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Abstract: This study discusses a machine learning-driven methodology for optimizing the aerodynamic performance of
both conventional, like common research model (CRM) , and non-conventional, like Bionica box-wing, aircraft
configurations. The approach leverages advanced parameterization techniques, such as class and shape transformation
(CST) and Bezier curves, to reduce design complexity while preserving flexibility. Computational fluid dynamics
(CFD) simulations are performed to generate a comprehensive dataset, which is used to train an extreme gradient
boosting (XGBoost) model for predicting aerodynamic performance. The optimization process, using the
non-dominated sorting genetic algorithm (NSGA-1[ ), results in a 12.3% reduction in drag for the CRM wing and an
18% improvement in the lift-to-drag ratio for the Bionica box-wing. These findings validate the efficacy of machine

learning based method in aerodynamic optimization, demonstrating significant efficiency gains across both
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configurations.
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0 Introduction

Modern air transportation faces significant chal-
lenges, particularly the need to reduce its environ-
mental impact. Chemical emissions are a major ob-
stacle to sustainability, worsened by the sector’s an-
nual growth of about 5% . Optimizing aircraft design
offers a solution by maximizing transport capacity
and minimizing fuel consumption. This can be
achieved by enhancing lifting capabilities (increasing
payload) and reducing drag (lowering propulsion
power in cruise) , thus improving aerodynamic per-
formance and maximizing the lift-to-drag (L./D) ra-
tio. Research in this area ranges from conservative
methods like passive flow control'’’ to more innova-

tive approaches involving novel aircraft and power

Article ID: 1005-1120(2025)06-0789-12

plant architectures. Researchers are also exploring
some non-conventional designs like blended wing
body or box wing'*' planform for the potential solu-
tions.

In recent years, significant progress has been
made in aerodynamic optimization, particularly in
wing design, relying on computational fluid dynam-
ics (CFD) and adjoint-based optimization"*"*' to bal-
ance accuracy and computational efficiency. Howev-
er, optimizing an aircraft wing remains challenging
due to the complexity of design spaces and the high
computational cost. The widespread adoption of ma-
chine learning (ML) techniques, such as deep neu-
ral networks (DNNs) , has started addressing these
challenges, with applications in fluid mechanics, in-

13-17]

cluding airfoil and wing optimization """, Using ad-
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vanced parameterization techniques like class and
shape transformation (CST) reduces design vari-
ables and dataset sizes, improving optimization effi-
ciency. Various ML algorithms, including random
forest (RF) , stochastic gradient tree boosting
(SGTB) , and extreme gradient boosting (XG-

BOOSt) [9,18-19]

, have shown promise in aerodynamic
optimization with smaller datasets. To the authors’
best knowledge, however, the aerodynamic optimi-
zations of representative transonic wings or box-
wings using these advanced ML-based strategies (e.
g., CST, XGBoost) are yet to be assessed.

This paper summarizes the ML based aerody-
namic optimization approach, which is validated by
using the well-known common research model
(CRM) benchmark proposed by National Aeronau-
tics and Space Administration (NASA). Then, the
application of these ML-based techniques is extend-
ed to the aerodynamic optimization of a conceptual

box wing planform.

1 Methodology

This study focuses on optimizing the box-wing
configuration through a low-fidelity ML approach.
This methodology leads us to a solution space
aligned with our objectives, following the ISO
9001: 2015 process approach for structured develop-

ment 22", In line with this framework, the method-

ology includes three components: Input, process,
and output'®’. The input phase provides the neces-
sary requirements and resources, while the process
phase follows the plan-do-check-act (PDCA) cycle

to drive operations *"

. Finally, the output phase
aims to meet the objectives defined by the input
phase.

