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Abstract: Cracks represent a significant hazard to pavement integrity， making their efficient and automated extraction 
essential for effective road health monitoring and maintenance. In response to this challenge， we propose a crack 
automatic extraction network model that integrates multi⁃scale image features， thereby enhancing the model’s 
capability to capture crack characteristics and adaptation to complex scenarios. This model is based on the ResUNet 
architecture， makes modification to the convolutional layer of the model， proposes to construct multiple branches 
utilizing different convolution kernel sizes， and adds a atrous spatial pyramid pooling module within the intermediate 
layers. In this paper， comparative experiments on the performance of the basic model， ablation experiments， 
comparative experiments before and after data augmentation， and generalization verification experiments are 
conducted. Comparative experimental results indicate that the improved model exhibits superior detail processing 
capability at crack edges. The overall performance of the model， as measured by the F1⁃score， reaches 71.03%， 
reflecting a 2.1% improvement over the conventional ResUNet.
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0 Introduction 

Pavement cracks， recognized as one of the 
most prevalent hazards on roads［1⁃2］， contribute to 
the structural degradation of pavements， reduce the 
lifespan of highways， and pose significant safety 
risks， thereby impacting traffic safety. Consequent⁃
ly， the detection and repair of pavement cracks are 
critical yet challenging tasks in highway mainte⁃
nance. Traditional crack detection methods predomi⁃
nantly rely on manual visual inspections， which not 

only require considerable human and material re⁃
sources but also exhibit a high degree of subjectivi⁃
ty， complicating the fulfillment of large⁃scale， 
high⁃precision monitoring demands. In recent years， 
with the ongoing advancements in computer hard⁃
ware and related technologies， the process of pave⁃
ment crack extraction has progressively transitioned 
from traditional manual visual interpretation to 
computer⁃aided automatic recognition［3⁃5］. Current⁃
ly， automatic recognition methods can be broadly 
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categorized into two main types： Traditional image 
processing⁃based methods and neural network⁃based 
extraction techniques.

Among traditional image processing methods 
that emerged relatively early， threshold segmenta⁃
tion［6］ is one of the earliest and most widely adopt⁃
ed methods for target segmentation in image pro⁃
cessing and pattern recognition. The fundamental 
concept involves partitioning an image into target 
and background regions by selecting an appropriate 
grayscale threshold. Otsu’s method［7］， one of the 
earliest global thresholding techniques， determines 
the optimal segmentation threshold by maximizing 
the between⁃class variance. Since its proposal， nu⁃
merous scholars have developed improved methods 
based on this classical approach［8⁃10］. A growing 
number of image processing methods based on the 
principle of global threshold segmentation have 
been proposed［11⁃13］. However， with the increasing 
complexity of crack detection scenarios， the effec⁃
tiveness of global threshold methods significantly di⁃
minishes in crack images characterized by uneven il⁃
lumination or intricate backgrounds. This limitation 
has shifted research focus towards local threshold 
methods［14⁃16］， which operate on the principle of di⁃
viding the image into multiple local regions and cal⁃
culating an independent threshold for each region.

Another major category of traditional image 
processing methods is edge detection［17］， whose 
core lies in detecting grayscale discontinuities. This 
technique is used to identify regions in an image 
where significant grayscale changes occur， such as 
object contours， texture boundaries， or junctions be⁃
tween different regions in the image. The Canny al⁃
gorithm［18］， initially applied to asphalt pavement im ⁃
ages， serves as the foundation for numerous subse⁃
quent improved methods［19⁃20］. Nowadays， more 
commonly used edge detection operators have been 
proposed［21⁃25］. In addition to the aforementioned pri⁃
mary image processing techniques， various image 
processing⁃based methods［26⁃29］ have been employed 
for road crack detection， offering multiple avenues 
for future research.

Traditional image recognition algorithms have 
the advantage of not requiring large amounts of im ⁃
age data for training； however， their drawbacks are 
significant： They require manual assistance， exhib⁃

it poor robustness， and are susceptible to various 
forms of noise， such as variations in lighting and de⁃
bris. With the continuous advancements in comput⁃
er hardware and software in recent years， more in⁃
telligent detection algorithms have emerged， partic⁃
ularly those based on neural networks for image 
classification， which have gradually gained promi⁃
nence. Neural network models can extract effective 
data features more accurately through extensive 
sample learning. Zhang et al.［30］ were pioneers in 
employing a deep learning⁃based crack extraction 
method utilizing convolutional neural networks 
（CNN） in the realm of road crack detection， mark⁃
ing a significant development for subsequent neural 
network models. Since its proposal， CNN has 
quickly attracted widespread attention. Based on its 
unique network structure， scholars in the academic 
community have continuously pursued innovations， 
and propose new technical methods to integrate 
with CNN， thereby promoting the in⁃depth develop⁃
ment of related research fields［31⁃34］. In recent years， 
although classical network models such as CNN 
have still received attention and further develop⁃
ment from scholars in various fields， and have 
achieved considerable progress in the direction of 
crack extraction［35⁃39］， the rise of Transformer tech⁃
nology has led researchers to explore detection 
frameworks that combine Transformer with CNN. 
This integration aims to fully leverage the local fea⁃
ture extraction capability of CNN and the global 
modeling advantage of Transformer. Such hybrid 
detection methods have become a research focus in 
the field and also provided new solutions for pave⁃
ment crack detection［40⁃42］. Although neural 
network⁃based image extraction algorithms demon⁃
strate higher accuracy compared with traditional im ⁃
age recognition methods and can be applied to vari⁃
ous complex scenarios， numerous challenges still 
remain. Existing models predominantly emphasize 
local feature extraction while neglecting the correla⁃
tion between multi⁃scale features and global struc⁃
tural information［43⁃44］. Furthermore， these models 
demonstrate limited adaptability to complex environ⁃
ments and exhibit insufficient generalization capabili⁃
ties in scenarios characterized by noise interference， 
weak signals， or small targets［30， 45⁃46］. Consequent⁃
ly， there is an urgent necessity to develop an intelli⁃
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gent recognition framework that effectively balances 
efficiency， robustness， and high precision to ad⁃
dress the recognition challenges existing in complex 
underground environments.

