping， are applied to enhance 
the model’s generalization capability.

3. 3 Comparative methods and evaluation met‑
rics　

To demonstrate the superiority of the proposed 
DFFMamba model， a comparative study was con⁃
ducted with the following nine classic deep 
learning⁃based change detection methods.

（1） SNUNet［17］： SNUNet incorporates a sia⁃
mese network structure based on the NestedUNet 
encoder， and employs an integrated channel atten⁃
tion module to aggregate and refine the four output 
features from the decoder.

（2） DSIFN［18］： DSIFN employs a siamese 
convolutional encoder and a decoder enhanced with 
a spatial⁃channel attention mechanism for feature fu⁃
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sion， while implementing deep supervision on each 
decoding layer.

（3） Spatial⁃temporal attention network （STA⁃
Net）［32］： STANet employs a siamese convolutional 
network as its encoder. In the decoder， a pyramidal 
spatio⁃temporal attention mechanism is incorporated 
to capture multi⁃scale spatio⁃temporal features. Ad⁃
ditionally， a metric learning approach is adopted to 
compute the change map.

（4） Bi⁃temporal image Transformer （BIT）［23］： 
BIT employs a siamese convolutional network as its 
encoder and introduces semantic tokens to leverage 
Transformer modules for semantically enhancing 
bi⁃temporal features.

（5） ChangeFormer［8］： ChangeFormer employs 
a siamese Transformer encoder to extract deep fea⁃
tures from multi⁃temporal images， while a MLP in 
the decoder produces the change map.

（6） ChangeViT［34］： ChangeViT employs a 
plain ViT to extract high⁃level semantic features， 
while a detail⁃capture module extracts low⁃level de⁃
tailed information. Subsequently a feature injector is 
introduced to inject the low⁃level details into 
high⁃level features.

（7） RS⁃Mamba［12］： RS⁃Mamba incorporates 
OSSM， which globally models image context by 
scanning in multiple directions， thereby capturing 
large spatial features from diverse orientations.

（8） ChangeMamba［9］： ChangeMamba building 
upon the VMamba architecture， employs a 
cross⁃scanning mechanism to achieve effective mod⁃

eling of global contextual information of images.
（9） CD⁃Lamba［15］： CD⁃Lamba introduces the 

LASS to overcome the local perception limitations 
of conventional Mamba， while facilitating 
bi⁃temporal feature fusion through a CTSS strategy.

To evaluate the performance of our model， five 
metrics of precision （Pre）， recall （Rec）， overall ac⁃
curacy （OA）， F1⁃score （F1）， and intersection over 
union （IoU） are employed， which are defined as

Precision = TP
TP + FP (29)

Recall = TP
TP + FN (30)

IoU = TP
TP + FN + FP (31)

OA = TP + TN
TP + TN + FP + FN (32)

F 1 = 2 × Precision × Recall
Precision + Recall (33)

where true positive （TP） refers to the cases that are 
correctly classified as positive instances of change； 
false positive （FP） the cases that are incorrectly 
classified as positive instances of change； true nega⁃
tive （TN） the cases that are correctly classified as 
negative instances of no change and false negative 
（FN） the cases that are incorrectly classified as neg⁃
ative instances of change.

4 Experimental Results 

4. 1 Experimental results on WHU‑CD dataset

As shown in Table 1， SNUNet effectively re⁃
stores fine⁃grained information and achieves compet⁃

Table 1　Quantitative comparisons of different CD methods on WHU‑CD, LEVIR‑CD, and CLCD datasets(The top two 
optimal values are highlighted in red and blue) %

Type

CNN⁃based

Transformer⁃
based

Mamba⁃based

Method

SNUNet[17]

DSIFN[18]

STANet[32]

BIT[23]

ChangFormer[8]

ChangeViT[34]

RS⁃Mamba[12]

ChangeMamba(B)[9]

CD⁃Lamba[15]

