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Abstract: Addressing the issue that flight plans between Chinese city pairs typically rely on a single route， lacking 
alternative paths and posing challenges in responding to emergencies， this study employs the “quantile-inflection point 
method” to analyze specific deviation trajectories， determine deviation thresholds， and identify commonly used 
deviation paths. By combining multiple similarity metrics， including Euclidean distance， Hausdorff distance， and 
sector edit distance， with the density-based spatial clustering of applications with noise （DBSCAN） algorithm， the 
study clusters deviation trajectories to construct a multi-option trajectory set for city pairs. A case study of 23 578 
flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the 
effectiveness of the proposed framework. Experimental results show that sector edit distance achieves superior 
clustering performance compared to Euclidean and Hausdorff distances， with higher silhouette coefficients and lower 
Davies⁃Bouldin indices， ensuring better intra-cluster compactness and inter-cluster separation. Based on clustering 
results， 19 representative trajectory options are identified， covering both nominal and deviation paths， which 
significantly enhance route diversity and reflect actual flight practices. This provides a practical basis for optimizing 
flight paths and scheduling， enhancing the flexibility of route selection for flights between city pairs.
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0 Introduction 

With the rapid development of China’s civil 
aviation transportation industry， the number of 
flight operations continues to rise. In 2023， the an⁃
nual flight movements at national airports reached 
11.708 2 million， surpassing pre-pandemic levels 
（11.660 4 million in 2019）［1］. However， the limita⁃
tions of finite airspace resources have become in⁃
creasingly apparent. The constraints of single-route 
operations in city-pair flights are magnified， particu⁃
larly when planned trajectories are disrupted by con⁃
vective weather or flow control. The lack of alterna⁃
tive routes often leads to delays or cancellations， in⁃
creasing airline operational costs and compromising 

passenger experience.
The next generation air transportation system 

（NextGen） proposed by the Federal Aviation Ad⁃
ministration （FAA） has advanced this concept 
through trajectory-based operations （TBO）［2］. Its 
core component， the Collaborative Trajectory Op⁃
tions Program （CTOP）， introduces the trajectory 
options set （TOS）［3］—A weighted set of preferred 
routes submitted by airlines to air traffic control. 
This system has been widely implemented in inter⁃
national busy air routes， significantly reducing plan⁃
ning complexity and operational costs while optimiz⁃
ing flow management［4-8］. Building upon this founda⁃
tion， the introduction of multi-path trajectory op⁃
tions provides potential solutions for domestic chal⁃
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lenges. By generating preferred route sets for specif⁃
ic city-pairs， multi-path trajectory options enhance 
route planning flexibility， mitigate pressure from 
sudden operational adjustments， optimize fuel effi⁃
ciency and punctuality rates， and facilitate collabora⁃
tive decision-makings between air traffic manage⁃
ment and airlines.

The TOS generation traditionally relies on air⁃
line experience and predefined routes. In the United 
States， FAA playbook routes serve as common im ⁃
plementations， while domestic research and stan⁃
dardization in this area remain underdeveloped. Re⁃
cent advancements in data-driven technologies have 
positioned trajectory clustering as a novel approach 
for identifying frequently used routes from massive 
historical data， establishing a more scientific founda⁃
tion for strategic-phase trajectory option generation. 
For example， Pham［9］ introduced a network model-
based user-preferred path generation method that 
considers both airline and air traffic control require⁃
ments. Zhu et al.［10］ developed a Transformer-based 
trajectory option generator that automatically gener⁃
ates candidate paths conforming to planning princi⁃
ples using historical trajectory data. Furthermore， 
Evans et al.［11］ implemented an automated TOS gen⁃
eration method with high operational acceptance 
probability by combining hierarchical clustering and 
machine learning based on historical flight plan revi⁃
sion data. Mateos Villar et al.［12］ further proposed a 
novel approach that leverages machine learning to 
extract airspace users’ route preferences and predict 
new routes not observed during the model training 
phase， thereby providing a more adaptive optimiza⁃
tion solution for TOS generation.

By analyzing actual flight patterns， the trajecto⁃
ry clustering can reveal commonly adopted devia⁃
tions from predefined routes， addressing the limita⁃
tions of single-path planning. Research indicates that 
the data-driven preference path mining can optimize 
airspace resource allocation and reduce flight de⁃
lays［4］. Current research demonstrates the prevalent 
use of density-based clustering algorithms in trajec⁃
tory analysis due to their robustness and elimination 
of pre-defined cluster requirements. For instance， 
Ye et al.［13］ developed a multidimensional aviation 

trajectory clustering method using Hausdorff dis⁃
tance and the density-based spatial clustering of ap⁃
plications with noise （DBSCAN） algorithm to iden⁃
tify abnormal trajectories， extracting central trajec⁃
tories through statistical methods combined with 
flight distance and similarity metrics. Wang et al.［14］ 
employed kernel principal component analysis （KP⁃
CA） and the DBSCAN to enhance the trajectory 
type differentiation and complete clustering after the 
interference removal spectral clustering also emerg⁃
es as a prominent approach. Ma et al.［15］ classified 
terminal area trajectories using heading factor-based 
Euclidean distance similarity measures combined 
with improved spectral clustering. Wang et al.［16］ in⁃
vestigated spectral clustering-based identification of 
prevalent traffic flows in terminal areas using three-

dimensional trajectory data. Li et al.［17］ addressed 
computational efficiency and parameter selection 
challenges in traditional spectral clustering through 
resampling and natural neighbor methods for effec⁃
tive terminal area traffic flow identification. Recent 
years have witnessed the emergence of deep learn⁃
ing applications. Rao et al.［18］ implemented deep 
clustering combining autoencoders with bidirectional 
long short-term memory （Bi-LSTM） networks for 
air traffic flow classification and anomaly detection 
through Q-distribution. Zeng et al.［19］ integrated 
deep autoencoders （DAEs） with Gaussian mixture 
models （GMMs） for terminal area trajectory clus⁃
tering. These methodologies provide theoretical and 
technical references for this study.