Among various convolutional neural network 
models， U-Net［47］ has been widely applied to diverse 
image segmentation tasks due to its superior perfor⁃
mance and straightforward design. Its success in the 
medical imaging field［48］ has inspired numerous re⁃
searchers to enhance this architecture. ResUNet， a 
network model developed from UNet， was first uti⁃
lized by Zhang et al.［49］ in 2018 for road extraction 
from remote sensing images and has since been ap⁃
plied to other domains［50⁃51］. ResUNet effectively in⁃
tegrates the advantages of ResNet［52］ （Residual Net⁃
work） and UNet by incorporating residual connec⁃
tions from ResNet into UNet. This methodology not 
only mitigates the gradient vanishing issue encoun⁃
tered during deep UNet training but also preserves 
UNet’s characteristic “U”⁃shaped structure and effi⁃
cient encoder⁃decoder design， thereby significantly 
improving the network’s ability to learn deep image 
features. Therefore， considering the inherent advan⁃
tages of ResUNet and its flexible basic architecture， 
this study adopts this network model as the base 
model. Meanwhile， recognizing that the atrous spa⁃
tial pyramid pooling （ASPP） module exhibits good 
compatibility with ResUNet， an attempt is made to 
integrate this module into the original architecture.

ASPP was first introduced in DeepLabv2［53］ 
and later refined in DeepLabv3［54］. Its core design 
uses parallel atrous convolutions with varying dila⁃
tion rates to process input feature maps， and ex⁃
pands the receptive field without sacrificing the fea⁃
ture map resolution， thereby effectively capturing 
multi⁃scale image information and boosting segmen⁃
tation accuracy. Specifically， DeepLabv2 added 
ASPP based on DeepLabv1［55］ to improve recogni⁃
tion of objects of different sizes； DeepLabv3 opti⁃
mized it by integrating global average pooling into 
ASPP for stronger global context capture； and Dee⁃
pLabv3+［56］， built on DeepLabv3， incorporated an 
encoder⁃decoder structure to handle local details， 
balanced global semantics and local information， 
and achieved an optimal performance⁃efficiency 
trade⁃off. However， unlike existing studies that sim ⁃
ply integrate the ASPP module directly into the bot⁃

tleneck layer or decoder of ResUNet， the innova⁃
tions of this study are as follows： （1） A multi⁃scale 
convolution branch structure is redesigned in the en⁃
coder. Specifically， three types of convolution ker⁃
nels （3×3， 5×5， and 7×7） are used for parallel 
operations， followed by feature fusion. This design 
fully extracts crack texture information at different 
scales and enables the interaction of multi⁃scale fea⁃
tures from the feature extraction stage onward； （2） 
on this basis， a modified ASPP module is intro⁃
duced in the intermediate layer， allowing the fused 
features output by multi⁃scale convolution to further 
undergo collaborative learning with global contextu⁃
al features. This realizes a hierarchical feature repre⁃
sentation that progresses from “local texture en⁃
hancement” to “global semantic aggregation”. This 
collaborative structure not only addresses the defi⁃
ciency of traditional ResUNet in capturing 
multi⁃scale features but also overcomes the limita⁃
tions of existing ResUNet⁃ASPP combination meth⁃
ods in fine⁃grained crack recognition. Ultimately， 
the proposed collaborative fusion strategy of 
multi⁃scale convolution and ASPP effectively en⁃
hances the accuracy and robustness of the model for 
crack extraction under complex backgrounds.

In summary， this paper adopts the ResUNet net⁃
work architecture as its foundation， preserving the re⁃
sidual connections and UNet structure of the original 
model. First， the convolutional layers in the encoder 
are modified to perform three parallel convolutions 
with different kernel sizes simultaneously， followed 
by summation to fully extract multi⁃scale image fea⁃
tures of roads and provide richer feature representa⁃
tions for the model. Second， an ASPP module is in⁃
corporated in the middle layer to capture image infor⁃
mation at multiple scales through atrous convolutions 
with varying dilation rates， thereby further enlarging 
the receptive field. By integrating local detail features 
with global semantics， the model ultimately achieves 
improved accuracy in crack extraction.

1 Method 

1. 1 ResUNet model architecture　

ResUNet inherits the “U”⁃shaped architecture 
of UNet， comprising a symmetric feature extraction 
path and an expansion path. The feature extraction 
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path （encoder） extracts features from the input im ⁃
age while progressively reducing the size of the fea⁃
ture maps. The expansion path （decoder） gradually 
restores the spatial resolution of the image and inte⁃
grates the features extracted by the encoder to per⁃
form pixel⁃wise predictions. At each stage of the en⁃
coder， feature maps are directly conveyed to the cor⁃
responding layers in the decoder via skip connec⁃
tions， ensuring that high⁃resolution features are pre⁃
served during the encoding process. Additionally， 
ResUNet incorporates residual connections from 
ResNet. The input data undergoes a 1×1 convolu⁃

tion， bypassing intermediate convolutional opera⁃
tions， and is then directly added to the output of the 
convolutional layers. The resulting output forms the 
network structure， as illustrated in Fig.1. In the en⁃
coder structure， the size of feature maps gradually 
decreases as the number of convolutional operations 
increases， while the number of channels gradually 
increases. Specifically， the dimensions are 320×
640×16， 160×320×32， 80×160×64， 40×80×
128， and 20×40×256 in sequence. Subsequently， 
the feature maps are gradually restored to their origi⁃
nal sizes in the decoder structure.

In the convolutional layers of the encoder struc⁃
ture within the ResUNet network model， three pri⁃
mary operations are executed： （1） The input image 
undergoes batch normalization （BN）， followed by 
activation through the ReLU function， and is then 
convolved with a 3×3 kernel. The first convolution 
employs a stride of 2， while the second convolution 
utilizes a stride of 1. （2） The input image is con⁃
volved once with a 1×1 kernel using a stride of 2 to 
establish the residual connection. （3） The results 
from the first two steps are summed to produce the 
output of this layer. Two convolutional sequences 
with different orders are adopted in the convolution⁃
al layers： The skip connections use the sequence of 

“convolution+normalization+activation function”， 
while the network backbone uses the sequence of 

“normalization+activation function+convolution”. 
The main reason is that the former is used for fea⁃
ture dimension transformation and alignment， and 
the latter for improving gradient flow and training 
stability. This differentiated design not only retains 
the optimization advantages of deep networks but al⁃
so ensures the intuitiveness of the feature fusion 

module and its consistency with classical structures. 
The entire convolutional layer can be represented by

xn + 1 = h2 ( xn )+ g ( f ( xn ) ) (1)
where xn and xn + 1 denote the input and output of the 
convolutional layer， respectively； f represents a con⁃
volution operation with a 3×3 kernel and stride 2， 
g a convolution with a 3×3 kernel and stride 1， and 
h2 a convolution with a 1×1 kernel and stride 2.

