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Abstract: With the widespread adoption of unmanned aerial vehicle （UAV） technology， task scheduling for UAV 
swarms has become a crucial approach to improve operational efficiency. Most existing studies oversimplify the 
operational process rules of UAVs， making it difficult to accurately characterize the adaptability differences of UAVs 
to various tasks under practical operational constraints. To address this limitation， this paper proposes a UAV swarm 
task scheduling problem with limited communication range （UAVS-LCR） and establishes an integer programming 
model for its formal description. For solving this problem， a multi-neighborhood iterative local search （MNILS） 
algorithm is designed， which adopts a doubly linked list solution representation method to reduce the computational 
complexity of basic neighborhood operations. This algorithm generates high-quality initial solutions via a greedy 
construction strategy， combines insertion search， multi-swap search and the two-opt operator to enable alternating 
exploration across multiple neighborhoods， and incorporates a simulated annealing mechanism to balance search 
efficiency and solution diversity. This method can provide an effective solution for various application scenarios 
including wide-area UAV inspection and heterogeneous UAV collaborative operations. Experimental results on 12 
power grid maintenance test instances demonstrate that the MNILS algorithm significantly outperforms the genetic 
algorithm， the artificial bee colony algorithm， the ant colony optimization algorithm and the variable neighborhood 
search algorithm in terms of both solution quality and scalability for large-scale problems.
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0 Introduction 

With the rapid advancement of wireless com ⁃
munication， distributed control， and artificial intelli⁃
gence algorithms， unmanned aerial vehicle （UAV） 
swarms， a revolutionary paradigm for collaborative 
operations， are quickly transitioning from the labora⁃
tory to widespread application［1］. Task allocation 
and path planning， serving as critical components of 
UAV swarm operations， directly determine the 
overall operational efficiency and mission comple⁃
tion quality［2］. However， in practical scenarios， 

UAV swarms face a variety of challenges， including 
dynamic obstacles［3］， complex terrain［4］， energy de⁃
pletion［5］， and communication constraints［6］， all of 
which influence their operational effectiveness. 
These factors render the task allocation and path 
planning problem exceptionally complex， requiring 
UAV swarms to accomplish tasks relatively effi⁃
ciently under multiple constraints.

UAV task allocation involves reasonably as⁃
signing a series of tasks to individual UAVs based 
on factors such as UAV capabilities， positions， task 
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requirements， and environmental conditions， with 
the aim of maximizing overall operational efficiency 
and optimizing task completion quality. Currently， 
conventional task allocation algorithms primarily in⁃
clude centralized linear programming methods， dis⁃
tributed market-based mechanisms， and heuristic ap⁃
proaches［7］. Schumacher et al.［8］ systematically for⁃
malized UAV task allocation problems involving 
complex collaborative constraints such as timing re⁃
quirements and task sequences into a solvable cen⁃
tralized mixed integer linear programming （MILP） 
model. Choi et al.［9］ developed a distributed auction 
algorithm based on task package extension to ad⁃
dress the challenges of heterogeneous multi-agent 
teams in distributed decision-making under complex 
constraints. Zhong et al.［10］ combined the hybrid ge⁃
netic algorithm based on integer encoding to im ⁃
prove the algorithm solving performance in the 
UAV collaborative task planning modeling. Gao et 
al.［11］ incorporated robust optimization within the 
classical MILP framework to handle uncertainties 
such as fuel consumption， effectively mitigating the 
impacts of parameter variability.

However， traditional approaches often treat 
path planning and task allocation as separate optimi⁃
zation problems， failing to adequately account for 
the coupling between task allocation and route opti⁃
mization［12］. This can lead to significant deviations 
between the computed solutions and the actual opti⁃
mal outcomes. Such discrepancies may be further 
amplified， ultimately affecting overall mission exe⁃
cution efficiency and resource utilization. Additional⁃
ly， decoupled optimization methods struggle to ef⁃
fectively respond to unexpected changes during task 
execution， failing to meet modern multi-UAV re⁃
quirements for efficiency， real-time responsiveness， 
and adaptability. In multi-UAV collaborative task 
scenarios， task allocation and path planning are in⁃
terdependent and mutually influential， optimizing 
only one aspect can hardly achieve optimal overall 
performance［13］.