Although the existing studies have demonstrat⁃
ed the usefulness of Euclidean distance， Hausdorff 
distance， and other traditional similarity measures 
for clustering flight trajectories， these methods face 
notable limitations when applied to long-sequence 
city-pair trajectories. Euclidean distance is sensitive 
to local deviations and requires strict temporal align⁃
ment， while Hausdorff distance emphasizes extreme 
points and may overestimate the dissimilarity. Both 
approaches will incur high computational costs when 
dealing with full-route trajectories comprising tens 
of thousands of points， reducing their efficiency and 
robustness. To address these challenges， this study 
introduces the sector edit distance， which represents 
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each trajectory as a sequence of sectors controlled 
by air traffic management. By transforming similari⁃
ty measurement into sequence editing operations， 
the sector edit distance reduces computational com ⁃
plexity， better reflects controller decision-making 
preferences， and enhances clustering performance 
for long-sequence trajectories. The innovation of 
this research therefore lies in systematically compar⁃
ing traditional distance measures with the proposed 
sector edit distance， and in demonstrating its effec⁃
tiveness for generating trajectory option sets in city-

pair operations.
This study proposes a trajectory clustering-

based framework for generating city-pair trajectory 
options， as illustrated in Fig.1. Firstly， the planned 
path data and actual trajectory data are jointly pro⁃
cessed to identify deviation trajectories， where a de⁃
viation marking method is applied to distinguish 
flights that significantly diverge from their planned 

paths. Secondly， these deviation trajectories are 
clustered using multiple similarity measurement 
methods combined with a DBSCAN-based cluster⁃
ing algorithm， in order to extract typical deviation 
patterns. Finally， the central trajectories of both de⁃
viation and non-deviation clusters are integrated to 
determine a trajectory option set， which incorpo⁃
rates commonly used deviation paths and provides 
alternative route options. The proposed TOS refers 
to a collection of typical flight paths preferred by air⁃
lines and pilots based on historical data， operational 
experience， and considerations of safety， economy， 
and punctuality. It aims to provide diversified refer⁃
ences during flight planning while maintaining high 
acceptability in air traffic management. Trajectory 
options originate from two sources： Trajectories ad⁃
hering to planned routes and frequently deviated tra⁃
jectories from plans.

1 Flight Trajectory Option Identifi⁃
cation Basic 

1. 1 Fundamentals of flight operations　

Chinese flight plans follow the Civil Aviation 
Pre-flight Plan Management Regulations （CCAR-

93）［20］， and are prepared by the airline’s operations 
control center based on seasonal schedules and real-
time conditions （such as weather and airspace re⁃
strictions）. The plan includes information such as 
flight number， aircraft type， route， altitude， and de⁃
parture/arrival times. After approval by air traffic 
control （ATC）， the plan is executed. The process 
includes airlines， based on seasonal schedules and 
real-time conditions （such as weather and airspace 

restrictions）， and preparing flight plans through the 
operations control center， which include flight num ⁃
ber， aircraft type， route， altitude， and expected de⁃
parture/arrival times. These plans are submitted to 
ATC for approval at least 5 d before the flight， typi⁃
cally via AFTN/SITA messages. After the re⁃
view， ATC allocates a calculated takeoff time 
（CTOT） slot and issues the permit. During the exe⁃
cution phase， the crew follows the planned route 
and coordinates with tower， terminal， and area con⁃
trol in sequence， reporting positions through data 
link or voice communication with controllers. In 
case of dynamic adjustments （such as flow con⁃
trol）， ATC issues instructions， which the pilot fol⁃
lows. After landing， actual flight data is archived for 

Fig.1　Framework for determining the trajectory option set
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future optimization. The operational process of a 
flight is shown in Fig.2. The flight plan ensures op⁃
erational safety and efficiency. The proposed trajec⁃
tory option set can provide multiple path references 
for airlines when preparing flight plans， enhancing 
the adaptability of route selection. As shown in 
Fig.2， both ATC and airlines play central roles in 

the flight operation process. Airlines are responsible 
for preparing and submitting flight plans， while 
ATC approves， allocates time slots， and issues ad⁃
justment instructions during the execution. Devia⁃
tion trajectories often arise from the collaborative in⁃
teraction between ATC and airlines， reflecting both 
regulatory control and operational requirements.

1. 2 Deviation trajectory features　

To identify trajectory options that can provide 
more alternatives for reference when a flight faces 
complex airspace， this study’s trajectory option set 
considers two types of flights： One that follows the 
planned trajectory as per the flight plan， and the oth⁃
er that deviates from the original planned path （devi⁃
ation trajectory）. During the flight， factors such as 
weather， airspace restrictions （e.g.， temporary mili⁃
tary no-fly zones）， flow control （ATC adjustments 
to avoid congestion）， navigation errors， airline opti⁃
mization， and pilot operations may cause the flight 
to deviate from the planned route. Under strict defi⁃
nition， any deviation （such as navigation errors） is 
considered as a deviation from the planned trajectory.

However， the proposed trajectory option set 
must exhibit significant geographical variance to en⁃
sure that it does not fail entirely under different 
weather conditions. Therefore， under good weather 
and normal traffic conditions， flights typically fol⁃
low the planned route， but slight deviations may oc⁃
cur due to route width tolerance and pilot operation⁃
al errors. Such deviations are not considered devia⁃
tions from the planned trajectory. This study focus⁃
es on intentional， long-distance deviation trajecto⁃

ries， as they reflect proactive decisions made by pi⁃
lots and controllers in response to unexpected situa⁃
tions or operational optimizations， showing signifi⁃
cant geographical deviations and strong tendencies. 
These deviation trajectories differ from minor， arbi⁃
trary deviations within a sector： When a flight oper⁃
ates within a sector， it is controlled by the sector’s 
controller， and the flight has the flexibility to adjust 
its trajectory. Although it may not exactly match the 
planned route， it is still considered as a non-devia⁃
tion trajectory. However， if the flight deviates into 
another sector， cross-sector coordination is required 
between controllers， and since the airspace covered 
by sectors is large， changing sectors often results in 
significant distance deviations， making it easier to 
recognize as a deviation trajectory.

Fig.3 illustrates the characteristics of deviation 
and non-deviation flights. In Fig.3（a）， the flight 
does not perfectly align with the planned path， but 
there is no significant long-distance deviation from 
the planned route. In Fig.3（b）， the flight experienc⁃
es a long-range deviation due to strong convective 
weather in the southwestern part of Fujian， which is 
a clear and intentional deviation from the planned 
path. Such a trajectory is considered a deviation tra⁃
jectory.

Fig.2　Flight plan operation process
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2 Deviation Trajectory Identifica⁃
tion

To identify cases where a flight deviates from 
the planned path under normal conditions， it is nec⁃
essary to determine a threshold distance for such de⁃
viations. To accurately recognize the phenomenon 
of deviation， that is， under what circumstances a 
flight diverges from the planned path， this section 
employs statistical methods to establish the specific 
threshold for deviation behavior. This allows for the 
identification of deviation trajectories， laying the 
foundation for subsequent analysis of deviation paths.

2. 1 Trajectory preprocessing　

The raw data used in this study consists of ra⁃
dar fused trajectory data， including flight number， 
latitude and longitude of trajectory points， departure 
airport， destination airport， trajectory point alti⁃

tude ， time， speed， direction， and other relevant in⁃
formation. Due to the large volume of data per hour 
and the fact that the trajectory points are not com ⁃
pletely continuous， the data processing poses cer⁃
tain challenges.

