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Abstract: Cracks represent a significant hazard to pavement integrity , making their efficient and automated extraction

essential for effective road health monitoring and maintenance. In response to this challenge, we propose a crack

automatic extraction network model that integrates multi-scale image features, thereby enhancing the model’ s

capability to capture crack characteristics and adaptation to complex scenarios. This model is based on the ResUNet

architecture, makes modification to the convolutional layer of the model, proposes to construct multiple branches

utilizing different convolution kernel sizes, and adds a atrous spatial pyramid pooling module within the intermediate

layers. In this paper, comparative experiments on the performance of the basic model, ablation experiments,

comparative experiments before and after data augmentation, and generalization verification experiments are

conducted. Comparative experimental results indicate that the improved model exhibits superior detail processing

capability at crack edges. The overall performance of the model, as measured by the Fl-score, reaches 71.03%,

reflecting a 2.1% improvement over the conventional ResUNet.
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0 Introduction

Pavement cracks, recognized as one of the
most prevalent hazards on roads'?', contribute to
the structural degradation of pavements, reduce the
lifespan of highways, and pose significant safety
risks, thereby impacting traffic safety. Consequent-
ly, the detection and repair of pavement cracks are
critical yet challenging tasks in highway mainte-
nance. Traditional crack detection methods predomi-

nantly rely on manual visual inspections, which not

Article ID: 1005-1120(2025)06-0749-18

only require considerable human and material re-
sources but also exhibit a high degree of subjectivi-
ty, complicating the fulfillment of large-scale,
high-precision monitoring demands. In recent years,
with the ongoing advancements in computer hard-
ware and related technologies, the process of pave-
ment crack extraction has progressively transitioned
from traditional manual visual interpretation to

1

computer-aided automatic recognition'*”. Current-

ly, automatic recognition methods can be broadly
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categorized into two main types: Traditional image
processing-based methods and neural network-based
extraction techniques.

Among traditional image processing methods
that emerged relatively early, threshold segmenta-
tion'®’ is one of the earliest and most widely adopt-
ed methods for target segmentation in image pro-
cessing and pattern recognition. The fundamental
concept involves partitioning an image into target
and background regions by selecting an appropriate
grayscale threshold. Otsu’ s method'”', one of the
earliest global thresholding techniques, determines
the optimal segmentation threshold by maximizing
the between-class variance. Since its proposal, nu-
merous scholars have developed improved methods
based on this classical approach'®*’. A growing
number of image processing methods based on the
principle of global threshold segmentation have

31 However, with the increasing

been proposed'
complexity of crack detection scenarios, the effec-
tiveness of global threshold methods significantly di-
minishes in crack images characterized by uneven il-
lumination or intricate backgrounds. This limitation
has shifted research focus towards local threshold

methods

, which operate on the principle of di-
viding the image into multiple local regions and cal-
culating an independent threshold for each region.
Another major category of traditional image
processing methods is edge detection''”’, whose
core lies in detecting grayscale discontinuities. This
technique is used to identify regions in an image
where significant grayscale changes occur, such as
object contours, texture boundaries, or junctions be-
tween different regions in the image. The Canny al-

[18]

gorithm'"™', initially applied to asphalt pavement im-

ages, serves as the foundation for numerous subse-

quent improved methods %",

Nowadays, more
commonly used edge detection operators have been
proposed *"*'. In addition to the aforementioned pri-
mary image processing techniques, various image
processing-based methods **’ have been employed
for road crack detection, offering multiple avenues
for future research.

Traditional image recognition algorithms have
the advantage of not requiring large amounts of im-
age data for training; however, their drawbacks are

significant: They require manual assistance, exhib-

it poor robustness, and are susceptible to various
forms of noise, such as variations in lighting and de-
bris. With the continuous advancements in comput-
er hardware and software in recent years, more in-
telligent detection algorithms have emerged, partic-
ularly those based on neural networks for image
classification, which have gradually gained promi-
nence. Neural network models can extract effective
data features more accurately through extensive

sample learning. Zhang et al."”

were pioneers in
employing a deep learning-based crack extraction
method utilizing convolutional neural networks
(CNN) in the realm of road crack detection, mark-
ing a significant development for subsequent neural
network models. Since its proposal, CNN has
quickly attracted widespread attention. Based on its
unique network structure, scholars in the academic
community have continuously pursued innovations,
and propose new technical methods to integrate
with CNN, thereby promoting the in-depth develop-

ment of related research fields"*"**

. In recent years,
although classical network models such as CNN
have still received attention and further develop-
ment from scholars in various fields, and have
achieved considerable progress in the direction of

559) " the rise of Transformer tech-

crack extraction'
nology has led researchers to explore detection
frameworks that combine Transformer with CNN.
This integration aims to fully leverage the local fea-
ture extraction capability of CNN and the global
modeling advantage of Transformer. Such hybrid
detection methods have become a research focus in
the field and also provided new solutions for pave-
ment crack detection **’.  Although neural
network-based image extraction algorithms demon-
strate higher accuracy compared with traditional im-
age recognition methods and can be applied to vari-
ous complex scenarios, numerous challenges still
remain. Existing models predominantly emphasize
local feature extraction while neglecting the correla-
tion between multi-scale features and global struc-

{1 Furthermore, these models

tural information
demonstrate limited adaptability to complex environ-
ments and exhibit insufficient generalization capabili-
ties in scenarios characterized by noise interference,

[30, 45-46]

weak signals, or small targets . Consequent-

ly, there is an urgent necessity to develop an intelli-
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gent recognition framework that effectively balances
efficiency, robustness, and high precision to ad-
dress the recognition challenges existing in complex
underground environments.

