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Abstract: This study discusses a machine learning‑driven methodology for optimizing the aerodynamic performance of 
both conventional， like common research model （CRM）， and non‑conventional， like Bionica box‑wing， aircraft 
configurations. The approach leverages advanced parameterization techniques， such as class and shape transformation 
（CST） and Bezier curves， to reduce design complexity while preserving flexibility. Computational fluid dynamics
（CFD） simulations are performed to generate a comprehensive dataset， which is used to train an extreme gradient 
boosting （XGBoost） model for predicting aerodynamic performance. The optimization process， using the 
non‑dominated sorting genetic algorithm （NSGA‑Ⅱ）， results in a 12.3% reduction in drag for the CRM wing and an 
18% improvement in the lift‑to‑drag ratio for the Bionica box‑wing. These findings validate the efficacy of machine 
learning based method in aerodynamic optimization， demonstrating significant efficiency gains across both 
configurations.
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0 Introduction 

Modern air transportation faces significant chal‑
lenges， particularly the need to reduce its environ‑
mental impact. Chemical emissions are a major ob‑
stacle to sustainability， worsened by the sector’s an‑
nual growth of about 5%. Optimizing aircraft design 
offers a solution by maximizing transport capacity 
and minimizing fuel consumption. This can be 
achieved by enhancing lifting capabilities （increasing 
payload） and reducing drag （lowering propulsion 
power in cruise）， thus improving aerodynamic per‑
formance and maximizing the lift‑to‑drag （L/D） ra‑
tio. Research in this area ranges from conservative 
methods like passive flow control［1］ to more innova‑
tive approaches involving novel aircraft and power 

plant architectures. Researchers are also exploring 
some non‑conventional designs like blended wing 
body or box wing［2］ planform for the potential solu‑
tions.

In recent years， significant progress has been 
made in aerodynamic optimization， particularly in 
wing design， relying on computational fluid dynam ‑
ics （CFD） and adjoint‑based optimization［3‑12］ to bal‑
ance accuracy and computational efficiency. Howev‑
er， optimizing an aircraft wing remains challenging 
due to the complexity of design spaces and the high 
computational cost. The widespread adoption of ma‑
chine learning （ML） techniques， such as deep neu‑
ral networks （DNNs）， has started addressing these 
challenges， with applications in fluid mechanics， in‑
cluding airfoil and wing optimization［13‑17］. Using ad‑
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vanced parameterization techniques like class and 
shape transformation （CST） reduces design vari‑
ables and dataset sizes， improving optimization effi‑
ciency. Various ML algorithms， including random 
forest （RF）， stochastic gradient tree boosting 
（SGTB）， and extreme gradient boosting （XG‑
Boost）［9，18‑19］， have shown promise in aerodynamic 
optimization with smaller datasets. To the authors’ 
best knowledge， however， the aerodynamic optimi‑
zations of representative transonic wings or box‑
wings using these advanced ML‑based strategies （e.
g.， CST， XGBoost） are yet to be assessed.

This paper summarizes the ML based aerody‑
namic optimization approach， which is validated by 
using the well‑known common research model 
（CRM） benchmark proposed by National Aeronau‑
tics and Space Administration （NASA）. Then， the 
application of these ML‑based techniques is extend‑
ed to the aerodynamic optimization of a conceptual 
box wing planform.

1 Methodology 

This study focuses on optimizing the box‑wing 
configuration through a low‑fidelity ML approach. 
This methodology leads us to a solution space 
aligned with our objectives， following the ISO 
9001：2015 process approach for structured develop‑
ment［20‑21］. In line with this framework， the method‑

ology includes three components： Input， process， 
and output［20］. The input phase provides the neces‑
sary requirements and resources， while the process 
phase follows the plan‑do‑check‑act （PDCA） cycle 
to drive operations［21‑22］. Finally， the output phase 
aims to meet the objectives defined by the input 
phase.