To improve the data processing efficiency， this 
study merges the hourly fusion trajectory data into 
daily data and extracts the trajectory of each flight to 
construct a complete flight path. For flights span⁃
ning multiple days， the data is processed based on 
the departure date. The merged data files typically 
contain a large number of trajectory points. To re⁃
duce computational resource consumption and im ⁃
prove the processing efficiency， the multi-process⁃
ing technology is employed to process the daily da⁃
ta. Given that the trajectory data for a single flight is 
large， further memory optimization is achieved by 
increasing the time span between trajectory point 
samples for resampling.

Figs.4 and 5 show the trajectory of Flight 
CSN3569 before and after compression， respective⁃
ly. The original number of trajectory points is 642， 
and after compression， it is reduced to 128 points. 
From Fig.5， it can be observed that the shape of the 
compressed trajectory differs slightly from the origi⁃
nal trajectory only at the turns， while the overall 
shape remains highly consistent with the original tra⁃
jectory.

Fig.4　Original trajectory of CSN3569

Fig.3　 Schematic diagrams of deviation trajectory 
characteristics
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2. 2 Deviation threshold determination　

To calculate the deviation distance of a flight， 
this study determines the centerline of each route 
segment based on the planned flight path. The 
planned flight path of a flight is typically composed 
of trajectory data from multiple segments. To match 
each trajectory point to its corresponding route seg⁃
ment， this study calculates the distance from each 
trajectory point to all route segments and selects the 
segment with the minimum distance as the matched 
segment for that trajectory point.

Based on this， the shortest distance from each 
trajectory point to the route centerline （the line seg⁃
ment formed by connecting adjacent route points of 
the planned path） is calculated， in order to quantify 
the deviation degree of the flight. Fig.6 provides a 
schematic for calculating trajectory deviation， which 
involves computing the Euclidean distance d be⁃
tween each flight trajectory point and the route cen⁃
terline. If d exceeds a certain threshold， the trajecto⁃
ry point is considered to have deviated from the 

planned trajectory.
To determine the deviation threshold， the 

quantile⁃inflection point method is applied. The pro⁃
cedure is as follows：

（1） Calculate deviation distances for all trajec⁃
tory points relative to their planned routes.

（2） Select a high quantile （e. g.， 80th percen⁃
tile） as the initial candidate threshold， which filters 
out normal variations while retaining potential devia⁃
tions.

（3） Incrementally increase the threshold， and 
at each step， compute the proportion of points ex⁃
ceeding the threshold to generate a frequency⁃ 
threshold sequence.

（4） Construct the cumulative frequency curve 
and observe its growth trend.

（5） Identify the inflection point of the curve， 
where the growth rate slows significantly， as the de⁃
viation threshold.

This method ensures that the final threshold re⁃
flects both the statistical distribution of deviations 
and the operational distinction between normal varia⁃
tions and substantial trajectory deviations.

2. 3 Deviation trajectory marking　

This study proposes a method for identifying 
deviation trajectories to determine whether a flight’s 
trajectory has deviated from its planned path. Dur⁃
ing the cruising phase， if the number of points devi⁃
ating from the planned path exceeds the set thresh⁃
old， the trajectory is considered a deviation. A sin⁃
gle deviation point is not considered a deviation and 
the number of consecutive deviation points must be 
calculated. If the proportion of consecutive deviation 
points in the entire segment exceeds the threshold， 
the behavior is identified as a deviation.

Moreover， this study focuses on the set of tra⁃
jectory options between cities， primarily determin⁃
ing whether the flight deviates from its path during 
the cruising phase. Since the trajectory points during 
the takeoff and landing phases are outside the flight 
plan path and controlled by airport flight proce⁃
dures， these phases are not considered in this study. 
Assuming a trajectory sequence as shown in Fig.7， 
where 0 represents no deviation and 1 a deviation， 

Fig.5　Compressed trajectory of CSN3569

Fig.6　Schematic diagram of deviation trajectory calculation
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the calculation method for identifying a deviation tra⁃
jectory follows

Ratio =
∑
j = 1

K

seq j

∑
i = 1

N

Pi

(1)

where Ratio represents the proportion of deviation 
points， Pi the ith trajectory point where the cruising 
altitude exceeds 6 000 m； seq j the jth sequence of 
consecutive deviation points， with seq j>1； N the 
total number of trajectory points during the cruise 
phase （altitude>6 000 m） and K the number of con⁃
tinuous deviation segments， where each segment 
consists of consecutive points deviating beyond the 
threshold. When Ratio exceeds the set threshold 
（Thre）， the trajectory is considered a deviation tra⁃
jectory.

For clarity， the procedure is summarized as fol⁃
lows. （ 1 ） Only cruise-phase points （ altitude>
6 000 m） are retained. （2） For each point， the 
shortest distance to the planned route is computed. 
（3） A distance threshold dth is determined using the 
quantile-inflection method. （4） Each point is bina⁃
rized： 1 if its distance exceeds dth， otherwise 0. 
（5） Runs of consecutive 1 s （seqj） longer than one 
point are extracted， and Ratio in Eq.（1） is calculat⁃
ed. If Ratio exceeds ratio of Thre， the trajectory is 
classified as a deviation trajectory. （6） The devia⁃
tion trajectory is mapped into a sector sequence and 
compared with the planned sequence. A change in 
the sector sequence not only reflects geometric devi⁃
ation， but also indicates an ATC responsibility han⁃
dover， thereby linking deviation trajectories to both 
spatial displacement and operational significance.

3 Trajectory Option Set Genera⁃
tion Method 

3. 1 Similarity measurement　

In the clustering analysis of flight trajectories， 

accurate similarity measurement is the foundation 
for determining the similarity between trajectories. 
This study uses multiple similarity measurement 
methods to ensure precise evaluation of clustering 
results. Below are several commonly used similarity 
measurement methods.
3. 1. 1 Euclidean distance　

When processing flight trajectory data， a trajec⁃
tory consists of hundreds of trajectory points， and di⁃
rectly calculating the Euclidean distance between 
trajectories can result in high computational com ⁃
plexity. To address this issue， this study first ap⁃
plies the uniform manifold approximation and projec⁃
tion （UMAP） algorithm for dimensionality reduc⁃
tion of high-dimensional trajectory data. The core 
assumption of UMAP is that high-dimensional data 
points locally approximate some low-dimensional 
manifold， and the manifold is a geometric object lo⁃
cally resembling Euclidean space. Through this 
mapping， UMAP can reveal the underlying struc⁃
ture of high-dimensional data， while retaining both 
global and local geometric information， thus reduc⁃
ing the computational complexity when calculating 
distances.

