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Abstract: The study of the spallation of thermal barrier coatings on turbine blades and its influence is of great
significance for gas turbine safety operation. However, numerical simulation related to thermal barrier coatings is
difficult and time-costly, which makes it hard to meet engineering demands. Therefore, this work establishes a rapid
prediction model for the surface temperature and cooling efficiency of turbine blades with localized spallation of
thermal barrier coatings based on a thin-wall thermal resistance model. Firstly, the influence of localized spallation of
thermal barrier coatings on the cooling efficiency of typical turbine blades is numerically investigated. Then, based on
the simulation data set and multi-layer perception (MLP) neural network, an intelligent prediction model for the
temperature and cooling efficiency distribution of localized spallation of coatings is constructed, which can rapidly
predict the surface temperature and cooling efficiency of the blade under the situation of spallation of coating at any
position on the blade surface. The results show that, under a certain spallation area, the shape of localized coating
spallation has little influence on the cooling efficiency, while the increase of spallation thickness will cause a linear
increase in the average temperature of the blade surface. The prediction error of the proposed rapid prediction model
for the average surface temperature and cooling efficiency of blades is within 2%, and the prediction error of the
temperature and cooling efficiency at the spallation position is within 6% for 80% of the samples, with an overall
average error within 10%. It is concluded from the rapid prediction model that when the depth of coating spallation
increases, the closer the spallation position is to the leading edge of the blade, the greater the difference in cooling
efficiency is, and the degree of influence of coating spallation on the cooling efficiency also increases.
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0 Introduction

The thermal barrier coating (TBC) technology
is now widely used in the aerospace field as a ther-
mal protective layer for various component struc-

tures''

. With the continuous improvement of the
efficiency of gas turbines, the inlet temperature of
the turbine keeps rising and gradually exceeds the

temperature limit of traditional nickel-based superal-

*Corresponding author, E-mail address: wangfl@nuaa.edu.cn.

loy blades'®. Although the excellent thermal insula-
tion properties of TBCs provide some protection
against blade ablation, the coatings are subjected to
high-temperature oxidation, particle impact erosion,
and the harsh working conditions caused by calcium
magnesium aluminum silicate (CMAS) molten salt
erosion. These factors have directly compromised

the thermal insulation performance of coatings, lead-
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ing to a higher probability of local failure and spall-
ation'*’. This phenomenon will cause changes in the
comprehensive cooling efficiency of turbine blades,
thereby affecting the working intensity and opera-
tional stability of the engine; therefore the study of
the spallation of thermal barrier coating on the sur-
face of turbine blades is of great significance for the
safe operation of gas turbines.

With the development of modern technology,
numerical methods have gradually been developed
and utilized in the related research of TBC. The ex-
isting numerical simulation models of turbine blades
with thermal barrier coatings have established a

foundational framework'>®

. The simplified models
can better predict the stress field and temperature
conditions of turbine blades. However, if the actual
temperature distribution of turbine blades and their
complex geometric structures are considered, the
fluid-solid coupling and conjugate thermal transfer
of blade models still need to be developed urgently.
In recent years, many scholars have conducted rele-

78] and crack

vant research on the stress distribution
propagation characteristics'”""" of the TBC system
during the thermal cycling process, and obtained the
physical property characteristics of the thermal barri-
er coating. However, there are still deficiencies in
the research on the influence of thermal barrier coat-
ing spallation on the cooling efficiency of hot-end
Additionally,

methods for thermal barrier coatings still face limita-

components. numerical simulation
tions, such as fine mesh division, high iterative cal-
culation costs, and long computation times, which
make them challenging to apply to engineering de-
mands. To deal with these challenges, the applica-
tion of artificial intelligence such as machine-learn-
ing algorithms and regression analysis predictive
modeling techniques has become a trend in simula-
tion research'’®’. By training the proxy model to
learn the volvement rule of fluid field and directly
predicting the simulation results, the computing
time can be significantly reduced. Moreover, the
proxy model is capable of learning multi-physics and
multi-scale information, enabling rapid prediction of
performance across different parameter combina-

tions. In the related research on predicting the fail-

ure spallation of TBC, Yang et al.""*' proposed a
method of processing acoustic emission signals
based on the wavelet packet transform and neural
networks. The four typical failure modes of TBC
coatings can be discriminated through this method,
thereby monitoring the failure mechanism of TBC in
real time and evaluating its service reliability. Liu et
al."™* comprehensively considered the failure mecha-
nisms such as oxidation, creep, and thermal mis-
match during the failure process of thermal barrier
coatings, as well as various factors such as the com-
bined effect of gas and coolants at both the micro
and macro scales, and established a multi-scale life
prediction model integrating artificial neural net-
works for the failure prediction of turbine blade coat-
ings. This model has a good prediction effect on the
failure area of thermal barrier coating on the surface
of turbine blades.

At present, most of the research related to
TBC focuses on coating failure mechanisms and life
prediction, etc., while relatively few studies exam-
ine the decline in component cooling efficiency after
the coating spallation. Meanwhile, although some
scholars have established multi-scale life prediction
models integrating artificial neural networks for the
failure prediction of turbine blade coatings, these
models still have certain limitations in terms of pre-
diction accuracy, application scope, and adaptabili-
ty to complex working conditions. Therefore, based
on machine learning methods, this work conducts a
rapid prediction study on the influence of localized
spallation of thermal barrier coatings on the cooling
efficiency of blades, aiming to accurately and rapid-
ly predict the influence of coating spallation on the
heat transfer of turbine blades, which has certain
guiding significance for the life prediction of turbine
blades.

