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Abstract: The study of the spallation of thermal barrier coatings on turbine blades and its influence is of great 
significance for gas turbine safety operation. However， numerical simulation related to thermal barrier coatings is 
difficult and time-costly， which makes it hard to meet engineering demands. Therefore， this work establishes a rapid 
prediction model for the surface temperature and cooling efficiency of turbine blades with localized spallation of 
thermal barrier coatings based on a thin-wall thermal resistance model. Firstly， the influence of localized spallation of 
thermal barrier coatings on the cooling efficiency of typical turbine blades is numerically investigated. Then， based on 
the simulation data set and multi-layer perception （MLP） neural network， an intelligent prediction model for the 
temperature and cooling efficiency distribution of localized spallation of coatings is constructed， which can rapidly 
predict the surface temperature and cooling efficiency of the blade under the situation of spallation of coating at any 
position on the blade surface. The results show that， under a certain spallation area， the shape of localized coating 
spallation has little influence on the cooling efficiency， while the increase of spallation thickness will cause a linear 
increase in the average temperature of the blade surface. The prediction error of the proposed rapid prediction model 
for the average surface temperature and cooling efficiency of blades is within 2%， and the prediction error of the 
temperature and cooling efficiency at the spallation position is within 6% for 80% of the samples， with an overall 
average error within 10%. It is concluded from the rapid prediction model that when the depth of coating spallation 
increases， the closer the spallation position is to the leading edge of the blade， the greater the difference in cooling 
efficiency is， and the degree of influence of coating spallation on the cooling efficiency also increases.
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0 Introduction 

The thermal barrier coating （TBC） technology 
is now widely used in the aerospace field as a ther⁃
mal protective layer for various component struc⁃
tures［1-2］. With the continuous improvement of the 
efficiency of gas turbines， the inlet temperature of 
the turbine keeps rising and gradually exceeds the 
temperature limit of traditional nickel-based superal⁃

loy blades［3］. Although the excellent thermal insula⁃
tion properties of TBCs provide some protection 
against blade ablation， the coatings are subjected to 
high-temperature oxidation， particle impact erosion， 
and the harsh working conditions caused by calcium 
magnesium aluminum silicate （CMAS） molten salt 
erosion. These factors have directly compromised 
the thermal insulation performance of coatings， lead⁃
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ing to a higher probability of local failure and spall⁃
ation［4］. This phenomenon will cause changes in the 
comprehensive cooling efficiency of turbine blades， 
thereby affecting the working intensity and opera⁃
tional stability of the engine； therefore the study of 
the spallation of thermal barrier coating on the sur⁃
face of turbine blades is of great significance for the 
safe operation of gas turbines.

With the development of modern technology， 
numerical methods have gradually been developed 
and utilized in the related research of TBC. The ex⁃
isting numerical simulation models of turbine blades 
with thermal barrier coatings have established a 
foundational framework［5-6］. The simplified models 
can better predict the stress field and temperature 
conditions of turbine blades. However， if the actual 
temperature distribution of turbine blades and their 
complex geometric structures are considered， the 
fluid-solid coupling and conjugate thermal transfer 
of blade models still need to be developed urgently. 
In recent years， many scholars have conducted rele⁃
vant research on the stress distribution［7-8］ and crack 
propagation characteristics［9-11］ of the TBC system 
during the thermal cycling process， and obtained the 
physical property characteristics of the thermal barri⁃
er coating. However， there are still deficiencies in 
the research on the influence of thermal barrier coat⁃
ing spallation on the cooling efficiency of hot-end 
components. Additionally， numerical simulation 
methods for thermal barrier coatings still face limita⁃
tions， such as fine mesh division， high iterative cal⁃
culation costs， and long computation times， which 
make them challenging to apply to engineering de⁃
mands. To deal with these challenges， the applica⁃
tion of artificial intelligence such as machine-learn⁃
ing algorithms and regression analysis predictive 
modeling techniques has become a trend in simula⁃
tion research［12］. By training the proxy model to 
learn the volvement rule of fluid field and directly 
predicting the simulation results， the computing 
time can be significantly reduced. Moreover， the 
proxy model is capable of learning multi-physics and 
multi-scale information， enabling rapid prediction of 
performance across different parameter combina⁃
tions. In the related research on predicting the fail⁃

ure spallation of TBC， Yang et al.［13］ proposed a 
method of processing acoustic emission signals 
based on the wavelet packet transform and neural 
networks. The four typical failure modes of TBC 
coatings can be discriminated through this method， 
thereby monitoring the failure mechanism of TBC in 
real time and evaluating its service reliability. Liu et 
al.［14］ comprehensively considered the failure mecha⁃
nisms such as oxidation， creep， and thermal mis⁃
match during the failure process of thermal barrier 
coatings， as well as various factors such as the com ⁃
bined effect of gas and coolants at both the micro 
and macro scales， and established a multi-scale life 
prediction model integrating artificial neural net⁃
works for the failure prediction of turbine blade coat⁃
ings. This model has a good prediction effect on the 
failure area of thermal barrier coating on the surface 
of turbine blades.

At present， most of the research related to 
TBC focuses on coating failure mechanisms and life 
prediction， etc.， while relatively few studies exam ⁃
ine the decline in component cooling efficiency after 
the coating spallation. Meanwhile， although some 
scholars have established multi-scale life prediction 
models integrating artificial neural networks for the 
failure prediction of turbine blade coatings， these 
models still have certain limitations in terms of pre⁃
diction accuracy， application scope， and adaptabili⁃
ty to complex working conditions. Therefore， based 
on machine learning methods， this work conducts a 
rapid prediction study on the influence of localized 
spallation of thermal barrier coatings on the cooling 
efficiency of blades， aiming to accurately and rapid⁃
ly predict the influence of coating spallation on the 
heat transfer of turbine blades， which has certain 
guiding significance for the life prediction of turbine 
blades.