1. 2 Multi⁃scale convolution　

Considering that the traditional ResUNet mod⁃
el structure cannot fully satisfy the extraction of 
multi⁃scale feature information from images， this 
study aims to enhance both the robustness of the net⁃
work model and its ability to capture complex fea⁃
ture information in images by integrating multi⁃scale 
convolution into the ResUNet framework. The con⁃
volutional layers of ResUNet are improved by trans⁃
forming them into multiple branches with varying re⁃
ceptive fields while maintaining the original residual 
connection structure. This feature fusion results in 
richer feature representations， thereby enhancing 
the extraction performance of crack features.

Fig.1　Structure of the ResUNet model
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Since the objective of multi⁃scale convolution is 
to strengthen the network’s capability to extract 
crack features， the enhanced convolutional layer 
structure is applied solely to the encoder portion of 
the ResUNet model and is excluded from the decod⁃
er structure. Additionally， since the size of the out⁃
put result is related to the stride of the convolutional 
kernel， the larger the stride， the smaller the size. 
To ensure that the image size remains unchanged 
and can be directly summed after multi⁃scale convo⁃
lution， all convolutional kernels are configured with 
a stride of 1. Following the summation of the paral⁃
lel branches， a max pooling operation with a pool 
size of 2 （MaxPooling2D） is performed to ensure 
that the resulting feature map size aligns with that of 
the residual connection feature map， which utilizes a 
1×1 convolutional kernel with a stride of 2. This fa⁃
cilitates subsequent addition， and the weights of all 
parties involved in the summation during the convo⁃
lution process are equal. The specific operation is il⁃
lustrated in Fig.2.

This improved model optimizes the convolu⁃
tion stride parameter by changing the original stride 
from 2 to 1， compensating for the resulting change 
in feature map size through max pooling. This en⁃
hancement is predicated on the observation that re⁃
ducing the stride to 1 augments the convolutional 
layer’s capacity to extract local features and filter es⁃
sential characteristics， with max pooling employed 
to ensure feature map size compatibility. In compari⁃
son to the stride⁃2 configuration， this approach 
markedly enhances detail preservation and model ac⁃
curacy. The reason for selecting convolutional ker⁃

nels with different receptive fields （3×3， 5×5， 
and 7×7） is as follows： 3×3 convolutions can pre⁃
serve local texture and detailed features， which is 
conducive to the accurate characterization of crack 
edges； 5×5 convolutions expand the receptive field 
and can capture the contextual relationships of adja⁃
cent regions； 7×7 convolutions provide a larger re⁃
ceptive field， enhancing the model’s ability to per⁃
ceive wider or complex crack regions. Through the 
fusion of these three scales， the model can not only 
capture the boundary information of small cracks but 
also acquire large⁃scale structural features. Addition⁃
ally， the numerical continuity among the three ker⁃
nel sizes prevents excessive dimensional jumps be⁃
tween features. The improved convolutional layer 
can be represented by

xn + 1 = h1( xn ) + i ( g3( xn ) + g5( xn ) + g7( xn ) )  (2)
where g3， g5 and g7 denote the convolution opera⁃
tions with kernel sizes of 3， 5， and 7， respectively， 
all with a stride of 1； h1 denotes a convolution opera⁃
tion with a 1×1 kernel and stride of 1 and i the max 
pooling operation.

1. 3 ASPP module　

To further enhance the capability of capturing 
multi⁃scale feature information from images and to 
strengthen the connection between global context 
and local feature details， this study integrates the 
ASPP module into the intermediate layer of the Re⁃
sUNet model， as illustrated in Fig.1. The first con⁃
volution operation in this intermediate layer is re⁃
placed with the ASPP module. Embedding the 
ASPP module in the intermediate layer is a pivotal 
design choice that balances feature representation ca⁃
pacity with computational efficiency. This is due to 
the fact that the feature maps at the network’s inter⁃
mediate layer already contain rich semantic informa⁃
tion while maintaining relatively low resolution. The 
ASPP module utilizes atrous convolutions with vary⁃
ing dilation rates to establish a feature pyramid struc⁃
ture without further diminishing resolution， thereby 
enlarging the receptive field and effectively capturing 
multi⁃scale contextual information. As for why the 
ASPP module is not inserted into the encoder or de⁃
coder， the main considerations are as follows： （1） 

Fig.2　Comparison of convolutional layer structures
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When the ASPP module is placed in the early stage 
of the encoder， the network is still in the shallow fea⁃
ture extraction phase. The obtained features mainly 
contain low⁃level texture and edge information， and 
multi⁃scale features have not yet been fully formed. 
Although introducing atrous convolution at this 
point can spatially expand the receptive field， the 
weak semantic expression ability of the input fea⁃
tures prevents the ASPP module from fully exerting 
its multi⁃scale sampling effect. It may even introduce 
redundant spatial information， which impairs the ef⁃
fectiveness of subsequent feature extraction. （2） 
When the ASPP module is located in the decoder 
phase， the input features are mainly derived from 
the shallow network. While this helps restore image 
details， the semantic information at this stage is rela⁃
tively insufficient. The contextual information ex⁃
tracted by the ASPP module’s atrous convolution in 
this low⁃semantic feature space is limited， resulting 
in a weakened effect of global receptive field expan⁃
sion. In addition， the multi⁃scale feature fusion of 
the ASPP module may overlap with the upsampling 
operation in the decoder phase， which affects the ef⁃
ficiency of feature fusion and the overall accuracy of 
the model. Atrous convolutions with dilation rates of 
6， 12， and 18 are employed to form a progressively 
expanding receptive field from small to large： A dila⁃
tion rate of 6 tends to capture medium⁃range contex⁃
tual information， while 12 and 18 provide broader 
global structural perception. This design avoids both 

insufficient context due to excessively small recep⁃
tive fields and loss of details caused by overly large 
ones， thereby striking a balance between multi⁃scale 
context modeling and preservation of crack details.