DFFMamba

WHU⁃CD
IoU

76.95
79.31
73.61
69.70
75.79
89.66
81.79
89.99
86.49
90.67

F1

86.98
88.46
84.80
82.15
86.22
94.55
89.99
94.73
92.76
95.11

OA
98.92
99.13
98.73
98.45
98.95
99.57
99.22
99.59
99.44
99.62

Pre
83.47
92.94
80.97
75.74
89.72
95.61
92.16
96.25
94.38
95.83

Rec
90.78
84.40
89.00
89.74
82.99
93.51
87.91
93.25
91.18
94.39

LEVIR⁃CD
IoU

79.83
81.18
78.70
81.75
82.48
84.65
82.48
84.31
81.79
85.04

F1

88.79
89.61
88.10
89.96
90.40
91.69
90.40
91.49
89.98
91.91

OA
97.79
97.80
98.70
98.89
99.04
99.16
99.03
99.14
98.98
99.19

Pre
89.98
93.30
85.00
90.50
92.05
92.41
91.39
92.81
89.69
92.96

Rec
87.63
86.21
91.40
89.42
88.81
90.98
89.42
90.20
90.28
90.90

CLCD
IoU

41.20
44.27
47.52
46.29
41.56
63.54
55.54
65.68
62.53
66.56

F1

58.95
61.37
64.43
63.29
58.72
77.70
71.42
79.28
76.94
79.92

OA
93.74
94.08
94.58
94.93
94.03
96.77
96.02
97.01
96.68
97.17

Pre
57.78
59.65
62.30
68.62
60.42
79.95
76.65
81.76
74.35
84.79

Rec
58.95
63.19
65.92
58.73
57.11
75.58
66.86
76.96
76.94
75.59
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itive quantitative results with an F1⁃score of 86.98% 
by leveraging dense connections to propagate fea⁃
tures to the decoder. DSIFN further improves detec⁃
tion accuracy by incorporating an attention mecha⁃
nism to enhance focus on changed regions， reaching 
an F1⁃score of 88.46%. However， it still falls short 
in capturing global contextual information. To mod⁃
el global context， ChangeViT introduces a plain 
ViT architecture and achieves a higher F1⁃score of 
94.55% among the compared methods. Meanwhile， 
ChangeMamba， built upon the VMamba architec⁃
ture， incorporates a cross⁃scanning mechanism that 
better facilitates global contextual modeling， lead⁃
ing to a further improved F1⁃score of 94.73%. Nota⁃
bly， DFFMamba employs an LDMamba module to 
mitigate the loss of feature locality caused by tradi⁃
tional scanning strategies while retaining global con⁃
textual understanding. Consequently， it obtains the 
best performance with values of 90.67% for IoU， 
95.11% for F1⁃score， 99.62% for OA， and 94.39% 
for Recall.

For a qualitative comparison of the CD perfor⁃
mance across different methods， several typical 
scenes are selected， as shown in Fig.5. The first 
and the second rows in Fig.5 illustrate the complex 

building change scenario. It can be observed that 
DFFMamba accurately extracts changes in intricate 
building structures， whereas other models fail to 
precisely localize building boundaries， resulting in a 
significant number of false positives. The third row 
in Fig.5 illustrates middle⁃scale building changes 
within a simple environment. It can be observed that 
RSMamba， ChangeMamba， and CD⁃Lamba all de⁃
liver visually plausible results with clearly delineat⁃
ed building boundaries. Additionally， SNUNet， 
with its densely connected architecture， effectively 
restores fine⁃grained details， resulting in CD results 
with relatively refined edges. However， due to the 
inability to establish global contextual relationships， 
it exhibits certain missed detections within building 
interiors. The fourth row in Fig.5 demonstrates the 
exceptional capability of DFFMamba in detecting 
minute structural changes， while other methods ex⁃
hibit noticeable missed detections. This superiority 
can be attributed to DFFMamba’s enhanced extrac⁃
tion of difference features through LDMamba and 
DMamba. FMamba further leverages these differ⁃
ence representations to holistically model 
spatio⁃temporal dependencies， enabling the model 
to accurately identify change features.