Building on this， Sun et al.［14］ developed an in⁃
tegrated architecture for UAV cooperative control 
by combining the improved A* algorithm with the 
enhanced particle swarm optimization （PSO） ， 

which optimizes task allocation and flight trajectory 
planning. Su et al.［7］ introduced the improved ant 
colony optimization algorithm to achieve collision-

free cooperative operation of multiple UAVs in 
multi-task environments. Qin et al.［15］ combined the 
improved genetic algorithm with the enhanced 
PSO， which effectively reduced the overall cost 
compared to traditional PSO and chaotic immune 
PSO. Integrating UAV swarm task allocation with 
path planning can significantly enhance mission exe⁃
cution efficiency， reduce energy consumption， and 
improve the adaptability and robustness of UAV 
swarms in co1mplex environments. Meanwhile， ow⁃
ing to their exceptional flexibility and strong terrain 
adaptability， UAVs have been widely applied in 
fields such as environmental monitoring［16-18］， logis⁃
tics distribution［19-21］， and emergency response［22-24］， 
and are increasingly becoming indispensable tools in 
disaster relief operations in complex terrains. In en⁃
vironments with relatively complete communication 
infrastructure， UAVs can operate across entire 
maps via satellite networks or ad-hoc networks.

However， in complex and large-scale opera⁃
tional environments， UAV swarm scheduling must 
consider the impact of communication conditions. 
Wang et al.［25］ integrated communication factors， 
employing an adaptive large neighborhood search to 
effectively reduce communication service time. Con⁃
sidering the limited transportation capacity under di⁃
saster conditions， Du et al.［26］ developed a multi-
stage dynamic programming mode for material allo⁃
cation and resource deployment. Zhao et al.［27］ devel⁃
oped a spatiotemporal path coordination optimiza⁃
tion model for drones and support vehicles， effec⁃
tively mitigating the interference of external informa⁃
tion on communication quality. Sun et al.［28］ tackled 
the challenges of collaboration in dynamic environ⁃
ments by proposing an integrated multi-agent rein⁃
forcement learning model to enhance the self-orga⁃
nizing collaborative capabilities of UAV swarms. In 
large-scale UAV operational environments， espe⁃
cially given the extensive distribution of power lines 
and complex terrain， communication range limita⁃
tions pose a significant challenge for UAV swarms 
during cooperative operations.
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Zhong et al.［29］ developed a technical approach 
for an emergency communication system based on 
5G and intelligent UAV networking， providing criti⁃
cal support for emergency communication capabili⁃
ties. Wu et al.［30］ utilized the Poisson point process
（PPP） combined with distance constraints to model 
UAV positions， offering a mathematical framework 
for large-scale UAV deployment. Panowicz et al.［31］ 
employed one UAV as an information hub to ex⁃
change data with the ground control station， thereby 
enabling communication within UAV swarms. Al⁃
though these methods can， to some extent， allevi⁃
ate the impact of communication range limitations， 
they primarily focus on improving communication 
quality or reducing signal interference， without con⁃
sidering collaborative strategies for UAV swarms 
under communication distance constraints.

Based on the above research landscape， this pa⁃
per proposes a UAV swarm task scheduling prob⁃
lem with limited communication range （UAVS-

LCR）， and the main contributions of this paper are 
as follows.

（1） For the UAV swarm scheduling problem 
under limited communication distance， an integer 
linear programming model is proposed. This model 
rigorously defines the feasible region for each 
UAV， significantly enhancing the model’s practical 
applicability.

（2） By incorporating UAV communication 
range constraints as core limitations， this study ef⁃
fectively improves the scheduling efficiency and reli⁃
ability of UAVs in complex environments， address⁃
ing the issue of over-idealized communication as⁃
sumptions in existing research.

（3） To tackle the non-deterministic polynomi⁃
al-hard （NP-hard） problem derived from this mod⁃
el， an efficient heuristic solution algorithm is de⁃
signed， capable of rapidly generating high-quality 
and executable solutions for swarm task allocation 
and route planning.

1 UAVS⁃LCR

1. 1 UAV swarm system　

In scenarios such as border control， emergency 

rescue， or agricultural production， UAVs often un⁃
dertake tasks such as information collection， inspec⁃
tion， material transportation， and low-altitude oper⁃
ations. However， these environments typically pres⁃
ent challenges such as complex terrain and extensive 
task coverage. Due to limitations in communication 
range， a single base station is often insufficient to 
cover the entire operational area. In such cases， a 
swarm of UAVs must depart from their respective 
base stations and collaborate to accomplish all tasks. 
To enable UAV swarms to complete all assigned 
tasks more rapidly under communication range con⁃
straints， we propose a task scheduling problem of 
UAV swarm with limited communication range.

Consequently， the primary objective of UAV 
cluster task scheduling is to rationally allocate tasks 
and determine the operation sequence under multi⁃
ple physical constraints， aiming to minimize mini⁃
mal total makespan.

As shown in Fig.1， the UAV swarm needs to 
depart from several base stations and proceed to var⁃
ious task points. Each task point must be serviced 
exactly once， with each requiring a dedicated ser⁃
vice period from the UAVs. The movement process 
between two task points consists of three phases， 
take-off， cruising， and landing. The total time con⁃
sumption for this process is calculated as

tij = w ij

v
+ ta + tb (1)

where tij represents the time required for a UAV to 
travel from point i to point j， v the cruising speed of 
the UAV， and w ij the distance between locations 
i and j； ta and tb correspond to the time consumed 
during take-off and landing procedures， respectively.