The specific operations within the ASPP mod⁃
ule are as follows： （1） A convolution with a kernel 
size of 1 and a stride of 1 is employed to reduce fea⁃
ture dimensionality and computational cost. （2） 
Three parallel convolutions with a kernel size of 3， a 
stride of 1， and dilation rates of 6， 12， and 18， re⁃
spectively， are executed to capture feature informa⁃
tion at different scales. （3） Global average pooling 
（GlobalAveragePooling2D， an operation that takes 
the average value in the spatial dimension） is applied 
to the input feature map X （assumed to be H×W×
C） to extract global contextual features， resulting in 
a feature vector （1×1×C）. This feature vector is 
subsequently processed through a 1×1 convolution 
to adjust the number of channels （with a stride of 1） 
for dimensionality reduction， before being upsam ⁃
pled to the original spatial size （H×W） using bilin⁃
ear interpolation， which ensures spatial dimension 
alignment with other atrous convolution branches. 
The core function of this module is to compress spa⁃
tial information into a global semantic representa⁃
tion， which makes the model lighter， more stable， 
and less prone to overfitting. （4） The outputs from 
all branches are concatenated and integrated into a 
unified feature representation via a 1×1 convolu⁃
tion. The specific operation is illustrated in Fig.3.

Fig.3　Comparison of intermediate layer structures
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2 Experimental Setup and Evalua⁃
tion Metric 

2. 1 Experimental environment and parameter 
settings　

All experiments in this study were conducted 
within the TensorFlow 2.10.1 and Python 3.10.14 
environment， utilizing an NVIDIA GeForce RTX 
4060 Ti GPU with CUDA 11.2 as the computing 
platform. In the model accuracy comparison experi⁃
ments， to highlight the contrast among different 
models， all settings were kept consistent except for 
differences in network architecture. Specific consis⁃
tent settings include： The initial learning rate was 

set to 0.001 for all models， which adaptively 
changed based on the validation set loss value with 
a minimum of 10⁻⁶； the activation function was Re⁃
LU for all； the optimizer was Adam for all； and the 
loss function used was Dice loss for all models. The 
specific differences in parameters between models 
are detailed in Table 1. The comparison models in⁃
clude UNet， ResUNet， PSPNet（Pyramid scene 
parsing network）［57］， DeepLabv3+， ALP⁃UNet［58］， 
FlexiCrackNet［59］ and the improved model proposed 
in this study. Based on the training loss trends of 
each model， as well as a comprehensive consider⁃
ation of training cost and computational resources， 
the number of training epochs was set to 800.

2. 2 Dataset　

The training and validation data utilized in this 
study were derived from Crack500［44］， a dataset 
comprising pavement images captured from the as⁃
phalt roads of the main campus of Temple Universi⁃
ty， USA. However， the test data adopted two data⁃
sets： One was Crack500， and the other was a 
self⁃made dataset. The images of the self⁃made data⁃
set were collected from the concrete pavements of 
the main roads in Shijiazhuang Tiedao University. 
After comparing the original pavement crack images 

with their corresponding annotated images， it was 
found that some samples in the Crack500 dataset ex⁃
hibit low matching accuracy between crack images 
and their labels. Specifically， the annotated images 
contained crack regions that were identified based 
on annotators’ experience but were difficult to veri⁃
fy in the original images through pixel comparison 
or visual inspection. Such samples would severely 
compromise the model’s judgment. To ensure the 
quality of model training， samples with excessively 
large contrast differences were excluded from the 

Table 1　Comparison of various models

Training model

UNet

ResUNet

DeepLabv3+

PSPNet

ALP⁃UNet

FlexiCrackNet

Improved model

Convolution

Single⁃size 
convolutional kernel

Single⁃size 
convolutional kernel

Single⁃size 
convolutional kernel

Multi⁃size 
convolutional kernels;
multi⁃scale concatena⁃

tion
Multi⁃size 

convolutional kernel
Single⁃size 

convolutional kernel;
multi⁃scale addition

Multi⁃size 
convolutional kernels;

multi⁃scale addition

Residual 
connection

None

Yes

None

None

Yes

Yes

Yes

ASPP

None

None

Yes

Pyramid pooling

Laplacian pyramid

None

Yes

Feature description

Basic UNet structure

Introduce residual units to improve training stability

ASPP extracts global contextual information

Strong global context modeling capability

Fuse multi⁃scale features and improve fine⁃crack de⁃
tection with minimal model complexity

Flexible feature pipeline with SAM⁃transferred fea⁃
tures

Enhance multi⁃scale feature extraction capability
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original dataset， and data samples with high match⁃
ing accuracy were selected as the dataset for this 
study. The refined training set consists of 559 imag⁃
es， each sized at 640 pixel×320 pixel； the valida⁃
tion set contains 179 images， while the test set 
comprises 321 images， with each pavement image 
paired with its corresponding label maps. The 
self⁃made dataset includes 215 images with a pixel 
size of 640×320 and their corresponding label 
maps.

To further expand the training set， image aug⁃
mentation was applied to the original samples before 
each training epoch. Random modifications were 

performed one or multiple times on the original im ⁃
ages， ensuring that each training iteration utilized 
different images， thereby effectively expanding the 
training samples. The augmentation operations in⁃
cluded flipping， rotation， brightness adjustment， 
and optical distortion， among others. A comparison 
of the effects before and after augmentation is pre⁃
sented in Table 2. Data augmentation operations not 
only enhance the diversity of data samples， suffi⁃
ciently meeting the training volume requirements of 
all models in this study， but also improve the model 
generalization ability， thereby reducing the occur⁃
rence of overfitting to a certain extent.