4. 2 Experimental results on LEVIR‑CD dataset

The quantitative evaluation results of different 
methods are presented in Table 1. DFFMamba 
achieved the highest scores with values of 85.04% 
for IoU， 91.91% for F1⁃score and 99.19% for OA. 
ChangeViT achieves the second⁃best performance 

by injecting low⁃level details into high⁃level fea⁃
tures， thereby enhancing the detection of changes at 
different scales. Compared to attention⁃based meth⁃
ods such as DSIFN and STANet， BIT and Change⁃
Former， which incorporate Transformer structures 
into the encoder， can more effectively model global 

Fig.5　Visual comparison of different CD methods on the WHU⁃CD dataset
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contextual information， resulting in higher accuracy.
For visual comparisons， several typical scenes 

are also selected， as shown in Fig.6. Specially， The 
first and the second rows in Fig. 6 illustrate dense 
building change scenarios. The results demonstrate 
that DFFMamba effectively captures clustered struc⁃
tural changes， whereas other models fail to accurate⁃
ly localize building boundaries， resulting in numer⁃
ous false positive pixels between adjacent struc⁃

tures. The third and the fourth rows in Fig.6 depict 
large⁃scale building change scenarios. Compared to 
other methods， DFFMamba demonstrates stronger 
local detail extraction capability， more accurately lo⁃
cates building boundaries， and finer edge structures. 
This improvement can be attributed to the LDMam ⁃
ba module in DFFMamba， which enhances feature 
locality and mitigates the loss of feature locality 
caused by conventional scanning mechanisms.

4. 3 Experimental results on CLCD dataset　

The quantitative evaluation results of different 
CD methods are presented in Table 1. DFFMamba 
achieved the highest scores across four quantitative 
metrics， with values of 66.56% for IoU， 79.92% 
for F1⁃score， 97.17% for OA， and 84.79% for Pre⁃
cision. ChangeMamba employs a cross⁃scanning 
mechanism to achieve effective modeling of global 
contextual information， achieving the second⁃best 
accuracy among the compared methods. Notably， 
RS⁃Mamba utilizes an OSSM module to globally 
model image context through multi⁃directional scan⁃
ning， yielding competitive accuracy. Furthermore， 
CD⁃Lamba addresses the loss of feature locality 
caused by conventional scanning mechanisms by us⁃
ing a LASS module， which enhances local feature 
representation and achieves superior accuracy com ⁃
pared to RS⁃Mamba.

For qualitative analysis， four typical sets are se⁃
lected， as shown in Fig.7. The first and the second 
rows in Fig.7 depict change scenarios in lakes and 
bare soil lands， respectively. The results demon⁃

strate that DFFMamba effectively identifies lake 
and bare soil lands changes， indicating strong gener⁃
alization capability. As shown in the first row in 
Fig.7， methods such as SNUNet， DSIFN， BIT， 
ChangeFormer， RS⁃Mamba， and CD-Lamba fail to 
accurately locate lake change regions. In contrast， 
STANet， ChangeViT， and ChangeMamba suffer 
from severe missed detections and false alarms. The 
third and the fourth rows in Fig.7 depict buidings 
change scenarios. It can be observed that， compared 
to lake changes， all models have demonstrated im ⁃
proved performance in detecting building changes. 
As shown in the third row in Fig.7， ChangeMamba 
achieves relatively refined performance on edges. 
CD⁃Lamba mitigates the loss of feature locality by 
leveraging a LASS module， resulting in finer edge 
structures. By incorporating LASS to enhance fea⁃
ture locality， along with LDMamba and DMamba 
to improve the extraction of differential features， 
and further integrating spatio⁃temporal interaction 
mechanisms across different dimensions via FMam ⁃

Fig.6　Visual comparison of different CD methods on the LEVIR⁃CD dataset
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ba， DFFMamba effectively identifies change charac⁃
teristics and produces the most precise edge details.