To implement the ISO 9001：2015 process ap‑
proach， we first identify and organize the elements 
of input， process， and output. Key steps include pa‑
rameterization， random sampling， numerical solv‑
ing， and data preparation， which yield the initial 
output， the training dataset. This dataset then un‑
dergoes further processing， including ML algorithm 
training， initial model prediction， test set alloca‑
tion， and average prediction error （APE） calcula‑
tions. Based on tolerance limits， the final output is a 
surrogate model. This surrogate model interfaces 
with the subsequent “optimizer” process， which 
considers objectives and constraints as inputs， ulti‑
mately producing the final output： The “optimized 
parameters” that represent the optimised geometry. 
This iterative process adheres to the PDCA cycle， 
ensuring that the initial inputs and outputs contrib‑
ute and influence the generation of the final output. 
This demonstrates the inter‑connected and continu‑
ous refinement of the methodology. All these pro‑
cesses are illustrated in the Fig.1.

The process involves parameterization， compu‑
tation， sampling， surrogate model development， 
validation， and optimization. For the first step， the 

baseline airfoil for both configuration are parameter‑
ized using CST approach. Here， the inverse ap‑
proach is taken， which first initializes random CST 

Fig.1　Demonstration of the proposed optimization framework
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coefficients， then performs optimization to reduce 
the error between the baseline and CST defined air‑
foil. Once the CST defined airfoil reaches the error 
less than 1%—2% from the baseline， the CST co‑
efficients are finalized for the airfoil. Now， the base‑
line wing planform are discretized along the span. 
Here， the number of section and the location of the 
section along the span is determined based on the 
shape of the baseline model. For example， seven 
equally spaced sections on CRM wing has found effi‑
cient to capture the baseline shape， while the box 
wings required more sections as it shape changes， e.g. 
dihedral， chord etc.， frequently along the span. The 
sectional parameter distribution along the span is pa‑
rameterized with Bezier curves （B-curves） to mini‑
mize total variables count. Multiple samples are gen‑
erated within the design space and solved by CFD 
solvers to create a dataset for machine learning. A 
surrogate model is then constructed， followed by op‑
timization using the non‑dominated sorting genetic 
algorithm （NSGA‑Ⅱ） to refine geometry. This en‑
tire process （Fig.2） is automated through in‑house 
code that integrates all steps.

2 Applications 

2. 1 Parameterization of the planforms　

To ease its subsequent deformation within an 
automated script， the baseline geometries are first 
parameterized， this being achieved using the 
so‑called CST method. CST provides enhanced 
control over the wing shape， avoiding the aerody‑
namically inefficient or mesh‑incompatible geome‑
tries noted in previous studies［23‑24］.

Fig.3 illustrates the CST‑generated airfoil for 
the CRM wing at 65% of its half‑span （η = 0.65） 
and the Clark Y airfoil used in the Bionica box wing 
configuration. The parametric airfoils comprise ap‑
proximately 200 points and are generated using only 
a dozen binomial weight parameters， as shown in 
Fig.3， where c denotes the normalized chord， x and 
z denote the horizontal and the vertical coordinates， 
respectively， and αₜ denotes the twist angle.

The wing planforms are parameterized by repli‑
cating airfoil sections at specified spanwise loca‑

tions. For the CRM wing， representing a conven‑
tional tube‑wing configuration， this spanwise posi‑
tioning with planform parameters is sufficient to re‑
construct the geometry. In contrast， the box wing 
requires a more detailed approach： It consists of a 
front wing similar to the CRM wing， a rear wing 
that is forward‑swept and structurally distinct， and 
vertical winglets connected through blended junc‑

Fig.2　Flowchart of the proposed optimization approach

Fig.3　CST‑generated airfoils of the wing profiles for both 
the CRM and Bionica baseline airfoils
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tions. As a result， the box‑wing geometry demands 
a larger number of sections and careful placement to 
accurately capture its features.

For the CRM wing， seven sections were de‑
fined， with their locations （as percentages of the 
semi‑span） obtained from the reference study［10］. In 
the case of the box wing， six sections were identi‑
fied as sufficient， based on iterative comparisons be‑
tween the parameterized model and the original 
CAD geometry. For both the CRM and box‑wing 
models， the best practice is to align the parametric 
sections with the baseline CAD geometry to ensure 
accuracy. To maintain continuous control of the sec‑
tion parameters， Bezier curve fitting with a minimal 
number of control points is employed. This ap‑
proach is particularly important for accurately captur‑
ing the smooth transitions at the blended junctions 
of the box wing. For the box wing’s blended junc‑
tion， a parametric equation incorporating three func‑
tions has been established.