In the reduced low-dimensional space， the di⁃
mensionality of trajectory points is significantly re⁃
duced， making the computation of Euclidean dis⁃
tances between trajectories more efficient. The Eu⁃
clidean distance between two trajectories is calculat⁃
ed by

d ( x,y ) = ∑
i = 1

n

( )xi - yi

2
(2)

where x and y represent two dimensionality-reduced 
trajectory points， and n is the reduced space dimen⁃
sion. By reducing the dimensionality， the computa⁃
tional load when calculating Euclidean distances is 
minimized， thereby effectively improving the effi⁃
ciency while maintaining an effective measure of 
similarity between trajectories.

Fig.7　Trajectory deviation calculation
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3. 1. 2 Hausdorff distance　

 The Hausdorff distance is a measure of the 
similarity between two sets， especially suitable for 
handling trajectories with a different number of 
points. In flight trajectory clustering， the Hausdorff 
distance can measure the maximum distance be⁃
tween two trajectories， specifically the distance be⁃
tween the farthest points on the two trajectories. 
Let A and B represent two trajectories， with their 
respective point sets being  A=｛a1，a2，…，am｝ and 
B=｛b1，b2，…，bn｝，the Hausdorff distance between 
the two sets is defined as

dH( A,B ) = max ( sup
a ∈ A

inf
b ∈ B

d ( a,b ),sup
b ∈ B

inf
a ∈ A

d ( a,b ) )
(3)

where d ( a，b ) represents the distance between 
points a and b， sup the supremum （the least upper 
bound）， and inf the infimum （the greatest lower 
bound）. The Hausdorff distance calculation takes in⁃
to account the maximum distance between trajecto⁃
ry points， making it suitable for irregular or differ⁃
ently sized trajectory data. It helps identify whether 
two trajectories have similarity in shape or path， 
and it is commonly used as a distance metric in 
flight trajectory clustering.
3. 1. 3 Sector edit distance　

In flight trajectory similarity measurement， the 
Euclidean distance， while computationally intuitive 
and straightforward， requires two trajectories to be 
of equal length （having the same number of points） 
and necessitates a strict one-to-one correspondence 
between points. It is highly sensitive to local devia⁃
tions. When applied to long-sequence full-flight tra⁃
jectories， significant deviations at individual points 
can markedly inflate the overall distance. The Haus⁃
dorff distance， capable of measuring the maximum 
deviation between the shapes of two trajectories， 
does not require the number of points to be identical 
and is suitable for comparing irregular trajectories. 
However， it is sensitive to outliers and incurs high 
computational overhead when processing large-scale 
data. Consequently， the above two traditional meth⁃
ods exhibit certain limitations in clustering long-se⁃

quence， city-pair flight trajectories.
To address these issues， this paper introduces 

the sector edit distance. This method represents 
flight trajectories as sequences of transited sectors 
and measures the dissimilarity between trajectories 
through sequence edit operations. This approach not 
only effectively reduces computational complexity 
but also captures the logic of air traffic control sector 
division and managerial decision-making， making it 
more suitable for the clustering and analysis of long-

range trajectories.
The edit distance refers to the minimum num ⁃

ber of editing operations required to convert one 
string into another. The types of operations include 
inserting a single character， deleting a single charac⁃
ter， and replacing a single character. This distance 
measurement is relatively simple and intuitive， and 
it effectively reflects the similarity between two 
strings. The calculation of the number of operations 
is typically achieved using dynamic programming.

The construction of the distance matrix based 
on edit distance is as follows. Firstly， for a given set 
of strings S=｛s1，s2，… ，sn｝， the edit distance be⁃
tween each pair of strings needs to be calculated. 
Then， the dynamic programming method is used to 
compute the edit distance， utilizing a two-dimen⁃
sional array edit［i］［j］ to represent the edit distance 
between the first i characters of string sj and the first 
j characters of string sj.

The steps for calculating the edit distance are 
as follows.

（1） Initialize edit［0］［0］ = 0.
（2） For the distance between an empty string 

and a non-empty string
ì
í
î

edit [ i ] [ 0 ]= i ( i characters need to be deleted )
edit [ 0 ] [ j ]= j ( j characters need to be inserted )

（4）
（3） Fill the entire matrix based on the dynamic 

programming equation. For strings A and B， where 
the indices of strings start from 1：

If A［i-1］=B［j-1］， edit［i］［j］ = edit［i-
1］［j-1］；

If A［i-1］≠B［j-1］
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edit [ i ] [ j ] = min

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

edit [ ]i - 1 [ ]j + 1 ( )delete

edit [ ]i [ ]j - 1 + 1 ( )insert

edit [ ]i - 1 [ ]j - 1 + 1 ( )replace

(5)
The sector distance described in this paper is 

based on edit distance， where each trajectory is rep⁃

resented as a sequence of sectors. Fig.8 illustrates 
how the trajectory of Flight CCA1734 is mapped to 
a sector string representation based on the sectors it 
passes through. When calculating the distance， each 
operation is not applied to a single character but rath⁃
er to modify the sector string， where the sector 
string is the basic element in the trajectory sequence.

The use of sector edit distance to measure the 
similarity between flight trajectories transforms the 
editing operations of individual trajectory points into 
edit operations based on sector sequences. Since 
each trajectory typically involves no more than ten 
sectors， and these sectors are formed through coor⁃
dination and handover by air traffic controllers， this 
approach not only avoids high computational com ⁃
plexity encountered in traditional methods for long 
trajectory similarity calculations， but also reflects 
the decision-making preferences of air traffic control⁃
lers.

Sector edit distance emphasizes local features 
and control strategies. By focusing on the transitions 
of trajectories between different control sectors， it 
effectively captures local differences and reflects the 
decision-making characteristics of controllers. This 
method provides a more reasonable and computa⁃
tionally efficient similarity measurement and cluster⁃
ing for the entire flight trajectory， considering the 
tendencies of air traffic controllers， thereby compen⁃
sating for the limitations of traditional methods.

3. 2 Clustering algorithm　

In the field of machine learning， the unsuper⁃
vised learning does not rely on labeled sample infor⁃

mation. Its core goal is to reveal the intrinsic struc⁃
ture and patterns of data by analyzing unlabeled da⁃
ta， laying the foundation for subsequent data analy⁃
sis. To mine commonly used deviation trajectories 
from trajectory data， clustering techniques in unsu⁃
pervised learning are essential， and this method has 
been widely used in trajectory recognition.

The DBSCAN is a density-based clustering al⁃
gorithm. Fig.9 illustrates the principle of DBSCAN 
clustering. This algorithm groups samples into clus⁃
ters based on regions with high-density sample 
points in the sample space. It relies on two key pa⁃
rameters： ε （Epsilon， also denoted as Eps）， which 
defines the neighborhood radius， and MinPts， the 
minimum number of points required to form a clus⁃
ter. The specific process of the algorithm is as fol⁃
lows.