1 Physical Models and Numerical
Methods

1.1 Physical model
In this work, the C3X blade without radial dis-

tortion is selected as the research object. The blade

height is 76.2 mm, the cascade pitch is 117.73 mm,
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the axial chord length is 78.16 mm, the blade chord
length is 144.93 mm, and the blade material is 310
stainless steel of ASTM standard, which has a rela-
tively low thermal conductivity. The cross-sectional
schematic diagram of the blade and its cascade chan-
nel is shown in Fig.1(a), and the specific geometric
and physical parameters of the blade model are pre-
sented in Table 1. It should be noted that the blade
thermal conductivity is temperature-dependent and
is calculated as A=9.910 5+0.011 5T, where T is
the local temperature of the blade material (solid do-
main) at each location. The surface of the blade is
uniformly coated with a thermal barrier coating with
a thickness of 0.35 mm. Its equivalent physical pa-
rameters include the density of 5 650 kg/m?, ther-
mal conductivity of 1.05 W/(m-K) , and specific
heat capacity of 483 J/(kg-K)'". Fig.1(b) presents
the physical model of the C3X blade and the setting
of boundary conditions. This work selects the corre-
sponding working conditions of the No.4521 test in
Ref.[16] for numerical research. The specific param-
eter settings of the boundary conditions are shown in
Table 2. The blade is equipped with ten circular ra-
dial cooling channels. The cross-sectional geometric
dimensions of each channel and the cold air inlet con-

ditions are shown in Table 3.
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Fig.1 C3X blade model and boundary condition setting

Table 1 Blade geometric and physical parameters

Geometric parameter Numerical value

Leaf grid pitch 7/ mm 117.73

Blade height H/ mm 76.2
Axial chord length C,, / mm 78.16
Blade chord length C, / mm 144.93

Density o/ (kgem*) 8030
Specific heat ¢/ (Jskg "*K ™) 502.48
Thermal conductivity 2/(Wem™*K™')  9.910 5+0.011 5T

Table 2 Boundary conditions for Test No.4521 in Ref.[16]

Test condition Parameter Value

413 286
Total inlet temperature/K 818

Total inlet pressure/Pa

Heat flow inlet  Inlet turbulence intensity/ % 8.3

boundary condition Import viscosity ratio 30
Import Mach number 0.17
Inlet Reynolds number 6.4 10°
Outlet static pressure/Pa 254 172
Heat flow outlet
o Export Mach number 0.89
boundary condition i
Outlet Reynolds number — 2.44 X 10°

Table 3 Blade internal cooling channel inlet conditions

Channel ) Flow rate/
Diameter/mm - T,/K
number (kges™)
1 6.3 0.022 2 342
2 6.3 0.022 1 344
3 6.3 0.0218 335
4 6.3 0.022 8 336
5 6.3 0.022 5 330
6 6.3 0.022 5 355
7 6.3 0.0216 336
8 3.1 0.007 44 350
9 3.1 0.004 77 377
10 1.98 0.002 56 387

1.2 Numerical calculation method

1.2.1 Flow control equation

The flow of high-temperature gas and cold air is
a three-dimensional steady-state compressible flow.
The flow heat transfer among gas, blades and cold
air, as well as the heat transfer between blades and
coatings, and the heat transfer within blades all con-
form to the conservation of mass, momentum and
energy. In the usual sense, the control equation is
the partial differential expression of the above three
conservation laws. The three conservation equations

can be expressed as
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Continuity equation
VelpV)=0 (1)
where po; 1s the fluid density and V the fluid velocity
vector. The term Ve«(poV ) represents the diver-
gence of the mass flux.
Momentum equation
VeloVV)=—Vp+Ver+pf (2)
where V'V denotes the dyadic (tensor) product of
the velocity vector and it is a second-order tensor;
the term V(o VV') the divergence of the convec-
tive (advective) momentum flux; —Vp the pres-
sure-gradient force (directed toward decreasing pres-
sure) ; t the viscous stress tensor and V « r the diver-
gence of the viscous stress; and p; / the body-force
term per unit volume.
Energy conservation equation
V(o V)=V (AT )+ VNVp+:VV (3)
where V +(pVh) is the divergence of the convective
enthalpy flux with 4 being the specific enthalpy; the
term V+(AVT) heat conduction (diffusion) with A
being the thermal conductivity and T the fluid tem-
perature; V+Vp the pressure-work term; z: V'V the
viscous dissipation term, accounting for the conver-
sion of mechanical energy into internal energy due to

3

viscous effects; the symbol “:” indicates the double
contraction of tensors; V'V the velocity-gradient ten-
sor, and z the viscous stress tensor with its compo-
nent expressed as

T, = 2/1(5[] — ;g:: é‘,j) (4)
where p i1s dynamic viscosity; s, the strain-rate ten-

sor component; v, the £th component of the velocity

v, L .
vector V; and — the velocity divergence, 1.e., V- V.
L

For the coupled heat exchange problem, the
following conditions are met at the fluid-structure in-
terface

T,=1T; (5)
ary . aJT

—| =1— 6
dn . dn )

f
where T, and T; represent the wall temperatures of
solid and fluid, respectively; n represents the nor-
mal direction. That is, temperature continuity and
heat flux conservation are satisfied at the fluid-solid

interface.