2. 3 Evaluation metrics　

This study evaluates and compares model per⁃
formance based on the prediction outcomes of TP 

（True positive）， FP （False positive）， TN （True 
negative）， and FN （False negative）. Using these 
metrics， the mean intersection over union （mIoU）， 

Table 2　Examples of enhancement effects

Augmentation 
types

Original image

Flip

Rotation

Brightness 
adjustment

Random gamma
transformation

Elastic 
deformation

Grid distortion

Optical 
distortion

Parameter description

None

Horizontal or vertical flipping

Random rotation angle range: ±30°

Brightness variation range: 
(−0.2, 0.2), contrast variation range: 

(−0.2, 0.2)

γ value range: (80, 120) 
(for adjustment in relatively bright or 

dark scenarios)
Alpha = 120 (deformation intensity), 

sigma = 6 (Gaussian smoothing 
intensity), alpha_affine = 0 

(affine transformation)
Num_steps = 5 (dividing the image 

into a 5×5 grid), distort_limit = 0.3 
(controlling the maximum offset of 

each grid point)
Distort_limit = 2 (radial distortion 

coefficient range), shift_limit = 0.5 
(center point translation range)

Group 1 Group 2 Group 3
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Precision， Recall， and F1⁃score are calculated for 
assessment.

TP， FP， TN， and FN are typically represent⁃
ed by the number of pixels and are used to compute 
various evaluation metrics， as shown in Table 3.

The intersection over union （IoU） refers to the 
ratio of the intersection to the union between the pre⁃
dicted result and the true annotation. For each cate⁃
gory， the intersection and union ratio of that catego⁃
ry is calculated， and then the average of the intersec⁃
tion and union ratios of all categories is taken to ob⁃
tain mIoU， as shown in

mIoU = 1
k ∑

i = 1

k TP
TP + FP + FN (3)

Precision represents the proportion of samples 
that are actually in the positive class among those 
predicted by the model， reflecting the prediction ac⁃
curacy of the network model， as shown in

Precision = TP
TP + FP (4)

Recall represents the proportion of samples 

that are actually in the positive class and are correct⁃
ly predicted by the model to be in the positive class. 
It mainly measures the network model’s ability to 
recognize positive class samples， as shown in

Recall = TP
TP + FN (5)

F1⁃score is the harmonic average of precision 
and recall， and used to comprehensively evaluate 
the performance of the model， as shown in

F1⁃score = 2 × Precision × Recall
Precision + Recall (6)

3 Experimental Results and Analy⁃
sis

3. 1 Comparison of evaluation metrics before 
and after data augmentation　

To demonstrate the effectiveness of the data 
augmentation operation， this study trained the im ⁃
proved model both with and without data augmenta⁃
tion， and compared their performance results. Spe⁃
cific data are presented in Table 4. By comparing 
the model’s prediction results before and after aug⁃
mentation， it can be observed that all evaluation 
metrics of the improved model increase. This result 
fully verifies the importance and effectiveness of the 
data augmentation operation. As a key preprocess⁃
ing step， data augmentation not only effectively ex⁃
pands the scale of the training set and alleviates the 
problem of model overfitting， but also helps im ⁃
prove the model robustness， ultimately achieving 
the optimization of model segmentation accuracy.

3. 2 Ablation experiments　

To verify the effectiveness of different modules 
in the proposed improved model， this section investi⁃
gates the impacts of the multi⁃scale convolution and 

ASPP module on model performance through abla⁃
tion experiments. Based on the basic ResUNet frame⁃
work， three experimental settings were designed as 
follows： （1） Introducing only multi⁃scale convolu⁃

Table 3　Meanings of TP, FP, TN, and FN

Index

TP

FP

TN

FN

Definition
Samples that are actually positive are correctly clas⁃

sified as positive by the model
Samples that are actually negative are wrongly clas⁃

sified as positive by the model
Samples that are actually negative are correctly 

classified as negative by the model
Samples that are actually positive are wrongly clas⁃

sified as negative by the model

Table 4　Comparison of evaluation metrics for the improved model before and after data augmentation

Model

Improved model 
before augmentation

Improved model 
after augmentation

Original image Ground truth map Precision

0.531 3

0.734 7

Recall

0.706 6

0.724 1

F1⁃score

0.514 4

0.710 3

mIoU

0.385 9

0.568 7

Binary map
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tion； （2） introducing only the ASPP module； （3） in⁃
troducing multi⁃scale convolution and ASPP. All ex⁃
periments were conducted under the Crack500 datas⁃

et and training strategy， with mIoU， Precision， Re⁃
call， and F1⁃score adopted as evaluation metrics. 
The specific comparisons are presented in Table 5.

As can be seen from the data comparison in the 
table， both the introduction of multi⁃scale convolu⁃
tion alone and the ASPP module alone achieved a 
certain degree of performance improvement com ⁃
pared with the basic ResUNet. This indicates that 
both improvement strategies play a positive role in 
feature extraction and contextual information fusion. 
Furthermore， after combining multi⁃scale convolu⁃
tion with the ASPP module， all metrics are relative⁃
ly balanced， and all metrics except Recall reach the 
optimal values. This demonstrates that the two mod⁃
ules have complementary advantages， which can ef⁃
fectively improve the segmentation accuracy and ro⁃
bustness of crack regions， thus verifying the ratio⁃
nality and effectiveness of the design of the pro⁃
posed improved model.

3. 3 Comparison of model prediction results　

In the comparative experiments of this study， 
four typical semantic segmentation models， such as 
UNet， ResUNet， DeepLabv3+ and PSPNet， and 
two novel models proposed in recent years， namely 
ALP⁃UNet and FlexiCrackNet， were selected. As 
a classic encoder⁃decoder structure， UNet serves as 
a commonly used baseline model in medical imaging 
and crack segmentation. ResUNet introduces a re⁃
sidual structure on this basis， enhancing feature ex⁃
traction capability. DeepLabv3+ achieves multi⁃ 
scale context modeling through atrous convolution 
and the ASPP module， making it a widely applied 
high⁃precision method in current research. Mean⁃
while， PSPNet acquires global contextual informa⁃
tion via the pyramid pooling module （PPM）， repre⁃
senting another type of multi⁃scale feature aggrega⁃
tion approach. Incorporating PSPNet into the com ⁃

parison not only helps demonstrate the differences 
among various multi⁃scale mechanisms， but also 
contributes to comprehensively verifying the effec⁃
tiveness and generalization of the improved model 
proposed in this study. In addition， as crack segmen⁃
tation models proposed in recent years， ALP⁃UNet 
and FlexiCrackNet also incorporate multi⁃scale fea⁃
ture fusion mechanisms in their structures. Specifi⁃
cally， ALP⁃UNet enhances its ability to capture fine 
cracks through adaptive pyramid feature extraction 
and a lightweight attention module； FlexiCrackNet， 
on the other hand， improves the model’s adaptabili⁃
ty to crack morphologies of different scales by lever⁃
aging multi⁃scale convolution and a feature reorgani⁃
zation strategy. Incorporating these two models with 
multi⁃scale fusion capabilities into the comparison 
can more comprehensively evaluate the advantages 
and improvement effects of the proposed method un⁃
der the same multi⁃scale modeling framework.