Among various convolutional neural network
models, U-Net'*" has been widely applied to diverse
image segmentation tasks due to its superior perfor-
mance and straightforward design. Its success in the
medical imaging field* has inspired numerous re-
searchers to enhance this architecture. ResUNet, a
network model developed from UNet, was first uti-
lized by Zhang et al."*” in 2018 for road extraction
from remote sensing images and has since been ap-
plied to other domains'™""'. ResUNet effectively in-
tegrates the advantages of ResNet ™ (Residual Net-
work) and UNet by incorporating residual connec-
tions from ResNet into UNet. This methodology not
only mitigates the gradient vanishing issue encoun-
tered during deep UNet training but also preserves
UNet’s characteristic “U”-shaped structure and effi-
cient encoder-decoder design, thereby significantly
improving the network’s ability to learn deep image
features. Therefore, considering the inherent advan-
tages of ResUNet and its flexible basic architecture,
this study adopts this network model as the base
model. Meanwhile, recognizing that the atrous spa-
tial pyramid pooling (ASPP) module exhibits good
compatibility with ResUNet, an attempt is made to
integrate this module into the original architecture.

ASPP was first introduced in Deepl.abv2"™
and later refined in Deepl.abv3™. Tts core design
uses parallel atrous convolutions with varying dila-
tion rates to process input feature maps, and ex-
pands the receptive field without sacrificing the fea-
ture map resolution, thereby effectively capturing
multi-scale image information and boosting segmen-
tation accuracy. Specifically, Deepl.abv2 added
ASPP based on Deeplabvl™ to improve recogni-
tion of objects of different sizes; Deepl.abv3 opti-
mized it by integrating global average pooling into
ASPP for stronger global context capture; and Dee-
pLabv3-+"%, built on Deeplabv3, incorporated an
encoder-decoder structure to handle local details,
balanced global semantics and local information,
and achieved an optimal performance-efficiency
trade-off. However, unlike existing studies that sim-
ply integrate the ASPP module directly into the bot-

tleneck layer or decoder of ResUNet, the innova-
tions of this study are as follows: (1) A multi-scale
convolution branch structure is redesigned in the en-
coder. Specifically, three types of convolution ker-
nels (3X3, 5X5, and 7X7) are used for parallel
operations, followed by feature fusion. This design
fully extracts crack texture information at different
scales and enables the interaction of multi-scale fea-
tures from the feature extraction stage onward; (2)
on this basis, a modified ASPP module is intro-
duced in the intermediate layer, allowing the fused
features output by multi-scale convolution to further
undergo collaborative learning with global contextu-
al features. This realizes a hierarchical feature repre-
sentation that progresses from “local texture en-
hancement” to “global semantic aggregation”. This
collaborative structure not only addresses the defi-
ResUNet in

multi-scale features but also overcomes the limita-

ciency of traditional capturing
tions of existing ResUNet-ASPP combination meth-
ods in fine-grained crack recognition. Ultimately,
the proposed collaborative fusion strategy of
multi-scale convolution and ASPP effectively en-
hances the accuracy and robustness of the model for
crack extraction under complex backgrounds.

In summary, this paper adopts the ResUNet net-
work architecture as its foundation, preserving the re-
sidual connections and UNet structure of the original
model. First, the convolutional layers in the encoder
are modified to perform three parallel convolutions
with different kernel sizes simultaneously, followed
by summation to fully extract multi-scale image fea-
tures of roads and provide richer feature representa-
tions for the model. Second, an ASPP module is in-
corporated in the middle layer to capture image infor-
mation at multiple scales through atrous convolutions
with varying dilation rates, thereby further enlarging
the receptive field. By integrating local detail features
with global semantics, the model ultimately achieves

improved accuracy in crack extraction.

1 Method

1.1 ResUNet model architecture

ResUNet inherits the “U”-shaped architecture
of UNet, comprising a symmetric feature extraction

path and an expansion path. The feature extraction
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path (encoder) extracts features from the input im-
age while progressively reducing the size of the fea-
ture maps. The expansion path (decoder) gradually
restores the spatial resolution of the image and inte-
grates the features extracted by the encoder to per-
form pixel-wise predictions. At each stage of the en-
coder, feature maps are directly conveyed to the cor-
responding layers in the decoder via skip connec-
tions, ensuring that high-resolution features are pre-
served during the encoding process. Additionally,
ResUNet incorporates residual connections {rom

ResNet. The input data undergoes a 1X 1 convolu-

tion, bypassing intermediate convolutional opera-
tions, and is then directly added to the output of the
convolutional layers. The resulting output forms the
network structure, as illustrated in Fig.1. In the en-
coder structure, the size of feature maps gradually
decreases as the number of convolutional operations
increases, while the number of channels gradually
increases. Specifically, the dimensions are 320X
640X 16, 160X 320X 32, 80X 160X 64, 40X 80X
128, and 20X 40X 256 in sequence. Subsequently,
the feature maps are gradually restored to their origi-

nal sizes in the decoder structure.