（1） Type determination： Eqs.（6， 7） provide 
the criteria for identifying core sample points. For 
any sample p in the dataset D， if the number of 
neighbors within its radius ε is greater than or equal 
to MinPts， p is considered a core point； if the num⁃
ber of neighbors is less than MinPts， but p lies with⁃
in the neighborhood of a core point， it is considered 
a border point. Otherwise， it is treated as a noise 
point.

Fig.8　Sector sequence representation of Flight CCA1734
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（2） Cluster formation： From the dataset D， ar⁃
bitrarily select an unclassified core point q， and 
mark q and all core and border points within its 
ε neighborhood as belonging to class i. For all core 
points in class i， further classify all points in their 
ε neighborhoods as belonging to class i. This pro⁃
cess repeats until no more core or border points are 
found to belong to class i.

（3） Dataset update： Remove the already classi⁃
fied samples from D and set i=i+1.

（4） Repeat clustering： Continue Steps 2 and 3 
until all core and border points have been classified 
（noise points are not assigned to any class）.

N ε( p ) = { q ∈ D |dist ( p,q ) ≤ ε } (6)

| N ε( p ) |≥ MinPts (7)

where dist（p，q） represents the distance between 
points p and q， and ∣ N ε（p）∣ the number of points 
within the ε neighborhood of p. In this study， the ε 
neighborhood represents the similarity distance be⁃
tween each trajectory and other trajectory samples. 
Using different trajectory similarity metrics， the 
same neighborhood radius can produce different re⁃
sults. This study selects the DBSCAN algorithm 
over traditional clustering methods such as K-

means， primarily based on the following consider⁃
ations： Unlike algorithms such as K-means， DB⁃
SCAN does not require predefining the number of 
clusters. Given that the number of deviation patterns 
between Guangzhou and Shanghai is unknown， the 
DBSCAN can automatically detect clusters of any 
shape and size. Additionally， the DBSCAN can ef⁃
fectively identify and exclude noise points， which 
are prevalent in radar data due to anomalies or er⁃
rors， ensuring that the analysis focuses solely on 
meaningful deviation patterns.

3. 3 Trajectory option set determination method

This study aims to systematically identify com ⁃
mon trajectory patterns and construct a set of flight 
trajectory options based on these patterns through 
clustering analysis of flight deviation trajectories. 
First， clustering algorithms are used to classify devi⁃
ation trajectories and identify different trajectory 
clusters. Then， for each cluster， the centerline is fit⁃
ted using polynomial methods to represent its trajec⁃
tory characteristics. Finally， the resulting center tra⁃
jectories are used to generate trajectory option sets.

However， considering that the non-deviation 
trajectories in actual flight operations do not perfect⁃
ly align with the planned route， in addition to devia⁃
tion trajectories， it is necessary to calculate the cen⁃
ter trajectory for the actual flight trajectories under 
each planned route. For each planned route， the 
same polynomial fitting method is applied to calcu⁃
late the center trajectory. This method helps identify 
the regular deviations and patterns of flights along 
the planned route in different flight scenarios. Ulti⁃
mately， by combining the center trajectories of devi⁃
ation trajectories and planned routes， a set of flight 
trajectory options is constructed. The specific steps 
are as follows.

（1） Deviation trajectory clustering： Use clus⁃
tering algorithms to classify deviation trajectories 
and identify different trajectory clusters.

（2） Deviation trajectory centerline calculation： 
For each deviation trajectory cluster， calculate the 
center trajectory using polynomial fitting and the 
least squares method.

Suppose a cluster contains N trajectories， and 
each trajectory consists of Mi trajectory points. The 
coordinates of the points are denoted as （xij， yij）， 
where i=1， 2，…，N and j=1， 2，…，Mi. The fit⁃
ting function for the central trajectory can be ex⁃
pressed as

y = f ( x ) = a0 + a1 x + a2 x2 + ⋯ + ak xk (8)
where k is the order of the fitted polynomial. The pa⁃
rameter vector a= （a0， a1， … ， ak） is determined 
using the least squares criterion shown as

min
a

 ∑
i = 1

N

∑
j = 1

M i

( )yij - f ( )xij; a
2 (9)

Fig.9　Schematic diagram of DBSCAN clustering principle
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Solving this optimization problem yields the 
central trajectory function. Finally， all points in the 
trajectory cluster are projected onto the fitted curve 
to obtain the central trajectory of the cluster.

（3） Planned route centerline calculation： For 
each planned route’s actual flight trajectory， apply 
the same fitting method to calculate the center trajec⁃
tory.

（4） Trajectory option set generation： Integrate 
the center trajectories of deviation trajectories and 
planned routes to generate the trajectory option set.

4 Case Study 

4. 1 Experimental data and clustering evalua⁃
tion metrics　

The Pearl River Delta and Yangtze River Delta 
are China’s most economically developed regions， 
home to mega-cities and their respective airport clus⁃
ters. Table 1 lists the airports included in each clus⁃
ter along with their ICAO codes. The distance be⁃
tween these two regions is approximately 1 200 km， 
with complex terrain （such as the Nanling and 
Huangshan mountains）， and long ground transporta⁃
tion times （approximately 8—10 h by high-speed 
rail）， making air travel essential. As a result， the 
flight route from Guangzhou to the Shanghai airport 
cluster has become one of the busiest flight routes in 
China. The airspace in this region is complex， and 
the route is often affected by typhoons during the 
summer， with significant deviation phenomena， 
high flight demand， and diverse patterns， exhibiting 
rich flight behavior characteristics. Therefore， this 

study focuses on the flight trajectories between 
Guangzhou and the Shanghai airport cluster， analyz⁃
ing their trajectory option set.

Fig.10 shows the planned airways from Guang⁃
zhou airport cluster to Shanghai airport cluster， 
along with the involved sectors. Each integrated tra⁃
jectory file used in this study contains approximately 
300 000 trajectory data points per hour， and the 
merged daily trajectory data typically exceeds seven 
million points. The study period is set from 6 April 
to 15 July， 2023， when convective weather was fre⁃
quent， providing representative conditions for devia⁃
tion analysis. The dataset consists of flights from 
the Guangzhou airport cluster to the Shanghai air⁃
port cluster. After screening and cleaning， including 
the removal of incomplete or abnormal trajectories， 
23 578 valid flight trajectories are retained. Fig.11 
shows the distribution of trajectories during this peri⁃
od， with the densest trajectories located near the 

Fig.10　Distribution of Guangzhou/Shanghai airport clus⁃
ters and sectors

Fig.11　Planned routes and trajectory distribution from 
Guangzhou airport cluster to Shanghai airport cluster

Table 1　Airports involved in each airport cluster

Guangzhou airport 
cluster

Guangzhou Baiyun 
International Airport

Shenzhen Bao’an 
International Airport

Zhuhai Jinwan 
Airport

Huizhou Pingtan 
Airport

ICAO 
code

ZGGG

ZGSZ

ZGSD

ZGHZ

Shanghai airport 
cluster

Shanghai Hongqiao 
International Airport

Shanghai Pudong 
International Airport

Nanjing Lukou 
International Airport
Hangzhou Xiaoshan 
International Airport

Wuxi Shuofang 
Airport

ICAO 
code

ZSSS

ZSPD

ZSNJ

ZSHC

ZSWX

777



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

planned route， although some trajectories are con⁃
centrated in non-planned route areas.