As demonstrated by the partial model predic⁃
tion results presented in Table 6， all five original im ⁃
ages exhibit varying degrees of noise， characterized 
by relatively rough crack edges. The models exhibit 
distinct feature extraction performances when pro⁃
cessing such images. UNet and ResUNet demon⁃
strate significant deficiencies in handling noisy crack 
images： Their prediction results contain speckle 
noise， and the noise at the boundaries severely im ⁃
pairs the accuracy of crack shape extraction. PSPNet 
outperforms the aforementioned two models； how⁃
ever， certain crack regions in its prediction results 
appear blurred， and the precision of edge details is 
lower compared with the proposed improved model， 
leading to a reduction in overall accuracy. Although 

Table 5　Comparison of evaluation metrics in ablation experiments

Model
ResUNet

Introducing only multi⁃scale convolution
Introducing only ASPP module

Improved model

Precision
0.688 0
0.702 0
0.718 7
0.734 7

Recall
0.748 6

0.742 7
0.719 1
0.724 1

F1⁃score
0.695 8
0.701 2
0.701 2
0.710 3

mIoU
0.552 1
0.556 9
0.557 5
0.568 7

758



No. 6 ZHAN Biheng, et al. Pavement Crack Extraction Based on Multi-scale Convolutional Neural Network

DeepLabv3+ effectively suppresses noise with mini⁃
mal speckles in the generated results， it is prone to 
partial crack loss or incomplete extraction. Flexi⁃
CrackNet still suffers from noise interference， while 
the extraction performance of ALP⁃UNet is second 
only to the improved model with a clean back⁃
ground. The improved model proposed in this study 
not only adeptly mitigates noise interference but also 
preserves crack edge details with higher precision， 
demonstrating superior comprehensive performance.

In Group 3 images， a comparison of the cracks 
within the red bounding boxes reveals that the ex⁃
traction result of the improved model is most consis⁃
tent with the original image. In Group 5 images， by 
comparing the crack branches within the red bound⁃
ing boxes， it can be observed that the improved 
model not only extracts complete branches but also 

avoids generating extraneous noise at the boundar⁃
ies， exhibiting the highest similarity to the ground 
truth map.

In summary， when noise is present in the imag⁃
es， the improved model in this study is almost unaf⁃
fected by noise and can capture more precise details 
at crack edges， better restoring the crack boundary 
details and achieving higher accuracy.

3. 4 Comparison of evaluation metrics　

As shown in Table 7， the improved model pro⁃
posed in this study outperforms other models， 
achieving the highest scores in both mIoU and 
F1⁃score. In contrast， DeepLabv3+ and ALP⁃UNet 
attain the highest Precision and Recall， respective⁃
ly. The improved model achieves an mIoU of 
0.568 7， surpassing UNet’s score of 0.539 0， Res-

UNet’s 0.552 1， PSPNet’s 0.566 7， Deep⁃

Table 6　Test results of different models on the Crack500 dataset

Group

Original im ⁃
age

Ground 
truth map

UNet

ResUNet

PSPNet

Deep⁃
Labv3+

ALP⁃UNet

FlexiCrack⁃
Net

Improved 
model

1 2 3 4 5
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Labv3+’s 0.553 9， ALP⁃UNet’s 0.533 1， and 
FlexiCrackNet’s 0.558 6. This indicates that the im ⁃
proved model more accurately delineates crack re⁃
gions， demonstrating superior overall segmentation 
accuracy and better overlap between predicted and 
actual crack areas.

The Precision of the improved model is 0.734 7， 
which exceeds UNet’s 0.674 1， ResUNet’s 0.688 0， 
PSPNet’s 0.711 1， ALP⁃UNet’s 0.660 2， and 
FlexiCrackNet’s 0.696 4， although it is slightly 
lower than DeepLabv3+ ’s 0.784 6. This suggests 
that the improved model generates relatively fewer 
false positives in crack identification， indicating that 
a higher proportion of predicted crack areas are in⁃
deed cracks. The marginally lower Precision com ⁃
pared with DeepLabv3+ may be attributed to the 
latter’s use of a lightweight backbone network Mo⁃
bileNetv2， which utilizes depthwise separable con⁃
volution to effectively reduce the computational cost 
during feature extraction while maintaining high dis⁃
criminative ability， thus gaining certain advantages 
in distinguishing between positive and negative sam ⁃
ples. In addition， the lightweight design achieves a 
good balance between accuracy and efficiency， 
which is also a possible reason for the slightly better 
Precision， and meanwhile provides a certain im ⁃
provement direction for the model in this paper.

