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Abstract: Addressing the issue that flight plans between Chinese city pairs typically rely on a single route, lacking
alternative paths and posing challenges in responding to emergencies, this study employs the “quantile-inflection point
method” to analyze specific deviation trajectories, determine deviation thresholds, and identify commonly used
deviation paths. By combining multiple similarity metrics, including Euclidean distance, Hausdorff distance, and
sector edit distance, with the density-based spatial clustering of applications with noise (DBSCAN) algorithm, the
study clusters deviation trajectories to construct a multi-option trajectory set for city pairs. A case study of 23 578
flight trajectories between the Guangzhou airport cluster and the Shanghai airport cluster demonstrates the
effectiveness of the proposed framework. Experimental results show that sector edit distance achieves superior
clustering performance compared to Euclidean and Hausdorff distances, with higher silhouette coefficients and lower
Davies-Bouldin indices, ensuring better intra-cluster compactness and inter-cluster separation. Based on clustering
results, 19 representative trajectory options are identified, covering both nominal and deviation paths, which
significantly enhance route diversity and reflect actual flight practices. This provides a practical basis for optimizing
flight paths and scheduling, enhancing the flexibility of route selection for flights between city pairs.
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0 Introduction

With the rapid development of China’s civil
aviation transportation industry, the number of
flight operations continues to rise. In 2023, the an-
nual flight movements at national airports reached
11.708 2 million, surpassing pre-pandemic levels
(11.660 4 million in 2019)""". However, the limita-
tions of finite airspace resources have become in-
creasingly apparent. The constraints of single-route
operations in city-pair flights are magnified, particu-
larly when planned trajectories are disrupted by con-
vective weather or flow control. The lack of alterna-
tive routes often leads to delays or cancellations, in-

creasing airline operational costs and compromising
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passenger experience.

The next generation air transportation system
(NextGen) proposed by the Federal Aviation Ad-
ministration (FAA) has advanced this concept
through trajectory-based operations (TBO)"*. Its
core component, the Collaborative Trajectory Op-
tions Program (CTOP) , introduces the trajectory
options set (TOS)'*—A weighted set of preferred
routes submitted by airlines to air traffic control.
This system has been widely implemented in inter-
national busy air routes, significantly reducing plan-
ning complexity and operational costs while optimiz-
ing flow management'**'. Building upon this founda-
tion, the introduction of multi-path trajectory op-

tions provides potential solutions for domestic chal-
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lenges. By generating preferred route sets for specif-
ic city-pairs, multi-path trajectory options enhance
route planning flexibility, mitigate pressure from
sudden operational adjustments, optimize fuel effi-
ciency and punctuality rates, and facilitate collabora-
tive decision-makings between air traffic manage-
ment and airlines.

The TOS generation traditionally relies on air-
line experience and predefined routes. In the United
States, FAA playbook routes serve as common im-
plementations, while domestic research and stan-
dardization in this area remain underdeveloped. Re-
cent advancements in data-driven technologies have
positioned trajectory clustering as a novel approach
for identifying frequently used routes from massive
historical data, establishing a more scientific founda-
tion for strategic-phase trajectory option generation.
For example, Pham" introduced a network model-
based userpreferred path generation method that
considers both airline and air traffic control require-
ments. Zhu et al."""" developed a Transformer-based
trajectory option generator that automatically gener-
ates candidate paths conforming to planning princi-
ples using historical trajectory data. Furthermore,

1. implemented an automated TOS gen-

Evans et a
eration method with high operational acceptance
probability by combining hierarchical clustering and
machine learning based on historical flight plan revi-
sion data. Mateos Villar et al.'"*" further proposed a
novel approach that leverages machine learning to
extract airspace users’ route preferences and predict
new routes not observed during the model training
phase, thereby providing a more adaptive optimiza-
tion solution for TOS generation.

By analyzing actual flight patterns, the trajecto-
ry clustering can reveal commonly adopted devia-
tions from predefined routes, addressing the limita-
tions of single-path planning. Research indicates that
the data-driven preference path mining can optimize
airspace resource allocation and reduce flight de-
lays'*. Current research demonstrates the prevalent
use of density-based clustering algorithms in trajec-
tory analysis due to their robustness and elimination
of pre-defined cluster requirements. For instance,

Ye et al.'"* developed a multidimensional aviation

trajectory clustering method using Hausdorff dis-
tance and the density-based spatial clustering of ap-
plications with noise (DBSCAN) algorithm to iden-
tify abnormal trajectories, extracting central trajec-
tories through statistical methods combined with
flight distance and similarity metrics. Wang et al."*"’
employed kernel principal component analysis (KP-
CA) and the DBSCAN to enhance the trajectory
type differentiation and complete clustering after the
interference removal spectral clustering also emerg-
es as a prominent approach. Ma et al."” classified
terminal area trajectories using heading factor-based
Euclidean distance similarity measures combined

with improved spectral clustering. Wang et al."' i

n-
vestigated spectral clustering-based identification of
prevalent traffic flows in terminal areas using three-

17 addressed

dimensional trajectory data. Li et al.
computational efficiency and parameter selection
challenges in traditional spectral clustering through
resampling and natural neighbor methods for effec-
tive terminal area traffic flow identification. Recent
years have witnessed the emergence of deep learn-

1." implemented deep

ing applications. Rao et a
clustering combining autoencoders with bidirectional
long short-term memory (Bi-LSTM) networks for
air traffic flow classification and anomaly detection
through Q-distribution. Zeng et al.''’" integrated
deep autoencoders (DAEs) with Gaussian mixture
models (GMMs) for terminal area trajectory clus-
tering. These methodologies provide theoretical and
technical references for this study.

Although the existing studies have demonstrat-
ed the usefulness of Euclidean distance, Hausdorff
distance, and other traditional similarity measures
for clustering flight trajectories, these methods face
notable limitations when applied to long-sequence
city-pair trajectories. Euclidean distance is sensitive
to local deviations and requires strict temporal align-
ment, while Hausdorff distance emphasizes extreme
points and may overestimate the dissimilarity. Both
approaches will incur high computational costs when
dealing with full-route trajectories comprising tens
of thousands of points, reducing their efficiency and
robustness. To address these challenges, this study

introduces the sector edit distance, which represents
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each trajectory as a sequence of sectors controlled
by air traffic management. By transforming similari-
ty measurement into sequence editing operations,
the sector edit distance reduces computational com-
plexity, better reflects controller decision-making
preferences, and enhances clustering performance
for long-sequence trajectories. The innovation of
this research therefore lies in systematically compar-
ing traditional distance measures with the proposed
sector edit distance, and in demonstrating its effec-
tiveness for generating trajectory option sets in city-
pair operations.