Furthermore， communication and energy con⁃
straints must be taken into account. Each UAV is re⁃

Fig.1　Task distribution of a UAV swarm
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stricted to operating within the communication 
range of its assigned base station and must return be⁃
fore its battery is depleted.

1. 2 Problem formulation　

The node set is defined as N=｛1，2，…，n｝， 
which contains all task points and base stations. The 
first l nodes in N represent base station nodes. The 
operation time of each task point is D=｛d1，d2，…，

dn｝. The base station coverage set is defined as L =
{ li |i ≤ l }， where li = { j|dij < R，j > l } represents 
the task point set within the communication range of 
base station i， and R the maximum communication 
distance between the UAVs and the base station. 
The UAV swarm task scheduling problem can be 
modeled as a mixed integer programming model

f = ∑
k
∑

i
∑

j

w ij xijk

∀k ∈ V ; ∀i,j ∈ N (2)

∑
j

x ijk = ∑
l

xlik

s.t.   ∀i ∈ N ;  ∀k ∈ V (3)
∑

k
∑

j

x ijk = ∑
k
∑

j

x jik = 1      ∀i ∈ N (4)

uik - ujk + n × xlik ≤ n - 1
∀i ≠ j ∈ N ; ∀k ∈ V (5)

∑
j

x ijk = ∑
j

x jik = 0

∀i ∈ N ; ∀j ∉ lk (6)

∑
i
∑

j

w ij xijk ≤ Q k      ∀k ∈ V (7)

xijk ∈ { 0,1 } (8)
where Eq.（2） represents the objective function 
aimed at minimizing the total makespan； Eq.（3） en⁃
sures that when a UAV enters a task point， it must 
depart from the same point； Eq.（4） guarantees that 
each point is serviced exactly once by only one 
UAV； Eq.（5） eliminates sub-tours in the UAV 
routes； and Eq.（6） restricts UAVs from operating 
on task points outside the communication range of 
their base stations. Note that for autonomous net⁃
work systems or satellite communications， the com⁃
munication range can cover the entire map. In such 
cases， the set lk may be the total node set. Eq.（7） 
maintains sufficient energy reserves for UAVs dur⁃
ing operations.

Fig.2 illustrates a task scheduling instance in⁃
volving 16 task points three base stations and four 
UAVs. In this configuration， each UAV departs 
from its designated base station and returns to the 
same base upon completion of all assigned tasks. 
Within the overlapping communication ranges of 
base stations， multiple UAVs demonstrate efficient 
cooperative capabilities.

2 Multi⁃bidirectional⁃Link Repre⁃
sentation 

The core of the neighborhood search algorithm 
adopted in this paper relies on insertion， swap， and 
inversion operators to directly transform solutions， 
thereby enabling exploration of the solution space. 
The essence of task scheduling for UAV cluster lies 
in determining both the allocation of task points and 
the sequence in which they are serviced. Therefore， 
the solution can be represented by an m-segment dis⁃
joint sequence. Each sequence represents a closed 
tour for a single UAV. Balancing storage space and 
computational efficiency， a novel representation for 
bidirectional links is designed. This representation 
takes the form of a specialized doubly linked list. 
Fig.3 shows a sequential bidirectional link. Each 
task occupies two storage units. The basic storage 
unit is designated as a node. For the same point， 
two nodes can be swapped using a twin operation. 
Owing to the symmetric nature of the UAV task 
scheduling problem， a given sequence is considered 
equivalent to its reverse. To leverage this property， 
next pointers are used to connect point nodes， there⁃
by constructing two linked lists that represent both 
the given sequence and its reverse. The two nodes 

Fig.2　A task scheduling instance for power grid mainte⁃
nance
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of a task point maintain a next pointer that connects 
the next and the after nodes. Starting from any node 
of any point within the linked structure， sequential 
or reverse traversal of the sequence can be achieved 
by following the next pointers. Switching to the al⁃
ternate node of the same customer yields the oppo⁃
site traversal direction.

A bidirectional link can store a symmetrical cir⁃
cular path with a space complexity of O（n）. For a 
task scheduling problem with m UAVs， one of its 
solutions can be expressed as m-segment bidirection⁃
al links. Similar to a linked list， the swap operation 
removes the task point from the bidirectional link 
and then implements it by changing only a fixed 
number of next pointers. Therefore， their computa⁃
tional complexity is O（1）. The inversion of some 
fragments of a linked list needs to be realized by 
breaking the pointers of points at the beginning and 
the end of the fragment， and reversing the pointers 
of all points in the fragment. The process takes 
O ( n ) time. The reverse of the bidirectional link can 
be achieved by only changing the node pointer of the 
point at the head and tail of the fragment， as seen in 
Fig.4.