1.2.2 Thin-wall thermal resistance model

In thermal barrier coating simulation modeling,
the direct modeling method is typically employed,
where the thermal barrier coating mesh is generated
on the substrate surface based on the coating thick-
ness. However, due to the extremely thin thickness
of the thermal barrier coating and the existence of lo-
calized spallation phenomena, it is difficult to model
and mesh division, and it is hard to guarantee the
mesh quality, thereby affecting the simulation accu-
racy. Therefore, the thermal barrier coating model-
ing method based on the thin-wall thermal resistance
model” is suitable for dealing with the localized
spallation of the coating. The schematic diagram of
the thin-wall thermal resistance method is shown in
Fig.2. Tts principle is to equivalently simulate the
heat insulation effect of the thermal barrier coating
by setting different surface layer thermal resistances

on the outer surface of the substrate, as shown in
R,=— (7)

where R, 1s the thermal resistance of heat conduc-
tion of the coating, Ax the thickness of the thermal
barrier coating, and A the thermal conductivity of

the wall surface.

Fluid or solid unit
Wall surface| _ | < | | |

Thin-wall—— 3
L Boundary condlition given surface

Fig.2 Thin-wall thermal resistance model

In the solution process, the thermal resistance
and heat flux of the coating are calculated by solving
the one-dimensional steady-state heat conduction
equation. Since this model does not alter the geo-
metric structure or size of the substrate, it signifi-
cantly simplifies modeling and meshing. This ap-
proach allows for a quicker assessment of the influ-
ence of coating thermal resistance and localized
spallation on blade cooling efficiency under varying
coating thicknesses and spallation conditions.

Overall, since this study focuses on the steady-
state coating spallation issue and mainly concen-

trates on the macroscopic heat transfer of the coat-
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ing, for isotropic thermal barrier coating materials,
the heat transfer process is uniform and approximate-
ly linearly distributed. Therefore, the numerical dif-
ferences between the two methods will not have a

significant impact on the prediction results.
1.3 Numerical verification

To eliminate the influence of grid division on
the results, the grid independence verification is car-
ried out first before conducting numerical calcula-
tions. The calculation model is meshed by using An-
sys Mesh, and the meshes at the flux-solid interface
are encrypted. Meanwhile, in order to reduce the
amount of calculation and improve the calculation ef-
ficiency, the mesh is appropriately sparsely pro-
cessed in the area far from the fluid-solid interface
and the inlet and outlet sections of the model.

To ensure the independence of grids, seven
groups of hexahedral grids with different sparsity
levels are divided for numerical calculations. When
the number of grids is further increased or de-
creased, if the average temperature of the blade sur-
face remains basically unchanged, the grid is consid-
ered to meet independence requirements. As shown
in Fig.3, with the gradual increase of grid quantity,
the average temperature of the blade surface gradual-
ly decreases. When the number of grids is around
5 million, the average temperature of the blade sur-
face remains basically unchanged. Therefore, this
grid is selected for the subsequent numerical re-

search work.

670
665
660 F T
K655 ~.
650 F

645 L 1 L 1 L L 1
300 350 400 450 500 550 600

Number of grid-point / 10*

Fig.3 Effect of mesh amount on average blade surface tem-

perature

To further verify the accuracy of the numerical
model and select an appropriate turbulence model,
this work selects the main and secondary flow condi-

tions N0.4521-157 in NASA literature'*®, and com-

pares the calculation results with experimental data
in the literature. Three turbulence models, namely
Standard ke, RNG ke and SST k-w, are respec-
tively adopted for numerical calculation, and the
pressure ratio and temperature ratio on the mid-span
line of the blade are compared with experimental val-
ues. Fig.4 shows the pressure ratio distribution along
the mid-span of the blade. The vertical coordinate in
the figure represents the ratio of the pressure along
the mid-span of the blade to the static pressure at
the inlet of the cascade channel. As shown in Fig.4,
the pressure ratios calculated by the three turbulence
models are nearly identical. Due to the gas impact
on the leading edge of the blade, the pressure gradi-
ent 1s highest there. The pressure ratio decreases
slowly at the pressure surface first. When z is
around 0.5, it begins to decrease rapidly. The pres-
sure on the suction surface rises rapidly when x is
from — 0.4 to 0, while the pressure change near the

trailing edge of the suction surface is relatively gentle.
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s L
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& Transition SST
0.6 = Experiment
0.5 Suction face Pressure face

-1.0 -0.5 0.0 0.5 1.0
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Fig.4 Pressure distribution in the middle sampling line of

blade height

Fig.5 presents the comparison between the inter-
line temperature ratios of blades calculated by three
turbulence models and experimental values. Among
them, the vertical coordinate is the ratio of the blade
surface temperature on the mid-span line to the refer-
ence temperature (811 K). Due to the gas scouring
and the difference in cooling capacity of the cooling
channel, the temperatures at the leading edge and
trailing edge of the blade are relatively high. It can
be seen from Fig.5 that the SST kw turbulence
model is superior to the other two turbulence mod-

els in predicting the surface temperature of blades.
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Whether on the pressure surface or the suction sur-
face, the temperature distribution prediction of the
SST /w model is closer to experimental values
than the other two models. Therefore, in the subse-
quent research of this section, the SST k-w turbu-

lence model is selected for further analysis.

—RNG k-¢ — Transition SST
0.90 —SST k-w = Experiment
—— Standard k-@

0.85

0.80

Wall temperature ratio

0.60 . : *
-1.0 -0.5 0.0 0.5 1.0
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Fig.5 Cross-line temperature distribution on blade surface

2 Influence of Localized Spallation
of Thermal Barrier Coating on

the Cooling Efficiency

2.1 Modeling methods and effect comparison of

thermal barrier coatings

To verify the calculation accuracy of the thin-
wall thermal resistance model, a comparison is
made with the blade coating directly modeled. The
differences between the two methods in terms of
heat insulation effect, temperature distribution at lo-
calized spallation points, and temperature distribu-
tion along the blade surface are analyzed.