This study proposes a trajectory clustering-
based framework for generating city-pair trajectory
options, as illustrated in Fig.1. Firstly, the planned
path data and actual trajectory data are jointly pro-
cessed to identify deviation trajectories, where a de-
viation marking method is applied to distinguish

flights that significantly diverge from their planned

paths. Secondly, these deviation trajectories are
clustered using multiple similarity measurement
methods combined with a DBSCAN-based cluster-
ing algorithm, in order to extract typical deviation
patterns. Finally, the central trajectories of both de-
viation and non-deviation clusters are integrated to
determine a trajectory option set, which incorpo-
rates commonly used deviation paths and provides
alternative route options. The proposed TOS refers
to a collection of typical flight paths preferred by air-
lines and pilots based on historical data, operational
experience, and considerations of safety, economy,
and punctuality. It aims to provide diversified refer-
ences during flight planning while maintaining high
acceptability in air traffic management. Trajectory
options originate from two sources: Trajectories ad-
hering to planned routes and frequently deviated tra-

jectories from plans.
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Fig.1 Framework for determining the trajectory option set

1 Flight Trajectory Option Identifi-
cation Basic

1.1 Fundamentals of flight operations

Chinese flight plans follow the Civil Aviation
Pre-flight Plan Management Regulations (CCAR-
93) [20] ,

control center based on seasonal schedules and real-

and are prepared by the airline’ s operations

time conditions (such as weather and airspace re-
strictions). The plan includes information such as
flight number, aircraft type, route, altitude, and de-
parture/arrival times. After approval by air traffic
control (ATC), the plan is executed. The process
includes airlines, based on seasonal schedules and

real-time conditions (such as weather and airspace

restrictions) , and preparing flight plans through the
operations control center, which include flight num-
ber, aircraft type, route, altitude, and expected de-
parture/arrival times. These plans are submitted to
ATC for approval at least 5 d before the flight, typi-
cally via AFTN/SITA messages. After the re-
view, ATC allocates a calculated takeoff time
(CTOT) slot and issues the permit. During the exe-
cution phase, the crew follows the planned route
and coordinates with tower, terminal, and area con-
trol in sequence, reporting positions through data
link or voice communication with controllers. In
case of dynamic adjustments (such as flow con-
trol) , ATC issues instructions, which the pilot fol-

lows. After landing, actual flight data is archived for
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future optimization. The operational process of a
flight is shown in Fig.2. The flight plan ensures op-
erational safety and efficiency. The proposed trajec-
tory option set can provide multiple path references
for airlines when preparing flight plans, enhancing
the adaptability of route selection. As shown in

Fig.2, both ATC and airlines play central roles in

the flight operation process. Airlines are responsible
for preparing and submitting flight plans, while
ATC approves, allocates time slots, and issues ad-
justment instructions during the execution. Devia-
tion trajectories often arise from the collaborative in-
teraction between ATC and airlines, reflecting both

regulatory control and operational requirements.

Tower/ATC
evaluation airspace

I

i A Tof
B - pproval o

i Air traffic control flight plansa

!

I

e AFTN/SITA
messages

| Meteorological conditions

Allocate CTOT /Position

Adjustment
ssue permits/ reporting \ instructions

Flight plan

| Airspace restrictions

preparation

Execution of . : .
Hightyplans Pilot execution Data recording

| Operational experience

Fig.2 Flight plan operation process

1.2 Deviation trajectory features

To identify trajectory options that can provide
more alternatives for reference when a flight faces
complex airspace, this study’s trajectory option set
considers two types of flights: One that follows the
planned trajectory as per the flight plan, and the oth-
er that deviates from the original planned path (devi-
ation trajectory). During the flight, factors such as
weather, airspace restrictions (e.g., temporary mili-
tary no-fly zones) , flow control (ATC adjustments
to avoid congestion) , navigation errors, airline opti-
mization, and pilot operations may cause the flight
to deviate from the planned route. Under strict defi-
nition, any deviation (such as navigation errors) is
considered as a deviation from the planned trajectory.

However, the proposed trajectory option set
must exhibit significant geographical variance to en-
sure that it does not fail entirely under different
weather conditions. Therefore, under good weather
and normal traffic conditions, flights typically fol-
low the planned route, but slight deviations may oc-
cur due to route width tolerance and pilot operation-
al errors. Such deviations are not considered devia-
tions from the planned trajectory. This study focus-

es on intentional, long-distance deviation trajecto-

ries, as they reflect proactive decisions made by pi-
lots and controllers in response to unexpected situa-
tions or operational optimizations, showing signifi-
cant geographical deviations and strong tendencies.
These deviation trajectories differ from minor, arbi-
trary deviations within a sector: When a flight oper-
ates within a sector, it is controlled by the sector’s
controller, and the flight has the flexibility to adjust
its trajectory. Although it may not exactly match the
planned route, it is still considered as a non-devia-
tion trajectory. However, if the flight deviates into
another sector, cross-sector coordination is required
between controllers, and since the airspace covered
by sectors is large, changing sectors often results in
significant distance deviations, making it easier to
recognize as a deviation trajectory.

Fig.3 illustrates the characteristics of deviation
and non-deviation flights. In Fig.3(a) , the flight
does not perfectly align with the planned path, but
there is no significant long-distance deviation from
the planned route. In Fig.3(b), the flight experienc-
es a longrange deviation due to strong convective
weather in the southwestern part of Fujian, which is
a clear and intentional deviation from the planned
path. Such a trajectory is considered a deviation tra-

jectory.
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Fig.3  Schematic diagrams of deviation trajectory

characteristics

2 Deviation Trajectory Identifica-

tion

To identify cases where a flight deviates from
the planned path under normal conditions, it is nec-
essary to determine a threshold distance for such de-
viations. To accurately recognize the phenomenon
of deviation, that is, under what circumstances a
flight diverges from the planned path, this section
employs statistical methods to establish the specific
threshold for deviation behavior. This allows for the
identification of deviation trajectories, laying the

foundation for subsequent analysis of deviation paths.
2.1 Trajectory preprocessing

The raw data used in this study consists of ra-
dar fused trajectory data, including flight number,
latitude and longitude of trajectory points, departure

airport, destination airport, trajectory point alti-

tude , time, speed, direction, and other relevant in-
formation. Due to the large volume of data per hour
and the fact that the trajectory points are not com-
pletely continuous, the data processing poses cer-
tain challenges.