X r = X ( s ) - R sin θtan sφ (1)
Y r = Z ( s ) sin θ - R sin θ (2)

Z r = ( Z ( s ) cos θ - R cos θ )+ tan tφ (3)
where X r is responsible for describing the airfoil’s 
rotation around the central axis. This rotation is key 
to determining the airfoil’s orientation at various 
sections along the span （junction） of the wing.
θ， sφ， tφ  stand for the orientation （degrees） of the lo‑
cal airfoil section along Y， Z， X axises； X（s） and Z（s） 
are the airfoils coordinates； R defines the diameters 
of the bending at the junction which can be adjusted 
based on the vertical distance between the front and 
the rear wings； Y r and Z r functions specify the 
leading‑edge point’s position of winglet， used to de‑
fine the sweep and the twist， for each individual air‑
foil section.

The resulting CRM wing has a semi‑span of 
26.44 m and a wetted area of 167.20 m²， matching 
the counterpart［10］ （Fig.4）. Its Bezier curve‑based 
parameterization allows easy modifications by ad‑
justing control points. The wing shape and deforma‑
tion require only 147 parameters， significantly few‑
er than traditional methods like free form deforma‑
tion （FFD）［10］. Plus， Bionica has 7.5 m semi‑span 

for both wings and result in total wetted area of 
16 m²， matching our previous study［25‑26］. The pa‑
rameters used to define the CRM and Bionica wing 
planforms are consistent with the previous 
low‑fidelity study. Tables 1，2 present these parame‑
ters along with their baseline values.

2. 2 Dataset generation　

Creating a diverse dataset is essential for build‑
ing a comprehensive training repository for ML opti‑
mization. The number of samples in the dataset 
scales with the parameters is considered. Thus， on‑
ly the key geometric parameters known to signifi‑
cantly influence the overall L/D performance of the 
wing are chosen. These include wingspan， 
leading‑edge sweep， twist angles at specified span‑
wise stations， dihedral angle， and the wingtip 
thickness‑to‑chord ratio （Tables 1，2）. Each metric 
is explored within a design space centered on the 
baseline values， with most varied within 15%—

20% of the baseline， and extrema chosen to allow 
sufficient exploration while remaining reasonable 
（Tables 3，4）. Metrics are discretized into 15—20 
samples per variable （SPV）［27‑28］， providing optimal 
granularity without overfitting［29］， and keeping data 
points manageable for computation［30］. The sample 

Fig.4　CST‑generated airfoils wing planforms for both 
configurations

Table 1　CRM wing baseline parameters[25]

Parameter
b/m

ΛL.E./(°)
ε10%/(°)
ε18%/(°)
ε37%/(°)
ε50%/(°)
ε70%/(°)
ε100%/(°)
ztip/m

(T/C)m

Definition
Span

Leading edge sweep
Twist (η =0.10)
Twist (η =0.18)
Twist (η =0.37)
Twist (η =0.50)
Twist (η =0.70)

Twist (η =1)
Dihedral (vertical deflection at tip)

Mean thickness‑to‑chord ratio

Value
58.8
37.2
2.15
0.85

-0.47
-1.72
-2.40
-3.75

2.36
0.113
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generation process began with 15 samples per vari‑
able， and the number of samples is progressively in‑
creased until the ML model exhibits a prediction er‑
ror of less than 10% compared to the CFD results. 
This procedure yields 160 CRM‑based and 400 
Bionica‑based planform samples， which are used to 
train an XGBoost model. The resulting ML model 
achieves an average prediction error of approximate‑
ly 6% relative to the CFD data. Beyond this point， 
further increasing the sample size does not yield any 
noticeable improvement in predictive performance.

2. 3 Meshing and computation　

Each planform is automatically characterized 
aerodynamically using CFD， following guidelines 
from our previous study［31］. Due to symmetry， only 
half of the geometry is modeled， with the symmetry 

plane at the wing root. The computational domain 
extends approximately 50×28×28 mean aerody‑
namic chords in axial， lateral， and vertical direc‑
tions， and is meshed with an unstructured grid 
（Fig.5） using commercial software integrated into 
the optimization platform.