To identify the deviation threshold， this study 
selects five days in 2023 （April 16th， 17th， May 
1st， 28th， and July 11th） in the East China and 
Central South regions， with no weather influence， 
covering flights between major cities such as Shang⁃
hai， Nanjing， Hangzhou， Ningbo， Xiamen， Fu⁃
zhou， Nanchang， Changsha， Guangzhou， and 
Shenzhen. Table 2 shows the filtered radar data， 
which results in 3 456 trajectory data points， corre⁃
sponding to 3 456 flights.

In the study of flight trajectory clustering， eval⁃
uating the clustering quality is crucial， as high-quali⁃
ty clusters can effectively reveal the underlying 
structure of the data. An ideal clustering result 
should have high similarity within clusters and low 
similarity between clusters. Therefore， this study 
uses various quality evaluation metrics. These met⁃
rics measure clustering performance by analyzing 
the distance between sample points and the cluster 
center， without relying on external benchmark data⁃
sets or reference models.

To assess the clustering quality， this study 
adopts the silhouette coefficient as an important 
evaluation criterion for the clustering method. The 
silhouette coefficient is a measure of clustering quali⁃
ty that reflects both the cohesion of samples within a 
cluster and the separation between clusters. The sil⁃
houette coefficient ranges from ［-1， 1］， with val⁃
ues closer to 1 indicating better clustering， where 
the samples within a cluster are highly similar and 
the distinction between clusters is large. A value 
closer to -1 indicates poor clustering with substan⁃
tial overlap between clusters. The silhouette coeffi⁃
cient S for a given sample can be calculated by

S = b - a
max ( )a,b

(10)

where a is the average distance between the sample 
and other samples within its own cluster， and b the 
average distance between the sample and the closest 
sample from any other cluster. The sum of the sil⁃
houette coefficient （SC） is used to evaluate the 
overall quality of the clustering result. The calcula⁃
tion process is given by

SC = 1
n ∑

i = 1

n

Si (11)

When the silhouette coefficient is close to 0， it 
suggests that there may be overlap between clus⁃
ters， indicating poor clustering performance. When 
the silhouette coefficient is large， it indicates that 
the samples within the cluster are more concentrated 
and the separation between clusters is clearer.

Additionally， the Davies-Bouldin index （DBI） 
and Calinski-Harabasz index （CHI） are two other 
commonly used clustering performance evaluation 
metrics， which are often used to compare the effec⁃
tiveness of different clustering algorithms. The DBI 
measures the quality of the clustering result by calcu⁃
lating the dispersion within clusters and the distance 
between clusters. A smaller DBI value indicates 
that the samples within a cluster are tighter and the 
separation between clusters is greater. Its calcula⁃
tion formula is shown as

DBI = 1
K ∑

i = 1

K

max ( )si + sj

M ij
(12)

where si represents the dispersion of sample points 
within the ith cluster， and d the distance between 
the centers of clusters i and j. A smaller DBI value 
indicates better clustering performance， meaning 
higher intra-cluster compactness and greater inter-

cluster separation.
The CHI index evaluates the clustering perfor⁃

mance by calculating the ratio of the inter-cluster 
variance to the intra-cluster variance. The higher the 
CHI index， the better the clustering performance， 
as it indicates higher intra-cluster compactness and 
greater inter-cluster separation. Its calculation for⁃
mula is shown as

CHI = tr ( )B k ( )N - K
tr ( )W k ( )K - 1

(13)

where B k represents the between-cluster covariance 
matrix， W k the within-cluster data covariance ma⁃
trix， N the total number of samples in the dataset， 
and K the number of clusters. Using Eq.（13）， the 

Table 2　Flight information table

Date
16 April
17 April
1 May

28 May
11 July
Total

Number of flights
711
690
633
703
719

3 456
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CHI index quantifies the quality of the clustering re⁃
sults.
4. 2 Deviation trajectory identification and 

analysis　

The distance calculation is implemented using 
geometric methods. For each trajectory point， this 
study calculates the shortest distance from the trajec⁃
tory point to the flight path centerline using the Eu⁃
clidean distance. After organizing the calculated de⁃
viation distance data， a total of 1 973 573 trajectory 
sample points’ distances to the planned path center⁃
line are obtained. Fig.12 shows the histogram distri⁃
bution of the deviation distances between flight tra⁃
jectories and the centerline， where the largest num ⁃
ber of trajectories falls within a deviation distance of 
5 km， with frequencies exceeding 200 000. The 
number of trajectory points with a deviation distance 
greater than 10 km significantly drops， with frequen⁃
cies within 30 000.

According to the results in Fig.13， starting 
from the 80th percentile， as the deviation distance 
increases， the frequency initially rises rapidly. Be⁃
fore the deviation distance reaches 20 km， there is a 
sudden change in the growth rate of the cumulative 
frequency. After this point， the growth rate of the cu⁃
mulative frequency gradually slows down， thus the 
final deviation threshold is determined to be 19.2 km.

This study also analyzes the threshold for the 

number of yawed trajectory points， denoted as 
Thre. The value of Thre is set within the range 
［20%—60%］ to discuss the number of yawed tra⁃
jectories. Fig.14 shows the trajectory distribution 
corresponding to different thresholds， while Fig.15 
shows the trajectory count distribution correspond⁃
ing to the Thre threshold.

Fig.12　Histogram distribution of trajectory point deviation 
distances

Fig.13　Cumulative frequency relationship at the 80th per⁃
centile

Fig.14　Trajectory distributions corresponding to different Thre thresholds
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By combining the results from Figs.13 and 16， 
it can be seen that most yawed behaviors occur in a 
specific segment of the flight， with the remainder of 
the flight still following the planned path. When the 
Thre threshold is set too low （i. e.， when Thre ≤ 
30%）， it leads to the recognition of flights that 
largely follow the planned path as yawed trajecto⁃
ries， which is not conducive to the subsequent use 
of clustering methods to distinguish yawed trajecto⁃
ries from planned trajectories. On the other hand， 
when the Thre threshold is set too high （i.e.， when 
Thre≥50%）， the number of identified yawed tra⁃
jectories becomes too small， resulting in some cases 
where trajectories significantly deviating from the 
original planned path are incorrectly classified as 
non-deviated. When Thre=40%， the identified 
yawed trajectory results align more closely with ac⁃
tual conditions. Therefore， the Thre threshold is set 
to 40%， resulting in 2 436 identified yawed trajecto⁃
ries.
4. 3 Clustering experiment result analysis　

To determine the optimal hyperparameters for 
DBSCAN， this study employed a grid search meth⁃
od to evaluate clustering performance under differ⁃
ent similarity measures. The parameter range for 
the grid search is set as： Neighborhood radius ε ∈ 
［0.1， 1］ ， and minimum number of samples 
MinPts ∈ ［3， 10］. The performance metrics from 
various parameter combinations obtained through 
grid search （as shown in the evaluation results 
based on Euclidean distance） are analyzed using 
DBI， CHI， and silhouette coefficient.