To improve the data processing efficiency, this
study merges the hourly fusion trajectory data into
daily data and extracts the trajectory of each flight to
construct a complete flight path. For flights span-
ning multiple days, the data is processed based on
the departure date. The merged data files typically
contain a large number of trajectory points. To re-
duce computational resource consumption and im-
prove the processing efficiency, the multi-process-
ing technology is employed to process the daily da-
ta. Given that the trajectory data for a single flight is
large, further memory optimization is achieved by
increasing the time span between trajectory point
samples for resampling.

Figs.4 and 5 show the trajectory of Flight
CSN3569 before and after compression, respective-
ly. The original number of trajectory points is 642,
and after compression, it is reduced to 128 points.
From Fig.5, it can be observed that the shape of the
compressed trajectory differs slightly from the origi-
nal trajectory only at the turns, while the overall
shape remains highly consistent with the original tra-

jectory.
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Fig.4 Original trajectory of CSN3569
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Fig.5 Compressed trajectory of CSN3569

2.2 Deviation threshold determination

To calculate the deviation distance of a flight,
this study determines the centerline of each route
segment based on the planned flight path. The
planned flight path of a flight is typically composed
of trajectory data from multiple segments. To match
each trajectory point to its corresponding route seg-
ment, this study calculates the distance from each
trajectory point to all route segments and selects the
segment with the minimum distance as the matched
segment for that trajectory point.

Based on this, the shortest distance from each
trajectory point to the route centerline (the line seg-
ment formed by connecting adjacent route points of
the planned path) is calculated, in order to quantify
the deviation degree of the flight. Fig.6 provides a
schematic for calculating trajectory deviation, which
involves computing the Euclidean distance d be-
tween each flight trajectory point and the route cen-
terline. If d exceeds a certain threshold, the trajecto-

ry point is considered to have deviated from the

= Route boundary
—— Non-deviation trajectory
e Planned route point

---- Deviation trajectory
---- Route centerline

e Deviation flight trajectory point
o Non-deviation flight trajectory point

Fig.6 Schematic diagram of deviation trajectory calculation

planned trajectory.

To determine the deviation threshold, the
quantile-inflection point method is applied. The pro-
cedure is as follows:

(1) Calculate deviation distances for all trajec-
tory points relative to their planned routes.

(2) Select a high quantile (e.g., 80th percen-
tile) as the initial candidate threshold, which filters
out normal variations while retaining potential devia-
tions.

(3) Incrementally increase the threshold, and
at each step, compute the proportion of points ex-
ceeding the threshold to generate a frequency-
threshold sequence.

(4) Construct the cumulative frequency curve
and observe its growth trend.

(5) Identify the inflection point of the curve,
where the growth rate slows significantly, as the de-
viation threshold.

This method ensures that the final threshold re-
flects both the statistical distribution of deviations
and the operational distinction between normal varia-

tions and substantial trajectory deviations.
2.3 Deviation trajectory marking

This study proposes a method for identifying
deviation trajectories to determine whether a flight’s
trajectory has deviated from its planned path. Dur-
ing the cruising phase, if the number of points devi-
ating from the planned path exceeds the set thresh-
old, the trajectory is considered a deviation. A sin-
gle deviation point is not considered a deviation and
the number of consecutive deviation points must be
calculated. If the proportion of consecutive deviation
points in the entire segment exceeds the threshold,
the behavior is identified as a deviation.

Moreover, this study focuses on the set of tra-
jectory options between cities, primarily determin-
ing whether the flight deviates from its path during
the cruising phase. Since the trajectory points during
the takeoff and landing phases are outside the flight
plan path and controlled by airport flight proce-
dures, these phases are not considered in this study.
Assuming a trajectory sequence as shown in Fig.7,

where O represents no deviation and 1 a deviation,
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Deviation trajectory point seq,

. « B . . r—l—‘
Trajectory point deviation marking sequence : [1,1,1,0,-++,0,0,0,0,0,1,1,1,1,0,0,0,0,:+,0,0,1,1,1,1]

Y
Cruise phase trajectory points

Fig.7 Trajectory deviation calculation

the calculation method for identifying a deviation tra-

jectory follows
K

D seq,

Ratio = % (1)

png

i—1
where Ratio represents the proportion of deviation
points, P, the ith trajectory point where the cruising
altitude exceeds 6 000 m; seq; the jth sequence of
consecutive deviation points, with seq,>>1; N the
total number of trajectory points during the cruise
phase (altitude™6 000 m) and K the number of con-
tinuous deviation segments, where each segment
consists of consecutive points deviating beyond the
threshold. When Ratio exceeds the set threshold
(Thre) , the trajectory is considered a deviation tra-
jectory.

For clarity, the procedure is summarized as fol~
lows. (1) Only cruise-phase points ( altitude™>
6 000 m) are retained. (2) For each point, the
shortest distance to the planned route is computed.
(3) A distance threshold d,, is determined using the
quantile-inflection method. (4) Each point is bina-
rized: 1 if its distance exceeds d,, otherwise 0.
(5) Runs of consecutive 1 s (seq;) longer than one
point are extracted, and Ratio in Eq.(1) is calculat-
ed. If Ratio exceeds ratio of Thre, the trajectory is
classified as a deviation trajectory. (6) The devia-
tion trajectory is mapped into a sector sequence and
compared with the planned sequence. A change in
the sector sequence not only reflects geometric devi-
ation, but also indicates an ATC responsibility han-
dover, thereby linking deviation trajectories to both

spatial displacement and operational significance.

3 Trajectory Option Set Genera-
tion Method

3.1 Similarity measurement

In the clustering analysis of flight trajectories,

accurate similarity measurement is the foundation
for determining the similarity between trajectories.
This study uses multiple similarity measurement
methods to ensure precise evaluation of clustering
results. Below are several commonly used similarity
measurement methods.