Output

Feature map

o0 i A

O BN+ReLU+Conv(stride=2) (@ Conv(stride=1)+BN+ReLU

© BN+ReLU+Conv(stride=1) (@) Conv(stride=2)+BN+ReLU

O  Addition

@ The skip connection

Fig.1 Structure of the ResUNet model

In the convolutional layers of the encoder struc-
ture within the ResUNet network model, three pri-
mary operations are executed: (1) The input image
undergoes batch normalization (BN) , followed by
activation through the RelLU function, and is then
convolved with a 3X 3 kernel. The first convolution
employs a stride of 2, while the second convolution
utilizes a stride of 1. (2) The input image is con-
volved once with a 1 X1 kernel using a stride of 2 to
establish the residual connection. (3) The results
from the first two steps are summed to produce the
output of this layer. Two convolutional sequences
with different orders are adopted in the convolution-
al layers: The skip connections use the sequence of
“convolution-+normalization+activation function” ,
while the network backbone uses the sequence of
“normalization+activation function—+convolution”.
The main reason is that the former is used for fea-
ture dimension transformation and alignment, and
the latter for improving gradient flow and training
stability. This differentiated design not only retains
the optimization advantages of deep networks but al-

so ensures the intuitiveness of the feature fusion

module and its consistency with classical structures.
The entire convolutional layer can be represented by

o =h(x,)+g(f(x,)) (1
where x, and x, -, denote the input and output of the
convolutional layer, respectively; frepresents a con-
volution operation with a 3X 3 kernel and stride 2,
g a convolution with a 3X 3 kernel and stride 1, and

h, a convolution with a 1 X1 kernel and stride 2.
1.2 Multi-scale convolution

Considering that the traditional ResUNet mod-
el structure cannot fully satisfy the extraction of
multi-scale feature information from images, this
study aims to enhance both the robustness of the net-
work model and its ability to capture complex fea-
ture information in images by integrating multi-scale
convolution into the ResUNet framework. The con-
volutional layers of ResUNet are improved by trans-
forming them into multiple branches with varying re-
ceptive fields while maintaining the original residual
connection structure. This feature fusion results in
richer feature representations, thereby enhancing

the extraction performance of crack features.
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Since the objective of multi-scale convolution is
to strengthen the network’ s capability to extract
crack features, the enhanced convolutional layer
structure is applied solely to the encoder portion of
the ResUNet model and is excluded from the decod-
er structure. Additionally, since the size of the out-
put result is related to the stride of the convolutional
kernel, the larger the stride, the smaller the size.
To ensure that the image size remains unchanged
and can be directly summed after multi-scale convo-
lution, all convolutional kernels are configured with
a stride of 1. Following the summation of the paral-
lel branches, a max pooling operation with a pool
size of 2 (MaxPooling2D) is performed to ensure
that the resulting feature map size aligns with that of
the residual connection feature map, which utilizes a
1X1 convolutional kernel with a stride of 2. This fa-
cilitates subsequent addition, and the weights of all
parties involved in the summation during the convo-
lution process are equal. The specific operation is il-

lustrated in Fig.2.

ResUNet
convolutional
layer
BN+ReLU+
Conv(stride=2)
BN+ReLU+
Conv(stride=1)
O Addition
Improved model Conv(stride=2)+
convolutional ® BN+ReLU
layer
O Max pooling

7x7
®

Fig.2 Comparison of convolutional layer structures

This improved model optimizes the convolu-
tion stride parameter by changing the original stride
from 2 to 1, compensating for the resulting change
in feature map size through max pooling. This en-
hancement is predicated on the observation that re-
ducing the stride to 1 augments the convolutional
layer’s capacity to extract local features and filter es-
sential characteristics, with max pooling employed
to ensure feature map size compatibility. In compari-
son to the stride-2 configuration, this approach
markedly enhances detail preservation and model ac-

curacy. The reason for selecting convolutional ker-

nels with different receptive fields (3X3, 5X5,
and 7X7) is as follows: 3X 3 convolutions can pre-
serve local texture and detailed features, which is
conducive to the accurate characterization of crack
edges; 5X5 convolutions expand the receptive field
and can capture the contextual relationships of adja-
cent regions; 7 X7 convolutions provide a larger re-
ceptive field, enhancing the model’ s ability to per-
ceive wider or complex crack regions. Through the
fusion of these three scales, the model can not only
capture the boundary information of small cracks but
also acquire large-scale structural features. Addition-
ally, the numerical continuity among the three ker-
nel sizes prevents excessive dimensional jumps be-
tween features. The improved convolutional layer
can be represented by

Ty + 1:h1(17,)+ i(gs(xn)+gs(xn)+g7(1n)) (2)
where g;, g; and g, denote the convolution opera-
tions with kernel sizes of 3, 5, and 7, respectively,
all with a stride of 1; A, denotes a convolution opera-
tion with a 1X1 kernel and stride of 1 and ¢ the max

pooling operation.
1.3 ASPP module

To further enhance the capability of capturing
multi-scale feature information from images and to
strengthen the connection between global context
and local feature details, this study integrates the
ASPP module into the intermediate layer of the Re-
sUNet model, as illustrated in Fig.1. The first con-
volution operation in this intermediate layer is re-
placed with the ASPP module. Embedding the
ASPP module in the intermediate layer is a pivotal
design choice that balances feature representation ca-
pacity with computational efficiency. This is due to
the fact that the feature maps at the network’s inter-
mediate layer already contain rich semantic informa-
tion while maintaining relatively low resolution. The
ASPP module utilizes atrous convolutions with vary-
ing dilation rates to establish a feature pyramid struc-
ture without further diminishing resolution, thereby
enlarging the receptive field and effectively capturing
multi-scale contextual information. As for why the
ASPP module is not inserted into the encoder or de-