1 Physical Models and Numerical 
Methods 

1. 1 Physical model　

In this work， the C3X blade without radial dis⁃
tortion is selected as the research object. The blade 
height is 76.2 mm， the cascade pitch is 117.73 mm， 
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the axial chord length is 78.16 mm， the blade chord 
length is 144.93 mm， and the blade material is 310 
stainless steel of ASTM standard， which has a rela⁃
tively low thermal conductivity. The cross-sectional 
schematic diagram of the blade and its cascade chan⁃
nel is shown in Fig.1（a）， and the specific geometric 
and physical parameters of the blade model are pre⁃
sented in Table 1. It should be noted that the blade 
thermal conductivity is temperature-dependent and 
is calculated as λ =9.910 5+0.011 5T， where T is 
the local temperature of the blade material （solid do⁃
main） at each location. The surface of the blade is 
uniformly coated with a thermal barrier coating with 
a thickness of 0.35 mm. Its equivalent physical pa⁃
rameters include the density of 5 650 kg/m³， ther⁃
mal conductivity of 1.05 W/（m·K）， and specific 
heat capacity of 483 J/（kg·K）［15］. Fig.1（b） presents 
the physical model of the C3X blade and the setting 
of boundary conditions. This work selects the corre⁃
sponding working conditions of the No.4521 test in 
Ref.［16］ for numerical research. The specific param⁃
eter settings of the boundary conditions are shown in 
Table 2. The blade is equipped with ten circular ra⁃
dial cooling channels. The cross-sectional geometric 
dimensions of each channel and the cold air inlet con⁃
ditions are shown in Table 3.

1. 2 Numerical calculation method　

1. 2. 1 Flow control equation　

The flow of high-temperature gas and cold air is 
a three-dimensional steady-state compressible flow. 
The flow heat transfer among gas， blades and cold 
air， as well as the heat transfer between blades and 
coatings， and the heat transfer within blades all con⁃
form to the conservation of mass， momentum and 
energy. In the usual sense， the control equation is 
the partial differential expression of the above three 
conservation laws. The three conservation equations 
can be expressed as

Table 1　Blade geometric and physical parameters

Geometric parameter
Leaf grid pitch τ/ mm
Blade height H/ mm

Axial chord length Cax / mm
Blade chord length Cx / mm

Density ρ/ (kg·m-3)
Specific heat c/ (J·kg-1·K-1)

Thermal conductivity λ/(W·m-1·K-1)

Numerical value
117.73

76.2
78.16

144.93
8 030

502.48
9.910 5+0.011 5T

Table 2　Boundary conditions for Test No.4521 in Ref.[16]

Test condition

Heat flow inlet
boundary condition

Heat flow outlet
boundary condition

Parameter
Total inlet pressure/Pa

Total inlet temperature/K
Inlet turbulence intensity/%

Import viscosity ratio
Import Mach number

Inlet Reynolds number
Outlet static pressure/Pa

Export Mach number
Outlet Reynolds number

Value
413 286

818
8.3
30

0.17
6.4×106

254 172
0.89

2.44×106

Table 3　Blade internal cooling channel inlet conditions

Channel 
number

1
2
3
4
5
6
7
8
9

10

Diameter/mm

6.3
6.3
6.3
6.3
6.3
6.3
6.3
3.1
3.1

1.98

Flow rate/
（kg·s-1）

0.022 2
0.022 1
0.021 8
0.022 8
0.022 5
0.022 5
0.021 6

0.007 44
0.004 77
0.002 56

Tin/K

342
344
335
336
330
355
336
350
377
387

Fig.1　C3X blade model and boundary condition setting
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Continuity equation
∇ ⋅( ρ fV )= 0 (1)

where ρ f is the fluid density and V the fluid velocity 
vector. The term ∇ ⋅( ρ fV ) represents the diver⁃
gence of the mass flux.

Momentum equation
∇ ⋅( ρ fVV )= -∇p + ∇ ⋅ τ+ ρ f f (2)

where VV denotes the dyadic （tensor） product of 
the velocity vector and it is a second-order tensor； 
the term ∇ ⋅( ρ fVV ) the divergence of the convec⁃
tive （advective） momentum flux； -∇p the pres⁃
sure-gradient force （directed toward decreasing pres⁃
sure）； τ the viscous stress tensor and ∇ ⋅ τ the diver⁃
gence of the viscous stress； and ρ f f the body-force 
term per unit volume.

Energy conservation equation
∇ ⋅( ρ fVh )= ∇ ⋅( λ∇T )+ V ⋅ ∇p + τ:∇V (3)

where ∇ ⋅( ρ fVh ) is the divergence of the convective 
enthalpy flux with h being the specific enthalpy； the 
term ∇ ⋅( λ∇T ) heat conduction （diffusion） with λ 
being the thermal conductivity and T the fluid tem⁃
perature； V ⋅ ∇p the pressure-work term； τ：∇V the 
viscous dissipation term， accounting for the conver⁃
sion of mechanical energy into internal energy due to 
viscous effects； the symbol “：” indicates the double 
contraction of tensors； ∇V the velocity-gradient ten⁃
sor， and τ the viscous stress tensor with its compo⁃
nent expressed as

τij = 2μ ( )sij - 1
3

∂νk

∂xk
δij (4)

where μ is dynamic viscosity； sij the strain-rate ten⁃
sor component； νk the kth component of the velocity 

vector V； and ∂νk

∂xk
 the velocity divergence， i.e.， ∇ ⋅V.

For the coupled heat exchange problem， the 
following conditions are met at the fluid-structure in⁃
terface

T s = T f (5)

k
|

|
|
||
|∂T

∂n
n

= λ
|

|
|
||
|∂T

∂n
f

(6)

where Ts and Tf represent the wall temperatures of 
solid and fluid， respectively； n represents the nor⁃
mal direction. That is， temperature continuity and 
heat flux conservation are satisfied at the fluid-solid 
interface.