3.1.1 Euclidean distance

When processing flight trajectory data, a trajec-
tory consists of hundreds of trajectory points, and di-
rectly calculating the Euclidean distance between
trajectories can result in high computational com-
plexity. To address this issue, this study first ap-
plies the uniform manifold approximation and projec-
tion (UMAP) algorithm for dimensionality reduc-
tion of high-dimensional trajectory data. The core
assumption of UMAP is that high-dimensional data
points locally approximate some low-dimensional
manifold, and the manifold is a geometric object lo-
cally resembling Euclidean space. Through this
mapping, UMAP can reveal the underlying struc-
ture of high-dimensional data, while retaining both
global and local geometric information, thus reduc-
ing the computational complexity when calculating
distances.

In the reduced low-dimensional space, the di-
mensionality of trajectory points is significantly re-
duced, making the computation of Euclidean dis-
tances between trajectories more efficient. The Eu-

clidean distance between two trajectories is calculat-
ed by

where & and y represent two dimensionality-reduced
trajectory points, and 7 is the reduced space dimen-
sion. By reducing the dimensionality, the computa-
tional load when calculating Euclidean distances is
minimized, thereby effectively improving the effi-
ciency while maintaining an effective measure of

similarity between trajectories.
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3.1.2 Hausdorff distance

The Hausdorff distance is a measure of the
similarity between two sets, especially suitable for
handling trajectories with a different number of
points. In flight trajectory clustering, the Hausdorff
distance can measure the maximum distance be-
tween two trajectories, specifically the distance be-
tween the farthest points on the two trajectories.
Let A and B represent two trajectories, with their
respective point sets being A={a,, a,, "+, a,} and
B=1{b,b,,

the two sets is defined as

, b, , the Hausdorff distance between

dy(A,B)=max|sup infd(a,b),sup infd(a,b)

aca PEB vep 4€A4
(3)
where d(a,b) represents the distance between
points a and &, sup the supremum (the least upper
bound) , and inf the infimum (the greatest lower
bound). The Hausdorff distance calculation takes in-
to account the maximum distance between trajecto-
ry points, making it suitable for irregular or differ-
ently sized trajectory data. It helps identify whether
two trajectories have similarity in shape or path,
and 1t is commonly used as a distance metric in
flight trajectory clustering.
3.1.3 Sector edit distance
In flight trajectory similarity measurement, the
Euclidean distance, while computationally intuitive
and straightforward, requires two trajectories to be
of equal length (having the same number of points)
and necessitates a strict one-to-one correspondence
between points. It is highly sensitive to local devia-
tions. When applied to long-sequence full-flight tra-
jectories, significant deviations at individual points
can markedly inflate the overall distance. The Haus-
dorff distance, capable of measuring the maximum
deviation between the shapes of two trajectories,
does not require the number of points to be identical
and is suitable for comparing irregular trajectories.
However, it is sensitive to outliers and incurs high
computational overhead when processing large-scale
data. Consequently, the above two traditional meth-

ods exhibit certain limitations in clustering long-se-

quence, city-pair flight trajectories.

To address these issues, this paper introduces
the sector edit distance. This method represents
flight trajectories as sequences of transited sectors
and measures the dissimilarity between trajectories
through sequence edit operations. This approach not
only effectively reduces computational complexity
but also captures the logic of air traffic control sector
division and managerial decision-making, making it
more suitable for the clustering and analysis of long-
range trajectories.

The edit distance refers to the minimum num-
ber of editing operations required to convert one
string into another. The types of operations include
inserting a single character, deleting a single charac-
ter, and replacing a single character. This distance
measurement is relatively simple and intuitive, and
it effectively reflects the similarity between two
strings. The calculation of the number of operations
is typically achieved using dynamic programming.

The construction of the distance matrix based
on edit distance is as follows. Firstly, for a given set
of strings S= {s,, 5,, ===, 5, , the edit distance be-
tween each pair of strings needs to be calculated.
Then, the dynamic programming method is used to
compute the edit distance, utilizing a two-dimen-
sional array edit[7][j] to represent the edit distance
between the first 7 characters of string s;and the first
j characters of string s,.

The steps for calculating the edit distance are
as follows.

(1) Initialize edit[ 0][0] = 0.

(2) For the distance between an empty string
and a non-empty string

edit[ 7 ][ 0 ]=i(7 characters need to be deleted )
edit [0 ][ j ]=j( j characters need to be inserted )
(4)

(3) Fill the entire matrix based on the dynamic
programming equation. For strings A and B, where
the indices of strings start from 1:

HA[i—1]=B[j—1], edit[i{][j] = edit[i—
1][j—1];

IfAli—1]#B[j—1]
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edit[7— 1][ j]+ 1(delete)

edit[7][ j]= minqedit[7][ j — 1]+ 1(insert)
edit[7— 1][j— 1]+ 1(replace)
(5)

The sector distance described in this paper is

based on edit distance, where each trajectory is rep-

resented as a sequence of sectors. Fig.8 illustrates
how the trajectory of Flight CCA1734 is mapped to
a sector string representation based on the sectors it
passes through. When calculating the distance, each
operation is not applied to a single character but rath-
er to modify the sector string, where the sector

string is the basic element in the trajectory sequence.

34

32t
30 “ZGGGAR29, ZGGGARO1,
i 2l ZGGGAR38, ZGGGARA40,
'g . ZSSSAR20, ZSSSAR3S,
= 2% ZSSSAR31, ZSSSAROL,
— i ZSSSAR15”

241 —-- Sector boundary

— Radar trajectory
227 — Target sector

Longitude / (*)

112 114 116 118 120 122 124

Fig.8 Sector sequence representation of Flight CCA1734

The use of sector edit distance to measure the
similarity between flight trajectories transforms the
editing operations of individual trajectory points into
edit operations based on sector sequences. Since
each trajectory typically involves no more than ten
sectors, and these sectors are formed through coor-
dination and handover by air traffic controllers, this
approach not only avoids high computational com-
plexity encountered in traditional methods for long
trajectory similarity calculations, but also reflects
the decision-making preferences of air traffic control-
lers.