The time-consuming process does not increase 
with the length of the sequence. The bidirectional 
link mechanism leverages the symmetry of data 
structures， with its core concept being the creation 

of two mirror-image storage nodes （node A and 
node B） for each point. Through a specific pointer 
linkage method， both forward and reverse sequenc⁃
es of the same path are encoded simultaneously 
within a single structure. Each node’s next pointer 
strictly points to the corresponding node of the next 
task point， not arbitrarily， but maintains a fixed 
mapping： The current node A1 points to the next 
node A2， node B1 to node B2， and so on. Two 
nodes at the same task point are interconnected via 
twin pointers， enabling instant switching. During 
traversal， the directionality is determined by the ini⁃
tial node selection rather than pointer orientation. 
Starting from node A1， traversal along the next 
pointer yields the forward sequence A1—A2—A3—

A4—A5. Conversely， starting from node B1， travers⁃
al produces the identical path B1—B2—B3—B4—B5. 
However， since the chain inherently encodes re⁃
verse information， the sequence appears in a reverse 
order： B5—B4—B3—B2—B1. Therefore， when 
starting from node A1， the next pointer should nor⁃
mally jump to the next node A2. But through the 
twin pointer’s instant switching mechanism， it 
jumps to node B4， completing the entire storage pro⁃
cess sequentially. This bidirectional link representa⁃
tion method not only achieves simultaneous encod⁃
ing of both forward and reverse paths in structure， 
but also provides significant convenience at the algo⁃
rithmic application level. Moreover， the architecture 
supports efficient insertion and deletion operations. 
When adjusting a task point in the path， simply 
modifying the pointer direction of relevant nodes en⁃
ables rapid updates without reconstructing the entire 
path.

3 Multi⁃neighborhood Iterative Lo⁃
cal Search

3. 1 Overall framework　

In order to solve UAVS-LCR， the proposed 
approach is built upon the iterated local search 
（ILS） framework， incorporating exploration of 
three specific neighborhoods， swap， insertion， and 
reversal. These neighborhoods are designed to per⁃
form inter-route swap and insertion operations， 

Fig.4　Bidirectional link

Fig.3　Bidirectional link reversal
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along with intra-route inversion operations. Inter-
route operators enhance task allocation， while intra-

route operators improve the execution order within 
individual UAV routes. Additionally， a segment 
mutation mechanism is introduced within the multi-
neighborhood ILS （MNILS） to stochastically modi⁃
fy sub-paths of certain UAV， thereby enabling es⁃
cape from local optima and mitigating premature 
convergence.

The detailed procedure of the algorithm is illus⁃
trated in Fig.5. Initially， MNILS constructs an ini⁃
tial solution using a nearest-neighbor heuristic. Sub⁃
sequently， three local search operators-insertion， se⁃
quential swap， and two-opt are applied iteratively to 
optimize both task assignment and execution order. 
If no improvement is achieved by any of these three 
local search operators， a fragment mutation opera⁃
tor perturbs the current solution， accepting inferior 
solutions to facilitate escape from local optimal.

3. 2 Initialization　

We use the greedy nearest neighbor strategy to 
construct the initial solution of the algorithm. First， 
we set the base station corresponding to each UAV 
as the starting point of all UAV paths. Second， we 
insert all tasks into the current solution step by step 
in a random order. The specific UAV path and cor⁃
responding position for insertion can be calculated as

p ( j )= argmin
i ∈ rk,k ∈ U ( j )

 w ij + w j,i + 1 - w i,i + 1 (9)

where U ( j ) denotes the set of UAVs that can per⁃
form task j； and rk the path of UAV k. U ( j ) en⁃
sures that task j can only be assigned to UAVs with⁃
in the communication range of their respective base 
stations. Additionally， during the construction pro⁃
cess， we need to verify the battery constraint accord⁃
ing to Eq.（7）.

3. 3 Insertion search　

The insertion search employs path inter-node 
neighborhoods， which are constrained by the com ⁃
munication range and power constraints shown in 
Eqs.（6， 7）. The insertion search immediately at⁃
tempts to relocate all tasks using a new mechanism. 
It removes a task from the current solution， finds 
UAV that satisfy both communication range and 
power constraints， and calculates insertion costs at 
all locations along the UAV routes. Once a solution 
with lower relocation costs is found during travers⁃
al， the algorithm immediately replaces the current 
solution with this improved one. Insertion search 
will try all possible insertion operation with a posi⁃
tion and a task. Therefore， its time complexity is 
O（n2）.