1. 2. 2 Thin⁃wall thermal resistance model　

In thermal barrier coating simulation modeling， 
the direct modeling method is typically employed， 
where the thermal barrier coating mesh is generated 
on the substrate surface based on the coating thick⁃
ness. However， due to the extremely thin thickness 
of the thermal barrier coating and the existence of lo⁃
calized spallation phenomena， it is difficult to model 
and mesh division， and it is hard to guarantee the 
mesh quality， thereby affecting the simulation accu⁃
racy. Therefore， the thermal barrier coating model⁃
ing method based on the thin-wall thermal resistance 
model［17］ is suitable for dealing with the localized 
spallation of the coating. The schematic diagram of 
the thin-wall thermal resistance method is shown in 
Fig.2. Its principle is to equivalently simulate the 
heat insulation effect of the thermal barrier coating 
by setting different surface layer thermal resistances 
on the outer surface of the substrate， as shown in

Rλ = Δx
λ

(7)

where Rλ is the thermal resistance of heat conduc⁃
tion of the coating， Δx the thickness of the thermal 
barrier coating， and λ the thermal conductivity of 
the wall surface.

In the solution process， the thermal resistance 
and heat flux of the coating are calculated by solving 
the one-dimensional steady-state heat conduction 
equation. Since this model does not alter the geo⁃
metric structure or size of the substrate， it signifi⁃
cantly simplifies modeling and meshing. This ap⁃
proach allows for a quicker assessment of the influ⁃
ence of coating thermal resistance and localized 
spallation on blade cooling efficiency under varying 
coating thicknesses and spallation conditions.

Overall， since this study focuses on the steady-

state coating spallation issue and mainly concen⁃
trates on the macroscopic heat transfer of the coat⁃

Fig.2　Thin-wall thermal resistance model
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ing， for isotropic thermal barrier coating materials， 
the heat transfer process is uniform and approximate⁃
ly linearly distributed. Therefore， the numerical dif⁃
ferences between the two methods will not have a 
significant impact on the prediction results.

1. 3 Numerical verification　

To eliminate the influence of grid division on 
the results， the grid independence verification is car⁃
ried out first before conducting numerical calcula⁃
tions. The calculation model is meshed by using An⁃
sys Mesh， and the meshes at the flux-solid interface 
are encrypted. Meanwhile， in order to reduce the 
amount of calculation and improve the calculation ef⁃
ficiency， the mesh is appropriately sparsely pro⁃
cessed in the area far from the fluid-solid interface 
and the inlet and outlet sections of the model.

To ensure the independence of grids， seven 
groups of hexahedral grids with different sparsity 
levels are divided for numerical calculations. When 
the number of grids is further increased or de⁃
creased， if the average temperature of the blade sur⁃
face remains basically unchanged， the grid is consid⁃
ered to meet independence requirements. As shown 
in Fig.3， with the gradual increase of grid quantity， 
the average temperature of the blade surface gradual⁃
ly decreases. When the number of grids is around 
5 million， the average temperature of the blade sur⁃
face remains basically unchanged. Therefore， this 
grid is selected for the subsequent numerical re⁃
search work.

To further verify the accuracy of the numerical 
model and select an appropriate turbulence model， 
this work selects the main and secondary flow condi⁃
tions No.4521-157 in NASA literature［18］， and com⁃

pares the calculation results with experimental data 
in the literature. Three turbulence models， namely 
Standard k⁃ε， RNG k⁃ε and SST k⁃ω， are respec⁃
tively adopted for numerical calculation， and the 
pressure ratio and temperature ratio on the mid-span 
line of the blade are compared with experimental val⁃
ues. Fig.4 shows the pressure ratio distribution along 
the mid-span of the blade. The vertical coordinate in 
the figure represents the ratio of the pressure along 
the mid-span of the blade to the static pressure at 
the inlet of the cascade channel. As shown in Fig.4， 
the pressure ratios calculated by the three turbulence 
models are nearly identical. Due to the gas impact 
on the leading edge of the blade， the pressure gradi⁃
ent is highest there. The pressure ratio decreases 
slowly at the pressure surface first. When x is 
around 0.5， it begins to decrease rapidly. The pres⁃
sure on the suction surface rises rapidly when x is 
from − 0.4 to 0， while the pressure change near the 
trailing edge of the suction surface is relatively gentle.

Fig.5 presents the comparison between the inter-

line temperature ratios of blades calculated by three 
turbulence models and experimental values. Among 
them， the vertical coordinate is the ratio of the blade 
surface temperature on the mid-span line to the refer⁃
ence temperature （811 K）. Due to the gas scouring 
and the difference in cooling capacity of the cooling 
channel， the temperatures at the leading edge and 
trailing edge of the blade are relatively high. It can 
be seen from Fig.5 that the SST k⁃ω turbulence 
model is superior to the other two turbulence mod⁃
els in predicting the surface temperature of blades. 

Fig.4　Pressure distribution in the middle sampling line of 
blade height

Fig.3　Effect of mesh amount on average blade surface tem ⁃
perature
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Whether on the pressure surface or the suction sur⁃
face， the temperature distribution prediction of the 
SST k⁃ω model is closer to experimental values 
than the other two models. Therefore， in the subse⁃
quent research of this section， the SST k⁃ω turbu⁃
lence model is selected for further analysis.

2 Influence of Localized Spallation 
of Thermal Barrier Coating on 
the Cooling Efficiency

2. 1 Modeling methods and effect comparison of 
thermal barrier coatings　

To verify the calculation accuracy of the thin-

wall thermal resistance model， a comparison is 
made with the blade coating directly modeled. The 
differences between the two methods in terms of 
heat insulation effect， temperature distribution at lo⁃
calized spallation points， and temperature distribu⁃
tion along the blade surface are analyzed.