Sector edit distance emphasizes local features
and control strategies. By focusing on the transitions
of trajectories between different control sectors, it
effectively captures local differences and reflects the
decision-making characteristics of controllers. This
method provides a more reasonable and computa-
tionally efficient similarity measurement and cluster-
ing for the entire flight trajectory, considering the
tendencies of air traffic controllers, thereby compen-

sating for the limitations of traditional methods.
3.2 Clustering algorithm

In the field of machine learning, the unsuper-

vised learning does not rely on labeled sample infor-

mation. Its core goal is to reveal the intrinsic struc-
ture and patterns of data by analyzing unlabeled da-
ta, laying the foundation for subsequent data analy-
sis. To mine commonly used deviation trajectories
from trajectory data, clustering techniques in unsu-
pervised learning are essential, and this method has
been widely used in trajectory recognition.

The DBSCAN is a density-based clustering al-
gorithm. Fig.9 illustrates the principle of DBSCAN
clustering. This algorithm groups samples into clus-
ters based on regions with high-density sample
points in the sample space. It relies on two key pa-
rameters: ¢ (Epsilon, also denoted as Eps), which
defines the neighborhood radius, and MinPts, the
minimum number of points required to form a clus-
ter. The specific process of the algorithm is as fol-
lows.

(1) Type determination: Eqgs.(6, 7) provide
the criteria for identifying core sample points. For
any sample p in the dataset D, if the number of
neighbors within its radius e is greater than or equal
to MinPts, p is considered a core point; if the num-
ber of neighbors is less than MinPts, but p lies with-
in the neighborhood of a core point, it is considered
a border point. Otherwise, it is treated as a noise

point.
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Fig.9 Schematic diagram of DBSCAN clustering principle

(2) Cluster formation: From the dataset D, ar-
bitrarily select an unclassified core point ¢, and
mark ¢ and all core and border points within its
e neighborhood as belonging to class 7. For all core
points in class 7, further classify all points in their
e neighborhoods as belonging to class i. This pro-
cess repeats until no more core or border points are
found to belong to class 1.

(3) Dataset update: Remove the already classi-
fied samples from D and set i=i+1.

(4) Repeat clustering: Continue Steps 2 and 3
until all core and border points have been classified
(noise points are not assigned to any class).

N.(p)={qg€Dldist( p,q)<e} (6)
| N.(p) |= MinPts (7)

where dist (p, g) represents the distance between
points p and ¢, and |N.(p) | the number of points
within the e neighborhood of p. In this study, the e
neighborhood represents the similarity distance be-
tween each trajectory and other trajectory samples.
Using different trajectory similarity metrics, the
same neighborhood radius can produce different re-
sults. This study selects the DBSCAN algorithm
over traditional clustering methods such as K-
means, primarily based on the following consider-
ations: Unlike algorithms such as K-means, DB-
SCAN does not require predefining the number of
clusters. Given that the number of deviation patterns
between Guangzhou and Shanghai is unknown, the
DBSCAN can automatically detect clusters of any
shape and size. Additionally, the DBSCAN can ef-
fectively identify and exclude noise points, which
are prevalent in radar data due to anomalies or er-
rors, ensuring that the analysis focuses solely on

meaningful deviation patterns.

3.3 Trajectoryoptionsetdetermination method

This study aims to systematically identify com-
mon trajectory patterns and construct a set of flight
trajectory options based on these patterns through
clustering analysis of flight deviation trajectories.
First, clustering algorithms are used to classify devi-
ation trajectories and identify different trajectory
clusters. Then, for each cluster, the centerline is fit-
ted using polynomial methods to represent its trajec-
tory characteristics. Finally, the resulting center tra-
jectories are used to generate trajectory option sets.

However, considering that the non-deviation
trajectories in actual flight operations do not perfect-
ly align with the planned route, in addition to devia-
tion trajectories, it is necessary to calculate the cen-
ter trajectory for the actual flight trajectories under
each planned route. For each planned route, the
same polynomial fitting method is applied to calcu-
late the center trajectory. This method helps identify
the regular deviations and patterns of flights along
the planned route in different flight scenarios. Ulti-
mately, by combining the center trajectories of devi-
ation trajectories and planned routes, a set of flight
trajectory options is constructed. The specific steps
are as follows.

(1) Deviation trajectory clustering: Use clus-
tering algorithms to classify deviation trajectories
and identify different trajectory clusters.

(2) Deviation trajectory centerline calculation:
For each deviation trajectory cluster, calculate the
center trajectory using polynomial fitting and the
least squares method.

Suppose a cluster contains N trajectories, and
each trajectory consists of M, trajectory points. The
coordinates of the points are denoted as (x;, ;) ,
where i=1, 2, ,N and j=1, 2, -+, M, The fit-
ting function for the central trajectory can be ex-
pressed as

y=f(x)=a,+ax+ax*+ -+ ax" (8)
where % is the order of the fitted polynomial. The pa-
rameter vector a= (a,, a, ***, a,) is determined

using the least squares criterion shown as

N M,

min >33y, — / (25)) 9)

i=1j=1
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Solving this optimization problem yields the
central trajectory function. Finally, all points in the
trajectory cluster are projected onto the fitted curve
to obtain the central trajectory of the cluster.

(3) Planned route centerline calculation: For
each planned route’s actual flight trajectory, apply
the same fitting method to calculate the center trajec-
tory.

(4) Trajectory option set generation: Integrate
the center trajectories of deviation trajectories and

planned routes to generate the trajectory option set.
4 Case Study

4.1 Experimental data and clustering evalua-

tion metrics

The Pearl River Delta and Yangtze River Delta
are China’ s most economically developed regions,
home to mega-cities and their respective airport clus-
ters. Table 1 lists the airports included in each clus-
ter along with their ICAO codes. The distance be-
tween these two regions is approximately 1 200 km,
with complex terrain (such as the Nanling and
Huangshan mountains), and long ground transporta-
tion times (approximately 8—10 h by high-speed
rail) , making air travel essential. As a result, the
flight route from Guangzhou to the Shanghai airport
cluster has become one of the busiest flight routes in
China. The airspace in this region is complex, and
the route is often affected by typhoons during the
summer, with significant deviation phenomena,
high flight demand, and diverse patterns, exhibiting

rich flight behavior characteristics. Therefore, this

Table 1 Airports involved in each airport cluster

Guangzhou airport  ICAO Shanghai airport ~ ICAO
cluster code cluster code
Guangz.hou Ba.iyun 7GGG Shanghéi Hongqiao 7SSS
International Airport International Airport
Shenzhen Bao’an . Shanghai Pudong .
. . 7ZGSZ . . ZSPD
International Airport International Airport
Zhuhai Ji Nanjing Luk
u a'1 inwan 7GSD anjl.ng u <')u ZSNI
Airport International Airport
Huizhou Pingtan = Hangzhou Xiaoshan | .
. ZGHZ . . ZSHC
Airport International Airport
Wuxi Shuof:
uxi Shuofang ISWX

Airport

study focuses on the flight trajectories between
Guangzhou and the Shanghai airport cluster, analyz-
ing their trajectory option set.