3. 4 Multi⁃swap search　

Algorithm 1 presents the pseudo-code for the 
multi-swap search. This procedure utilizes a novel 
swap operator designed to exchange the positions of 
only two tasks within a solution. A local search em ⁃
ploying solely this basic swap operator would be un⁃
able to discover the solution depicted in Fig.6（a）. 
This is because swapping only tasks 7 and 5 would 
yield the inferior solutions shown in Figs.6（b， c）， 
causing the algorithm to naturally reject such a 
move. To achieve the improved solution in Fig.6（d）， 
the algorithm must first swap tasks 7 and 5， and 
then subsequently swap customers 5 and 8. To ad⁃
dress this limitation， the sequential swap search is 
proposed.

Algorithm 1　　Continues multi-swap search
Input： Current solution S.
（1） For p ∈ S do
（2） 　S' ←S； Improved←False； fmin←∅；

Fig.5　Process of MNILS
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（3） 　For step=1， 2， 3， 4， 5 do
（4） 　　Sb←∅；

（5） 　　For i ∈ S do
（6） 　　　S'← Swap（S， i， p）； // Swap cus⁃

tomer i and p. // S' is the solution 
obtained by swap.

（7） 　　　If f ( S' ) < f ( S ) then
（8） 　　　　S←S'；
（9） 　　　　Improved←True；
（10） 　　　　Break；
（11） 　　　End If
（12） 　　　If f ( S' ) < fmin or fmin=∅ then
（13） 　　　　Stmp←S'； fmin←f（S'）； // Stmp is 

the best solution in the current 
layer local search.

（14） 　　　End If
（15） 　　End For
（16） 　　If Improved then
（17） 　　　Break；
（18） 　　End If
（19） 　　S'←  Stmp；

（20） 　　 if f ( S' )<f ( S b ) or Sb=∅ then
（21） 　　　Sb←  S'； // Sb records the best so⁃

lution during the whole multi step 
swap search.

（22） 　　End If

（23） 　End For
（24） 　Pt←Rand（0， 1）；

（25） 　If Pr ( S，S b，T )≥ Pt then // Pr is the 
probability to accept the worse solu⁃
tion Sb.

（26） 　　S←Sb；

（27） 　End If
（28） End For
The multi-swap search operates by attempting 

multi-step continuous swap operations for each posi⁃
tion in the solution. For a given swap position P， 
the procedure iterates over all other tasks in the solu⁃
tion， evaluating the change in solution quality result⁃
ing from each possible swap. If this step swap im ⁃
proves the current solution， the multi-step operation 
is terminated. Otherwise， the swap operation with 
the minimum cost increase is retained and the algo⁃
rithm proceeds to the next swap operation. This pro⁃
cess repeats for up to five sequential steps. If an im⁃
proved solution is found within these five steps， it is 
accepted. If no improvement is found， an inferior so⁃
lution may be accepted with a probability defined by 
Eq.（10）， following a simulated annealing strategy.

Pr ( S,S',T ) = e( f ( )S - f ( S') ) /T (10)
The number of multi‑swap steps for a given po⁃

sition is not fixed. For instance， if an improved solu⁃
tion is found at the third step， the swapping process 
terminates immediately， resulting in a total of three 
steps for that sequence. Throughout the search， 
each candidate swap must be evaluated for feasibili⁃
ty， ensuring that the involved task point can serve 
the swapped tasks and that all capacity constraints 
remain satisfied. Specifically， if the task at position 
p falls outside the communication range of the base 
station assigned to the UAV currently handling task 
i， the swap operation will not be executed. In this 
case， Swap( S，i，p ) directly returns the current solu⁃
tion S. The same applies conversely. Additionally， 
the swap operation checks whether the two UAVs 
would exceed their total travel distance limits after 
the exchange. If so， the swap is likewise not per⁃
formed.

However， if the number of steps is switched， 
the computational complexity of the algorithm will 

Fig.6　Multi-swap operation
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also increase at the polynomial level. For the effi⁃
ciency of continuous multi-exchange search， we con⁃
sider the Euclidean characteristic of customer distri⁃
bution， introduce k-neighbor candidate sets， limit 
each layer search only among k-neighbor tasks， and 
then limit the computational complexity of each lay⁃
er search to k. The continues multi-swap search 
aims to find an improved multi-swap operation with 
a position and a tasks sequence. The elements in the 
sequence is from the k-neighbor tasks set of the posi⁃
tion. There are n positions need to be search. And k 
tasks should be examined in each swap step. The 
time complexity of the multi-swap search is O（nk5）.

3. 5 Two⁃opt　

Two-opt is a well-known local search algo⁃
rithm for solving the traveling salesman problem 
（TSP）. It improves solution quality by swapping 
two edges in the route to achieve fine-grained se⁃
quence optimization. In the context of the UAVS-

LCR， two-opt serves as a UAV path optimization 
algorithm， and does not change the task allocation. 
It always ensures that the communication range con⁃
straint remains satisfied. Since two-opt only reduces 
the total travel distance of UAVs， the energy con⁃
straint is likewise never violated. Similar to other op⁃
erators， two-opt employs an immediate update 
mechanism. It is important to note that updating the 
current solution shifts the neighborhood center. 
Therefore， the search process is reset after each im ⁃
provement to ensure a comprehensive exploration of 
the new neighborhood. Two-opt can be seen as a 
flip search. Its time complexity is O（n2）.