To clarify the limited accuracy of various CD 
methods on the CLCD dataset， Fig.8 presents four 
representative samples with poor CD performance. 
The first and the second rows in Fig.8 illustrate 
change scenarios in medium⁃and large⁃scale bare 
soil areas， respectively. The results indicate that all 
methods exhibit substantial omission and commis⁃
sion errors. This challenge arises because bare soil 
areas， in contrast to well⁃defined structures with 
high⁃contrast textures， often exhibit blurred edges， 
low contrast， and large homogeneous expanses， 
making precise feature extraction difficult. In 
large⁃scale bare soil scenario， methods such as 
RS⁃Mamba， ChangeMamba， and CD⁃Lamba capi⁃
talize on the Mamba architecture to effectively mod⁃
el global context. This allows them to surpass the 

performance of CNN⁃based methods， which are 
constrained by limited receptive fields and thus un⁃
able to capture comprehensive contextual informa⁃
tion. By integrating multi⁃ dimensional spatiotempo⁃
ral interactions of change features via FMamba， 
DFFMamba enhances the model’s ability to identi⁃
fy dynamic changes in complex scenarios， thus 
achieving superior results. The third and the fourth 
rows in Fig. 8 illustrate a change scenario involving 
roads. As shown， all CD methods fail to detect the 
target area effectively. This challenge may stem 
from the agricultural settings of roads in the CLCD 
dataset， where pronounced seasonal dynamics in 
background factors are easily captured by models， 
thereby compromising CD accuracy. Note that 
DFFMamba improves the extraction of change fea⁃
tures through its DMamba and LDMamba mod⁃
ules， while the FMamba module integrates 

Fig.7　Visual comparison of different CD methods on the CLCD dataset

Fig.8　Visual comparison of failure cases for different CD methods on the CLCD dataset
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multi⁃dimensional spatio-temporal interactions 
among these features. This design mitigates issues 
like inadequate change feature extraction and back⁃
ground noise interference. Nevertheless， it still fails 
to fundamentally resolve the core challenges posed 
by highly dynamic background variations and the in⁃
trinsic difficulty in obtaining discriminative change 
features.

4. 4 Ablation study　

4. 4. 1 Impact of different modules in DFFMam ⁃

ba

DFFMamba utilizes LDMamba to enhance fea⁃
ture locality， thereby improving DMamba’s ability 
to extract difference information from bi⁃temporal 
features. Furthermore， FMamba leverages these dif⁃
ference representations to integrate spatio⁃temporal 
interaction mechanisms across different dimensions， 
enabling a comprehensive understanding of various 
aspects of spatio⁃temporal dependencies in change 
features. This allows the model to accurately identi⁃
fy change characteristics. To evaluate the impact of 
the aforementioned modules on CD performance， 
ablation studies were conducted on the WHU⁃CD 
and CLCD datasets， respectively. The results of 
these experiments for DFFMamba are presented in 
Table 2. As observed， the introduction of the 
FMamba module leads to improved accuracy across 
CD metrics. On the WHU⁃CD dataset， IoU and 
F1⁃score increased by 2.17% and 1.21%， respec⁃
tively， while on the CLCD dataset， the correspond⁃
ing improvements reached 5.61% and 4.21%. 
These gains can be attributed to FMamba’s employ⁃
ment of SCTMS， which enables a comprehensive 

learning of spatio⁃temporal dependencies and en⁃
hances the fusion of bi⁃temporal representations. By 
incorporating either the DMamba or LDMamba 
module， we observed a comprehensive improve⁃
ment in all evaluation CD metrics. On the 
WHU⁃CD dataset， IoU increased by 1.68% and 
1.89%， while the F1⁃score increased by 0.94% and 
1.06%， respectively. On the CLCD dataset， the 
standalone use of DMamba led to an increase of 
0.96% in IoU and 0.73% in F1⁃score， which can be 
attributed to its enhanced ability to extract change-