Fig.10 shows the planned airways from Guang-
zhou airport cluster to Shanghai airport cluster,
along with the involved sectors. Each integrated tra-
jectory file used in this study contains approximately
300 000 trajectory data points per hour, and the
merged daily trajectory data typically exceeds seven
million points. The study period is set from 6 April
to 15 July, 2023, when convective weather was fre-
quent, providing representative conditions for devia-
tion analysis. The dataset consists of flights from
the Guangzhou airport cluster to the Shanghai air-
port cluster. After screening and cleaning, including
the removal of incomplete or abnormal trajectories,
23 578 valid flight trajectories are retained. Fig.11
shows the distribution of trajectories during this peri-

od, with the densest trajectories located near the

— Sector boundary
— Planned route

/. Planned route point

& ® Airport

Fig.10 Distribution of Guangzhou/Shanghai airport clus-

ters and sectors

34
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. 30F
; 28-
k=l
£
S 26f
241
221
110 112 114 116 118 120 122 124
Longitude / (*)
—-- Sector boundary —— Planned route
Radar trajectory ¢ Waypoint

Fig.11 Planned routes and trajectory distribution from

Guangzhou airport cluster to Shanghai airport cluster
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planned route, although some trajectories are con-
centrated in non-planned route areas.

To identify the deviation threshold, this study
selects five days in 2023 (April 16th, 17th, May
Ist, 28th, and July 11th) in the East China and
Central South regions, with no weather influence,
covering flights between major cities such as Shang-
hai, Nanjing, Hangzhou, Ningbo, Xiamen, Fu-
zhou, Changsha,
Shenzhen. Table 2 shows the filtered radar data,

Nanchang, Guangzhou, and

which results in 3 456 trajectory data points, corre-

sponding to 3 456 flights.

Table 2 Flight information table

Date Number of flights
16 April 711
17 April 690
1 May 633
28 May 703
11 July 719
Total 3456

In the study of flight trajectory clustering, eval-
uating the clustering quality is crucial, as high-quali-
ty clusters can effectively reveal the underlying
structure of the data. An ideal clustering result
should have high similarity within clusters and low
similarity between clusters. Therefore, this study
uses various quality evaluation metrics. These met-
rics measure clustering performance by analyzing
the distance between sample points and the cluster
center, without relying on external benchmark data-
sets or reference models.

To assess the clustering quality, this study
adopts the silhouette coefficient as an important
evaluation criterion for the clustering method. The
silhouette coefficient is a measure of clustering quali-
ty that reflects both the cohesion of samples within a
cluster and the separation between clusters. The sil-
houette coefficient ranges from [ —1, 1], with val-
ues closer to 1 indicating better clustering, where
the samples within a cluster are highly similar and
the distinction between clusters is large. A value
closer to —1 indicates poor clustering with substan-
tial overlap between clusters. The silhouette coeffi-

cient S for a given sample can be calculated by

= (10)

where a is the average distance between the sample
and other samples within its own cluster, and & the
average distance between the sample and the closest
sample from any other cluster. The sum of the sil-
houette coefficient (SC) is used to evaluate the
overall quality of the clustering result. The calcula-
tion process is given by
1 n
sc=— 2 S, (11)
When the silhouette coefficient is close to 0, it
suggests that there may be overlap between clus-
ters, indicating poor clustering performance. When
the silhouette coefficient is large, it indicates that
the samples within the cluster are more concentrated
and the separation between clusters is clearer.
Additionally, the Davies-Bouldin index (DBI)
and Calinski-Harabasz index (CHI) are two other
commonly used clustering performance evaluation
metrics, which are often used to compare the effec-
tiveness of different clustering algorithms. The DBI
measures the quality of the clustering result by calcu-
lating the dispersion within clusters and the distance
between clusters. A smaller DBI value indicates
that the samples within a cluster are tighter and the
separation between clusters is greater. Its calcula-

tion formula is shown as

s+ s]) (12)

DBI—IZK:max<
K~ M,
where s; represents the dispersion of sample points
within the /th cluster, and d the distance between
the centers of clusters 7 and j. A smaller DBI value
indicates better clustering performance, meaning
higher intra-cluster compactness and greater inter-
cluster separation.

The CHI index evaluates the clustering perfor-
mance by calculating the ratio of the inter-cluster
variance to the intra-cluster variance. The higher the
CHI index, the better the clustering performance,
as it indicates higher intra-cluster compactness and
greater inter-cluster separation. Its calculation for-
mula is shown as

cpp— MBIINT K (13)
(WK —1)

where B, represents the between-cluster covariance

matrix, W, the within-cluster data covariance ma-
trix, N the total number of samples in the dataset,
and K the number of clusters. Using Eq.(13), the
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CHI index quantifies the quality of the clustering re-

sults.

4.2 Deviation trajectory identification and

analysis

The distance calculation 1s implemented using
geometric methods. For each trajectory point, this
study calculates the shortest distance from the trajec-
tory point to the flight path centerline using the Eu-
clidean distance. After organizing the calculated de-
viation distance data, a total of 1 973 573 trajectory
sample points’ distances to the planned path center-
line are obtained. Fig.12 shows the histogram distri-
bution of the deviation distances between flight tra-
jectories and the centerline, where the largest num-
ber of trajectories falls within a deviation distance of
5 km, with frequencies exceeding 200 000. The
number of trajectory points with a deviation distance
greater than 10 km significantly drops, with frequen-
cies within 30 000.

According to the results in Fig.13, starting
from the 80th percentile, as the deviation distance
increases, the frequency initially rises rapidly. Be-
fore the deviation distance reaches 20 km, there is a
sudden change in the growth rate of the cumulative
frequency. After this point, the growth rate of the cu-
mulative frequency gradually slows down, thus the
final deviation threshold 1s determined to be 19.2 km.