The ultimate mesh contains around 1.7 million 
hexa‑hedral elements， 98% of which maintain good 

Table 2　Bionica wing baseline parameters[25]

Wing

Front 
wing

Rear 
wing

Winglet

Parameter

Λ0.2(c/4)/(°)

Λ1.0(c/4)/(°)
b/2/m
ε0.0/(°)
ε0.4/(°)
ε1.0/(°)
γ0.0/(°)
γ0.4/(°)
γ1.0/(°)
T/C0.0

T/C0.4

T/C1.0

Cr/m
MAC/m

Ct/m
Λc/4/(°)
b/2/m
ε0.0/(°)
ε0.4/(°)
ε1.0/(°)
γ0.0/(°)
γ0.4/(°)
γ1.0/(°)
T/C0.0

T/C0.4

T/C1.0

Cr/m
Ct/m
H/m
Λh/(°)

Definition
Sweep (25% chord) at 20% 

of b/2
Sweep (25% chord) at tip

Semi span
Twist (root)

Twist (40% of b/2, kink)
Twist (root)

Dihedral (root)
Dihedral (40% of b/2, kink)

Dihedral (tip)
Thickness to chord ratio (root)

Thickness to chord ratio 
(40% of b/2, kink)

Thickness to chord ratio (tip)
Chord (root)

Mean aerodynamic chord
Chord (tip)

Sweep (25% chord) at tip
Semi span

Twist (root)
Twist (40% of b/2)

Twist (root)
Dihedral (root)

Dihedral (40% of b/2, kink)
Dihedral (tip)

Thickness to chord ratio (root)
Thickness to chord ratio 

(40% of b/2, kink)
Thickness to chord ratio (tip)

Chord (root)
Chord (tip)

Height
Sweep

Value

23.46

18.46
6.5
0.0
0.0
0.0

0.00
15.00
17.00
0.11

0.11

0.11
2.7

1.66
0.98

-20.56
6.5
0.0
0.0
0.0

0.00
0.00
0.00
0.11

0.11

0.11
1.26
0.86
1.2
30

Table 3　Design space for the CRM wing

Parameter
b/m

ΛL.E./(°)
ε10%/(°)
ε18%/(°)
ε37%/(°)
ε50%/(°)
ε70%/(°)
ε100%/(°)
ztip/m

(T/C)m

Lower bound
56
30
1

-1
-1
-2
-3
-4
1.40
0.08

Upper bound
64
44
6
4
4
2
2

-1
2.40

0.120

Table 4　Design space for the Bionica configurations[25]

Wing

Front wing

Rear wing

Winglet

Parameter
Λ0.2(c/4)/(°)
Λ1.0(c/4)/(°)

ε0.0/(°)
ε0.4/(°)
ε1.0/(°)
γ0.4/(°)
γ1.0/(°)
T/C0.0

T/C0.4

T/C1.0

Λ1.0(c/4)/(°)
ε0.0/(°)
ε1.0/(°)
γ1.0/(°)
T/C0.0

T/C1.0

Λw/(°)

Lower bound
10
20
0.0
4.0

-3.0
10.0
17.0
0.08
0.05
0.03
-15
0.0

-3.0
-3.00

0.08
0.03
25

Upper bound
25
30
8.0
6.0
3.0

25.0
26.0
0.11
0.08
0.05
-30
6.0
3.0

0.00
0.11
0.05
35

Fig.5　CFD mesh for base configuration of CRM and Bioni‑
ca wings and their detailed views on the right side
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regularity （Eriksson skewness of 0.5—1.0）. This 
mesh density was determined through a prior grid 
convergence study with the CRM baseline wing， us‑
ing meshes ranging from 0.5 to 6 million cells. Each 
planform then undergoes CFD simulation using a 
commercial software， following the protocol from 
our previous study［31］ that utlises k‑ephsilon model 
along the ehanced wall function generates results 
with 5% error from the baseline model even with 
coarser grid size. Here， the process is automated 
through a pre‑scripted workflow， handling simula‑
tion settings （boundary conditions， turbulence mod‑
el， etc.）， execution， and post‑processing in batch 
mode. All simulations are performed for cruise con‑
ditions： Ma = 0.85， Re = 30×10⁶ ， and α = 
2.20° for CRM， and Ma = 0.2， Re = 6×10⁶， and 
α = 0° for Bionica.