3. 6 Fragment mutation　

When the algorithm becomes trapped in a local 
optimum， the fragment mutation module introduces 
a perturbation. This operator randomly selects a seg⁃
ment from a UAV’s route， with a length equal to 
approximately 20% of the route， and reinserts it in⁃
to a randomly chosen feasible position elsewhere in 
the solution while ensuring communication range 
and power constraints remain satisfied. By disrupt⁃
ing the current solution structure in this way， the 
mutation enables the search to escape into previous⁃
ly unexplored regions of the solution space.

4 Computational Complexity Anal⁃
ysis

In MNILS， insertion search， swap search， 
two-opt， and fragment mutation are performed itera⁃
tively. Therefore， the complexity of the algorithm is 
mainly composed of four modules. The search oper⁃
ation has a two-tier loop. In the worst case， that is， 
the search requires a complete search for all feasi⁃
ble， and its time complexity is O（n2）. The continu⁃
ous switching search is a five-step continuous 
switching operation for n positions， and each step of 
switching needs to search for k neighboring points， 
so its computational complexity is O（nk5）. Similar 
to this search， two-opt has a computational com ⁃
plexity of O（n2）. Genetic mutation is to relocate 
0.2n tasks， and its computational complexity is 
O ( n ). In summary， the time complexity of the 
main loop is O（2n2 + 0.2nk5）.

5 Experimental Analysis 

5. 1 Experimental setup　

The communication range-constrained UAV 
scheduling problem and its MNILS solution algo⁃
rithm have broad applicability. For instance， in 
wide-area scenarios such as power grid maintenance 
or disaster relief， the base station communication 
range R can be derived using the calculation method 
provided in the appendix. UAV swarms can operate 
around their respective base stations and collaborate 
within overlapping communication areas. In scenari⁃
os with better communication conditions or narrow ⁃
er coverage areas， the communication range can be 
set to cover the entire map to adapt accordingly.

Moreover， the concept of communication 
range defined here is rather broad. In specialized in⁃
spection or maintenance contexts， UAVs of differ⁃
ent types may have distinct functional responsibili⁃
ties. Certain tasks may only be performed by one or 
several specific types of UAVs. In such cases， the 
base station coverage set can extend beyond commu⁃
nication limitations to describe the operational feasi⁃
bility of heterogeneous UAVs for given tasks. In 
other words， if a certain type of UAV is stationed at 
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base j and is capable of performing task i， task i can 
be assigned to that UAV.

Similarly， in UAV swarm transportation sce⁃
narios， different bases may store distinct types of 
cargo. Different locations may require different 
goods. The matching relationship between location 
demands and cargo types can also be described 
through the base station coverage set L. This prob⁃
lem and its solution provide an effective approach 
for some application scenarios in the low-altitude 
economy.

5. 2 Verification experiment　

Fig.7 presents the UAV swarm routing dia⁃
gram for instance 1 obtained by MNILS. As ob⁃
served in Fig.7， all UAVs perform inspection tasks 
within their respective base station coverage areas， 
satisfying all constraints defined in UAVS-LCR. 
Notably， within overlapping regions of adjacent 
base stations， UAVs demonstrate effective coopera⁃
tive capabilities. Compared to scheduling methods 
that strictly enforce non-overlapping operational 
zones， the proposed approach achieves significantly 
higher UAV utilization rates. Furthermore， the 
communication range of the second base station can 
be covered by the other two. The first and the third 
UAVs are sufficient to complete all tasks. Howev⁃
er， due to energy constraints， all three UAVs are 
required to operate jointly across the entire map， 
with no task preemption occurring. We design 12 
UAVS-LCR test instances by modifying the Travel⁃
ing Salesman Problem Library（TSPLIB） datasets. 
They are listed in Table 1.

5. 3 Parameter experiment　

To achieve the best performance of MNILS， 
the influence of different parameter settings is inves⁃
tigated. Fig.8 illustrates the convergence behavior of 
MNILS on the Rat575 instance under varying num ⁃
bers of swap steps. As shown in Fig.8， increasing 
the number of swap steps enhances the search capa⁃
bility of the algorithm， leading to a gradual improve⁃
ment in solution quality. However， an excessive 
number of swaps increases computational complexi⁃
ty and eventually degrades performance. The algo⁃
rithm achieves the best balance between computa⁃
tional efficiency and search effectiveness when the 
number of swap steps is set to 5.