Without coating spallation， the surface temper⁃
ature distribution of the blade at a cut-off line 60 mm 
away from the blade tip is obtained， as shown in 
Fig.6. To better illustrate the trend of temperature 
distribution along the flow path and highlight the tem ⁃
perature difference between the coating surface and 
its inner layers， the dimensionless parameter T/811 
is adopted as the vertical coordinate， where 811 K 
represents the mainstream temperature. It can be 
seen from the figure that the temperature distribu⁃
tion of the inner and outer surfaces of the coating by 
the two methods is basically the same. When the 
coating thickness is 0.35 mm， the average heat insu⁃

lation temperature of the direct modeling method is 
46.53 K， and that of the thin-wall thermal resistance 
model coating is 44.85 K， with a temperature differ⁃
ence of 1.68 K. Compared with the average heat in⁃
sulation temperature of the direct modeling method， 
the error is 3.61%. The maximum insulation tem ⁃
perature point of the coating in the direct modeling 
method appears at the position where the relative 
chord length X/L=0.73 and the relative blade 
height Z/H=0.77. At this point， the temperature 
difference between the inner and outer surfaces of 
the coating is 68.12 K. The maximum insulation 
temperature point of the coating in the thin-wall ther⁃
mal resistance model appears at the relative chord 
length X/L=0.80. At the position where the rela⁃
tive blade height Z/H=0.77， the temperature dif⁃
ference between the inner and outer surfaces of the 
coating at this point is 64.86 K， and the temperature 
difference from the insulation temperature of the di⁃
rect modeling method is 3.26 K， with an error of 
4.79%. The results show that the coating thickness 
has a certain impact on the heat insulation effect 
when using the direct modeling method. However， 

Fig.6　Temperature distribution curves of the inner and out⁃
er surfaces of the coating without spallation

Fig.5　Cross-line temperature distribution on blade surface
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by comparing the average and maximum heat insula⁃
tion temperatures of the entire blade， it is evident 
that the deviation between the two methods can be 
controlled within 5%.

The service environment of turbine blades is 
complex. The thermal barrier coating on the blade 
surfaces is exposed to a harsh working environ⁃
ment， making localized spallation of the coating in⁃
evitable. To investigate the influence of thermal bar⁃
rier coating spallation on blade cooling efficiency， 
five critical areas on the blade surface are selected to 
simulate localized coating spallation. They are re⁃
spectively one at the leading edge， two at the pres⁃
sure surface and two at the suction surface， as 
shown in Fig.7. The shape of the coating spallation 
is simplified to either circular or rectangular， num⁃
bered from 1 to 5. Localized spallation occurs near 
the middle span line. To investigate the influence of 
the spallation position on blade cooling efficiency， 
the localized spallation location is varied along the Z-

axis. Positions 1' —5' represent spallation near the 
cold air inlet， while positions 1"—5" correspond to 
spallation near the cold air outlet. The coating of the 
same area and depth is peeled off at the same posi⁃
tion on the blade surface. The blade surface cross-

section at a distance of 60 mm from the blade tip is 
selected. The surface temperature distributions of 
the two modeling methods on this cross-section are 
shown in Fig.8. It can be seen that at the trailing 
edge and the middle part of the suction surface， the 
surface temperature of the thin-wall thermal resis⁃
tance model blade is slightly higher than that of the 
direct modeling method. On the pressure surface 
and the leading edge section， the average tempera⁃
ture of the blade surface in the direct modeling meth⁃
od is slightly higher than that in the thin-wall ther⁃
mal resistance model. The average temperature dif⁃
ference and maximum temperature difference on the 
blade surface of the two methods account for 1.5% 
and 5.05% of the average temperature on the blade 
surface respectively， among which the maximum 
temperature difference is located at X/L=0.98. Af⁃
ter the same localized spallation occurred in the coat⁃
ings of the two methods， the insulation temperature 

of the direct modeling method is 45.13 K， and that 
of the thin-wall thermal resistance model is 42.32 K， 
with a temperature difference of 2.81 K， accounting 
for 6.2%. Within this range， the simulation results 
of the thin-wall thermal resistance model are compa⁃
rable to those of the direct modeling method. Fur⁃
thermore， the thin-wall thermal resistance model 
does not alter the matrix model structure or geomet⁃
ric dimensions. Therefore， it can significantly re⁃
duce the time required for modeling and meshing， 
effectively simplify the modeling process， address 
the meshing challenges for thin coatings in direct 
modeling， and enhance the overall efficiency of coat⁃
ing （localized spallation） modeling and simulation. 
This is of great significance for rapid and accurate 
prediction of the impact on heat transfer following 
localized spallation of thermal barrier coating on tur⁃
bine blades in actual service environments. In this 
work， the coating modeling methods in the numeri⁃
cal study of thermal barrier coatings are all based on 
the thin-wall thermal resistance model.

2. 2 Influence of localized spallation of thermal 
barrier coatings on comprehensive cooling 
efficiency of blades　

Based on the localized spallation positions of 

Fig.7　Schematic diagrams of the localized spallation posi⁃
tion of the coating

Fig.8　Blade surface temperature distribution curves of two 
models
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the coating defined in Fig.7， the influence of factors 
such as the shape， size and depth of the coating 
spallation at these positions on the cooling efficiency 
of the blade is further considered.

Define r as the percentage of the localized spall⁃
ation area of the coating to the surface area of the 
blade， which is shown as

r = S1

S
× 100% (8)

where S represents the surface area of the blade， 
and S1 the localized spallation area of the coating.

To investigate the influence of local coating 
spallation shape at different positions on the average 
surface temperature of the blade as the coating spall⁃
ation thickness increases， three sets of rectangular 
and circular spallation shapes at different positions， 
as shown in Fig.7， are simulated under the condition 
of r=12%. It can be seen from Fig.9 that when the 
localized spallation position of the coating is located 
on the side close to the air conditioning inlet， that 
is， at positions 1'—5' in Fig.8， the average tempera⁃
ture of the blade surface is the highest， followed by 
positions 1—5， and the lowest at positions 1"—5". 
This indicates that the closer the coating spallation 
position is to the cooling air inlet side， the greater 
the impact on the cooling efficiency of the blade. 
When the coating is partially peeled off and ap⁃
proaches the air inlet of the cold air， it will cause the 
cold air to come into contact with the high-tempera⁃
ture blades without coating protection， raising the 
temperature of the cold air， reducing its convective 
heat transfer capacity， and thereby lowering the 
overall cooling efficiency of the cold air on blades. 