Without coating spallation, the surface temper-
ature distribution of the blade at a cut-off line 60 mm
away from the blade tip is obtained, as shown in
Fig.6. To better illustrate the trend of temperature
distribution along the flow path and highlight the tem-
perature difference between the coating surface and
its inner layers, the dimensionless parameter T/811
is adopted as the vertical coordinate, where 811 K
represents the mainstream temperature. It can be
seen from the figure that the temperature distribu-
tion of the inner and outer surfaces of the coating by
the two methods is basically the same. When the

coating thickness is 0.35 mm, the average heat insu-

lation temperature of the direct modeling method is
46.53 K, and that of the thin-wall thermal resistance
model coating is 44.85 K, with a temperature differ-
ence of 1.68 K. Compared with the average heat in-
sulation temperature of the direct modeling method,
the error is 3.61%. The maximum insulation tem-
perature point of the coating in the direct modeling
method appears at the position where the relative
chord length X/L=0.73 and the relative blade
height Z/H=0.77. At this point, the temperature
difference between the inner and outer surfaces of
the coating is 68.12 K. The maximum insulation
temperature point of the coating in the thin-wall ther-
mal resistance model appears at the relative chord
length X/L.=0.80. At the position where the rela-
tive blade height Z/H=0.77, the temperature dif-
ference between the inner and outer surfaces of the
coating at this point is 64.86 K, and the temperature
difference from the insulation temperature of the di-
rect modeling method is 3.26 K, with an error of
4.79%. The results show that the coating thickness
has a certain impact on the heat insulation effect

when using the direct modeling method. However,

——Coating surface temperature
0.90 ——Coating inner wall temperature
0.85
% 0.80 |
=
0.75 r
0.73 |===————dm e .
0.70 i
-1.0 05 0.0 0.50.73 1.0
XIL
(a) Direct modeling method
— Coating surface temperature
0.90 | Coating inner wall temperature;
0.85
% 0.80 |
[
0.75
0.72 [remmmmrgeassegglomnraacs !
0.70 !
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XL
(b) Thin-wall thermal resistance model

Fig.6  Temperature distribution curves of the inner and out-

er surfaces of the coating without spallation
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by comparing the average and maximum heat insula-
tion temperatures of the entire blade, it is evident
that the deviation between the two methods can be
controlled within 5% .

The service environment of turbine blades is
complex. The thermal barrier coating on the blade
surfaces is exposed to a harsh working environ-
ment, making localized spallation of the coating in-
evitable. To investigate the influence of thermal bar-
rier coating spallation on blade cooling efficiency,
five critical areas on the blade surface are selected to
simulate localized coating spallation. They are re-
spectively one at the leading edge, two at the pres-
sure surface and two at the suction surface, as
shown in Fig.7. The shape of the coating spallation
is simplified to either circular or rectangular, num-
bered from 1 to 5. Localized spallation occurs near
the middle span line. To investigate the influence of
the spallation position on blade cooling efficiency,
the localized spallation location is varied along the Z-
axis. Positions 1'—5' represent spallation near the
cold air inlet, while positions 1"—5" correspond to
spallation near the cold air outlet. The coating of the
same area and depth is peeled off at the same posi-
tion on the blade surface. The blade surface cross-
section at a distance of 60 mm from the blade tip is
selected. The surface temperature distributions of
the two modeling methods on this cross-section are
shown in Fig.8. It can be seen that at the trailing
edge and the middle part of the suction surface, the
surface temperature of the thin-wall thermal resis-
tance model blade is slightly higher than that of the
direct modeling method. On the pressure surface
and the leading edge section, the average tempera-
ture of the blade surface in the direct modeling meth-
od is slightly higher than that in the thin-wall ther-
mal resistance model. The average temperature dif-
ference and maximum temperature difference on the
blade surface of the two methods account for 1.5%
and 5.05% of the average temperature on the blade
surface respectively, among which the maximum
temperature difference is located at X/L=0.98. Af-
ter the same localized spallation occurred in the coat-

ings of the two methods, the insulation temperature

e o ® ® o & s ==

7 .\"/l' -
B! 2z
0
P ©
3 gy ,

Fig.7 Schematic diagrams of the localized spallation posi-

tion of the coating
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Fig.8 Blade surface temperature distribution curves of two

7/811

models

of the direct modeling method is 45.13 K, and that
of the thin-wall thermal resistance model 1s 42.32 K,
with a temperature difference of 2.81 K, accounting
for 6.2%. Within this range, the simulation results
of the thin-wall thermal resistance model are compa-
rable to those of the direct modeling method. Fur-
thermore, the thin-wall thermal resistance model
does not alter the matrix model structure or geomet-
ric dimensions. Therefore, it can significantly re-
duce the time required for modeling and meshing,
effectively simplify the modeling process, address
the meshing challenges for thin coatings in direct
modeling, and enhance the overall efficiency of coat-
ing (localized spallation) modeling and simulation.
This 1s of great significance for rapid and accurate
prediction of the impact on heat transfer following
localized spallation of thermal barrier coating on tur-
bine blades in actual service environments. In this
work, the coating modeling methods in the numeri-
cal study of thermal barrier coatings are all based on

the thin-wall thermal resistance model.