coder, the main considerations are as follows: (1)
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When the ASPP module is placed in the early stage
of the encoder, the network is still in the shallow fea-
ture extraction phase. The obtained features mainly
contain low-level texture and edge information, and
multi-scale features have not yet been fully formed.
Although introducing atrous convolution at this
point can spatially expand the receptive field, the
weak semantic expression ability of the input fea-
tures prevents the ASPP module from fully exerting
its multi-scale sampling effect. It may even introduce
redundant spatial information, which impairs the ef-
fectiveness of subsequent feature extraction. (2)
When the ASPP module is located in the decoder
phase, the input features are mainly derived from
the shallow network. While this helps restore image
details, the semantic information at this stage is rela-
tively insufficient. The contextual information ex-
tracted by the ASPP module’s atrous convolution in
this low-semantic feature space is limited, resulting
in a weakened effect of global receptive field expan-
sion. In addition, the multi-scale feature fusion of
the ASPP module may overlap with the upsampling
operation in the decoder phase, which affects the ef-
ficiency of feature fusion and the overall accuracy of
the model. Atrous convolutions with dilation rates of
6, 12, and 18 are employed to form a progressively
expanding receptive field from small to large: A dila-
tion rate of 6 tends to capture medium-range contex-
tual information, while 12 and 18 provide broader

global structural perception. This design avoids both

i

ResUNet
intermediate layer

1rin

Improved model
intermediate layer

-
|
|
|
|
|
|

v
= —d-

insufficient context due to excessively small recep-

tive fields and loss of details caused by overly large

ones, thereby striking a balance between multi-scale

context modeling and preservation of crack details.

The specific operations within the ASPP mod-

ule are as follows: (1) A convolution with a kernel

size of 1 and a stride of 1 is employed to reduce fea-

ture dimensionality and computational cost. (2)

Three parallel convolutions with a kernel size of 3, a

stride of 1, and dilation rates of 6, 12, and 18, re-

spectively, are executed to capture feature informa-

tion at different scales. (3) Global average pooling

(GlobalAveragePooling2D, an operation that takes

the average value in the spatial dimension) is applied

to the input feature map X (assumed to be HX WX

C) to extract global contextual features, resulting in

a feature vector (1X1XC). This feature vector is

subsequently processed through a 1X1 convolution

to adjust the number of channels (with a stride of 1)

for dimensionality reduction, before being upsam-

pled to the original spatial size (H > W) using bilin-

ear interpolation, which ensures spatial dimension

alignment with other atrous convolution branches.

The core function of this module is to compress spa-

tial information into a global semantic representa-

tion, which makes the model lighter, more stable,

and less prone to overfitting. (4) The outputs from

all branches are concatenated and integrated into a

unified feature representation via a 1X1 convolu-

tion. The specific operation is illustrated in Fig.3.

Q

|

|

|

|

R |
WidthxHeightxDepth :
|

|

|

|

<o N5]H=1
=1
1x1xDepth

(O The ASPP module

O BN+ReLU+
Conv(stride=1)
O Conv(stride=1)+
BN+ReLU
Atrous Conv(stride=1) +
o BN+ReLU

O GlobalAveragePooling+
Reshape

(© Upsampling

() Concatenation

Fig.3 Comparison of intermediate layer structures
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2 Experimental Setup and Evalua-

tion Metric

2.1 Experimental environment and parameter

settings

All experiments in this study were conducted
within the TensorFlow 2.10.1 and Python 3.10.14
environment, utilizing an NVIDIA GeForce RTX
4060 Ti GPU with CUDA 11.2 as the computing
platform. In the model accuracy comparison experi-
ments, to highlight the contrast among different
models, all settings were kept consistent except for
differences in network architecture. Specific consis-

tent settings include: The initial learning rate was

set to 0.001 for all models, which adaptively
changed based on the validation set loss value with
a minimum of 107%; the activation function was Re-
LU for all; the optimizer was Adam for all; and the
loss function used was Dice loss for all models. The
specific differences in parameters between models
are detailed in Table 1. The comparison models in-
clude UNet, ResUNet, PSPNet (Pyramid scene
parsing network)"””’, DeepLabv3+, ALP-UNet™,
FlexiCrackNet™ and the improved model proposed
in this study. Based on the training loss trends of
each model, as well as a comprehensive consider-
ation of training cost and computational resources,

the number of training epochs was set to 800.

Table 1 Comparison of various models

o ) Residual o
Training model Convolution . ASPP Feature description
connection
Single-size .
UNet . None None Basic UNet structure
convolutional kernel
Single-size . . . o .
ResUNet i Yes None Introduce residual units to improve training stability
convolutional kernel
Single-size ) )
Deeplabv3+ i None ASPP extracts global contextual information
convolutional kernel
Multi-size

convolutional kernels;
PSPNet ) None
multi-scale concatena-

tion
Multi-size

ALP-UNet . Yes
convolutional kernel

Single-size
FlexiCrackNet  convolutional kernel; Yes
multi-scale addition
Multi-size
Improved model convolutional kernels; Yes

multi-scale addition

Pyramid pooling

Strong global context modeling capability

Fuse multi~scale features and improve fine-crack de-

Laplacian pyramid

tection with minimal model complexity

Flexible feature pipeline with SAM-transferred fea-

None

tures

Enhance multi-scale feature extraction capability

2.2 Dataset

The training and validation data utilized in this
study were derived from Crack500*, a dataset
comprising pavement images captured from the as-
phalt roads of the main campus of Temple Universi-
ty, USA. However, the test data adopted two data-
sets: One was Crack500, and the other was a
self-made dataset. The images of the self-made data-
set were collected from the concrete pavements of
the main roads in Shijiazhuang Tiedao University.