The Recall of the improved model is 0.724 1， 
which is lower than ResUNet’s 0.748 6， PSPNet’s 
0.741 3， UNet’s 0.747 2， ALP⁃UNet’s 0.755 6， 
and FlexiCrackNet’s 0.745 5， but higher than Dee⁃
pLabv3+’s 0.660 3. This finding may suggest that 
the improved network has established a stricter deci⁃
sion boundary， which reduces the number of sam ⁃
ples predicted as positive， thereby lowering the risk 
of false positives； however， this also results in a 
greater number of positive samples being missed. 
The F1⁃score of the improved model is 0.710 3， sur⁃
passing UNet’s 0.685 1， ResUNet’s 0.695 8， 
PSPNet’s 0.709 2， DeepLabv3+’s 0.693 2， 
ALP⁃UNet’s 0.679 6， and FlexiCrackNet’s 0.702 4. 
Although the improved model does not achieve the 
highest Precision or Recall individually， its superior 
F1⁃score indicates a better balance between Preci⁃
sion and Recall compared with the other models， ef⁃

fectively identifying cracks accurately while maxi⁃
mizing the detection of all cracks. Although ALP-

UNet is a novel model proposed in recent years， its 
performance is poor， and there are several potential 
reasons for this phenomenon： （1） All the settings 
of the original model are not fully reproduced during 
the implementation process； （2） its lightweight de⁃
sign results in suboptimal performance on the 
Crack500 dataset； （3） the detail enhancement com ⁃
ponent of the model amplifies noise components. 
Overall， the improved model in this study demon⁃
strates certain advancements over other models. It 
achieves significant gains relative to UNet and Res-

UNet and exhibits balanced performance when com ⁃
pared with PSPNet and DeepLabv3+ ， resulting in 
partial improvements as well.

3. 5 Model generalization validation　

To further verify the generalization ability of 
the improved model， supplementary experiments 
are conducted on the self⁃made dataset in this pa⁃
per. Compared with the Crack500 dataset， the 
self⁃made dataset has significant differences in im ⁃
age acquisition environment， pavement base materi⁃
al， and crack morphological features， which can 
more comprehensively test the adaptability of the 
model in non⁃training scenarios. The experiment 
maintains consistent control variables： All compari⁃
son models are trained based on the Crack500 datas⁃
et and only perform prediction tests on the 
self⁃made dataset. All other parameter settings are 
fully consistent with those of the aforementioned 
comparative experiments. Selected visual results of 
the tests are presented in Table 8， while the de⁃
tailed quantitative evaluation metrics are summa⁃
rized in Table 9.

Table 7　Performance comparison of various models on 
the Crack500 dataset

Model
UNet

ResUNet
PSPNet

DeepLabv3+
ALP⁃UNet

FlexiCrackNet
Improved model

Precision
0.674 1
0.688 0
0.711 1
0.784 6
0.660 2
0.696 4
0.734 7

Recall
0.747 2
0.748 6
0.741 3
0.660 3
0.755 6
0.745 5
0.724 1

F1⁃score
0.685 1
0.695 8
0.709 2
0.693 2
0.679 6
0.702 4
0.710 3

mIoU
0.539 0
0.552 1
0.566 7
0.553 9
0.533 1
0.558 6
0.568 7
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Through a comparative analysis of the extrac⁃
tion results across all image groups， it can be ob⁃
served that only DeepLabv3+ exhibits inferior per⁃
formance， characterized by incomplete crack extrac⁃
tion with some images even failing to detect any 
cracks. Thus， DeepLabv3+ is deemed to have 
poor generalization capability. For the remaining 

models， comparative evaluations reveal no signifi⁃
cant differences in their extraction performance 
when processing images with distinct 
crack⁃pavement contrast such as Groups 1 and 5. 
However， notable discrepancies emerge among the 
models when handling images with blurred cracks 
such as Groups 3 and 4. In Group 3， only 
ALP⁃UNet and the proposed improved model suc⁃
cessfully extract cracks consistent with the ground 
truth within the red bounding boxes while the other 
models yield incomplete results， and the cracks ex⁃
tracted by the improved model are more aligned 
with the ground truth compared to those from 
ALP⁃UNet. In Group 4， ALP⁃UNet and the im ⁃
proved model again demonstrate superior extraction 
performance within the red bounding boxes with the 
improved model achieving the optimal results.

Table 8　Test results of different models on the self⁃made dataset

Group

Original 
image

Ground 
truth map

UNet

ResUNet

PSPNet

Deep⁃
Labv3+

ALP⁃UNet

FlexiCrack⁃
Net

Improved 
model

1 2 3 4 5

Table 9　Performance comparison of various models on 
the self⁃made dataset

Model

UNet
ResUNet
PSPNet

DeepLabv3+
ALP_UNet

FlexiCrackNet
Improved model

Precision

0.882 7
0.881 9
0.833 8
0.854 6
0.876 9
0.858 8
0.873 1

Recall

0.567 0
0.708 2
0.699 5
0.188 0
0.639 0
0.656 2
0.779 4

F1⁃score

0.654 2
0.761 6
0.727 5
0.269 4
0.711 3
0.714 7
0.807 3

mIoU

0.528 8
0.645 0
0.621 0
0.167 3
0.586 2
0.590 5
0.690 3
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The experimental results show that the overall 
performance of the improved model on the 
self⁃made dataset is outstanding： Not only its com ⁃
prehensive performance is better than the test re⁃
sults of the model on the Crack500 dataset， but al⁃
so its advantage over other comparison models is 
more significant. It can be seen from Table 9 that ex⁃
cept for the Precision of the improved model being 
0.873 1， which is slightly lower than that of UNet 
（0.882 7）， all other values are the highest， namely 
mIoU is 0.690 3， Recall is 0.779 4， and F1⁃score is 
0.807 3. Based on a comprehensive analysis of data 
characteristics and model structure， the causes of 
the above results can be summarized into the fol⁃
lowing three points. （1） Difference in data annota⁃
tion accuracy： The ground truth maps of the 
self⁃made dataset have a higher matching degree 
with the original images， and the annotation errors 
are smaller. However， some samples in the 
Crack500 dataset have large deviations between 
the original images and the ground truth maps. 
This difference directly leads to better test accura⁃
cy of the model on the self⁃made dataset. （2） Ad⁃
vantage of feature extraction in the improved mod⁃
el： The improved model fuses crack features of dif⁃
ferent dimensions through multi⁃scale convolution， 
and can fully learn the local details and global struc⁃
tural information of cracks during training， making 
it with stronger feature transfer ability. It is able to 
adapt to test sets with significant differences from 
the training set， highlighting good generalization 
performance. （3） Although DeepLabv3+ per⁃
forms well on the Crack500 dataset， its perfor⁃
mance drops significantly on the self⁃made dataset. 
It is speculated that its model structure has a 
strong dependence on the style of training data， its 
generalization ability has certain limitations， and its 
adaptability is insufficient in crack segmentation 
tasks across scenarios and materials. （4） While 
PSPNet achieves comparable performance to the 
improved model proposed in this study on the 
Crack500 dataset， significant discrepancies arise 
when tested on the self⁃made dataset. This indi⁃
cates that despite the similar test results of the two 
models on the Crack500 dataset， there exists a 

substantial gap in their generalization performance， 
undoubtedly demonstrating the superiority of the 
improved model in this work. （5） ALP⁃UNet and 
FlexiCrackNet exhibit only moderate performance 
on the self⁃made dataset. By analyzing their evalua⁃
tion metric results and combining this with an ex⁃
amination of their model structures， it is inferred 
that the potential cause for their underwhelming 
performance lies in the accuracy degradation in⁃
duced by their lightweight design.