When the localized spallation position of the coating 
is close to the air conditioning outlet， since the air 
conditioning has absorbed a large amount of heat 
from the blade at this time， the cooling efficiency de⁃
teriorates. Therefore， the impact of coating spall⁃
ation at this point on the average temperature of the 
blade surface is relatively small.

For a fixed spallation site， the average blade 
surface temperature increases linearly with the pro⁃
gressive spallation thickness. When the proportion 
of the spallation area is constant and the spallation 
position is fixed， the shape of the spalled coating 
has a relatively small effect on the average surface 
temperature of the blade. The temperature differ⁃
ence between the average surface temperature of the 
blade with a rectangular and circular spallation 
shape is 0.1 K to 0.3 K. Thus， it can be seen that 
when the proportion of the localized spallation area 
of the coating is 12%， the contour of the localized 
spallation has a relatively small influence on the av⁃
erage temperature change of the blade surface. 
Therefore， further analysis is carried out subse⁃
quently based on the circular coating spallation as an 
example.

To explore the influence of the proportion r of 
the spallation area of different coatings on the aver⁃
age temperature of the blade surface with the change 
of spallation position， under the condition of a local 
coating spallation thickness of 0.35 mm， the local⁃
ized spallation conditions of the coating under r of 
3%， 6%， 9%， and 12% are simulated respective⁃
ly. The results are shown in Fig.10. When the spall⁃
ation position is fixed， the larger r is， the higher the 
average temperature of the blade surface is. The lo⁃
calized spallation of the coating at different positions 
has a greater impact on the average temperature of 
the blade surface. Moreover， the closer the spall⁃
ation is to the cooling air inlet side， the greater the 
temperature increase caused by the localized spall⁃
ation as the spallation area expands. This indicates 
that the average blade surface temperature is more 
significantly affected by the localized spallation area 
when it is closer to the cooling air inlet.

In order to explore the influence of different 
Fig.9　Influence of peel thickness and peel shape of the coat⁃

ing on the average surface temperature of the blade
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spallation thicknesses and spallation areas of local 
coatings on the average temperature of the blade sur⁃
face， three different thicknesses of simulated coat⁃
ings of 0.15， 0.25， and 0.35 mm are selected for 
spallation on the side close to the air conditioning in⁃
let， as shown in Fig.11. It can be seen from the fig⁃
ure that under a certain proportion of the local coat⁃
ing spallation area， the average temperature of the 
blade surface gradually increases with the increase 
of the spallation thickness， and the larger the r， the 
greater the temperature increase.

3 Rapid Prediction of Influence of 
Thermal Barrier Coating Spall⁃
ation on Comprehensive Cooling 
Efficiency of Blades

3. 1 Latin hypercube sampling method　

Similar to biological networks， neural network 
learning is based on input and output［19］. Therefore， 

a dataset needs to be obtained before training a neu⁃
ral network， and a proxy model is constructed by 
conducting training， validation， and testing on the 
dataset. The verified proxy model can generate syn⁃
thetic data， enhance the scale and diversity of the da⁃
ta set， and thereby improve the performance of the 
model［20］. Before constructing the proxy model， it is 
essential to sample the design space. Since the opti⁃
mization problem typically involves multiple design 
variables， a multi-dimensional sampling method is 
commonly used. This work assumes that each de⁃
sign variable follows a uniform distribution within 
the design space， thereby introducing a special hier⁃
archical Monte Carlo sampling method， namely Lat⁃
in hypercube sampling （LHS）. The LHS achieves 
uniform coverage of the entire parameter space by 
dividing the parameter space into multiple intervals 
of equal probability and ensuring that only one sam ⁃
ple point is selected in each interval， thereby avoid⁃
ing problems such as sample aggregation or omis⁃
sion of certain areas that may be caused by simple 
random sampling［21-22］. The LHS can be said to be 
one of the most effective small sample sampling 
methods［23］.

In this work， the LHS method is used to per⁃
form stochastic sampling of the location， length， 
and depth of the localized coating spallation. The lo⁃
cation of the localized spallation of the coating is de⁃
termined by the distance between the centroid of the 
localized spallation and the leading edge stagnation 
point， denoted as Lp. The length of the localized 
spallation of the coating is determined by extending 
the same length in both directions along the leaf cir⁃
cumference from the centroid of the localized spall⁃
ation， denoted as Ld. The spallation depth d is 
achieved by changing the surface thermal resis⁃
tance， as shown in Fig.12. The value ranges of Lp 
and Ld are both 0—C0 （leaf circumference）， and the 
value range of d is 0—dTBC （total coating thick⁃
ness）. In order to facilitate the sampling， Lp， Ld， 
and d are are normalized into dimensionless quanti⁃
ties L̄ p，L̄ d， and d̄ using Eqs.（9—11）， respectively， 
constraining their value ranges to ［0， 1］.