To implement the ISO 9001: 2015 process ap-
proach, we first identify and organize the elements
of input, process, and output. Key steps include pa-
rameterization, random sampling, numerical solv-
ing, and data preparation, which yield the initial
output, the training dataset. This dataset then un-
dergoes further processing, including ML algorithm
training, initial model prediction, test set alloca-
tion, and average prediction error (APE) calcula-
tions. Based on tolerance limits, the final output is a
surrogate model. This surrogate model interfaces
with the subsequent “optimizer” process, which
considers objectives and constraints as inputs, ulti-
mately producing the final output: The “optimized
parameters” that represent the optimised geometry.
This iterative process adheres to the PDCA cycle,
ensuring that the initial inputs and outputs contrib-
ute and influence the generation of the final output.
This demonstrates the inter-connected and continu-
ous refinement of the methodology. All these pro-

cesses are illustrated in the Fig.1.
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The process involves parameterization, compu-
tation, sampling, surrogate model development,

validation, and optimization. For the first step, the

Demonstration of the proposed optimization framework

baseline airfoil for both configuration are parameter-
ized using CST approach. Here, the inverse ap-

proach is taken, which first initializes random CST
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coefficients, then performs optimization to reduce
the error between the baseline and CST defined air-
foil. Once the CST defined airfoil reaches the error
less than 1%—2% from the baseline, the CST co-
efficients are finalized for the airfoil. Now, the base-
line wing planform are discretized along the span.
Here, the number of section and the location of the
section along the span is determined based on the
shape of the baseline model. For example, seven
equally spaced sections on CRM wing has found effi-
cient to capture the baseline shape, while the box
wings required more sections as it shape changes, e.g.
dihedral, chord etc., frequently along the span. The
sectional parameter distribution along the span is pa-
rameterized with Bezier curves (B-curves) to mini-
mize total variables count. Multiple samples are gen-
erated within the design space and solved by CFD
solvers to create a dataset for machine learning. A
surrogate model is then constructed, followed by op-
timization using the non-dominated sorting genetic
algorithm (NSGA-1l ) to refine geometry. This en-
tire process (Fig.2) is automated through in-house

code that integrates all steps.
2 Applications

2.1 Parameterization of the planforms

To ease its subsequent deformation within an
automated script, the baseline geometries are first
parameterized, this
so—called CST method. CST provides enhanced

control over the wing shape, avoiding the aerody-

being achieved using the

namically inefficient or mesh-incompatible geome-
tries noted in previous studies'* "',

Fig.3 illustrates the CST-generated airfoil for
the CRM wing at 65% of its half-span ( = 0.65)
and the Clark Y airfoil used in the Bionica box wing
configuration. The parametric airfoils comprise ap-
proximately 200 points and are generated using only
a dozen binomial weight parameters, as shown in
Fig.3, where ¢ denotes the normalized chord, & and
2 denote the horizontal and the vertical coordinates,
respectively, and a. denotes the twist angle.

The wing planforms are parameterized by repli-

cating airfoil sections at specified spanwise loca-
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Fig.2 Flowchart of the proposed optimization approach
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Fig.3 CST-generated airfoils of the wing profiles for both
the CRM and Bionica baseline airfoils

tions. For the CRM wing, representing a conven-
tional tube-wing configuration, this spanwise posi-
tioning with planform parameters is sufficient to re-
construct the geometry. In contrast, the box wing
requires a more detailed approach: It consists of a
front wing similar to the CRM wing, a rear wing
that is forward-swept and structurally distinct, and

vertical winglets connected through blended junc-
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tions. As a result, the box-wing geometry demands
a larger number of sections and careful placement to
accurately capture its features.

For the CRM wing, seven sections were de-
fined, with their locations (as percentages of the

[10] In

semi-span) obtained from the reference study
the case of the box wing, six sections were identi-
fied as sufficient, based on iterative comparisons be-
tween the parameterized model and the original
CAD geometry. For both the CRM and box-wing
models, the best practice is to align the parametric
sections with the baseline CAD geometry to ensure
accuracy. To maintain continuous control of the sec-
tion parameters, Bezier curve fitting with a minimal
number of control points is employed. This ap-
proach is particularly important for accurately captur-
ing the smooth transitions at the blended junctions
of the box wing. For the box wing’ s blended junc-
tion, a parametric equation incorporating three func-
tions has been established.
X,= X (s)— Rsin0tans, (1)
Y, = Z(s)sind — Rsin @ (2)
Z,=(Z(s)cos 0 — Rcos @)+ tant, (3)
where X, is responsible for describing the airfoil’ s
rotation around the central axis. This rotation is key
to determining the airfoil’ s orientation at various
sections along the span (junction) of the wing.
0, s, t, stand for the orientation (degrees) of the lo-
cal airfoil section along Y, Z, X axises; X(s) and Z(s)
are the airfoils coordinates; R defines the diameters
of the bending at the junction which can be adjusted
based on the vertical distance between the front and
the rear wings; Y, and Z, functions specily the
leading-edge point’s position of winglet, used to de-
fine the sweep and the twist, for each individual air-
foil section.