2.2 Influence of localized spallation of thermal
barrier coatings on comprehensive cooling

efficiency of blades

Based on the localized spallation positions of
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the coating defined in Fig.7, the influence of factors
such as the shape, size and depth of the coating
spallation at these positions on the cooling efficiency
of the blade 1s further considered.

Define r as the percentage of the localized spall-
ation area of the coating to the surface area of the

blade, which is shown as
S
r= ? X 100% (8)

where S represents the surface area of the blade,
and S, the localized spallation area of the coating.

To imvestigate the influence of local coating
spallation shape at different positions on the average
surface temperature of the blade as the coating spall-
ation thickness increases, three sets of rectangular
and circular spallation shapes at different positions,
as shown in Fig.7, are simulated under the condition
of r=12%. It can be seen from Fig.9 that when the
localized spallation position of the coating is located
on the side close to the air conditioning inlet, that
is, at positions 1'—5"in Fig.8, the average tempera-
ture of the blade surface is the highest, followed by
positions 1—>5, and the lowest at positions 1”"—35".
This indicates that the closer the coating spallation
position is to the cooling air inlet side, the greater
the impact on the cooling efficiency of the blade.
When the coating is partially peeled off and ap-
proaches the air inlet of the cold air, it will cause the
cold air to come into contact with the high-tempera-
ture blades without coating protection, raising the
temperature of the cold air, reducing its convective
heat transfer capacity, and thereby lowering the

overall cooling efficiency of the cold air on blades.
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Fig.9 Influence of peel thickness and peel shape of the coat-

ing on the average surface temperature of the blade

When the localized spallation position of the coating
is close to the air conditioning outlet, since the air
conditioning has absorbed a large amount of heat
from the blade at this time, the cooling efficiency de-
teriorates. Therefore, the impact of coating spall-
ation at this point on the average temperature of the
blade surface is relatively small.

For a fixed spallation site, the average blade
surface temperature increases linearly with the pro-
gressive spallation thickness. When the proportion
of the spallation area is constant and the spallation
position is fixed, the shape of the spalled coating
has a relatively small effect on the average surface
temperature of the blade. The temperature differ-
ence between the average surface temperature of the
blade with a rectangular and circular spallation
shape is 0.1 K to 0.3 K. Thus, it can be seen that
when the proportion of the localized spallation area
of the coating is 12%, the contour of the localized
spallation has a relatively small influence on the av-
erage temperature change of the blade surface.
Therefore, further analysis is carried out subse-
quently based on the circular coating spallation as an
example.

To explore the influence of the proportion r of
the spallation area of different coatings on the aver-
age temperature of the blade surface with the change
of spallation position, under the condition of a local
coating spallation thickness of 0.35 mm, the local-
ized spallation conditions of the coating under r of
3%, 6%, 9%, and 12% are simulated respective-
ly. The results are shown in Fig.10. When the spall-
ation position is fixed, the larger r is, the higher the
average temperature of the blade surface is. The lo-
calized spallation of the coating at different positions
has a greater impact on the average temperature of
the blade surface. Moreover, the closer the spall-
ation is to the cooling air inlet side, the greater the
temperature increase caused by the localized spall-
ation as the spallation area expands. This indicates
that the average blade surface temperature is more
significantly affected by the localized spallation area
when it is closer to the cooling air inlet.

In order to explore the influence of different
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Fig.10 Influence of the peel position and peel area of the
coating on the average surface temperature of the

blade

spallation thicknesses and spallation areas of local
coatings on the average temperature of the blade sur-
face, three different thicknesses of simulated coat-
ings of 0.15, 0.25, and 0.35 mm are selected for
spallation on the side close to the air conditioning in-
let, as shown in Fig.11. It can be seen from the fig-
ure that under a certain proportion of the local coat-
ing spallation area, the average temperature of the
blade surface gradually increases with the increase
of the spallation thickness, and the larger the r, the

greater the temperature increase.
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on average blade surface temperature

3 Rapid Prediction of Influence of
Thermal Barrier Coating Spall-
ation on Comprehensive Cooling
Efficiency of Blades

3.1 Latin hypercube sampling method

Similar to biological networks, neural network

learning is based on input and output'"”’. Therefore,

a dataset needs to be obtained before training a neu-
ral network, and a proxy model is constructed by
conducting training, validation, and testing on the
dataset. The verified proxy model can generate syn-
thetic data, enhance the scale and diversity of the da-
ta set, and thereby improve the performance of the
model ®’. Before constructing the proxy model, it is
essential to sample the design space. Since the opti-
mization problem typically involves multiple design
variables, a multi-dimensional sampling method is
commonly used. This work assumes that each de-
sign variable follows a uniform distribution within
the design space, thereby introducing a special hier-
archical Monte Carlo sampling method, namely Lat-
in hypercube sampling (LHS). The LHS achieves
uniform coverage of the entire parameter space by
dividing the parameter space into multiple intervals
of equal probability and ensuring that only one sam-
ple point is selected in each interval, thereby avoid-
ing problems such as sample aggregation or omis-
sion of certain areas that may be caused by simple
random sampling™*'. The LHS can be said to be
one of the most effective small sample sampling
methods'*".