Fig.11　Influence of peel area and peel thickness of coating 
on average blade surface temperature

Fig.10　Influence of the peel position and peel area of the 
coating on the average surface temperature of the 
blade
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L̄ p = L p

c0
(9)

L̄ d = L d

c0
(10)

d̄ = d
dTBC

(11)

3. 2 Prediction principle of MLP neural network

The multi-layer perceptron （MLP） neural net⁃
work model utilizes a fully connected network struc⁃
ture， allowing it to effectively capture the feature re⁃
lationships between multiple variables and the out⁃
put. It is commonly used for logistic regression and 
nonlinear classification problems. Due to its simple 
network structure， ability to process data in paralle， 
and highly nonlinear global effects， MLP demon⁃
strates strong classification performance. Fig.13 
shows the prediction principle diagram of the MLP 
neural network in this work， which is composed of 
the input layer， the hidden layer and the output lay⁃
er. Within the hidden layer， there are multiple lay⁃
ers with the same number of neurons. Neurons in 
the same layer are independent of each other， and 
neurons in each layer are fully connected to the neu⁃
rons in the next layer. In the hidden layer， the neu⁃
rons in the hidden layer perform weighted summa⁃
tion of the output values of each neuron in the previ⁃
ous layer， and then combine the activation function to 
perform nonlinear processing on the results， which 
are used as the input values of the subsequent layer. 
Among them， the input is { x 1，x2，⋯，xn }， the 
weight of the jth neuron is ( w 1j，w 2j，⋯，w nj )T， and 
the bias is bi. The calculation process of each neuron 
from input to output is shown as

aj = ∑
i = j

n

wji xi + bj (12)

yj = f ( aj ) (13)
where aj is the value obtained by weighted sum of 
the inputs of the neural tube numbered j and adding 
the bias bj. After the activation by the activation 
function， the output yj is obtained.

Through the feature extraction and mapping be⁃
tween layers， the input values are propagated for⁃
ward layer by layer. At the output layer， they are 
compared with the target values. The learning pa⁃
rameters in the neurons are updated in reverse ac⁃
cording to the error gradient until the error meets 
the accuracy requirements. In the MLP neural net⁃
work model of this work， the ReLU activation func⁃
tion， Adam optimization algorithm and MSE func⁃
tion are all adopted.

3. 3 Establishment and verification of rapid 
prediction model

The LHS method is adopted to randomly sam ⁃
ple the position， depth and length of localized spall⁃
ation of the coating on the blade surface. The sam⁃
ples are calculated and the data are extracted through 
Fluent to generate a random data set for model train⁃
ing and parameter tuning. Then， based on the MLP 
neural network， an intelligent prediction model for 
the localized spallation temperature and cold effect 
distribution of the coating is constructed for the 
blade surface temperature and cold effect dataset af⁃
ter the localized spallation， to achieve rapid predic⁃
tion of the influence of any coating spallation situa⁃
tion on cold effect.

In this work， the learning and prediction of sev⁃
en parameters under 100 different spallation condi⁃
tions are achieved through this model. 70% of the 
dataset is used as the training set， 20% as the vali⁃
dation set， and 10% as the test set. The training set 

Fig.12　C3X blade model and localized spallation diagram 
of thermal barrier coating

Fig.13　MLP neural network prediction model
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is primarily used to train the machine learning mod⁃
el， enabling it to learn and fit the mapping relation⁃
ship between the input and output. The validation 
set is used to adjust the hyperparameters of the ma⁃
chine learning model and conduct a preliminary as⁃
sessment of the model’s ability to prevent the over⁃
fitting. The test set is only used to evaluate the gen⁃

eralization performance of the machine learning 
model. The specific definitions of the seven parame⁃
ters are shown in Fig.14 and Table 4. In the figure， 
the blade surface is coated with a 0.35 mm thick 
coating based on the thin-wall thermal resistance 
model， where the red area represents the localized 
spallation area of the coating.

The prediction error （ε） of this model is de⁃
fined as the absolute value of the relative error be⁃
tween the predicted value （Zpre） and the calculated 
value （Zcal）， as shown in Eq.（14）. For the conve⁃
nience of analysis， this work statistically analyzes 
the sample size （Mε） within different error ranges 
and compares it with the total sample size （M total）.

ε =
|

|
|
||
| Z pre - Z cal

Z cal
× 100%

|

|
|
||
| (14)

For this model， the following parameters are 
considered： The average surface temperature T of 
the blade， the average cold effect of the blade ϕ， 
the average heat insulation temperature Tb before 
spallation at the localized spallation site， the aver⁃
age heat insulation temperature Ta after spallation at 

the localized spallation site， the average cold effect 
before spallation at the localized spallation site ϕ b， 
and the average cold effect after spallation at the lo⁃
calized spallation site ϕ a. The relative error distribu⁃
tion of the training， verification and test results of 
the maximum temperature difference before and af⁃
ter spallation at the localized spallation area ΔTmax is 
shown in Fig.15. It can be seen from the figure that 
the prediction errors of the proxy model for T and ϕ 
of all datasets are both within 2%. In the training 
set， the maximum prediction error for Tb is within 
10%， with an average error of 1.8%. The average 
prediction errors for Ta， ϕ b， ϕ a， and ΔTmax are 
5.1%， 2.4%， 3.2%， and 5.5%， respectively， and 

Fig.14　Schematic diagrams of parameter definitions before and after coating spallion

Table 4　Definiton of parameter names and meanings before and after coating spalltion

Parameter name
ϕ: Average cooling efficiency of blade surface

Tb: Average thermal insulation temperature of the coating before spallation
ϕ b: Average cooling efficiency at the local peel of the coating before spallation

Ta: Average thermal insulation temperature of the the coating after spallation
ϕ a: Average cooling efficiency at the local peel of the coating after spallation

ΔTmax: Maximum heat insulation temperature at localized spallation

Definition

ϕ = T∞ - T
T∞ - 300

T b = T 2 - T 1

ϕ b = T∞ - T b

T∞ - 300
T a = T 4 - T 3

ϕ a = T∞ - T a

T∞ - 300
ΔTmax = ( T 4 - T 3 ) max
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the errors of a few samples exceed 10%. In the vali⁃
dation set， the average prediction errors for Tb， Ta， 
ϕ b， ϕ a， and ΔTmax are 3.2%， 9.9%， 3.8%， 4.5%， 
and 9.2%， respectively. In the test set， the maxi⁃
mum prediction errors of ϕ b， ϕ a， and ΔTmax are all 
within 10%， with average prediction errors of 
1.9%， 2.1%， and 3.2%， respectively. The aver⁃
age prediction errors of Tb and Ta are 2.8% and 
5.4%， respectively， and the errors of a few samples 
exceed 10%. For the full random spallation of ther⁃
mal barrier coatings， the prediction errors of ϕ b and 
ϕ a have the characteristics of relatively large errors 
and relatively small absolute errors. However， since 
the values of ϕ b and ϕ a are small and the variation 
range with different working conditions is relatively 
small， even a small absolute error can lead to a sig⁃
nificant relative error. Therefore， this work consid⁃
ers that its prediction is still valid.