This study also analyzes the threshold for the

—_ —_ 3] N
(= W S W

Trajectory point / 10 000 s

(%]

0 20 40 60 80 100
Distance / km

Histogram distribution of trajectory point deviation

Fig.12

distances

1.0F =
0.8
0.6
0.4
02

00" . . ) . \ .
1 2 3 4 5 6 7

Data value / 10* (=80th percentile)

Cumulative frequency

Fig.13 Cumulative frequency relationship at the 80th per-

centile

number of yawed trajectory points, denoted as
Thre. The value of Thre is set within the range
[20%—60% ] to discuss the number of yawed tra-
jectories. Fig.14 shows the trajectory distribution
corresponding to different thresholds, while Fig.15
shows the trajectory count distribution correspond-
ing to the Thre threshold.
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Fig.15 Relationship between Thre threshold and number of
deviation trajectories
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trajectories / Flights

Number of deviat;

By combining the results from Figs.13 and 16,
it can be seen that most yawed behaviors occur in a
specific segment of the flight, with the remainder of
the flight still following the planned path. When the
Thre threshold is set too low (i.e., when Thre <<
30%) , it leads to the recognition of flights that
largely follow the planned path as yawed trajecto-
ries, which is not conducive to the subsequent use
of clustering methods to distinguish yawed trajecto-
ries from planned trajectories. On the other hand,
when the Thre threshold is set too high (i.e., when
Thre=50%) , the number of identified yawed tra-
jectories becomes too small, resulting in some cases
where trajectories significantly deviating from the
original planned path are incorrectly classified as
non-deviated. When Thre=40%, the identified
yawed trajectory results align more closely with ac-
tual conditions. Therefore, the Thre threshold is set
to 40%, resulting in 2 436 identified yawed trajecto-

ries.
4.3 Clustering experiment result analysis

To determine the optimal hyperparameters for
DBSCAN, this study employed a grid search meth-
od to evaluate clustering performance under differ-
ent similarity measures. The parameter range for
the grid search is set as: Neighborhood radius € €
[0.1,1] ,
MinPts € [3, 10]. The performance metrics from

and minimum number of samples

various parameter combinations obtained through
grid search (as shown in the evaluation results
based on Euclidean distance) are analyzed using
DBI, CHI, and silhouette coefficient.

According to the results in Fig.16, when ¢ €
[0.7, 1] and MinPts € [ 3, 6], the DBI reaches its
minimum value of 0.25, indicating high intra-cluster

compactness and significant inter-cluster separation.
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Fig.16  Results of Euclidean distance metrics

Within this range, the silhouette coefficient reaches
0.736, further confirming the superiority of the clus-
tering performance. However, the CHI index
shows that when ¢ = 0.4 and MinPts € [3, 6], in-
tra-cluster compactness is optimal (CHI=8 901).
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Under this parameter combination, the DBI and sil-
houette coefficient are 0.295 and 0.703, respective-
ly, slightly lower than the optimal values, but the
difference is minimal. The optimal parameter range
for DBI and silhouette coefficient has a correspond-
ing CHI value of 7 612, which differes significantly
from the maximum CHI value.

Considering the consistency of the three met-
rics and the actual clustering performance, this
study ultimately selects e =0.6 and MinPts=3 as
the optimal hyperparameters. This parameter combi-
nation performs nearly optimally on DBI and silhou-
ette coefficient while achieving a relatively high CHI
value, balancing intra-cluster compactness and inter-
cluster separation. The corresponding clustering re-
sults are shown in Fig.17, where eight clusters are
identified. Overall, the clusters are clearly separat-
ed, but Labels 2 and 3 show overly coarse distribu-

tions, requiring further separation.

34
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Fig.17 Clustering results based on Euclidean distance

Fig.18 shows the trend of the performance met-
rics corresponding to the clustering hyperparameters
based on Hausdorff distance. Similar to the results
with Euclidean distance, the trend follows a compa-
rable pattern, though there are numerical differenc-
es. The significant difference lies in the DBI and
CHI optimal values for Hausdorff distance (DBI=
0.225, CHI=19 111) ,

than the results based on Euclidean distance. This

which are notably better

suggests that shape-based trajectory similarity mea-
sures, such as Hausdorff distance, outperform tradi-
tional Euclidean distance in assessing the quality of
flight trajectory clustering and are better suited to
the spatial characteristics of trajectories. Neverthe-

less, the optimal parameter range for Hausdorff dis-
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Fig.18 Results of Hausdorff distance metrics

tance is consistent with that for Euclidean distance
(e [0.7, 1], MinPts € [3, 6]). Considering con-
sistency and computational efficiency, this study
still selects e = 0.6 and MinPts=3 as the hyperpa-

rameters.
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The clustering results using Hausdorff distance
are shown in Fig.19, where nine clusters are identi-
fied. Compared to the Euclidean distance cluster-
ing, this method identifies more clusters in the La-
bel 0 region, demonstrating higher discriminative
ability. However, the distribution of Labels 2 and 3
remains too coarse, with insufficient separation, in-
dicating that clustering performance still needs fur-

ther optimization in certain regions.
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Fig.19 Clustering results based on Hausdorff distance

Based on the results from Fig.20, the parame-
ters for the sector edit distance method are set as e=
0.7 and MinPts=3. Compared to the clustering
methods based on Euclidean distance and Hausdorff
distance, this method demonstrates better clustering
performance. The neighborhood radius is smaller
(e=0.4), and the number of core sample points is
higher (MinPts=6). Additionally, in terms of clus-
tering evaluation metrics, both the CHI and DBI
outperform the first two methods, indicating that
the sector edit distance achieves a higher level of in-
tra~cluster compactness and inter-cluster separation.