The resulting CRM wing has a semi-span of
26.44 m and a wetted area of 167.20 m?, matching
the counterpart'” (Fig.4). Its Bezier curve-based
parameterization allows easy modifications by ad-
justing control points. The wing shape and deforma-
tion require only 147 parameters, significantly few-
er than traditional methods like free form deforma-

tion (FFD) " Plus, Bionica has 7.5 m semi-span

(a) Baseline CRM (b) Bionica
Fig.4 CST-generated airfoils wing planforms for both

configurations

for both wings and result in total wetted area of
16 m?, matching our previous study®*'. The pa-
rameters used to define the CRM and Bionica wing
planforms are consistent with the previous
low-fidelity study. Tables 1,2 present these parame-

ters along with their baseline values.

Table 1 CRM wing baseline parameters™’

Parameter Definition Value
b/m Span 58.8
A/ C) Leading edge sweep 37.2
€100/ (%) Twist (y =0.10) 2.15
€15,/ () Twist ( =0.18) 0.85
€570,/ (°) Twist (p =0.37) —0.47
€500,/ (") Twist (y =0.50) —1.72
€100,/ () Twist (p =0.70) —2.40
€00/ () Twist (p =1) —3.75
z,;,/m Dihedral (vertical deflection at tip) 2.36
(T/C), Mean thickness-to-chord ratio 0.113

2.2 Dataset generation

Creating a diverse dataset is essential for build-
ing a comprehensive training repository for ML opti-
mization. The number of samples in the dataset
scales with the parameters is considered. Thus, on-
ly the key geometric parameters known to signifi-
cantly influence the overall L./D performance of the
These

leading-edge sweep, twist angles at specified span-

wing are chosen. include  wingspan,

wise stations, dihedral angle, and the wingtip
thickness-to-chord ratio (Tables 1, 2). Each metric
is explored within a design space centered on the
baseline values, with most varied within 15%—
20% of the baseline, and extrema chosen to allow
sufficient exploration while remaining reasonable
(Tables 3, 4). Metrics are discretized into 15—20

[27-28]

samples per variable (SPV) , providing optimal

granularity without overfitting'®', and keeping data

[30]

points manageable for computation"™. The sample
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Table 2 Bionica wing baseline parameters’