Overall， the prediction error of this model for 
T and ϕ is within 2%， the prediction error for 80% 
of the samples of Tb， Ta， ϕ b， and ϕ a is within 6%， 

the average prediction error for all samples is within 
10%， and the error for a few samples is above 
10%. This model has a good prediction effect on T， 
ϕ， Tb， ϕ b， and ϕ a. However， at the localized spall⁃
ation areas of the coating， the coating becomes thin⁃
ner or completely peeled off， and the heat insulation 
capacity decreases. In contrast， there is a sudden in⁃
crease in temperature at the coated areas， and the 
temperature change on the blade surface is uneven. 
The predictive ability of this model at the data step 
points is slightly poor， so the prediction error of Ta 
and ΔTmax is relatively large.

Figs.16 and 17 respectively show the relative 
error distributions of the average cold effect differ⁃
ence Δϕ and the maximum cold effect difference 
Δϕmax before and after coating spallation in the local⁃
ized spallation area trained with the MLP neural net⁃
work. It can be seen from the figure that the relative 
errors of Δϕ and Δϕmax are basically within 10%， 
and the errors of a few results exceed 10%. Com⁃
pared with the parameters in Fig.16， the errors are 
slightly larger. For the random spallation of the ther⁃
mal barrier coating， the prediction results of Δϕ and 
Δϕmax show the characteristics of relatively large er⁃
ror and relatively small absolute error. However， 
since the values of Δϕ and Δϕmax are relatively small 
and the changes are relatively small under different 
spallation conditions， even a small absolute error 
can lead to a large relative error. Therefore， we be⁃
lieve that the predictions of this study remain valid.

It can be seen from this that the prediction mod⁃
el of the localized spallation temperature and cold ef⁃
fect distribution of the coating based on the real 

Fig.15　Proxy model prediction error distribution

Fig.16　Δϕ test set error distribution
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state value has a high prediction accuracy， which 
will further support the establishment of the subse⁃
quent three-dimensional prediction model. Using 
this prediction model as the surrogate model in the 
case of arbitrary spallation of the coating can replace 
the mathematical model for efficient and high-preci⁃
sion regulation.

Simulation of thermal barrier coating failure on 
turbine blades shows that the coating at the leading 
edge of the blade is the most prone to peeling. How⁃
ever， after the coating in this tiny area peels off， 
since almost the entire blade surface is still protected 
and insulated by the coating， the turbine blade can 
continue to serve. As the service time increases， the 
area of coating spallation will continue to expand， 
leading to a higher probability of the blade being 
damaged by high temperatures. Once the spalled ar⁃
ea reaches a critical threshold， the coating fails， and 
the blade is damaged. At present， some scholars 
have defined the spallation of the coating on 10% of 
the blade surface as failure， but this definition lacks 
the universality. Because the heat insulation effect of 
thermal barrier coating varies across different re⁃
gions of the blade surface， spallation with the same 
area and depth can lead to markedly different reduc⁃
tions in blade cooling efficiency depending on its lo⁃
cation； specifically， spallation occurring in a high-in⁃
sulation-efficiency region causes a much larger de⁃
crease in cooling efficiency than spallation occurring 
in a low-insulation-efficiency region. Therefore， the 
proposed model enables rapid prediction of blade 
cooling efficiency under different spallation condi⁃
tions， thereby better capturing the combined effects 

of spallation area， depth， and location on coating 
failure. This provides a more rational basis for fail⁃
ure assessment and is more consistent with practical 
service conditions. Subsequently， the mapping data 
relationship between the localized spallation charac⁃
teristic parameters of the coating and the coating fail⁃
ure can be established. Data supports the coating re⁃
liability analysis and prediction.

3. 4 Prediction results based on the fast predic⁃
tion model

Due to the numerous factors influencing the 
spallation of coatings and the randomness of environ⁃
mental parameters， there is uncertainty in the failure 
and spallation of coatings. However， the effects of 
coating failure and spallation at different positions 
on the surface of turbine blades on the comprehen⁃
sive cooling efficiency of turbine blades are all differ⁃
ent. In the previous section， the predictive ability of 
the proxy model is verified by comparing the error 
distributions of the true values and the predicted val⁃
ues. In this section， 1 000 groups of different coat⁃
ing spallation positions， coating spallation lengths 
and coating spallation depths are extracted by the 
LHS method. Based on the rapid prediction model 
of the influence of the trained thermal barrier coating 
spallation on the comprehensive cold efficiency of 
the blade， the influence of 0.35 mm local coating 
spallation on the comprehensive cold efficiency at 
the local coating spallation site of turbine blades is 
explored.

Fig.18 presents the influence of the spallation 
position and spallation length on the comprehensive 
cold effect difference at the spallation site under dif⁃
ferent coating spallation depths. Among them， c 
represents the percentage of the length along the 
leaf circumference starting from the retention point 
of the leading edge of the blade to the total leaf 
circumference length and its expression is given in 
Eq.（15）. l represents the percentage of the spallation 
length to the total leaf circumference length and its 
expression is given in Eq.（16）. Δϕ is the difference 
in cold effect before and after the localized spallation 
of the coating.