According to the results in Fig.16， when ε ∈ 
［0.7， 1］ and MinPts ∈ ［3， 6］， the DBI reaches its 
minimum value of 0.25， indicating high intra-cluster 
compactness and significant inter-cluster separation. 

Within this range， the silhouette coefficient reaches 
0.736， further confirming the superiority of the clus⁃
tering performance. However， the CHI index 
shows that when ε = 0.4 and MinPts ∈ ［3， 6］， in⁃
tra-cluster compactness is optimal （CHI=8 901）. 

Fig.15　Relationship between Thre threshold and number of 
deviation trajectories

Fig.16　Results of Euclidean distance metrics

780



No. 6 WANG Shijin, et al. Flight Trajectory Option Set Generation Based on Clustering Algorithms

Under this parameter combination， the DBI and sil⁃
houette coefficient are 0.295 and 0.703， respective⁃
ly， slightly lower than the optimal values， but the 
difference is minimal. The optimal parameter range 
for DBI and silhouette coefficient has a correspond⁃
ing CHI value of 7 612， which differes significantly 
from the maximum CHI value.

Considering the consistency of the three met⁃
rics and the actual clustering performance， this 
study ultimately selects ε =0.6 and MinPts=3 as 
the optimal hyperparameters. This parameter combi⁃
nation performs nearly optimally on DBI and silhou⁃
ette coefficient while achieving a relatively high CHI 
value， balancing intra-cluster compactness and inter-

cluster separation. The corresponding clustering re⁃
sults are shown in Fig.17， where eight clusters are 
identified. Overall， the clusters are clearly separat⁃
ed， but Labels 2 and 3 show overly coarse distribu⁃
tions， requiring further separation.

Fig.18 shows the trend of the performance met⁃
rics corresponding to the clustering hyperparameters 
based on Hausdorff distance. Similar to the results 
with Euclidean distance， the trend follows a compa⁃
rable pattern， though there are numerical differenc⁃
es. The significant difference lies in the DBI and 
CHI optimal values for Hausdorff distance （DBI=
0.225， CHI=19 111）， which are notably better 
than the results based on Euclidean distance. This 
suggests that shape-based trajectory similarity mea⁃
sures， such as Hausdorff distance， outperform tradi⁃
tional Euclidean distance in assessing the quality of 
flight trajectory clustering and are better suited to 
the spatial characteristics of trajectories. Neverthe⁃
less， the optimal parameter range for Hausdorff dis⁃

tance is consistent with that for Euclidean distance 
（ε ∈ ［0.7， 1］， MinPts ∈ ［3， 6］）. Considering con⁃
sistency and computational efficiency， this study 
still selects ε = 0.6 and MinPts=3 as the hyperpa⁃
rameters.

Fig.17　Clustering results based on Euclidean distance

Fig.18　Results of Hausdorff distance metrics
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The clustering results using Hausdorff distance 
are shown in Fig.19， where nine clusters are identi⁃
fied. Compared to the Euclidean distance cluster⁃
ing， this method identifies more clusters in the La⁃
bel 0 region， demonstrating higher discriminative 
ability. However， the distribution of Labels 2 and 3 
remains too coarse， with insufficient separation， in⁃
dicating that clustering performance still needs fur⁃
ther optimization in certain regions.

Based on the results from Fig.20， the parame⁃
ters for the sector edit distance method are set as ε=
0.7 and MinPts=3. Compared to the clustering 
methods based on Euclidean distance and Hausdorff 
distance， this method demonstrates better clustering 
performance. The neighborhood radius is smaller 
（ε =0.4）， and the number of core sample points is 
higher （MinPts=6）. Additionally， in terms of clus⁃
tering evaluation metrics， both the CHI and DBI 
outperform the first two methods， indicating that 
the sector edit distance achieves a higher level of in⁃
tra-cluster compactness and inter-cluster separation.

The clustering results are shown in Fig.21， 
where the sector edit distance successfully classifies 
the trajectories on the northwest and southwest 
sides of the Guangzhou to Shanghai route. The first 
two methods fails to further segment these areas， 
recognizing them only as a single cluster. In con⁃
trast， the sector edit distance method divides these 
areas into five distinct clusters （Labels 3， 6， 9， 13， 
19）， demonstrating a stronger discriminatory capa⁃
bility. Among them， the trajectories in Label 9 are 
more dispersed， likely due to the wide range of the 
individual sector passed， which results in multiple 

paths within the same sector. Although the edit dis⁃
tance might consider these paths similar， this meth⁃
od still significantly improves trajectory classifica⁃
tion compared to the previous two. In summary， ex⁃
perimental results of the three similarity measures 

Fig.20　Results of sector edit distance metrics

Fig.19　Clustering results based on Hausdorff distance
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are consistent with the theoretical analysis. Euclide⁃
an distance is sensitive to local fluctuations and iden⁃
tified fewer clusters， while Hausdorff distance im ⁃
proves cluster discrimination in some regions but 
still shows coarse separation. The sector edit dis⁃
tance demonstrats superior performance by identify⁃
ing representative deviation patterns more effective⁃
ly， as reflected in higher CHI values and lower DBI 
values. Therefore， this study adopts sector edit dis⁃
tance as the measure of trajectory similarity and uses 
the clustering results obtained from this method to 
generate the trajectory options set.