Table 3 Design space for the CRM wing

Wing Parameter Definition Value Parameter Lower bound Upper bound
Sweep (25% chord) at 20 % b/m 56 64
g/ () 23.46 ,
ol b/2 A /) 30 44
Avgn/C) Sweep (25% chord) at tip ~ 18.46 e/ (") 1 6
b/2/m Semi span 6.5 €9/ (") —1 4
&0/ (%) Twist (root) 0.0 €70,/ (%) —1 4
6./()  Twist (40% of 6/2, kink) 0.0 €500/ (") —2 2
/(") Twist (root) 0.0 €00/ () -3 2
Front Yoo/ (©) Dihedral (root) 0.00 €100/ () —4 —1
. 70./()  Dihedral (40% of 6/2, kink) ~ 15.00 2,/m 1.40 2.40
VIS ) Dihedral (tip) 17.00 (T/C), 0.08 0.120
T/C,, Thickness to chord ratio (root) 0.11
T/C,, Th(IZIOiI;S;lZ/C;OI{(?an)MO 0.11 Table 4 Design space for the Bionica configurations™”’
0 )
T/C,,  Thickness to chord ratio (tip)  0.11 Wing Parameter  Lower bound Upper bound
C./m Chord (root) 2.7 g/ () 10 25
MAC/m Mean aerodynamic chord 1.66 Ao/ C) 20 30
C/m Chord (tip) 0.98 &0/() 0.0 8.0
A/ () Sweep (25% chord) at tip ~ —20.56 5"'4/<:) 4.0 6.0
b/2/m Semi span 6.5 Front wing €1o/<o> —3.0 3.0
€00/ () Twist (root) 0.0 Y04/ ) 10.0 25.0
e,/ () Twist (40% of 6/2) 0.0 710/C) 17.0 26.0
€.0/() Twist (root) 0.0 T/Cy, 0.08 0.11
Yoo/ () Dihedral (root) 0.00 T/Co, 0.05 0.08
Rear  y,,/()  Dihedral (40% of 6/2, kink)  0.00 T/C 0.03 0.05
wing  71./0) Dihedral (tip) 0.00 Ao °< ) —15 —30
T/C,, Thickness to chord ratio (root) 0.11 500;8 0.200 gg
Thickness hord rati : €19 —3. 3.
T/Cos (40% of 2 ,Ok(?nlj)t ©oom Rearwing ) —3.00 0.00
T/C,,  Thickness to chord ratio (tip) ~ 0.11 T/Cy, 0.08 0.11
C./m Chord (root) 1.26 ' T/Cy, 0.03 0.05
C/m Chord (tip) 0.86 Winglet A0 25 35
. H/m Height 1.2
Winglet A,/(0) Sweep 30

generation process began with 15 samples per vari-
able, and the number of samples is progressively in-
creased until the ML model exhibits a prediction er-
ror of less than 10% compared to the CFD results.
This procedure yields 160 CRM-based and 400
Bionica-based planform samples, which are used to
train an XGBoost model. The resulting ML. model
achieves an average prediction error of approximate-
ly 6% relative to the CFD data. Beyond this point,
further increasing the sample size does not yield any

noticeable improvement in predictive performance.
2.3 Meshing and computation

Each planform is automatically characterized

aerodynamically using CFD, following guidelines

31]

from our previous study™’. Due to symmetry, only

half of the geometry is modeled, with the symmetry

plane at the wing root. The computational domain
extends approximately 50X 28X 28 mean aerody-
namic chords in axial, lateral, and vertical direc-
tions, and 1s meshed with an unstructured grid
(Fig.5) using commercial software integrated into
the optimization platform.

The ultimate mesh contains around 1.7 million

hexa-hedral elements, 98% of which maintain good

(b) Bionica
Fig.5 CFD mesh for base configuration of CRM and Bioni-

ca wings and their detailed views on the right side
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regularity (Eriksson skewness of 0.5—1.0). This
mesh density was determined through a prior grid
convergence study with the CRM baseline wing, us-
ing meshes ranging from 0.5 to 6 million cells. Each
planform then undergoes CFD simulation using a
commercial software, following the protocol from
our previous study"™" that utlises k-ephsilon model
along the ehanced wall function generates results
with 5% error from the baseline model even with
coarser grid size. Here, the process is automated
through a pre-scripted workflow, handling simula-
tion settings (boundary conditions, turbulence mod-
el, etc.), execution, and post-processing in batch
mode. All simulations are performed for cruise con-
ditions: Ma = 0.85, Re = 30X10°, and a =
2.20° for CRM, and Ma = 0.2, Re = 6X10°, and

a = 0° for Bionica.
2.4 Constitution of ML models

The proposed optimization framework includes
developing a ML prediction model as a central com-
ponent. This study initially evaluates two models:
RF and XGBoost, both effective for small datasets.
Previous studies™”" have shown XGBoost superior
performance over other ML models and traditional
CFD approaches in aerodynamic optimization for
tube wing and box wing designs. Therefore, XG-
Boost is selected as the final ML model in this
study. The model’ s performance is assessed by a
multi-output regressor from the scikit-learn library,
configured with identical datasets. Evaluation occurs
in two stages: Through cross-validation during
training, and by testing the model on a separate da-
taset to assess its predictive accuracy.