Furthermore， when the number of swap steps 
is set to 1， the multi-swap search reduces to a sim ⁃
ple swap search algorithm. In this case， the algo⁃
rithm tends to converge prematurely， often becom⁃
ing trapped in a local optimum early in the process 

Table 1　UAVS⁃LCR instances

No.
1
2
3
4
5
6
7
8
9

10
11
12

Instances
Eil101⁃3⁃3
Eil101⁃3⁃5
Eil101⁃5⁃5
Eil101⁃7⁃9
Rat575⁃3⁃3
Rat575⁃3⁃5
Rat575⁃5⁃5
Rat575⁃7⁃9
Pr1002⁃3⁃3
Pr1002⁃3⁃5
Pr1002⁃5⁃5
Pr1002⁃7⁃9

Checkpoints
101
101
101
101
575
575
575
575

1002
1002
1002
1002

Base station
3
3
5
7
3
3
5
7
3
3
5
7

UAV
3
5
5
9
3
5
5
9
3
5
5
9

Fig.8　Convergence curves of MNILS with different k values

Fig.7　UAV routes of Eil101-3-3 instance
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and failing to escape. These experimental results 
validate the effectiveness of the proposed multi-
swap search strategy.

5. 4 Comparative experiments　

To evaluate the performance of MNILS， three 
comparative algorithms， the genetic algorithm 
（GA）， the artificial bee colony （ABC）， the ant col⁃
ony optimization （ACO）， and the variable neighbor⁃
hood search （VNS）， are implemented on the same 
platform. To enhance the performance of the com ⁃
parative algorithms， an efficient two-opt algorithm 
is applied to optimize the routes of the best individu⁃
als within the three population-based algorithms. 
VNS adopts the same initialization method with 
MNILS. All four algorithms are evaluated through 

ten independent runs on each of the 12 UAVS-LCR 
instances， with a computational time limit of 1 min/
run. Table 2 summarizes the best and average 
makespan values obtained by each algorithm over 
the ten runs. As shown in Table 2， the proposed 
MNILS outperforms all comparative algorithms on 
ten instances， achieving the best results in both solu⁃
tion quality and consistency. We also conduct the 
Wilcoxon signed-rank test to verify the conclusion. 
The p-value is less than 0.05. It means the gaps be⁃
tween algorithms are robust. Z values indicate that 
MNILS is superior than others. Furthermore， the 
performance advantage of MNILS become more 
pronounced as the scale of the instances increased， 
demonstrating its stronger scalability and robustness 
in handling larger problem sizes.

We also compare the convergence performance 
of MNILS with four benchmark algorithms. Fig.9 
shows the convergence curves of these five algo⁃
rithms. The three population-based algorithms use 
the same population initialization method， and they 
consistently underperform the two search-based al⁃
gorithms throughout the entire iteration cycle. VNS 
adopts the same initialization method as MNILS， so 
it can start from the same initial point as MNILS. 
However， as the iteration proceeds， MNILS dem ⁃

Table 2　Comparison results min

Instance

1
2
3
4
5
6
7
8
9

10
11
12
Z

p⁃value

MNILS
Min

115.9
120.2
136.3
167.9

1 173.2
1 200.3
1 256.2
1 275.4

43 120.5
43 819.7
45 598.6
46 074.5

—

—

Avg
119.3
122.9
138.4
172.0

1 174.0
1 223.9
1 260.1
1 283.0

43 552.1
44 042.1
46 020.6
46 550.0

—

—

ABC
Min

120.4
148.7
162.1
178.1

1 244.3
1 283.7
1 386.0
1 450.2

45 403.8
47 210.2
48 954.9
49 529.9
-3.059
2.218 ×

10-3

Avg
121.8
158.8
173.9
182.9

1 247.9
1 295.6
1 406.4
1 452.9

46 277.4
47 484.7
49 373.4
50 340.6
-3.059
2.218 ×

10-3

GA
Min

126.5
140.9
181.4
198.1

1 348.7
1 401.2
1 546.9
1 560.9

45 875.8
44 803.9
48 869.0
48 725.7
-3.059
2.218 ×

10-3

Avg
127.5
165.1
181.9
201.3

1 365.4
1 412.6
1 552.2
1 591.4

46 104.9
46 790.7
50 091.9
50 143.3
-3.059
2.218 ×

10-3

ACO
Min

116.2
121.7
135.7
172.6

1 292.2
1 319.6
1 379.0
1 406.1

49 228.8
49 117.0
51 211.7
52 064.6
-2.903
3.702 ×

10-3

Avg
120.3
129.6
141.1
173.2

1 317.4
1 331.9
1 402.1
1 407.6

50 211.8
49 941.9
51 735.5
52 756.8
-3.059
2.218 ×

10-3

VNS
Min

115.1
120.2
137.2
169.4

1 198.9
1 270.6
1 322.1
1 341.2

44 582.5
45 207.2
46 982.6
49 005.1
-2.845
4.439 ×

10-3

Avg
118.7
123.3
140.5
171.8

1 247.3
1 313.7
1 352.0
1 367.6

46 125.5
46 771.9
48 753.3
50 123.7
-2.746
6.040 ×

10-3

Fig.9　Convergence curves of MNILS and comparative al⁃
gorithms
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onstrates strong search capability and eventually 
converges to a better local optimum.