4. 4 Trajectory option set generation　

Through three trajectory similarity measures 
（sector similarity， Euclidean distance， and Haus⁃
dorff distance）， combined with the DBSCAN clus⁃
tering results under optimal parameters， it is evident 
that the sector similarity-based method outperforms 
the traditional Euclidean distance and Hausdorff dis⁃
tance in clustering effectiveness. Using this method， 
this study identifies several typical deviation paths 
commonly used by flights. Additionally， the analy⁃
sis shows that although most flight trajectories still 
follow the planned path， flights do not strictly ad⁃
here to the planned path during actual flight. To ad⁃
dress， it this study employs polynomial fitting on 
non-deviation trajectories to generate the central tra⁃
jectory for each planned path， replacing the original 
planned path， thereby forming path options that are 
closer to actual flight conditions. By combining the 
central trajectories of non-deviation paths with com ⁃
monly used deviation trajectories， a set of flight 
path options from the Guangzhou city cluster to the 

Shanghai airport cluster is ultimately generated.
There are as many as 49 planned paths from 

the Guangzhou airport cluster to the Shanghai air⁃
port cluster. As analyzed in Fig.11， most planned 
paths largely overlap， with only slight differences in 
route points during the takeoff and landing phases. 
For example， Route A may differ from Route B due 
to the presence of one additional route point； simi⁃
larly， the planned path from Guangzhou to Nanjing 
is almost identical to the planned path from Guang⁃
zhou to Shanghai Pudong Airport， except that the 
latter path includes one additional route point at the 
end. Moreover， certain paths， while differing due to 
an additional route point in the segment or due to dif⁃
ferences in airport locations during takeoff and land⁃
ing， often share the same route during the cruising 
phase. These factors collectively result in a large 
number of planned paths. However， considering 
that the cruising phase paths are essentially highly 
consistent， this study categorizes the 49 planned 
paths into nine main types based on the characteris⁃
tics of the cruising phase. The trajectory distribution 
shown in Fig.22 reduces redundant trajectories and 
highlights the core patterns of the flight routes.

Fig.23 shows the central trajectories of nine 
types of non-deviation flights based on the polynomi⁃
al fitting method. Fig.24 presents the central trajec⁃
tories of 19 clusters of identified deviation trajecto⁃
ries obtained using the same method. The flight 
clusters of non-deviation trajectories are relatively 
concentrated around the central trajectory， while the 
deviation trajectories are more dispersed. However， 
the clusters derived from the sector similarity meth⁃

Fig.22　Nine types of non-deviation flight trajectories

Fig.21　Clustering results based on sector edit distance
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od are more concentrated compared to those ob⁃
tained using Euclidean distance and Hausdorff dis⁃
tance.

Comparing Figs.23 and 24， the central trajecto⁃
ries of the deviation clusters show some similarity to 
the central trajectories of flights that follow the 

Fig.23　Central trajectories of nine types of non-deviation flights
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planned path. As a result， this study merges the 
clusters with similar central trajectories into a single 
category， incorporating the similar patterns of both 
deviation and non-deviation trajectories. The final 

trajectory option set from Guangzhou airport cluster 
to Shanghai airport cluster is thus generated. As 
shown in Fig.25， a total of 19 trajectory options are 
generated.

Fig.24　Central trajectories of 19 clusters of deviation flights
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5 Conclusions 

This study develops a trajectory option set gen⁃
eration method based on sector edit distance， using 
data preprocessing and clustering analysis. The DB⁃
SCAN algorithm is employed to identify deviation 
trajectories and generate a set of trajectory options 
from the Guangzhou airport cluster to the Shanghai 
airport cluster. Case studies show that the method 
effectively extracts preferred paths and aligns with 
actual flight patterns. The main conclusions are as 
follows.

（1） Deviation trajectory identification and defi⁃
nition： This study successfully identifies and defines 
deviation trajectories. By statistically analyzing the 
deviation of flight trajectories from the planned path 
in the Central South and East China regions under 
clear weather conditions， the deviation threshold is 
established. Using the quantile inflection method 
based on this threshold， deviation and non-deviation 
trajectories are distinguished， providing a founda⁃
tion for subsequent clustering.

（2） Similarity measurement comparison： In 
the comparison of similarity metrics， sector edit dis⁃
tance combined with the DBSCAN clustering out⁃
performs Euclidean distance and Hausdorff distance. 
Using silhouette coefficient， CHI， and DBI as eval⁃
uation metrics， sector edit distance demonstrates 
higher intra-cluster compactness and inter-cluster 
separation when ε =0.7 and MinPts=3， verifying 
its performance advantages.

（3） Trajectory option generation： Based on 
the central trajectories of non-deviation and devia⁃
tion trajectories， this study generates 19 trajectory 
option sets from the Guangzhou airport cluster to 

the Shanghai airport cluster. These paths exhibit sig⁃
nificant geographical diversity and deviation charac⁃
teristics， providing practical support for flight path 
optimization and scheduling.

The findings of this study not only enhance the 
flexibility of flight planning by providing multiple 
path options， but also offer data support for collabor⁃
ative decision-making and dynamic traffic manage⁃
ment by air traffic control. In practice， the proposed 
method has the potential to contribute to the devel⁃
opment of more adaptive flight operation strategies 
in complex airspace environments. However， the 
method has certain limitations. The sector edit dis⁃
tance has limited clustering separation when there 
are significant trajectory differences within sectors， 
and it may be constrained by the granularity of sec⁃
tor division or the complexity of local trajectory pat⁃
terns. Future research could improve in the follow⁃
ing directions： （1） Increasing the volume of histori⁃
cal flight trajectory data to enhance the model’s gen⁃
eralization ability； （2） considering the impact of 
weather forecasts and dynamic airspace factors 
（such as wind and traffic distribution） on deviation 
recognition. Additionally， the trajectory option set 
generated by this study can provide data support for 
future flight plan path selection， promoting collabor⁃
ative decision-making between air traffic control and 
airlines.
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基于聚类算法的航班轨迹选项集合生成

王世锦， 孙 敏， 李迎淋， 杨宝田
（南京航空航天大学民航学院新一代智能空管实验室，南京 211106，中国）

摘要：针对中国城市对间航班计划通常设置单条航路，缺乏备用路径，难以有效应对突发情况的问题，本文采用

“分位数⁃拐点法”分析特定偏航轨迹，确定偏离阈值，并识别常用偏航路径。通过将欧氏距离、豪斯多夫距离和扇

区编辑距离等多种相似性度量与基于密度的噪声应用空间聚类（Density⁃based spatial clustering of applications 
with noise， DBSCAN）算法相结合，对偏航轨迹进行聚类，构建面向城市对的轨迹选项集合。以广州机场群与上

海机场群之间 23 578 条航班航迹为案例，验证了所提框架的有效性。实验结果表明，相较于欧氏距离和豪斯多

夫距离，基于扇区编辑距离的相似度度量在聚类性能上更优，具有更高的轮廓系数和更低的戴维斯⁃博尔丁指数，

能够实现更好的类内紧凑性和类间分离度。基于聚类结果，共识别出 19 条代表性轨迹选项，涵盖无偏轨迹与偏

航轨迹，显著提升了航路多样性。该研究真实反映了实际飞行运行特征，为飞行路径优化与调度提供了实用

依据。

关键词：航班轨迹聚类；轨迹选项集合；扇区编辑距离；基于密度的噪声应用空间聚类算法；偏航轨迹
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