The models are trained using 80% of the datas-
et, with prediction capabilities assessed via the
mean square error. An objective function in the
script iteratively adjusts algorithm parameters to
minimize mean absolute error (MAE). Once opti-
mal parameters are achieved, performance is further
evaluated using the remaining 20% of the dataset. A
tolerance limit of 10% from predicted values is set,
acknowledging aerodynamic complexities, as a crite-
rion for surrogate model acceptance. The evaluation

shows the XGBoost model achieves an average er-

ror of 6% , making it the optimal choice for the next

stages of the process.
2.5 Optimization problem definitions

The next step involves integrating the surro-
gate model with the optimizer and defining the opti-
mization problems. The primary objective is to mini-
mize the aerodynamic drag coefficient (C,) while
satisfying lift coefficient (C,) constraints. For
CRM, the C, constraint is based on available re-
search data (C, = 0.50)". In contrast, for the Bi-
onica box-wing, where the design is still in early
stages, the C, constraint is not yet finalized. There-
fore, the optimization goal for Bionica is to maxi-
mize C, while minimizing Cy,.

To address this, a multi-objective optimization
model is developed using the NSGA- Il . This ap-
proach 1s particularly useful for handling diverse ob-
jectives, such as minimizing weight and reducing
noise across various disciplines. The model is also
capable of handling single-objective aerodynamic op-
timization, as in the case of CRM. To achieve this,
the C, constraint is transformed into an additional
minimization objective, aiming to reduce the abso-
lute error between the specified C, constraint and
the ML-predicted C, (Tables 5,6).

Table 5 CRM Optimization problem definition

Objective Variable Constraint
e(5 control points)
T/C(3 control points) C,=0.50
Min. f(x)=C,,  y(2 control points) Ma=0.85
Re=30 X 10°

A,,(1 parameter)

b/2(1 parameter)

Table 6 Bionica optimization problem definition

Objective Variable Constraint
e(5 control points)
i T/C(3 control points)
Min. f(x)=C,, ) Ma=0.2
¥(3 control points) .
Max. f(x)=C, Re=16 X 10

A,,(2 parameters)

b/2(1 parameter)

3 Results and Discussion

This section presents the results obtained using
the proposed methodology, divided into two parts:

Validation of the methodology and optimization out-
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comes. The CRM and Bionica baseline results are
shown to assess the accuracy of the parameteriza-
tion, computational approach, and machine learning
models. The optimization results section showcases
the final outcomes of the methodology for both the

CRM and Box wing configurations.
3.1 Results validations

As part of the validation, this study adopts the
same flight conditions used by Lyu et al.'"'", which
differ from the operating conditions applied during
the optimisation phase. Fig.6 presents CFD results
for the baseline CRM wing at flow conditions
Ma = 0.85, @ = 2.20°, though at a lower Reyn-
olds number (Re = 5X10°) and the result is com-
pared against the Lyu et al. study. Although the da-
taset generation and optimization were conducted us-
ing the coarse grid""', the validation results were ob-
tained with the finest grid resolution of the model,
consisting of approximately six million cells. This
resolution was achieved by refining the coarse mesh
three times in both the streamwise and normal direc-
tions relative to the flow. The present results are
compared with data in Ref.[10] , which were ob-
tained under the same flow conditions but using a
different CFD solver. The comparison shows good
agreement, both in pressure distribution over the
wing’ s suction side (Fig.6(a)) and pressure coeffi-
cient (Cp) along the span (Figs.6(b,c)).

Minor discrepancies may arise from slight dif-

C,~1.0-05 0.0 05 1.0
_—e——

Ref.[10] study This study
- C, =050
G= 000 C,=0.0208

C,=0.0199 ¢ »=0.

o Present pressure
0.3 0.3 S
08 — Reference pressure 0.8 — Reference pressure
00 02 04 06 0.8 1.0 00 02 04 0.6 0.8 1.0
x/lc xle

(b) C, at 25% semi-span (c) C, at 90% semi-span
Fig.6 CRM planform within a steady flow (Ma= 0.85,
Re = 5X10° a = 2.20°), as CFD-simulated and

compared against results from Ref.[10]

ferences in twist distribution, as this parameteriza-

197 and from a low-

tion is based on a different study
er mesh density used to reduce computational cost
for the 160 planform simulations. Nonetheless, the
results are acceptable, as demonstrated by the L/D
coefficients, C; = 0.5 and C, = 0.020 8, which
are close to the reference values (C, = 0.5, C, =
0.019 9)™"".