In this work, the LHS method is used to per-
form stochastic sampling of the location, length,
and depth of the localized coating spallation. The lo-
cation of the localized spallation of the coating is de-
termined by the distance between the centroid of the
localized spallation and the leading edge stagnation
point, denoted as L,. The length of the localized
spallation of the coating is determined by extending
the same length in both directions along the leaf cir-
cumference from the centroid of the localized spall-
ation, denoted as L,. The spallation depth d is
achieved by changing the surface thermal resis-
tance, as shown in Fig.12. The value ranges of L,
and L, are both 0—C, (leaf circumference), and the
value range of d is O—d e (total coating thick-
ness). In order to facilitate the sampling, L,, Lg,
and d are are normalized into dimensionless quanti-
ties L,, L4, and d using Egs.(9—11), respectively,

constraining their value ranges to [0, 1].
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3.2 Prediction principle of MLP neural network

The multi-layer perceptron (MLP) neural net-
work model utilizes a fully connected network struc-
ture, allowing it to effectively capture the feature re-
lationships between multiple variables and the out-
put. It is commonly used for logistic regression and
nonlinear classification problems. Due to its simple
network structure, ability to process data in paralle,
and highly nonlinear global effects, MLP demon-
strates strong classification performance. Fig.13
shows the prediction principle diagram of the MLP
neural network in this work, which is composed of
the input layer, the hidden layer and the output lay-
er. Within the hidden layer, there are multiple lay-
ers with the same number of neurons. Neurons in
the same layer are independent of each other, and
neurons in each layer are fully connected to the neu-
rons in the next layer. In the hidden layer, the neu-
rons in the hidden layer perform weighted summa-
tion of the output values of each neuron in the previ-
ous layer, and then combine the activation function to
perform nonlinear processing on the results, which
are used as the input values of the subsequent layer.
Among them, the input is {x,xs, -+-,2,}, the
weight of the jth neuron is (w;, way, +++, w,;)", and
the bias is 6,. The calculation process of each neuron
from input to output is shown as

a_,zzw_,fxﬂf b, (12)

i=j

yi=/(a) (13)
where ¢g; is the value obtained by weighted sum of
the inputs of the neural tube numbered j and adding
the bias b,. After the activation by the activation

function, the output y; is obtained.

\ b . .

L
Hidden layer Output layer
(Each layer has 10 neurons)

put layer

Fig.13 MLP neural network prediction model

Through the feature extraction and mapping be-
tween layers, the input values are propagated for-
ward layer by layer. At the output layer, they are
compared with the target values. The learning pa-
rameters in the neurons are updated in reverse ac-
cording to the error gradient until the error meets
the accuracy requirements. In the MLP neural net-
work model of this work, the RelLU activation func-
tion, Adam optimization algorithm and MSE func-

tion are all adopted.

3.3 Establishment and verification of rapid

prediction model

The LHS method is adopted to randomly sam-
ple the position, depth and length of localized spall-
ation of the coating on the blade surface. The sam-
ples are calculated and the data are extracted through
Fluent to generate a random data set for model train-
ing and parameter tuning. Then, based on the MLLP
neural network, an intelligent prediction model for
the localized spallation temperature and cold effect
distribution of the coating is constructed for the
blade surface temperature and cold effect dataset af~
ter the localized spallation, to achieve rapid predic-
tion of the influence of any coating spallation situa-
tion on cold effect.

In this work, the learning and prediction of sev-
en parameters under 100 different spallation condi-
tions are achieved through this model. 70% of the
dataset is used as the training set, 20% as the vali-

dation set, and 10% as the test set. The training set
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is primarily used to train the machine learning mod-
el, enabling it to learn and fit the mapping relation-
ship between the input and output. The validation
set is used to adjust the hyperparameters of the ma-
chine learning model and conduct a preliminary as-
sessment of the model’ s ability to prevent the over-

fitting. The test set is only used to evaluate the gen-

T,: Average temperature of k
the inner surface of the
coating before stripping

T,: Average temperature of
the coating before stripping

(a) Before the coating is spalled

eralization performance of the machine learning
model. The specific definitions of the seven parame-
ters are shown in Fig.14 and Table 4. In the figure,
the blade surface is coated with a 0.35 mm thick
coating based on the thin-wall thermal resistance
model, where the red area represents the localized

spallation area of the coating.

_L T,
4
& s
N
\

T,: Average temperature of \\\ \
the inner surface of the \
coating after stripping

T,: Average temperature of \‘\
the coating after stripping \\

e\

(b) After the coating is spalled

Fig.14 Schematic diagrams of parameter definitions before and after coating spallion

Table 4 Definiton of parameter names and meanings before and after coating spalltion

Parameter name Definition

¢: Average cooling efficiency of blade surface 5= T.—T

T..— 300

T,: Average thermal insulation temperature of the coating before spallation T,=T,— T,
¢y Average cooling efficiency at the local peel of the coating before spallation o= T.—T,
"T.— 300

T,: Average thermal insulation temperature of the the coating after spallation T.=T,— Ty
¢.: Average cooling efficiency at the local peel of the coating after spallation b= T.—T,
YT, — 300

AT,..: Maximum heat insulation temperature at localized spallation

AT =(Ty— T3)

27 max

The prediction error (e) of this model is de-
fined as the absolute value of the relative error be-
tween the predicted value (Z,,) and the calculated
value (Z.,) , as shown in Eq.(14). For the conve-
nience of analysis, this work statistically analyzes
the sample size (M,) within different error ranges
and compares it with the total sample size (Mg ).