6 Conclusions 

A novel task scheduling problem for UAV 
swarm-based power grid maintenance is introduced， 
which comprehensively considers complex con⁃
straints including UAV energy limitations and com ⁃
munication range. To solve the UAVS-LCR prob⁃
lem， an MNILS algorithm is proposed， featuring 
enhanced exploration capabilities through sequential 
swap operations. MNILS demonstrates the ability 
to obtain high-quality solutions for medium and 
large-scale instances containing up to 1 000 inspec⁃
tion points within 1 min. The proposed problem 
model and its solution algorithm can be effectively 
applied to wide-area inspection， maintenance， and 
transportation scenarios. The communication range 
constraint can be generalized to describe the execut⁃
ability of tasks by UAV swarms. For UAV swarm 
scheduling problems under complex communication 
conditions and in heterogeneous equipment environ⁃
ments， the methodological framework proposed in 
this study offers an effective solution.
Appendix　Communication Range

To ensure the continuous availability of the control link 
between the UAV and the ground base station， the calcula⁃
tion method of the communication range is elaborated here. 
When the distance between a UAV and the base station is 
R， the received signal power is

P r( R ) = P r + G - L ( R ) - Lmisc (A.1)
where P r is the transmission power； G the antenna gain； 
Lmisc the miscellaneous line loss， and L ( R ) the path loss.

The noise power at the receiver is
N = -174 + 10 log B + F (A.2)

where 174 dBm/Hz is the thermal noise spectral density at 
room temperature； B the bandwidth； and F the receiver 
noise figure. Thus， the communication signal-to-noise ratio 
（SNR） between the UAV and the base station can be ex⁃
pressed as

SNR ( R ) = P r( R ) - N (A.3)
To guarantee communication quality， we set γ as the 

minimum SNR threshold. The maximum allowable path loss 
can then be derived as

L ( R ) < P r + G - Lmax - N - γ (A.4)
Note that the right side of the inequality is a constant， 

denoted as Lmax. In the context of power grid inspection， 
UAVs typically operate at relatively high altitudes with rela⁃
tively open inspection paths. Therefore， the air-to-ground 
link can be modeled on a large scale using free-space propaga⁃
tion as the baseline. This paper adopts the free-space attenua⁃
tion calculation method provided by ITU-R Recommenda⁃
tion P.525. When frequency is in the unit of MHz and the dis⁃
tance in km

L ( R ) < 32.45 + 20 log fm + 20logR (A.5)
The maximum communication range between the base 

station and the UAV is

Rmax = 10( )Lmax - 32.45 - 20 log fm

20 (A.6)
where fm is the communication frequency.
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通讯范围受限的无人机集群任务调度问题研究

郑继媛 1，2， 张少博 3， 张栋俊 1， 王东辉 4， 周海花 1

（1.南京晓庄学院商学院,南京  211171，中国； 2.南京大学商学院,南京  210023，中国； 
3.南京财经大学粮食和物资学院,南京  210023，中国: 4. 北京市利德华福电气技术有限公司, 北京  102205，中国）

摘要：随着无人机技术的广泛应用，无人机集群的任务调度已成为提升作业效率的重要手段。现有研究大多对

简化了无人机作业的工艺规则，难以准确刻画实际作业约束下无人机对不同任务的适应性差异。为弥补这一不

足，本文提出一种通讯范围受限的无人机集群任务调度问题（Unmanned aerial vehicle swarm task scheduling 
problem with limited communication range， UAVS⁃LCR），并建立整数规划模型进行形式化描述。为求解该问

题，设计了一种多邻域迭代局部搜索算法（Multi⁃neighborhood iterative local search， MNILS），采用双向链表解表

示方法以降低基本邻域操作的计算复杂度。该算法通过贪婪构造策略生成高质量初始解，结合插入搜索、多交

换搜索与 2⁃opt 算子实现多邻域交替探索，并引入模拟退火机制平衡搜索效率与多样性。本文所提出的方法能

够为各类广域覆盖无人机巡检场景与异构无人机协同作业场景提供了一种有效的解决方案。在 12 个电力检修

测试算例上的实验表明，MNILS 算法在解的质量和大规模问题可扩展性上均显著优于遗传算法、人工蜂群算

法、蚁群算法及变邻域搜索算法。

关键词：无人机集群；任务调度；邻域结构；迭代局部搜索
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