related features. However， it should be noted that 
the separate introduction of the LDMamba module 
resulted in a decrease in model accuracy on the 
CLCD dataset. This decline is likely due to the low 
contrast and blurred boundaries characteristic of 
CLCD data， which hinder LDMamba from effec⁃
tively capturing localized regions and thus weaken 
its change feature extraction capability. In addition， 
the joint integration of the DMamba and LDMamba 
modules yielded improvements across all change de⁃
tection metrics， outperforming the use of either 
module alone. Compared to using only the DMamba 
module， the IoU increased by 0.38% and 0.31% on 
the WHU⁃CD and CLCD datasets， respectively. 
This improvement stems from the LDMamba mod⁃
ule’s ability to preserve locality in early⁃stage fea⁃
tures， which in turn strengthens the model’s extrac⁃
tion of change⁃related features. Compared to using 
only the LDMamba module， the IoU improved by 
0.17% and 3.4% on the WHU⁃CD and CLCD data⁃
sets， respectively. This gain stems from the fact 
that while the LDMamba module may lose locality 

Table 2　Ablation studies on WHU‑CD and CLCD datasets(The top two optimal values are highlighted in red and blue)

Method

FMamba

√

√
√
√

DMamba

√

√

√
√

LDMamba

√
√
√

√

WHU⁃CD/%

IoU
88.20
90.37
89.88
90.09
90.26
90.24
90.49
90.67

F1

93.73
94.94
94.67
94.79
94.88
94.87
95.01
95.11

OA
99.50
99.60
99.58
99.59
99.60
99.60
99.61
99.62

Pre
93.81
96.11
95.46
95.80
96.19
95.97
95.77
95.83

Rec
93.65
93.84
93.90
93.79
93.61
93.79
94.26
94.39

CLCD/%

IoU
60.43
66.04
61.39
58.30
61.70
63.84
66.26
66.56

F1

75.34
79.55
76.07
73.66
76.31
77.93
79.71
79.92

OA
96.56
97.12
96.69
96.40
96.67
96.83
97.15
97.17

Pre
80.64
84.46
82.20
80.94
80.94
80.92
84.76
84.79

Rec
70.69
75.17
70.80
67.58
72.19
75.15
75.22
75.59

FLOPs/
109

16.66
18.71
17.86
17.86
17.86
20.38
20.38
20.38

Parameter 
number/106

92.96
101.97
99.74

104.85
104.85
113.86
108.75
113.86
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when processing deep features， impairing change 
feature extraction， the DMamba module overcomes 
this by preserving local details， leading to more ef⁃
fective feature extraction for change detection.

Furthermore， combining the DMamba and LD⁃
Mamba modules with the FMamba module led to 
consistent improvements across all change detection 
metrics. When combined with the FMamba mod⁃
ule， DMamba increased IoU by 0.61% （WHU-

CD） and 4.87% （CLCD）， while LDMamba im ⁃
proved it by 0.15% and 5.54%， respectively， out⁃
performing their standalone use. This improvement 
stems from FMamba’s capacity to effectively model 
the multi⁃dimensional spatio⁃temporal interactions 
within the difference representations it receives， 
which in turn enhances the model’s recognition of 
dynamic changes in complex scenes. The integra⁃
tion of all three modules （FMamba， DMamba， and 
LDMamba） attained optimal performance. This full 
combination yielded further gains over the 
two⁃module baselines： （1） Compared to FMam ⁃
ba+DMamba， adding LDMamba improved IoU by 
0.18% and the F1⁃score by 0.10% on WHU⁃CD， 
and by 0.30% and 0.21% on CLCD. This gain is at⁃
tributable to the LDMamba module alleviating local⁃
ity loss in early⁃stage features and enhancing 
change⁃related feature extraction； （2） compared to 
FMamba+LDMamba， replacing LDMamba with 
DMamba for deep⁃feature processing increased IoU 
by 0.43% and F1⁃score by 0.24% on WHU⁃CD， 
and by 2.72% and 1.99% on CLCD. This improve⁃
ment stems from DMamba’s superior capacity to 
strengthen locality in deep features， which mitigates 
a limitation of LDMamba in this stage. Finally， in⁃
corporating the FMamba module on top of the 
DMamba and LDMamba combination yielded fur⁃
ther improvements： IoU increased by 0.41% and 
the F1⁃score by 0.23% on the WHU⁃CD dataset， 
and by 4.86% and 3.61% on the CLCD dataset. 
These gains result from FMamba’s role in holisti⁃
cally modeling the spatio⁃channel interactions of the 
change features extracted by the preceding modules， 
which strengthens the model’s capacity to identify 
dynamic changes in complex spatio⁃temporal scenes. 
It is worth noting that， with the sequential incorpora⁃