After comparing the original pavement crack images

with their corresponding annotated images, it was
found that some samples in the Crack500 dataset ex-
hibit low matching accuracy between crack images
and their labels. Specifically, the annotated images
contained crack regions that were identified based
on annotators’ experience but were difficult to veri-
{y in the original images through pixel comparison
or visual inspection. Such samples would severely
compromise the model’ s judgment. To ensure the
quality of model training, samples with excessively

large contrast differences were excluded from the
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original dataset, and data samples with high match-
ing accuracy were selected as the dataset for this
study. The refined training set consists of 559 imag-
es, each sized at 640 pixel X 320 pixel; the valida-
tion set contains 179 images, while the test set
comprises 321 images, with each pavement image
paired with its corresponding label maps. The
self-made dataset includes 215 images with a pixel
size of 640X 320 and their corresponding label
maps.

To further expand the training set, image aug-
mentation was applied to the original samples before

each training epoch. Random modifications were

performed one or multiple times on the original im-
ages, ensuring that each training iteration utilized
different images, thereby effectively expanding the
training samples. The augmentation operations in-
cluded flipping, rotation, brightness adjustment,
and optical distortion, among others. A comparison
of the effects before and after augmentation is pre-
sented in Table 2. Data augmentation operations not
only enhance the diversity of data samples, suffi-
ciently meeting the training volume requirements of
all models in this study, but also improve the model
generalization ability, thereby reducing the occur-

rence of overfitting to a certain extent.

Table 2 Examples of enhancement effects

Augmentation o
Parameter description

types

Group 1 Group 2

Original image None

Flip Horizontal or vertical flipping
Rotation Random rotation angle range: =+ 30°
. Brightness variation range:
Brightness o
) (—0.2, 0.2), contrast variation range:
adjustment

(—0.2, 0.2)

y value range: (80, 120)
Random gamma . . . .
) (for adjustment in relatively bright or
transformation )
dark scenarios)

Alpha = 120 (deformation intensity),

Elastic sigma = 6 (Gaussian smoothing

deformation intensity), alpha_affine = 0

(affine transformation)
Num _steps = 5 (dividing the image

o ) into a 5X 5 grid), distort_limit = 0.3
Grid distortion 4 .
(controlling the maximum offset of

each grid point)

. Distort_limit = 2 (radial distortion
Optical o o
) ) coefficient range), shift_limit = 0.5
distortion . ]
(center point translation range)

2.3 Evaluation metrics

This study evaluates and compares model per-

formance based on the prediction outcomes of TP

(True positive) , FP (False positive) , TN (True
negative) , and FN (False negative). Using these

metrics, the mean intersection over union (mlIoU) ,
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Precision, Recall, and Fl-score are calculated for
assessment.

TP, FP, TN, and FN are typically represent-
ed by the number of pixels and are used to compute

various evaluation metrics, as shown in Table 3.

Table 3 Meanings of TP, FP, TN, and FN

Index Definition
Samples that are actually positive are correctly clas-
sified as positive by the model
ep Samples that are actually negative are wrongly clas-
sified as positive by the model
N Samples that are actually negative are correctly

classified as negative by the model
Samples that are actually positive are wrongly clas-

sified as negative by the model

The intersection over union (IoU) refers to the
ratio of the intersection to the union between the pre-
dicted result and the true annotation. For each cate-
gory, the intersection and union ratio of that catego-
ry is calculated, and then the average of the intersec-
tion and union ratios of all categories is taken to ob-

tain mIoU, as shown in
£ TP
ToU = —
o k;TPJrFPJrFN

(3)

Precision represents the proportion of samples
that are actually in the positive class among those
predicted by the model, reflecting the prediction ac-

curacy of the network model, as shown in
TP
TP + FP

Recall represents the proportion of samples

(4)

Precision =

that are actually in the positive class and are correct-

ly predicted by the model to be in the positive class.

It mainly measures the network model’ s ability to

recognize positive class samples, as shown in
TP

TP+ FN

Fl-score is the harmonic average of precision

Recall = (5)

and recall, and used to comprehensively evaluate

the performance of the model, as shown in
2 X Precision X Recall
Precision + Recall

(6)

Fl-score =

3 Experimental Results and Analy-

SIS

3.1 Comparison of evaluation metrics before

and after data augmentation

To demonstrate the effectiveness of the data
augmentation operation, this study trained the im-
proved model both with and without data augmenta-
tion, and compared their performance results. Spe-
cific data are presented in Table 4. By comparing
the model’ s prediction results before and after aug-
mentation, it can be observed that all evaluation
metrics of the improved model increase. This result
fully verifies the importance and effectiveness of the
data augmentation operation. As a key preprocess-
ing step, data augmentation not only effectively ex-
pands the scale of the training set and alleviates the
problem of model overfitting, but also helps im-
prove the model robustness, ultimately achieving

the optimization of model segmentation accuracy.

Table 4 Comparison of evaluation metrics for the improved model before and after data augmentation

Model Original image

Ground truth map Precision

Recall ~ Fl-score mloU Binary map

Improved model

»

before augmentation

Improved model

after augmentation

0.5313

0.7347 07241 0.7103 0.5687 ‘

0.706 6 0.5144 0.3859

3.2 Ablation experiments

To verify the effectiveness of different modules
in the proposed improved model, this section investi-

gates the impacts of the multi-scale convolution and

ASPP module on model performance through abla-
tion experiments. Based on the basic ResUNet frame-
work, three experimental settings were designed as

follows: (1) Introducing only multi-scale convolu-
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tion; (2) introducing only the ASPP module; (3) in-
troducing multi-scale convolution and ASPP. All ex-

periments were conducted under the Crack500 datas-

et and training strategy, with mloU, Precision, Re-
call, and Fl-score adopted as evaluation metrics.

The specific comparisons are presented in Table 5.