e=|Zr 2 00y (14)

al

For this model, the following parameters are
considered: The average surface temperature T of
the blade, the average cold effect of the blade ¢,
the average heat insulation temperature T, before
spallation at the localized spallation site, the aver-

age heat insulation temperature T, after spallation at

the localized spallation site, the average cold effect
before spallation at the localized spallation site ¢,,
and the average cold effect after spallation at the lo-
calized spallation site ¢,. The relative error distribu-
tion of the training, verification and test results of
the maximum temperature difference before and af-
ter spallation at the localized spallation area AT,,,, is
shown in Fig.15. It can be seen from the figure that
the prediction errors of the proxy model for T and ¢
of all datasets are both within 2%. In the training
set, the maximum prediction error for T, is within
10%, with an average error of 1.8%. The average
prediction errors for T,, ¢,, ¢., and AT, are

5.1%, 2.4%, 3.2%, and 5.5%, respectively, and
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the errors of a few samples exceed 10%. In the vali-
dation set, the average prediction errors for Ty, T,,
¢, ¢., and AT, are 3.2%, 9.9%, 3.8%, 4.5%,
and 9.2% , respectively. In the test set, the maxi-
mum prediction errors of ¢y, ¢., and AT,,, are all
within 10%, with average prediction errors of
1.9%, 2.1%, and 3.2%, respectively. The aver-
age prediction errors of T, and T, are 2.8% and
5.4% , respectively, and the errors of a few samples
exceed 10%. For the full random spallation of ther-
mal barrier coatings, the prediction errors of ¢, and
¢. have the characteristics of relatively large errors
and relatively small absolute errors. However, since
the values of ¢, and ¢, are small and the variation
range with different working conditions is relatively
small, even a small absolute error can lead to a sig-
nificant relative error. Therefore, this work consid-

ers that its prediction is still valid.

1.0

m7 m¢ ml, =7, m¢, m¢, mAT,,

E

2
= 05
N

0.0
<2% 2%—4% 4%—6% 6%—8% 8%—10% =10%
&
(a) Training set

1.0

=7 m¢ ml, of, mj, mg, mAT,,
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e
(b) Validation set
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i I'Il_ﬂ

<2% 2%—4% 4%—6% 6%—8% 8%—10% =10%

0.0

&
(c) Test set

Fig.15 Proxy model prediction error distribution

Overall, the prediction error of this model for
T and ¢ is within 2%, the prediction error for 80%
of the samples of T\, T., ¢,, and ¢, is within 6%,

the average prediction error for all samples is within
10%, and the error for a few samples is above
10%. This model has a good prediction effect on T,
¢, T\, ¢y, and ¢,. However, at the localized spall-
ation areas of the coating, the coating becomes thin-
ner or completely peeled off, and the heat insulation
capacity decreases. In contrast, there is a sudden in-
crease in temperature at the coated areas, and the
temperature change on the blade surface is uneven.
The predictive ability of this model at the data step
points is slightly poor, so the prediction error of T,
and AT,,, is relatively large.

Figs.16 and 17 respectively show the relative
error distributions of the average cold effect differ-
ence A¢ and the maximum cold effect difference
A¢ .. before and after coating spallation in the local-
ized spallation area trained with the MLLP neural net-
work. It can be seen from the figure that the relative
errors of A¢ and A¢,,, are basically within 10%,
and the errors of a few results exceed 10%. Com-
pared with the parameters in Fig.16, the errors are
slightly larger. For the random spallation of the ther-
mal barrier coating, the prediction results of A¢ and
A¢ . show the characteristics of relatively large er-
ror and relatively small absolute error. However,
since the values of A¢ and Ag¢,,., are relatively small
and the changes are relatively small under different
spallation conditions, even a small absolute error
can lead to a large relative error. Therefore, we be-
lieve that the predictions of this study remain valid.

It can be seen from this that the prediction mod-
el of the localized spallation temperature and cold ef-

fect distribution of the coating based on the real

6
o Ag prediction error .
.
5 L —Prediction error 0% s -7
S o . o
£ - - -Prediction error 10% - K3
Q ¥ -
S ;/ of s
& 3t P
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3 7
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Fig.16  A¢ test set error distribution
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state value has a high prediction accuracy, which
will further support the establishment of the subse-
quent three-dimensional prediction model. Using
this prediction model as the surrogate model in the
case of arbitrary spallation of the coating can replace
the mathematical model for efficient and high-preci-
sion regulation.

Simulation of thermal barrier coating failure on
turbine blades shows that the coating at the leading
edge of the blade is the most prone to peeling. How-
ever, after the coating in this tiny area peels off,
since almost the entire blade surface is still protected
and insulated by the coating, the turbine blade can
continue to serve. As the service time increases, the
area of coating spallation will continue to expand,
leading to a higher probability of the blade being
damaged by high temperatures. Once the spalled ar-
ea reaches a critical threshold, the coating fails, and
the blade is damaged. At present, some scholars
have defined the spallation of the coating on 10% of
the blade surface as failure, but this definition lacks
the universality. Because the heat insulation effect of
thermal barrier coating varies across different re-
gions of the blade surface, spallation with the same
area and depth can lead to markedly different reduc-
tions in blade cooling efficiency depending on its lo-
cation; specifically, spallation occurring in a high-in-
sulation-efficiency region causes a much larger de-
crease in cooling efficiency than spallation occurring
in a low-insulation-efficiency region. Therefore, the
proposed model enables rapid prediction of blade
cooling efficiency under different spallation condi-

tions, thereby better capturing the combined effects

of spallation area, depth, and location on coating
failure. This provides a more rational basis for fail-
ure assessment and is more consistent with practical
service conditions. Subsequently, the mapping data
relationship between the localized spallation charac-
teristic parameters of the coating and the coating fail-
ure can be established. Data supports the coating re-

liability analysis and prediction.