The clustering results are shown in Fig.21,
where the sector edit distance successfully classifies
the trajectories on the northwest and southwest
sides of the Guangzhou to Shanghai route. The first
two methods fails to further segment these areas,
recognizing them only as a single cluster. In con-
trast, the sector edit distance method divides these
areas into five distinct clusters (Labels 3, 6, 9, 13,
19) , demonstrating a stronger discriminatory capa-
bility. Among them, the trajectories in Label 9 are
more dispersed, likely due to the wide range of the

individual sector passed, which results in multiple
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Fig.20 Results of sector edit distance metrics

paths within the same sector. Although the edit dis-
tance might consider these paths similar, this meth-
od still significantly improves trajectory classifica-
tion compared to the previous two. In summary, ex-

perimental results of the three similarity measures
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Fig.21 Clustering results based on sector edit distance

are consistent with the theoretical analysis. Euclide-
an distance is sensitive to local fluctuations and iden-
tified fewer clusters, while Hausdorff distance im-
proves cluster discrimination in some regions but
still shows coarse separation. The sector edit dis-
tance demonstrats superior performance by identify-
ing representative deviation patterns more effective-
ly, as reflected in higher CHI values and lower DBI
values. Therefore, this study adopts sector edit dis-
tance as the measure of trajectory similarity and uses
the clustering results obtained from this method to

generate the trajectory options set.
4.4 Trajectory option set generation

Through three trajectory similarity measures
(sector similarity, Euclidean distance, and Haus-
dorff distance) , combined with the DBSCAN clus-
tering results under optimal parameters, it is evident
that the sector similarity-based method outperforms
the traditional Euclidean distance and Hausdorff dis-
tance in clustering effectiveness. Using this method,
this study identifies several typical deviation paths
commonly used by flights. Additionally, the analy-
sis shows that although most flight trajectories still
follow the planned path, flights do not strictly ad-
here to the planned path during actual flight. To ad-
dress, it this study employs polynomial fitting on
non-deviation trajectories to generate the central tra-
jectory for each planned path, replacing the original
planned path, thereby forming path options that are
closer to actual flight conditions. By combining the
central trajectories of non-deviation paths with com-
monly used deviation trajectories, a set of flight

path options from the Guangzhou city cluster to the

Shanghai airport cluster is ultimately generated.
There are as many as 49 planned paths from
the Guangzhou airport cluster to the Shanghai air-
port cluster. As analyzed in Fig.11, most planned
paths largely overlap, with only slight differences in
route points during the takeoff and landing phases.
For example, Route A may differ from Route B due
to the presence of one additional route point; simi-
larly, the planned path from Guangzhou to Nanjing
is almost identical to the planned path from Guang-
zhou to Shanghai Pudong Airport, except that the
latter path includes one additional route point at the
end. Moreover, certain paths, while differing due to
an additional route point in the segment or due to dif-
ferences in airport locations during takeoff and land-
ing, often share the same route during the cruising
phase. These factors collectively result in a large
number of planned paths. However, considering
that the cruising phase paths are essentially highly
consistent, this study categorizes the 49 planned
paths into nine main types based on the characteris-
tics of the cruising phase. The trajectory distribution
shown in Fig.22 reduces redundant trajectories and

highlights the core patterns of the flight routes.
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Fig.22 Nine types of non-deviation flight trajectories

Fig.23 shows the central trajectories of nine
types of non-deviation flights based on the polynomi-
al fitting method. Fig.24 presents the central trajec-
tories of 19 clusters of identified deviation trajecto-
ries obtained using the same method. The flight
clusters of non-deviation trajectories are relatively
concentrated around the central trajectory, while the
deviation trajectories are more dispersed. However,

the clusters derived from the sector similarity meth-
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od are more concentrated compared to those ob-

tained using Euclidean distance and Hausdorff dis-
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Fig.24  Central trajectories of 19 clusters of deviation flights
planned path. As a result, this study merges the trajectory option set from Guangzhou airport cluster
clusters with similar central trajectories into a single to Shanghai airport cluster is thus generated. As
category, incorporating the similar patterns of both shown in Fig.25, a total of 19 trajectory options are

deviation and non-deviation trajectories. The final generated.
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Fig.25 Trajectory option set from Guangzhou airport

cluster to Shanghai airport cluster

5 Conclusions

This study develops a trajectory option set gen-
eration method based on sector edit distance, using
data preprocessing and clustering analysis. The DB-
SCAN algorithm 1s employed to identify deviation
trajectories and generate a set of trajectory options
from the Guangzhou airport cluster to the Shanghai
airport cluster. Case studies show that the method
effectively extracts preferred paths and aligns with
actual flight patterns. The main conclusions are as
follows.

(1) Deviation trajectory identification and defi-
nition: This study successfully identifies and defines
deviation trajectories. By statistically analyzing the
deviation of flight trajectories from the planned path
in the Central South and East China regions under
clear weather conditions, the deviation threshold is
established. Using the quantile inflection method
based on this threshold, deviation and non-deviation
trajectories are distinguished, providing a founda-
tion for subsequent clustering.

(2) Similarity measurement comparison: In
the comparison of similarity metrics, sector edit dis-
tance combined with the DBSCAN clustering out-
performs Euclidean distance and Hausdorff distance.
Using silhouette coefficient, CHI, and DBI as eval-
uation metrics, sector edit distance demonstrates
higher intra-cluster compactness and inter-cluster
separation when € =0.7 and MinPts=3, verifying
its performance advantages.

(3) Trajectory option generation: Based on
the central trajectories of non-deviation and devia-
tion trajectories, this study generates 19 trajectory

option sets from the Guangzhou airport cluster to

the Shanghai airport cluster. These paths exhibit sig-

nificant geographical diversity and deviation charac-

teristics, providing practical support for flight path
optimization and scheduling.

The findings of this study not only enhance the
flexibility of flight planning by providing multiple
path options, but also offer data support for collabor-
ative decision-making and dynamic traffic manage-
ment by air traffic control. In practice, the proposed
method has the potential to contribute to the devel-
opment of more adaptive flight operation strategies
in complex airspace environments. However, the
method has certain limitations. The sector edit dis-
tance has limited clustering separation when there
are significant trajectory differences within sectors,
and it may be constrained by the granularity of sec-
tor division or the complexity of local trajectory pat-
terns. Future research could improve in the follow-
ing directions: (1) Increasing the volume of histori-
cal flight trajectory data to enhance the model’s gen-
eralization ability; (2) considering the impact of
weather forecasts and dynamic airspace factors
(such as wind and traffic distribution) on deviation
recognition. Additionally, the trajectory option set
generated by this study can provide data support for
future flight plan path selection, promoting collabor-
ative decision-making between air traffic control and
airlines.
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