Table 5 Comparison of evaluation metrics in ablation experiments

Model Precision Recall Fl-score mloU

ResUNet 0.688 0 0.748 6 0.695 8 0.552 1

Introducing only multi-scale convolution 0.702 0 0.742 7 0.701 2 0.556 9
Introducing only ASPP module 0.718 7 0.719 1 0.701 2 0.557 5
Improved model 0.734 7 0.724 1 0.710 3 0.568 7

As can be seen from the data comparison in the
table, both the introduction of multi-scale convolu-
tion alone and the ASPP module alone achieved a
certain degree of performance improvement com-
pared with the basic ResUNet. This indicates that
both improvement strategies play a positive role in
feature extraction and contextual information fusion.
Furthermore, after combining multi-scale convolu-
tion with the ASPP module, all metrics are relative-
ly balanced, and all metrics except Recall reach the
optimal values. This demonstrates that the two mod-
ules have complementary advantages, which can ef-
fectively improve the segmentation accuracy and ro-
bustness of crack regions, thus verifying the ratio-
nality and effectiveness of the design of the pro-

posed improved model.
3.3 Comparison of model prediction results

In the comparative experiments of this study,
four typical semantic segmentation models, such as
UNet, ResUNet, Deepl.abv3+ and PSPNet, and
two novel models proposed in recent years, namely
ALP-UNet and FlexiCrackNet, were selected. As
a classic encoder-decoder structure, UNet serves as
a commonly used baseline model in medical imaging
and crack segmentation. ResUNet introduces a re-
sidual structure on this basis, enhancing feature ex-
traction capability. Deepl.abv3-+ achieves multi-
scale context modeling through atrous convolution
and the ASPP module, making it a widely applied
high-precision method in current research. Mean-
while, PSPNet acquires global contextual informa-
tion via the pyramid pooling module (PPM), repre-
senting another type of multi-scale feature aggrega-

tion approach. Incorporating PSPNet into the com-

parison not only helps demonstrate the differences
among various multi-scale mechanisms, but also
contributes to comprehensively verifying the effec-
tiveness and generalization of the improved model
proposed in this study. In addition, as crack segmen-
tation models proposed in recent years, ALLP-UNet
and FlexiCrackNet also incorporate multi-scale fea-
ture fusion mechanisms in their structures. Specifi-
cally, ALP-UNet enhances its ability to capture fine
cracks through adaptive pyramid feature extraction
and a lightweight attention module; FlexiCrackNet,
on the other hand, improves the model’ s adaptabili-
ty to crack morphologies of different scales by lever-
aging multi-scale convolution and a feature reorgani-
zation strategy. Incorporating these two models with
multi—scale fusion capabilities into the comparison
can more comprehensively evaluate the advantages
and improvement effects of the proposed method un-
der the same multi-scale modeling framework.

As demonstrated by the partial model predic-
tion results presented in Table 6, all five original im~-
ages exhibit varying degrees of noise, characterized
by relatively rough crack edges. The models exhibit
distinct feature extraction performances when pro-
cessing such images. UNet and ResUNet demon-
strate significant deficiencies in handling noisy crack
images: Their prediction results contain speckle
noise, and the noise at the boundaries severely im-
pairs the accuracy of crack shape extraction. PSPNet
outperforms the aforementioned two models; how-
ever, certain crack regions in its prediction results
appear blurred, and the precision of edge details is
lower compared with the proposed improved model,

leading to a reduction in overall accuracy. Although
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Table 6 Test results of different models on the Crack500 dataset

Group

Original im

age

Ground

truth map

UNet
ResUNet

PSPNet

Deep-
Labv3—+

ALP-UNet g

FlexiCrack- @

et =‘-

Improved

model

Deepl.abv3—+ effectively suppresses noise with mini-
mal speckles in the generated results, it is prone to
partial crack loss or incomplete extraction. Flexi-
CrackNet still suffers from noise interference, while
the extraction performance of ALLP-UNet is second
only to the improved model with a clean back-
ground. The improved model proposed in this study
not only adeptly mitigates noise interference but also
preserves crack edge details with higher precision,
demonstrating superior comprehensive performance.

In Group 3 images, a comparison of the cracks
within the red bounding boxes reveals that the ex-
traction result of the improved model is most consis-
tent with the original image. In Group 5 images, by
comparing the crack branches within the red bound-
ing boxes, it can be observed that the improved

model not only extracts complete branches but also

avoids generating extraneous noise at the boundar-
les, exhibiting the highest similarity to the ground
truth map.

In summary, when noise is present in the imag-
es, the improved model in this study is almost unaf-
fected by noise and can capture more precise details
at crack edges, better restoring the crack boundary

details and achieving higher accuracy.
3.4 Comparison of evaluation metrics

As shown in Table 7, the improved model pro-
posed in this study outperforms other models,
achieving the highest scores in both mloU and
F1-score. In contrast, DeeplLabv3-+ and ALP-UNet
attain the highest Precision and Recall, respective-
ly. The improved model achieves an mloU of
0.568 7, surpassing UNet’ s score of 0.539 0, Res-
UNet’ s 0.552 1, PSPNet’ s 0.566 7, Deep-
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Labv3+’s 0.553 9, ALP-UNet’ s 0.533 1, and
FlexiCrackNet’s 0.558 6. This indicates that the im-
proved model more accurately delineates crack re-
gions, demonstrating superior overall segmentation
accuracy and better overlap between predicted and
actual crack areas.