The small discrepancies are likely due to the cu-
mulative effect of minor uncertainties in both airfoil
and planform parameterization. In particular, the re-
sidual differences come from variations in the twist
distribution. The present results are compared with
study in Refl.[10] , which used a different twist,
while this study follows the original CRM baseline

19 Furthermore,

twist defined in the original study
it is well documented that CRM CFD results show
minor variability depending on the mesh type (e.g.,
hexahedral, polyhedral, or tetrahedral) and the

choice of turbulence model™™

. Since the purpose
of this study is to establish a baseline for subsequent
wing optimization, the current results are consid-
ered sufficiently accurate and robust for further anal-
ysis.

The Bionica CFD simulations are conducted
following several grid convergence studies, with the
grid converging at 1.7 million cells. The simulation
produces results consistent with the previous study
of the Bionica geometry'® , showing only a 0.5%
difference in C, (Fig.7). This cross-verification,
along with the CRM validation, justifies the reliabil-
ity of the adopted approach in accurately simulating

aerodynamic performance.
Ref.[26] study

C, =0.420
C,=0.0221

This study
C,=0.420
C,=0.0219

Fig.7 Bionica planform within a steady flow (Ma= 0.2,
Re = 6X10°, @ = 0.0°), as CFD-simulated and

compared against results from Ref.[26]



796 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 42

3.2 Optimization outcomes

The optimized CRM wing planform shows sev-
eral key improvements over the baseline design.
The span has been increased from 58.8 m to 61.5 m
(Table 7), suggesting a design shift towards great-
er aerodynamic efficiency and potential lift enhance-
ment. Additionally, the leading-edge sweep angle
has been significantly increased from 37.2° to 43.2°,
which likely contributes to improving drag perfor-
mance at higher speeds by delaying flow separation.
In terms of twist distribution, adjustments are made
across various spanwise locations. For instance, at
10% and 18% of the span, the twist angles have
been increased, enhancing the lift at these sections.
Conversely, the negative twist at mid-to-outboard
sections (7 = 0.37 to » = 1) has been reduced,
which suggests better control of aerodynamic loads
and improved overall efficiency. These changes re-
flect a refined balance between lift distribution and
induced drag. The dihedral angle, represented by
the vertical deflection at the tip, shows a slight re-
duction between 2.36 — 2.33 m, indicating margin-
al adjustments to wingtip aerodynamics and stability.
Finally, the mean thickness-to-chord ratio (T/C),,
has been slightly decreased from 0.113 to 0.109,
likely aiming at reducing profile drag without signifi-
cantly compromising structural integrity. Overall,
these optimizations reflect a concerted effort to en-
hance aerodynamic performance, reduce drag, and
improve lift distribution for better cruise efficiency.

The grid convergence study for the CRM opti~

mized planform is illustrated in Fig.8, with drag

Table 7 CRM baseline and optimized model comparison

Design parameter Symbol Baseline Optimized

Span b/m 58.8 61.5
Leading edge sweep Ae/C) 37.2 43.2
Twist (y =0.10) e /() 215 2.88
Twist (y =0.18) e /() 0.85 1.78
Twist (y =0.37) e /() —047  —0.67
Twist (y =0.50) e /() —1.72  —1.38
Twist (5 =0.70) e /() —240  —1.62
Twist (p =1) €wo/(7)  —3.75  —3.10

Dihedral (vertical deflection
, 5,/m 236 2.33
at tip)

Mean thickness-to-chord ratio (7/C), 0.113 0.109

counts plotted against different grid sizes, ranging
from 1.5 million elements to 6.0 million elements.
As grid sizes increase, the drag count decreases,
demonstrating the impact of mesh resolution. Nota-
bly, the largest changes in drag count ( A) occur be-
tween the converged grid sizes of 6 million, where
drag counts reduce significantly by 22.97 counts. In
terms of aerodynamic performances, this translates
into a significant drag reduction (of about 12.3%
drag count reduction) of the optimal planform com-

pared to its baseline counterpart.