3.4 Prediction results based on the fast predic-

tion model

Due to the numerous factors influencing the
spallation of coatings and the randomness of environ-
mental parameters, there is uncertainty in the failure
and spallation of coatings. However, the effects of
coating failure and spallation at different positions
on the surface of turbine blades on the comprehen-
sive cooling efficiency of turbine blades are all differ-
ent. In the previous section, the predictive ability of
the proxy model is verified by comparing the error
distributions of the true values and the predicted val-
ues. In this section, 1 000 groups of different coat-
ing spallation positions, coating spallation lengths
and coating spallation depths are extracted by the
LHS method. Based on the rapid prediction model
of the influence of the trained thermal barrier coating
spallation on the comprehensive cold efficiency of
the blade, the influence of 0.35 mm local coating
spallation on the comprehensive cold efficiency at
the local coating spallation site of turbine blades is
explored.

Fig.18 presents the influence of the spallation
position and spallation length on the comprehensive
cold effect difference at the spallation site under dif-
ferent coating spallation depths. Among them, ¢
represents the percentage of the length along the
leaf circumference starting from the retention point
of the leading edge of the blade to the total leaf
circumference length and its expression is given in
Eq.(15). / represents the percentage of the spallation
length to the total leaf circumference length and its
expression is given in Eq.(16). A¢ is the difference
in cold effect before and after the localized spallation

of the coating.
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It can be seen from Fig.18 that with the increase
of spallation depth, under different spallation posi-
tions and spallation lengths, the difference in cold ef-
fect before and after coating spallation at the local-
ized spallation area of the coating gradually increas-
es from 0.9% to 6.2%. Under the same spallation
position and spallation length, for every 30% in-
crease in the spallation depth of the coating, the dif-

ference in cooling efficiency before and after coating

spallation increases by 1—2 times compared with
the original cooling efficiency difference. When the
spallation depth and spallation length of the coating
are constant, the smaller the ¢ value, that is, the
closer the localized spallation position of the coating
is to the leading edge, the greater the cold effect dif-
ference value, indicating that the coating at the lead-
ing edge position of the blade is crucial for the pro-
tection of the blade. When the ¢ value is 60%—
80% , the difference in cooling efficiency is the
smallest, indicating that the spallation of the coating
at the trailing edge of the blade and the middle and
rear sections of the pressure surface has a relatively
small impact on the cooling efficiency of the blade.
When the coating spallation depth and spallation po-
sition are constant, the longer the coating spallation
length at the leading edge, the less obvious the
change in cold effect. The longer the coating spall-
ation length at the trailing edge of the blade and the
middle and rear sections of the pressure surface, the
greater the change in cold effect. When the coating
spallation depth accounts for 30% of the coating
thickness, the average value of the difference in
cooling efficiency before and after coating spallation
is 1.32. When the spallation depth of the coating ac-
counts for 60% of the coating thickness, the aver-
age value is 2.82. When the spallation depth of the
coating accounts for 90% of the coating thickness,
the average value is 4.48. For every 30% increase in
the coating spallation depth, the average value of
the difference in cooling efficiency before and after
coating spallation doubles compared to the original
value, that is, the influence degree of coating spall-
ation on cooling efficiency doubles.

In conclusion, the coating spallation at the lead-
ing edge of the turbine blade has the greatest impact
on the comprehensive cooling efficiency of the
blade, while the coating spallation at the trailing
edge has the least impact. The above research re-
sults have certain guiding significance for the subse-
quent differentiated coating in different zones, there-
by reducing the impact of coating spallation on the

cooling efficiency of the blade.
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4 Conclusions

In this work, a rapid prediction model for the
influence of localized spallation of thermal barrier
coatings on the comprehensive cold efficiency of
blades is constructed by combining the LHS method
and the MLP neural network. The accuracy of the
model 1s verified, and then the influence law of
spallation in the dangerous area of thermal barrier
coatings on the comprehensive cold efficiency of
blades is obtained.

The following conclusions are obtained.

(1) Tt has been verified that the deviation of the
thin-wall thermal resistance method and the direct
modeling method of the coating is within 5% in the
absence of coating spallation, and the deviation pro-
portion is 6.2% in the case of localized spallation of
the same coating. Therefore, the thin-wall thermal
resistance model can be considered an effective sim-
plification and replacement for the direct modeling
method of the coating. When the localized spallation
area of the coating is fixed, its shape has a relatively
small influence on the blade’s cooling efficiency.
However, when the spallation position is fixed, the
average blade surface temperature increases linearly
with the spallation thickness.

(2) This work develops a rapid prediction mod-
el for the influence of localized spallation of thermal
barrier coatings on blade temperature and cooling ef-
ficiency. The prediction error of this model for the
average surface temperature of the blade and the
cooling efficiency is within 2%. The estimation of
the temperature and cooling efficiency at the local-
ized spallation area of the coating shows that the er-
ror of 80% of the samples is within 6% , and the av-
erage error of all samples is within 10%.

(3) With the increase of the coating spallation
depth, under different spallation positions and spall-
ation lengths, the difference in cold effect before
and after coating spallation at the localized spallation
area of the coating gradually increases from 0.9% to
6.2%. The closer the localized spallation position of
the coating is to the leading edge, the greater the dif-

ference in cooling efficiency. With each 30% in-

crease in coating spallation depth, the average differ-
ence in cooling efficiency before and after spallation
doubles compared to the original value, indicating
that the impact of coating spallation on cooling effi-

ciency also doubles.
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