The Precision of the improved model is 0.734 7,
which exceeds UNet’s 0.674 1, ResUNet’s 0.688 0,
PSPNet’ s 0.711 1, ALP-UNet’ s 0.660 2, and
FlexiCrackNet” s 0.696 4, although it is slightly
lower than Deeplabv3—+ s 0.784 6. This suggests
that the improved model generates relatively fewer
false positives in crack identification, indicating that
a higher proportion of predicted crack areas are in-
deed cracks. The marginally lower Precision com-
pared with DeepLabv3-+ may be attributed to the
latter’ s use of a lightweight backbone network Mo-
bileNetv2, which utilizes depthwise separable con-
volution to effectively reduce the computational cost
during feature extraction while maintaining high dis-
criminative ability, thus gaining certain advantages
in distinguishing between positive and negative sam-
ples. In addition, the lightweight design achieves a
good balance between accuracy and efficiency,
which is also a possible reason for the slightly better
Precision, and meanwhile provides a certain im-
provement direction for the model in this paper.

The Recall of the improved model is 0.724 1,
which is lower than ResUNet’s 0.748 6, PSPNet’s
0.741 3, UNet’s 0.747 2, ALP-UNet’s 0.755 6,
and FlexiCrackNet’s 0.745 5, but higher than Dee-
pLabv3-+ s 0.660 3. This finding may suggest that
the improved network has established a stricter deci-
sion boundary, which reduces the number of sam-
ples predicted as positive, thereby lowering the risk
of false positives; however, this also results in a
greater number of positive samples being missed.
The F1-score of the improved model is 0.710 3, sur-
passing UNet” s 0.685 1, ResUNet’ s 0.695 8,
PSPNet” s 0.709 2, DeepLabv3+’ s 0.693 2,
ALP-UNet’s 0.679 6, and FlexiCrackNet’s 0.702 4.
Although the improved model does not achieve the
highest Precision or Recall individually, its superior
Fl-score indicates a better balance between Preci-

sion and Recall compared with the other models, ef-

fectively identifying cracks accurately while maxi-
mizing the detection of all cracks. Although ALP-
UNet is a novel model proposed in recent years, its
performance is poor, and there are several potential
reasons for this phenomenon: (1) All the settings
of the original model are not fully reproduced during
the implementation process; (2) its lightweight de-
sign results in suboptimal performance on the
Crack500 dataset; (3) the detail enhancement com-
ponent of the model amplifies noise components.
Overall, the improved model in this study demon-
strates certain advancements over other models. It
achieves significant gains relative to UNet and Res-
UNet and exhibits balanced performance when com-
pared with PSPNet and DeepLabv3+, resulting in

partial improvements as well.

Table 7 Performance comparison of various models on
the Crack500 dataset

Model Precision  Recall Fl-score mloU
UNet 0.6741 0.7472 0.6851 0.5390
ResUNet 0.6880 0.7486 0.6958 0.5521
PSPNet 0.7111 0.7413 0.7092 0.566 7
Deepl.abv3+ 0.7846 0.6603 0.6932 0.5539
ALP-UNet 0.6602 0.7556 0.6796 0.5331
FlexiCrackNet 0.6964 0.7455 0.7024 0.5586
Improved model 0.7347 0.7241 0.7103 0.5687

3.5 Model generalization validation

To further verify the generalization ability of
the improved model, supplementary experiments
are conducted on the self-made dataset in this pa-
per. Compared with the Crack500 dataset, the
self-made dataset has significant differences in im-
age acquisition environment, pavement base materi-
al, and crack morphological features, which can
more comprehensively test the adaptability of the
model in non-training scenarios. The experiment
maintains consistent control variables: All compari-
son models are trained based on the Crack500 datas-
et and only perform prediction tests on the
self-made dataset. All other parameter settings are
fully consistent with those of the aforementioned
comparative experiments. Selected visual results of
the tests are presented in Table 8, while the de-
tailed quantitative evaluation metrics are summa-
rized in Table 9.
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Table 8 Test results of different models on the self-made dataset

Group 1 2 3 1 » -
Original A / - R /Q"‘s’-—j
image \ o ' ; B o b )
_abv NN

ALP-UNet ‘

FlexiCrack- ‘

Improved ‘

Table 9 Performance comparison of various models on

the self-made dataset

Model Precision  Recall Fl-score mloU
UNet 0.8827 0.5670 0.6542 0.5288
ResUNet 0.8819 0.7082 0.7616 0.6450
PSPNet 0.8338 0.6995 0.7275 0.6210
Deepl.abv3+ 0.8546 0.1880 0.2694 0.167 3
ALP_UNet 0.8769 0.6390 0.7113 0.586 2
FlexiCrackNet 0.8588 0.6562 0.7147 0.5905
Improved model  0.8731 0.7794 0.8073 0.690 3

Through a comparative analysis of the extrac-
tion results across all image groups, it can be ob-
served that only Deeplabv3— exhibits inferior per-
formance, characterized by incomplete crack extrac-
tion with some images even failing to detect any
cracks. Thus, Deeplabv3+ is deemed to have

poor generalization capability. For the remaining

models, comparative evaluations reveal no signifi-
cant differences in their extraction performance
when processing images with distinct
crack-pavement contrast such as Groups 1 and 5.
However, notable discrepancies emerge among the
models when handling images with blurred cracks
such as Groups 3 and 4. In Group 3, only
ALP-UNet and the proposed improved model suc-
cessfully extract cracks consistent with the ground
truth within the red bounding boxes while the other
models yield incomplete results, and the cracks ex-
tracted by the improved model are more aligned
with the ground truth compared to those from
ALP-UNet. In Group 4, ALP-UNet and the im-
proved model again demonstrate superior extraction
performance within the red bounding boxes with the