190 - - Optimized model
185 1 T — — Baseline
5180 j 18.46 T ]
o175 4
& l S 42297
S10Ft.
165 ~—
160 1 1 1 1 ]
1.5 25 35 4.5 5.5 6.5
Grid size/ 10°
Fig.8 Aerodynamic performances (drag counts = (X

10 000) characterizing the M1L.-based CRM-based op-
timal planform and its parameterized baseline coun-
terpart, as estimated using CFD and a grid conver-

gence, simulated for C;, = 0.5 at Re = 30X 10°

The aerodynamic improvements are attributed
to the specific pressure distribution of the optimized
planform (Fig.9). Compared to the baseline, the
optimized wing shows slightly reduced shocks in the
inboard section (top of Fig.9) , while the outbhoard
section exhibits stronger shocks on the suction sur-
face. Notably, pressure recovery is extended further
aft, potentially delaying stall onset, as seen in the
trailing-edge region comparison in Fig.9.

CP—I.O—O.S 0.0 05 1.0

[ -

Optimised

Baseline C =050
i Ly o
€, =050 C,=0.0163

C,=0.0186

Fig.9 CRM-based optimal planform within a steady flow
(Re = 30X10°, a = 2.00°, C. = 0.5), as
CFD-simulated and compared against its baseline

counterpart under similar flow conditions
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The comparison between the baseline and opti-
mized Bionica models shows targeted geometric
modifications to enhance aerodynamic performance.
The front wing’ s leading-edge sweep has been in-
creased slightly, moving from 18.46° to 19.20° till
20% of the span and decreases in the outboard sec-
tion from 23.46° to 21°, improving high-speed lift
characteristics (Table 8). Twist angles (e) have
been introduced at various span locations in the opti-
mized design, which likely improves aerodynamic
efficiency and load distribution. Dihedral angles (y)
have been slightly increased for the front wing, con-
tributing to  better lateral stability, while
thickness-to-chord ratios (T/C) have been re-

duced, particularly at the wingtip, to minimize drag.

Table 8 Bionica baseline and optimized model compari-

son
Wing Parameter Baseline Optimized
g/ () 18.46 19.22
A/ ) 23.46 21.0
€0/ (") 0.0 5.0
€./ () 0.0 3.6
. /() 0.0 1.5
Front wing .
Y0s/ () 15.0 16.0
710/ () 17.0 16.60
T/C,, 0.11 0.084
T/Cy, 0.11 0.07
T/C, 0.11 0.05
A/ ) —20.56 —22.60
€00/ (") 0.0 2.8
: €10/ (") 0.0 —0.9
Rear wing .
710/C) 0.0 —1.00
T/C,, 0.11 0.09
T/C,, 0.11 0.09
Winglet A, /() 30.0 29.20

In the rear wing, the leading-edge sweep is
—20.56" to
—22.60°, potentially enhancing stability. Twist an-

marginally adjusted, moving from

gles are also introduced here, with root twist in-
creasing to 2.8° and tip twist slightly negative at
—0.9°, which may help manage load distribution be-
tween the wings. The rear wing thickness-to-chord
ratio (T/C) has also been reduced slightly, likely
contributing to reduced drag. The winglet’ s sweep

remains relatively consistent, with only a slight de-

crease from 30° to 29.20°, balancing control of wing-
tip vortices. These adjustments reflect a comprehen-
sive optimization effort aiming at improving aerody-
namic efficiency and stability.