In conclusion， the improved model can still 
maintain a higher accuracy level than most compari⁃
son models on the new test dataset， and shows bet⁃
ter segmentation performance in datasets with high⁃
er annotation quality and significant scene differenc⁃
es. This result fully proves that the improved model 
proposed in this paper has strong generalization abili⁃
ty and higher application value in actual complex 
scene crack segmentation tasks.

4 Conclusions 

This study implements the automatic extrac⁃
tion of pavement cracks using neural networks， 
with the resulting classification outcomes serving as 
a foundation for subsequent pavement crack process⁃
ing. Seven network models were compared in terms 
of classification performance， including UNet， Res-

UNet， PSPNet， DeepLabv3+， ALP⁃UNet， Flex⁃
iCrackNet， and the improved model proposed in 
this paper， to evaluate their effectiveness in crack 
detection tasks. In addition， the effectiveness of da⁃
ta augmentation and the two proposed improve⁃
ments was verified separately. The comparison of 
results before and after data augmentation demon⁃
strates the necessity of data augmentation for en⁃
hancing model robustness， while the ablation experi⁃
ments confirm that both the multi⁃scale convolution 
and the ASPP module can indeed improve the accu⁃
racy of the original model to a certain extent， with 
the combined effect of the two being more favor⁃
able. Finally， by comparing the test results on the 
self⁃made dataset with those on the Crack500 datas⁃
et， the excellent generalization ability of the im ⁃
proved model is verified. Through the experimental 
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analysis of comparing the data results of different 
models， significant differences among the models in 
crack extraction capabilities were demonstrated. 
Among the representative overall accuracy metrics， 
the F1⁃scores indicated that the proposed improved 
model achieved the best performance. This improve⁃
ment is attributed to the network structure， which 
extracts features simultaneously through multiple 
branches with varying convolution kernel sizes， 
thereby enhancing the model’s ability to capture 
crack features at various scales and improving its ef⁃
fectiveness in delineating boundaries and fine cracks. 
Additionally， the incorporation of the ASPP mod⁃
ule with atrous convolutions of different sizes further 
enhances the model’s ability to extract details at 
multiple scales， while the combination of local de⁃
tails with global semantics significantly boosts accu⁃
racy. Unlike other neural network models that sim ⁃
ply add the ASPP module， the model proposed in 
this study achieves early multi⁃scale feature fusion 
through a multi⁃scale parallel convolution structure 
in the encoding phase. Furthermore， it leverages 
the ASPP module in the intermediate layer to fur⁃
ther capture cross⁃scale contextual information. 
Through the organic integration of multi⁃scale con⁃
volution and ASPP， a bottom⁃up hierarchical fea⁃
ture representation framework that balances details 
and semantics is constructed. This not only leads to 
a certain improvement in the overall accuracy of the 
model but also significantly optimizes its classifica⁃
tion performance. This series of comparative experi⁃
ments not only validates the superiority of the im ⁃
proved model but also provides direction for future 
enhancements， making the new model design more 
targeted.

The improved model proposed in this study has 
achieved certain results in crack segmentation accu⁃
racy and robustness， but there is still room for fur⁃
ther improvement. First， to address the issues of 
large model parameter size and high computational 
cost， lightweight attention mechanisms or structural 
reparameterization techniques can be explored in fu⁃
ture research to reduce redundant computations and 
improve inference efficiency. Second， regarding the 
insufficient detection of fine cracks， pyramid feature 

fusion or multi⁃scale attention mechanisms can be in⁃
tegrated to enhance the model’s ability to perceive 
targets of different scales. In addition， self-super⁃
vised learning and multi⁃modal data fusion remain 
promising research directions， for instance， using 
unlabeled data to improve the generalization of fea⁃
ture learning， or combining image data with structur⁃
al sensing data to achieve more comprehensive crack 
identification. Through in⁃depth research on the 
above directions， it is expected that while ensuring 
segmentation accuracy， the lightweight level of the 
model and its small⁃target detection performance can 
be further improved， thereby better adapting to the 
practical needs of complex road scenarios.
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基于多尺度卷积神经网络的路面裂缝提取
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（1.道路与铁道工程安全保障省部共建教育部重点实验室(石家庄铁道大学), 石家庄  050043， 中国； 2.石家庄铁

道大学土木工程学院，石家庄  050043, 中国； 3.极地环境监测与公共治理教育部重点实验室（武汉大学），武汉  
430079，中国； 4.河北省制图院，石家庄  050031, 中国； 5.河北交规院瑞志交通技术咨询有限公司，石家庄  

050090, 中国； 6.河北省道路工程智能监测与运维技术创新中心，保定  071799, 中国； 7.中铁隧道局集团路桥工

程有限公司，天津  300450, 中国）

摘要：裂缝作为道路的主要危害之一，实现高效自动化的提取对于道路健康监测和维护而言至关重要。为此提

出一种融合图像多尺度特征的裂缝自动提取网络模型，旨在提升模型对裂缝特征的捕获能力和对复杂场景的适

应性。该模型以 ResUNet 网络模型架构为基础，针对模型卷积层做出修改，提出构建多条不同卷积核尺寸的支

路，并在中间层添加空洞空间金字塔池化模块。本文进行了基础模型性能对比实验、消融实验、数据增强前后对

比实验和泛化性验证实验。对比实验结果显示，本文提出的改进模型在处理裂缝边缘部分具备更加准确的细节

处理能力，模型综合精度指标 F1 分数达到 71.03%，相比传统 ResUNet 提高 2.1%。

关键词：道路工程；神经网络；多尺度卷积；路面裂缝
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