improved model achieving the optimal results.
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The experimental results show that the overall
performance of the improved model on the
self-made dataset is outstanding : Not only its com-
prehensive performance is better than the test re-
sults of the model on the Crack500 dataset, but al-
so its advantage over other comparison models is
more significant. It can be seen from Table 9 that ex-
cept for the Precision of the improved model being
0.873 1, which is slightly lower than that of UNet
(0.882 7), all other values are the highest, namely
mloU is 0.690 3, Recall is 0.779 4, and F1-score is
0.807 3. Based on a comprehensive analysis of data
characteristics and model structure, the causes of
the above results can be summarized into the fol-
lowing three points. (1) Difference in data annota-
tion accuracy: The ground truth maps of the
self-made dataset have a higher matching degree
with the original images, and the annotation errors
are smaller. However, some samples in the
Crack500 dataset have large deviations between
the original images and the ground truth maps.
This difference directly leads to better test accura-
cy of the model on the self-made dataset. (2) Ad-
vantage of feature extraction in the improved mod-
el: The improved model fuses crack features of dif-
ferent dimensions through multi-scale convolution,
and can fully learn the local details and global struc-
tural information of cracks during training, making
it with stronger feature transfer ability. It is able to
adapt to test sets with significant differences from
the training set, highlighting good generalization
(3) Although Deeplabv3+ per-

forms well on the Crack500 dataset, its perfor-

performance.

mance drops significantly on the self-made dataset.
It is speculated that its model structure has a
strong dependence on the style of training data, its
generalization ability has certain limitations, and its
adaptability is insufficient in crack segmentation
tasks across scenarios and materials. (4) While
PSPNet achieves comparable performance to the
improved model proposed in this study on the
Crack500 dataset, significant discrepancies arise
when tested on the self-made dataset. This indi-
cates that despite the similar test results of the two

models on the Crackb00 dataset, there exists a

substantial gap in their generalization performance,
undoubtedly demonstrating the superiority of the
improved model in this work. (5) ALP-UNet and
FlexiCrackNet exhibit only moderate performance
on the self-made dataset. By analyzing their evalua-
tion metric results and combining this with an ex-
amination of their model structures, it is inferred
that the potential cause for their underwhelming
performance lies in the accuracy degradation in-
duced by their lightweight design.

In conclusion, the improved model can still
maintain a higher accuracy level than most compari-
son models on the new test dataset, and shows bet-
ter segmentation performance in datasets with high-
er annotation quality and significant scene differenc-
es. This result fully proves that the improved model
proposed in this paper has strong generalization abili-
ty and higher application value in actual complex

scene crack segmentation tasks.

4 Conclusions

This study implements the automatic extrac-
tion of pavement cracks using neural networks,
with the resulting classification outcomes serving as
a foundation for subsequent pavement crack process-
ing. Seven network models were compared in terms
of classification performance, including UNet, Res-
UNet, PSPNet, Deepl.abv3+, ALP-UNet, Flex-
iCrackNet, and the improved model proposed in
this paper, to evaluate their effectiveness in crack
detection tasks. In addition, the effectiveness of da-
ta augmentation and the two proposed improve-
ments was verified separately. The comparison of
results before and after data augmentation demon-
strates the necessity of data augmentation for en-
hancing model robustness, while the ablation experi-
ments confirm that both the multi-scale convolution
and the ASPP module can indeed improve the accu-
racy of the original model to a certain extent, with
the combined effect of the two being more favor-
able. Finally, by comparing the test results on the
self-made dataset with those on the Crack500 datas-
et, the excellent generalization ability of the im-

proved model is verified. Through the experimental
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analysis of comparing the data results of different
models, significant differences among the models in
crack extraction capabilities were demonstrated.
Among the representative overall accuracy metrics,
the Fl-scores indicated that the proposed improved
model achieved the best performance. This improve-
ment is attributed to the network structure, which
extracts features simultaneously through multiple
branches with varying convolution kernel sizes,
thereby enhancing the model’ s ability to capture
crack features at various scales and improving its ef-
fectiveness in delineating boundaries and fine cracks.
Additionally, the incorporation of the ASPP mod-
ule with atrous convolutions of different sizes further
enhances the model’ s ability to extract details at
multiple scales, while the combination of local de-
tails with global semantics significantly boosts accu-
racy. Unlike other neural network models that sim-
ply add the ASPP module, the model proposed in
this study achieves early multi-scale feature fusion
through a multi-scale parallel convolution structure
in the encoding phase. Furthermore, it leverages
the ASPP module in the intermediate layer to fur-
ther capture cross-scale contextual information.
Through the organic integration of multi-scale con-
volution and ASPP, a bottom-up hierarchical fea-
ture representation framework that balances details
and semantics is constructed. This not only leads to
a certain improvement in the overall accuracy of the
model but also significantly optimizes its classifica-
tion performance. This series of comparative experi-
ments not only validates the superiority of the im-
proved model but also provides direction for future
enhancements, making the new model design more
targeted.

The improved model proposed in this study has
achieved certain results in crack segmentation accu-
racy and robustness, but there is still room for fur-
ther improvement. First, to address the issues of
large model parameter size and high computational
cost, lightweight attention mechanisms or structural
reparameterization techniques can be explored in fu-
ture research to reduce redundant computations and
improve inference efficiency. Second, regarding the

insufficient detection of fine cracks, pyramid feature

fusion or multi~scale attention mechanisms can be in-
tegrated to enhance the model’ s ability to perceive
targets of different scales. In addition, self-super-
vised learning and multi-modal data fusion remain
promising research directions, for instance, using
unlabeled data to improve the generalization of fea-
ture learning, or combining image data with structur-
al sensing data to achieve more comprehensive crack
identification. Through in-depth research on the
above directions, it is expected that while ensuring
segmentation accuracy, the lightweight level of the
model and its small-target detection performance can
be further improved, thereby better adapting to the

practical needs of complex road scenarios.
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