2. 4 Constitution of ML models　

The proposed optimization framework includes 
developing a ML prediction model as a central com ‑
ponent. This study initially evaluates two models： 
RF and XGBoost， both effective for small datasets. 
Previous studies［25‑26］ have shown XGBoost superior 
performance over other ML models and traditional 
CFD approaches in aerodynamic optimization for 
tube wing and box wing designs. Therefore， XG‑
Boost is selected as the final ML model in this 
study. The model’s performance is assessed by a 
multi‑output regressor from the scikit‑learn library， 
configured with identical datasets. Evaluation occurs 
in two stages： Through cross‑validation during 
training， and by testing the model on a separate da‑
taset to assess its predictive accuracy.

The models are trained using 80% of the datas‑
et， with prediction capabilities assessed via the 
mean square error. An objective function in the 
script iteratively adjusts algorithm parameters to 
minimize mean absolute error （MAE）. Once opti‑
mal parameters are achieved， performance is further 
evaluated using the remaining 20% of the dataset. A 
tolerance limit of 10% from predicted values is set， 
acknowledging aerodynamic complexities， as a crite‑
rion for surrogate model acceptance. The evaluation 
shows the XGBoost model achieves an average er‑

ror of 6%， making it the optimal choice for the next 
stages of the process.

2. 5 Optimization problem definitions　

The next step involves integrating the surro‑
gate model with the optimizer and defining the opti‑
mization problems. The primary objective is to mini‑
mize the aerodynamic drag coefficient （CD） while 
satisfying lift coefficient （CL） constraints. For 
CRM， the CL constraint is based on available re‑
search data （CL = 0.50）［19］. In contrast， for the Bi‑
onica box‑wing， where the design is still in early 
stages， the CL constraint is not yet finalized. There‑
fore， the optimization goal for Bionica is to maxi‑
mize CL while minimizing CD.

To address this， a multi‑objective optimization 
model is developed using the NSGA- Ⅱ . This ap‑
proach is particularly useful for handling diverse ob‑
jectives， such as minimizing weight and reducing 
noise across various disciplines. The model is also 
capable of handling single‑objective aerodynamic op‑
timization， as in the case of CRM. To achieve this， 
the CL constraint is transformed into an additional 
minimization objective， aiming to reduce the abso‑
lute error between the specified CL constraint and 
the ML‑predicted CL （Tables 5，6）.

3 Results and Discussion 

This section presents the results obtained using 
the proposed methodology， divided into two parts： 
Validation of the methodology and optimization out‑

Table 5　CRM Optimization problem definition

Objective

Min. f ( x )= CD

Variable
ε(5 control points)

T/C(3 control points)
γ(2 control points)
Λc/4(1 parameter)
b/2(1 parameter)

Constraint

CL = 0.50
Ma = 0.85

Re = 30 × 106

Table 6　Bionica optimization problem definition

Objective

Min. f ( x )= CD

Max. f ( x )= CL

Variable
ε(5 control points)

T/C(3 control points)
γ(3 control points)
Λc/4(2 parameters)
b/2(1 parameter)

Constraint

Ma = 0.2
Re = 6 × 106
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comes. The CRM and Bionica baseline results are 
shown to assess the accuracy of the parameteriza‑
tion， computational approach， and machine learning 
models. The optimization results section showcases 
the final outcomes of the methodology for both the 
CRM and Box wing configurations.

3. 1 Results validations　

As part of the validation， this study adopts the 
same flight conditions used by Lyu et al.［10］， which 
differ from the operating conditions applied during 
the optimisation phase. Fig.6 presents CFD results 
for the baseline CRM wing at flow conditions 
Ma = 0.85， α = 2.20°， though at a lower Reyn‑
olds number （Re = 5×10 ⁶） and the result is com ‑
pared against the Lyu et al. study. Although the da‑
taset generation and optimization were conducted us‑
ing the coarse grid［10］， the validation results were ob‑
tained with the finest grid resolution of the model， 
consisting of approximately six million cells. This 
resolution was achieved by refining the coarse mesh 
three times in both the streamwise and normal direc‑
tions relative to the flow. The present results are 
compared with data in Ref.［10］， which were ob‑
tained under the same flow conditions but using a 
different CFD solver. The comparison shows good 
agreement， both in pressure distribution over the 
wing’s suction side （Fig.6（a）） and pressure coeffi‑
cient （CP） along the span （Figs.6（b，c））.