Fig.17　Δϕmax test set error distribution
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c = L p

c0
(15)

l = L d

c0
(16)

It can be seen from Fig.18 that with the increase 
of spallation depth， under different spallation posi⁃
tions and spallation lengths， the difference in cold ef⁃
fect before and after coating spallation at the local⁃
ized spallation area of the coating gradually increas⁃
es from 0.9% to 6.2%. Under the same spallation 
position and spallation length， for every 30% in⁃
crease in the spallation depth of the coating， the dif⁃
ference in cooling efficiency before and after coating 

spallation increases by 1—2 times compared with 
the original cooling efficiency difference. When the 
spallation depth and spallation length of the coating 
are constant， the smaller the c value， that is， the 
closer the localized spallation position of the coating 
is to the leading edge， the greater the cold effect dif⁃
ference value， indicating that the coating at the lead⁃
ing edge position of the blade is crucial for the pro⁃
tection of the blade. When the c value is 60%—

80%， the difference in cooling efficiency is the 
smallest， indicating that the spallation of the coating 
at the trailing edge of the blade and the middle and 
rear sections of the pressure surface has a relatively 
small impact on the cooling efficiency of the blade. 
When the coating spallation depth and spallation po⁃
sition are constant， the longer the coating spallation 
length at the leading edge， the less obvious the 
change in cold effect. The longer the coating spall⁃
ation length at the trailing edge of the blade and the 
middle and rear sections of the pressure surface， the 
greater the change in cold effect. When the coating 
spallation depth accounts for 30% of the coating 
thickness， the average value of the difference in 
cooling efficiency before and after coating spallation 
is 1.32. When the spallation depth of the coating ac⁃
counts for 60% of the coating thickness， the aver⁃
age value is 2.82. When the spallation depth of the 
coating accounts for 90% of the coating thickness， 
the average value is 4.48. For every 30% increase in 
the coating spallation depth， the average value of 
the difference in cooling efficiency before and after 
coating spallation doubles compared to the original 
value， that is， the influence degree of coating spall⁃
ation on cooling efficiency doubles.

In conclusion， the coating spallation at the lead⁃
ing edge of the turbine blade has the greatest impact 
on the comprehensive cooling efficiency of the 
blade， while the coating spallation at the trailing 
edge has the least impact. The above research re⁃
sults have certain guiding significance for the subse⁃
quent differentiated coating in different zones， there⁃
by reducing the impact of coating spallation on the 
cooling efficiency of the blade.

Fig.18　Effect of spallation position and length on the overall 
cooling efficiency difference at different spallation 
depths
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4 Conclusions 

In this work， a rapid prediction model for the 
influence of localized spallation of thermal barrier 
coatings on the comprehensive cold efficiency of 
blades is constructed by combining the LHS method 
and the MLP neural network. The accuracy of the 
model is verified， and then the influence law of 
spallation in the dangerous area of thermal barrier 
coatings on the comprehensive cold efficiency of 
blades is obtained.

The following conclusions are obtained.
（1） It has been verified that the deviation of the 

thin-wall thermal resistance method and the direct 
modeling method of the coating is within 5% in the 
absence of coating spallation， and the deviation pro⁃
portion is 6.2% in the case of localized spallation of 
the same coating. Therefore， the thin-wall thermal 
resistance model can be considered an effective sim ⁃
plification and replacement for the direct modeling 
method of the coating. When the localized spallation 
area of the coating is fixed， its shape has a relatively 
small influence on the blade’s cooling efficiency. 
However， when the spallation position is fixed， the 
average blade surface temperature increases linearly 
with the spallation thickness.

（2） This work develops a rapid prediction mod⁃
el for the influence of localized spallation of thermal 
barrier coatings on blade temperature and cooling ef⁃
ficiency. The prediction error of this model for the 
average surface temperature of the blade and the 
cooling efficiency is within 2%. The estimation of 
the temperature and cooling efficiency at the local⁃
ized spallation area of the coating shows that the er⁃
ror of 80% of the samples is within 6%， and the av⁃
erage error of all samples is within 10%.

（3） With the increase of the coating spallation 
depth， under different spallation positions and spall⁃
ation lengths， the difference in cold effect before 
and after coating spallation at the localized spallation 
area of the coating gradually increases from 0.9% to 
6.2%. The closer the localized spallation position of 
the coating is to the leading edge， the greater the dif⁃
ference in cooling efficiency. With each 30% in⁃

crease in coating spallation depth， the average differ⁃
ence in cooling efficiency before and after spallation 
doubles compared to the original value， indicating 
that the impact of coating spallation on cooling effi⁃
ciency also doubles.
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基于 MLP神经网络的热障涂层局部剥离对

叶片冷效影响的快速预估

张烨苓 1， 王飞龙 1， 王于群 2， 王玉彬 1， 毛军逵 1

（1.南京航空航天大学能源与动力学院，南京  210016，中国； 
2.中国航发四川燃气涡轮研究院，成都 610500，中国）

摘要：涡轮叶片表面热障涂层的剥离及其影响的研究对于燃气轮机安全运行具有重要意义，然而热障涂层有关

数值模拟难度大、时间成本高，难以满足工程需求。为此本文建立了基于薄壁热阻模型的叶片热障涂层局部剥

离对表面温度及冷效的快速预测模型。首先，数值研究了典型涡轮叶片表面热障涂层局部剥离对冷效的影响；

接着，基于仿真数据集及 MLP 神经网络，构建了涂层局部剥离温度及冷效分布智能预估模型，可实现对叶片表

面任意位置涂层剥离情况下叶片表面温度及冷效的快速预估。研究结果表明，在一定的剥离面积下，涂层局部

剥离形状对冷效影响小，而剥离厚度的增加会使叶片表面平均温度线性上升；所提出的快速预估模型对叶片表

面平均温度及冷效预估误差在 2% 以内，而对于 80% 的样本，涂层局部剥离处温度及冷效预估误差在 6% 内，总

体平均误差在 10% 以内；由快速预估模型得出，涂层剥离深度增加时，剥离位置越靠近叶片前缘，冷效差值越大，

且涂层剥离对冷效影响程度随之增加。

关键词：热障涂层；冷却性能；快速预测；MLP 神经网络
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