tion of the DMamba， LDMamba， and FMamba mod⁃
ules， the overall parameters and floating⁃point opera⁃
tions （FLOPs） of the model maintain a moderate 
growth trend. After integrating all the proposed mod⁃
ules， DFFMamba exhibits an increase of 20.9×106 
parameters and 3.72×109 FLOPs compared to the 
baseline model， while still operating with high effi⁃
ciency.

To qualitatively compare the impact of differ⁃
ent modules on CD performance， we conducted a vi⁃
sual analysis of the DFFMamba model by incremen⁃
tally adding modules and configuring different mod⁃
ule combinations， as shown in Fig.9. It can be ob⁃
served that the progressive integration of the pro⁃
posed modules leads to significant improvements in 
change detection performance， with a marked reduc⁃
tion in both false positives and missed detections. 
Specifically， as illustrated in Figs.9（a，d）， the full 
three⁃module combination achieves the most sub⁃
stantial reduction in both error types across challeng⁃
ing areas. By contrast， the incomplete module com ⁃
binations exhibit distinct shortcomings： （1） Using 
only FMamba lacks a dedicated mechanism for ex⁃
tracting change regions， failing to capture discrimi⁃
native change features effectively； （2） the DMamba 
and LDMamba combination can extract change fea⁃
tures but cannot integrate multi⁃dimensional change 
information in a unified manner， limiting its capacity 
to recognize dynamic changes in complex spatio-

temporal scenes； （3） the FMamba and DMamba 
combination still suffers from locality loss in 
early⁃stage features， which weakens feature extrac⁃
tion and hinders the identification of changes in spe⁃
cific regions. As shown in Fig.9（c）， compared with 
the baseline method， adding the DMamba module 
significantly reduces false positives along building 
boundaries. This improvement is attributed to 
DMamba’s specialized design for extracting discrim ⁃
inative change features. When further combining 
DMamba with LDMamba， false positives along 
building boundaries are greatly reduced， while 
missed detections still occur inside buildings. When 
only the FMamba module is added， the model strug⁃
gles to fully learn multi⁃dimensional spatio⁃temporal 
interactions of change features due to the lack of ac⁃
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curate change representations， leading to missed de⁃
tections within buildings. However， after progres⁃
sively integrating DMamba and LDMamba， missed 
detections inside buildings are markedly reduced. 
This is because FMamba， when supplied with accu⁃

rate and reliable change features， can effectively 
capture dependencies across both spatial and chan⁃
nel dimensions， thereby strengthening the model’s 
ability to identify dynamic changes in complex 
spatio⁃temporal scenes.

4. 4. 2 Impact of different Top_k in LDMamba　

To approximately locate regions with strong lo⁃
cality， we performed a preliminary study to determine 
the key hyperparameter Top_k in the LADS compo⁃
nent of LDMamba. Since change regions typically oc⁃
cupy a small image area， we evaluated three candidate 

values： Top_k∈{ 4，6，8 }. As summarized in Table 3， 
setting Top_k= 8 yields the best performance on both 
datasets： IoU reaches 66.56% and F1⁃score 79.92% 
on CLCD， while on WHU⁃CD， IoU is 90.67% and 
F1⁃score 95.11%. These results indicate that 
Top_k= 8 is the optimal choice for the model.