Minor discrepancies may arise from slight dif‑

ferences in twist distribution， as this parameteriza‑
tion is based on a different study［19］， and from a low‑
er mesh density used to reduce computational cost 
for the 160 planform simulations. Nonetheless， the 
results are acceptable， as demonstrated by the L/D 
coefficients， CL = 0.5 and CD = 0.020 8， which 
are close to the reference values （CL = 0.5， CD = 
0.019 9）［10］.

The small discrepancies are likely due to the cu‑
mulative effect of minor uncertainties in both airfoil 
and planform parameterization. In particular， the re‑
sidual differences come from variations in the twist 
distribution. The present results are compared with 
study in Ref.［10］， which used a different twist， 
while this study follows the original CRM baseline 
twist defined in the original study［19］. Furthermore， 
it is well documented that CRM CFD results show 
minor variability depending on the mesh type （e.g.， 
hexahedral， polyhedral， or tetrahedral） and the 
choice of turbulence model［17‑19］. Since the purpose 
of this study is to establish a baseline for subsequent 
wing optimization， the current results are consid‑
ered sufficiently accurate and robust for further anal‑
ysis.

The Bionica CFD simulations are conducted 
following several grid convergence studies， with the 
grid converging at 1.7 million cells. The simulation 
produces results consistent with the previous study 
of the Bionica geometry［26］， showing only a 0.5% 
difference in CD （Fig.7）. This cross‑verification， 
along with the CRM validation， justifies the reliabil‑
ity of the adopted approach in accurately simulating 
aerodynamic performance.

Fig.6　CRM planform within a steady flow (Ma= 0.85, 
Re = 5×106, α = 2.20° ), as CFD‑simulated and 
compared against results from Ref.[10]

Fig.7　Bionica planform within a steady flow (Ma= 0.2, 
Re = 6×106, α = 0.0° ), as CFD‑simulated and 
compared against results from Ref.[26]

795



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

3. 2 Optimization outcomes　

The optimized CRM wing planform shows sev‑
eral key improvements over the baseline design. 
The span has been increased from 58.8 m to 61.5 m 
（Table 7）， suggesting a design shift towards great‑
er aerodynamic efficiency and potential lift enhance‑
ment. Additionally， the leading‑edge sweep angle 
has been significantly increased from 37.2° to 43.2°， 
which likely contributes to improving drag perfor‑
mance at higher speeds by delaying flow separation. 
In terms of twist distribution， adjustments are made 
across various spanwise locations. For instance， at 
10% and 18% of the span， the twist angles have 
been increased， enhancing the lift at these sections. 
Conversely， the negative twist at mid‑to‑outboard 
sections （η = 0.37 to η = 1） has been reduced， 
which suggests better control of aerodynamic loads 
and improved overall efficiency. These changes re‑
flect a refined balance between lift distribution and 
induced drag. The dihedral angle， represented by 
the vertical deflection at the tip， shows a slight re‑
duction between 2.36 —  2.33 m， indicating margin‑
al adjustments to wingtip aerodynamics and stability. 
Finally， the mean thickness‑to‑chord ratio （T/C）m 
has been slightly decreased from 0.113 to 0.109， 
likely aiming at reducing profile drag without signifi‑
cantly compromising structural integrity. Overall， 
these optimizations reflect a concerted effort to en‑
hance aerodynamic performance， reduce drag， and 
improve lift distribution for better cruise efficiency.

The grid convergence study for the CRM opti‑
mized planform is illustrated in Fig.8， with drag 

counts plotted against different grid sizes， ranging 
from 1.5 million elements to 6.0 million elements. 
As grid sizes increase， the drag count decreases， 
demonstrating the impact of mesh resolution. Nota‑
bly， the largest changes in drag count （∆） occur be‑
tween the converged grid sizes of 6 million， where 
drag counts reduce significantly by 22.97 counts. In 
terms of aerodynamic performances， this translates 
into a significant drag reduction （of about 12.3% 
drag count reduction） of the optimal planform com ‑
pared to its baseline counterpart.