Once the ML based surrogate model provides
the optimized planform for the Bionica wing, a grid
convergence study of the configuration is performed.
The grid convergence study in Fig.10 applies differ-
ent grid resolutions to assess the accuracy of the Bi-
onica optimized model. As the grid size increases,
the results stabilize, indicating that a grid size of
around 6 million cells is sufficient to capture the
aerodynamic performance accurately. For the con-
verged results, C; is 0.58, while Cy, is 0.026. This
yields a L/D ratio, that is, C,/C,, of approximately
22.3, indicating a significant improvement (about
18% ) of overall aerodynamic performance. It dem-
onstrates the proposed optimization process can ef-
fectively optimize both tube wing (CRM) and Bioni-

ca (box wing).

0.60 0.035
. 0.59 0 030 .
0.58 - * © o025 * s
0.57 L ! ! .02 ! . )
2 4 6 8 0.0 02 4 6 8
Grid size / 10° Grid size / 10°
(a) C, grid sensitivity (b) C, grid sensitivity

Fig.10 Aerodynamic performances characterizing the

ML.-based Bionica optimal planform C, and C,, as
estimated using CFD and a grid convergence, simu-
lated at Re = 6 10°

The Cy plots in Figs.11,12 show significant im-
provements in the optimized Bionica wing compared
to the baseline. Across all span-wise sections, the
optimized wing (dashed lines) exhibits a stronger
suction peak near the leading edge, indicating en-
hanced lift generation. Additionally, the optimized
wing shows a smoother pressure recovery from
mid-chord to the trailing edge, which is particularly
important in reducing flow separation and drag.

In the outboard sections, the optimized wing
maintains a slightly higher negative C, value at the
leading edge, suggesting a more favorable pressure
gradient and improved aerodynamic performance.

These modifications contribute to better overall lift
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Optimized model
(G =058

Baseline
C,=042
C,=0.022

Fig.11 Static pressure distribution over the suction side of
baseline and optimal Bionica planform for the finer

grid, simulated at Re = 6> 10°

-1.0 “10r .
-0.5 -0.5 1
5 0.0 - & 0.0 T :
e 05 — Baseline © 0.5 — Baseline
10 Il -|“ 01;3t1m1§ed ] 10 1 ": Optulmls?d
0.0 02 04 0.6 08 1.0 0.0 02 04 0.6 0.8 1.0
xle x/c
(a) #,=0.53 (b) #7,=0.93
=1.0 -1.0
-0.5 -0.5 7
5 0.0 /T - 5 0.0 -
© 8(5) — Baseline = 0.5 [ — Baseline
1'0 .- Optimised 1.0 L~ Optimised ,
0002 04 06 0.8 1.0 70.0 02 04 0.6 08 1.0
%16 xlc
(c) #,=0.53 (d) ,=0.93

Fig.12 Comparison of C, distribution between baseline and
optimized Bionica wing across various spanwise sec-
tions presented in the fraction of the span and 7, for

front wing while 7, for rear wing

distribution while minimizing drag. The optimized
pressure distribution is a clear indicator of the im-
provements in aerodynamic efficiency, with en-
hanced lift characteristics and a reduction in drag,
making the optimized design more effective for per-

formance at cruise conditions.

4 Conclusions

This study presents a ML-based methodology
for optimizing the aerodynamic performance of both
conventional (CRM) and non-conventional (Bioni-
ca box-wing) aircraft configurations. By employing
advanced parameterization techniques, such as CST
and Bezier curves, the method effectively reduces
the number of design variables while maintaining de-
sign flexibility. Multiple planforms are generated
within the defined design space, followed by validat-
ed CFD simulations, which are used to build a com-

prehensive CFD database for training the machine

learning model.

The XGBoost model was selected for its supe-
rior predictive accuracy in this context. The optimi-
zation process, executed through the NSGA-II ,
leads to significant aerodynamic gains. For the
CRM wing, a 12.3% reduction in drag is achieved
compared to the baseline, while the Bionica
box-wing configuration sees an 18% improvement
in the L/D ratio (C,/Cy). These results demon-
strate the effectiveness of combining ML with tradi-
tional optimization techniques, offering a computa-
tionally efficient approach to improve aerodynamic

performance in both conventional and unconvention-

al aircraft designs.
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