4. 4. 3 Quantitative visualization　

Fig.10 visualizes intermediate feature represen⁃
tations across three critical processing stages： The 
LDMamba module， DMamba module， and FMam⁃
ba module. As presented in Fig.10， high⁃re⁃ ponse 

regions progressively converge toward change areas 
after the processing of LDMamba and DMamba， 
yet exhibit limited spatial precision at change bound⁃
aries. It indicates that these modules are capable of 
effectively focusing model attention on change-rele⁃

Fig.9　Visualization results of ablation studies on the CLCD and WHU⁃CD test sets

Table 3　Ablation study of Top_k on WHU‑CD and CLCD datasets %

Top_k

Top_4
Top_6
Top_8

WHU⁃CD
IoU

90.41
90.03
90.67

F1

94.96
94.76
95.11

OA
99.60
99.59
99.62

Pre
95.85
95.67
95.83

Rec
94.09
93.86
94.39

CLCD
IoU

64.71
64.63
66.56

F1

78.57
78.52
79.92

OA
96.99
97.02
97.17

Pre
83.66
84.79
84.79

Rec
74.07
73.11
75.59
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vant regions while lacking pixel⁃accurate localization 
capability. Furthermore， subsequent FMamba pro⁃
cessing leads distinct high⁃response activation pre⁃
cisely within change boundaries. This confirms that 
FMamba improves the model’s capability to accu⁃

rately detect change characteristics by incorporating 
multi⁃dimensional spatio⁃temporal interactions and 
enabling a holistic capture of multiple aspects of the 
spatio⁃temporal dependencies within change fea⁃
tures.

4. 5 Efficiency analysis　

To comprehensively compare the efficiency of 
different CD methods， we conduct the computation⁃
al efficiency by calculating the model’s parameters， 
FLOPs and IoU on the WHU⁃CD dataset. As 
shown in Table 4， CNN⁃based models demonstrate 
higher cost⁃effectiveness under computational re⁃
source constraints due to their relatively smaller pa⁃
rameter counts. For instance， SNUNet achieves an 
IoU of 76.95% with only 12.03×106 parameters by 
leveraging a densely connected architecture. DSIFN 
incorporates an attention mechanism at the expense 
of increased computational overhead， achieving 

slight performance gain but large increase in model 
parameters and computational complexity. Different⁃
ly， Transformer⁃based models excel in global fea⁃
ture modeling and achieve higher accuracy. Change⁃
ViT， for example， employs a plain vision Trans⁃
former to extract high⁃level semantic features， at⁃
taining an IoU of 89.66% with 38.80×109 FLOPs 
and 32.13×106 parameters. By contrast， through 
optimized selective scanning strategy with enhanced 
global modeling capacity， Mamba⁃based models 
strike a balance between performance and efficiency. 
For instance， RS⁃Mamba and CD⁃Lamba achieve 
an IoU of 81.79% and 86.49%， respectively， with 

Fig.10　Visualization of the intermediate features on the WHU⁃CD dataset

Table 4　Comparisons of model complexity and accuracy on the WHU‑CD dataset

Type

CNN⁃based

Transformer⁃based

Mamba⁃based

Model
SNUNet
DSIFN

STANet
BIT

ChangeFormer
ChangeViT
RS⁃Mamba

ChangeMamba(B)
CD⁃Lamba

DFFMamba

FLOPs/109

54.82
82.26
13.14
10.63

202.86
38.80
15.7

179.32
15.26
20.38

Parameter number/106

12.03
50.44
16.93
3.49

41.01
32.13
27.9

84.70
28.74

113.86

IoU/%
76.95
79.31
73.61
69.70
75.79
89.66
81.79
89.99
86.49
90.67
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only a modest increase in model complexity （15.7×
109 FLOPs and 15.26×109 FLOPs）.

Note that DFFMamba achieves new state-of-
the-art IoU score while maintaining competitive 
computational efficiency， although it requires rela⁃
tively higher parameters due to its use of a powerful 
yet parameter⁃dense VMamba V2 backbone.