The aerodynamic improvements are attributed 
to the specific pressure distribution of the optimized 
planform （Fig.9）. Compared to the baseline， the 
optimized wing shows slightly reduced shocks in the 
inboard section （top of Fig.9）， while the outboard 
section exhibits stronger shocks on the suction sur‑
face. Notably， pressure recovery is extended further 
aft， potentially delaying stall onset， as seen in the 
trailing‑edge region comparison in Fig.9.

Table 7　CRM baseline and optimized model comparison

Design parameter
Span

Leading edge sweep
Twist (η =0.10)
Twist (η =0.18)
Twist (η =0.37)
Twist (η =0.50)
Twist (η =0.70)

Twist (η =1)
Dihedral (vertical deflection 

at tip)
Mean thickness‑to‑chord ratio

Symbol
b/m

ΛL.E./(°)
ε10%/(°)
ε18%/(°)
ε37%/(°)
ε50%/(°)
ε70%/(°)
ε100%/(°)

ztip/m

(T/C)m

Baseline
58.8
37.2
2.15
0.85

-0.47
-1.72
-2.40
-3.75

2.36

0.113

Optimized
61.5
43.2
2.88
1.78

-0.67
-1.38
-1.62
-3.10

2.33

0.109

Fig.8　Aerodynamic performances (drag counts = CD×
10 000) characterizing the ML‑based CRM‑based op‑
timal planform and its parameterized baseline coun‑
terpart, as estimated using CFD and a grid conver‑
gence, simulated for CL = 0.5 at Re = 30×106

Fig.9　CRM‑based optimal planform within a steady flow 
(Re = 30×106, α = 2.00° , CL = 0.5), as 
CFD‑simulated and compared against its baseline 
counterpart under similar flow conditions
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The comparison between the baseline and opti‑
mized Bionica models shows targeted geometric 
modifications to enhance aerodynamic performance. 
The front wing’s leading‑edge sweep has been in‑
creased slightly， moving from 18.46° to 19.20° till 
20% of the span and decreases in the outboard sec‑
tion from 23.46° to 21° ， improving high‑speed lift 
characteristics （Table 8）. Twist angles （ε） have 
been introduced at various span locations in the opti‑
mized design， which likely improves aerodynamic 
efficiency and load distribution. Dihedral angles （γ） 
have been slightly increased for the front wing， con‑
tributing to better lateral stability， while 
thickness‑to‑chord ratios （T/C） have been re‑
duced， particularly at the wingtip， to minimize drag.

In the rear wing， the leading‑edge sweep is 
marginally adjusted， moving from -20.56° to 
-22.60°， potentially enhancing stability. Twist an‑
gles are also introduced here， with root twist in‑
creasing to 2.8° and tip twist slightly negative at 
-0.9°， which may help manage load distribution be‑
tween the wings. The rear wing thickness‑to‑chord 
ratio （T/C） has also been reduced slightly， likely 
contributing to reduced drag. The winglet’s sweep 
remains relatively consistent， with only a slight de‑

crease from 30° to 29.20°， balancing control of wing‑
tip vortices. These adjustments reflect a comprehen‑
sive optimization effort aiming at improving aerody‑
namic efficiency and stability.

Once the ML based surrogate model provides 
the optimized planform for the Bionica wing， a grid 
convergence study of the configuration is performed. 
The grid convergence study in Fig.10 applies differ‑
ent grid resolutions to assess the accuracy of the Bi‑
onica optimized model. As the grid size increases， 
the results stabilize， indicating that a grid size of 
around 6 million cells is sufficient to capture the 
aerodynamic performance accurately. For the con‑
verged results， CL is 0.58， while CD is 0.026. This 
yields a L/D ratio， that is， CL/CD of approximately 
22.3， indicating a significant improvement （about 
18%） of overall aerodynamic performance. It dem‑
onstrates the proposed optimization process can ef‑
fectively optimize both tube wing （CRM） and Bioni‑
ca （box wing）.

The CP plots in Figs.11，12 show significant im ‑
provements in the optimized Bionica wing compared 
to the baseline. Across all span‑wise sections， the 
optimized wing （dashed lines） exhibits a stronger 
suction peak near the leading edge， indicating en‑
hanced lift generation. Additionally， the optimized 
wing shows a smoother pressure recovery from 
mid‑chord to the trailing edge， which is particularly 
important in reducing flow separation and drag.

In the outboard sections， the optimized wing 
maintains a slightly higher negative CP value at the 
leading edge， suggesting a more favorable pressure 
gradient and improved aerodynamic performance. 
These modifications contribute to better overall lift 

Table 8　Bionica baseline and optimized model compari‑
son

Wing

Front wing

Rear wing

Winglet

Parameter
Λ0.2(c/4)/(°)
Λ1.0(c/4)/(°)

ε0.0/(°)
ε0.4/(°)
ε1.0/(°)
γ0.4/(°)
γ1.0/(°)
T/C0.0

T/C0.4

T/C1.0

Λ1.0(c/4)/(°)
ε0.0/(°)
ε1.0/(°)
γ1.0/(°)
T/C0.0

T/C1.0

Λw/(°)

Baseline
18.46
23.46

0.0
0.0
0.0

15.0
17.0
0.11
0.11
0.11

-20.56
0.0
0.0
0.0

0.11
0.11
30.0

Optimized
19.22
21.0
5.0
3.6
1.5

16.0
16.60
0.084
0.07
0.05

-22.60
2.8

-0.9
-1.00

0.09
0.09

29.20

Fig.10　Aerodynamic performances characterizing the 
ML‑based Bionica optimal planform CD and CL, as 
estimated using CFD and a grid convergence, simu‑
lated at Re = 6×106
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distribution while minimizing drag. The optimized 
pressure distribution is a clear indicator of the im ‑
provements in aerodynamic efficiency， with en‑
hanced lift characteristics and a reduction in drag， 
making the optimized design more effective for per‑
formance at cruise conditions.

4 Conclusions 

This study presents a ML‑based methodology 
for optimizing the aerodynamic performance of both 
conventional （CRM） and non‑conventional （Bioni‑
ca box‑wing） aircraft configurations. By employing 
advanced parameterization techniques， such as CST 
and Bezier curves， the method effectively reduces 
the number of design variables while maintaining de‑
sign flexibility. Multiple planforms are generated 
within the defined design space， followed by validat‑
ed CFD simulations， which are used to build a com ‑
prehensive CFD database for training the machine 

learning model.
The XGBoost model was selected for its supe‑

rior predictive accuracy in this context. The optimi‑
zation process， executed through the NSGA‑Ⅱ ， 
leads to significant aerodynamic gains. For the 
CRM wing， a 12.3% reduction in drag is achieved 
compared to the baseline， while the Bionica 
box‑wing configuration sees an 18% improvement 
in the L/D ratio （CL/CD）. These results demon‑
strate the effectiveness of combining ML with tradi‑
tional optimization techniques， offering a computa‑
tionally efficient approach to improve aerodynamic 
performance in both conventional and unconvention‑
al aircraft designs.
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翼型盒式机翼布局的气动优化及其机器学习集成方法

哈桑·梅赫迪 1， 邓中敏 1， 雷东内·斯特凡 2， 萨努西·B. 穆罕默德 3

（1.北京航空航天大学杭州创新研究院，杭州  310020，中国； 2.香港科技大学机械与航空航天工程系，香港  
999077, 中国； 3.哈尔滨工业大学（深圳） 机电工程与自动化学院，深圳  518057，中国）

摘要：本文提出了一种基于机器学习的机翼气动性能优化方法，适用于常规布局（Common research model， 
CRM）机翼和非传统布局，即 Bionica 盒式机翼。该方法通过采用先进的参数化技术如类别/形状变换（Class and 
shape transformation， CST）函数与 Bezier 曲线在降低设计复杂性的同时保持了几何建模的灵活性。利用计算流

体 力 学（Computational fluid dynamics， CFD）仿 真 生 成 的 综 合 数 据 集 训 练 了 extreme gradient boosting （XG‑
Boost） 模型，以预测气动性能。在此基础上，采用非支配排序遗传算法进行优化。结果表明，CRM 机翼的阻力

降低了 12.3%，而 Bionica 盒式机翼的升阻比提高了 18%。研究结果验证了基于机器学习的优化方法在气动设

计中的有效性，并显著提升了在不同构型下的效率。

关键词：气动优化；盒式机翼；机器学习；计算流体力学
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