5 Conclusions 

In this paper， we propose DFFMamba， a nov⁃
el Mamba⁃based difference feature fusion model for 
CD. To accurately extract difference information in 
bi⁃temporal features， an intermediate module 
termed DMamba is introduced， where differential 
information is derived by calculating the disparity be⁃
tween state equation coefficient matrices. To miti⁃
gate the loss of feature locality caused by conven⁃
tional scanning mechanisms， a LASS module is in⁃
corporated into DMamba， resulting in the proposed 
LDMamba module， which specifically enhances lo⁃
cality in early⁃stage features. Additionally， a FMam⁃
ba module with the SCTMS unit is proposed to en⁃
able a holistic capture of spatio⁃temporal dependen⁃
cies in change features， leading to improved capabil⁃
ity to identify change features. To validate the effec⁃
tiveness of the proposed DFFMamba， extensive ex⁃
periments were conducted on three public datasets. 
The quantitative results demonstrate that the DFF⁃
Mamba achieves the best accuracy metrics across all 
datasets. Visual comparisons indicate that the pro⁃
posed method effectively captures fine details such 
as edge structures and small object changes， while 
significantly reducing both the missed detections and 
false alarms. Furthermore， ablation studies confirm 
the contribution of each component in the network. 
It should be noted that the advanced performance of 
DFFMamba relies on a large amount of high⁃quality 
labeled data. However， acquiring high⁃quality anno⁃
tations for change detection is both time⁃consuming 
and labor⁃intensive， which significantly limits the 
model’s practicality in real⁃world scenarios. In fu⁃
ture work， we plan to incorporate semi⁃supervised 
learning techniques to reduce the dependency on la⁃
beled data while maintaining model accuracy.
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DFFMamba：一种基于差异特征融合 Mamba的新型遥感影像

变化检测方法

彭代锋， 董峰旭， 管海燕
（南京信息工程大学遥感与测绘工程学院，南京 210044，中国）

摘要：变化检测（Change detection， CD）在多个领域发挥着关键作用，其中卷积神经网络（Convolutional neural 
networks， CNNs）与 Transformer 均在变化检测任务中展现出卓越性能。然而，CNNs 受限于感受野范围，难以捕

捉全局特征，而 Transformer 则受限于高计算复杂度。近年来，基于状态空间模型（State space models， SSMs）的

Mamba 架构展现了强大的全局建模能力，同时实现了线性计算复杂度。尽管已有研究将 Mamba 引入变化检测

任务，但现有基于 Mamba 的遥感变化检测方法在展平与扫描遥感影像时，难以有效感知变化区域固有的局部

性，限制了变化特征提取能力。为解决上述问题，本文针对传统 Mamba 扫描方式导致的特征局部性丢失问题，

提出一种基于差异特征融合 Mamba 的新型遥感影像变化检测方法（Difference feature fusion Mamba， DFFMam ⁃
ba）。具体来说，本文设计了两种差异特征提取模块：差异 Mamba（Difference Mamba， DMamba）与局部差异

Mamba（Local difference Mamba， LDMamba）。其中 DMamba 通过计算双时相特征状态空间方程中系数矩阵的

差值来提取差异特征；在此基础上，LDMamba 结合局部自适应状态空间扫描（Locally adaptive state⁃space scan⁃
ning， LASS）策略增强了特征局部性，实现了差异特征的精准提取。此外，本文提出融合 Mamba（Fusion Mam ⁃
ba， FMamba）模块，该模块采用空间⁃通道序列建模 SSM（Spatial⁃channel token modeling SSM， SCTMS）机制，

整合了变化特征的多维时空交互，捕捉了其在空间与通道维度的依赖关系。为验证 DFFMamba 的有效性，本文

在 WHU⁃CD、LEVIR⁃CD 和 CLCD 这 3 个数据集上进行了广泛实验。结果表明，DFFMamba 显著优于现有的最

优变化检测方法，在 3 个数据集上的交并比（Intersection over union， IoU）分数分别达到 90.67%、85.04% 和

66.56%。

关键词：变化检测；状态空间模型；变化特征融合；深度学习；差异 Mamba；局部差异 Mamba；空间⁃通道序列建模
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