Dec. 2025

Transactions of Nanjing University of Aeronautics and Astronautics

Task Scheduling for UAV Swarms with
Limited Communication Range

ZHENG Jiyuan"®, ZHANG Shaobo®, ZHANG Dongjun", WANG Donghui*,
ZHOU Haihua'

1. Business School of Nanjing Xiaozhuang University, Nanjing 211171, P. R. China; 2. Business School,
Nanjing University, Nanjing 210093, P. R. China; 3. Institute of Food and Strategic Reserves, Nanjing University of
Finance and Economics, Nanjing 210023, P. R. China; 4. Beijing Lead-Huafu Electrical Technology Co., Ltd.,
Beijing 102205, P. R. China

(Received 15 September 2025; revised 30 December 2025; accepted 31 December 2025)

Abstract: With the widespread adoption of unmanned aerial vehicle (UAV) technology, task scheduling for UAV
swarms has become a crucial approach to improve operational efficiency. Most existing studies oversimplify the
operational process rules of UAVs, making it difficult to accurately characterize the adaptability differences of UAV's
to various tasks under practical operational constraints. To address this limitation, this paper proposes a UAV swarm
task scheduling problem with limited communication range (UAVS-LCR) and establishes an integer programming
model for its formal description. For solving this problem, a multi-neighborhood iterative local search (MNILS)
algorithm is designed, which adopts a doubly linked list solution representation method to reduce the computational
complexity of basic neighborhood operations. This algorithm generates high-quality initial solutions via a greedy
construction strategy, combines insertion search, multi-swap search and the two-opt operator to enable alternating
exploration across multiple neighborhoods, and incorporates a simulated annealing mechanism to balance search
efficiency and solution diversity. This method can provide an effective solution for various application scenarios
including wide-area UAV inspection and heterogeneous UAV collaborative operations. Experimental results on 12
power grid maintenance test instances demonstrate that the MNILS algorithm significantly outperforms the genetic
algorithm, the artificial bee colony algorithm, the ant colony optimization algorithm and the variable neighborhood
search algorithm in terms of both solution quality and scalability for large-scale problems.
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0 Introduction

With the rapid advancement of wireless com-
munication, distributed control, and artificial intelli-
gence algorithms, unmanned aerial vehicle (UAV)
swarms, a revolutionary paradigm for collaborative
operations, are quickly transitioning from the labora-

7 Task allocation

tory to widespread application
and path planning, serving as critical components of
UAV swarm operations, directly determine the
overall operational efficiency and mission comple-

tion quality'®’. However, in practical scenarios,
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UAYV swarms face a variety of challenges, including

dynamic obstacles™, complex terrain**’

, energy de-
pletion'”’, and communication constraints'®’, all of
which influence their operational effectiveness.
These factors render the task allocation and path
planning problem exceptionally complex, requiring
UAV swarms to accomplish tasks relatively effi-
ciently under multiple constraints.

UAV task allocation involves reasonably as-

signing a series of tasks to individual UAVs based

on factors such as UAV capabilities, positions, task
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requirements, and environmental conditions, with
the aim of maximizing overall operational efficiency
and optimizing task completion quality. Currently,
conventional task allocation algorithms primarily in-
clude centralized linear programming methods, dis-
tributed market-based mechanisms, and heuristic ap-

proaches'”'. Schumacher et al."®

systematically for-
malized UAV task allocation problems involving
complex collaborative constraints such as timing re-
quirements and task sequences into a solvable cen-
tralized mixed integer linear programming (MILP)
model. Choi et al."”’ developed a distributed auction
algorithm based on task package extension to ad-
dress the challenges of heterogeneous multi-agent
teams in distributed decision-making under complex

constraints. Zhong et al."'”’

combined the hybrid ge-
netic algorithm based on integer encoding to im-
prove the algorithm solving performance in the
UAYV collaborative task planning modeling. Gao et
al.'"" incorporated robust optimization within the
classical MILP framework to handle uncertainties
such as fuel consumption, effectively mitigating the
impacts of parameter variability.

However, traditional approaches often treat
path planning and task allocation as separate optimi-
zation problems, failing to adequately account for
the coupling between task allocation and route opti-

mization!'

. This can lead to significant deviations
between the computed solutions and the actual opti-
mal outcomes. Such discrepancies may be further
amplified, ultimately affecting overall mission exe-
cution efficiency and resource utilization. Additional-
ly, decoupled optimization methods struggle to ef-
fectively respond to unexpected changes during task
execution, failing to meet modern multi-UAV re-
quirements for efficiency, real-time responsiveness,
and adaptability. In multi-UAV collaborative task
scenarios, task allocation and path planning are in-
terdependent and mutually influential, optimizing
only one aspect can hardly achieve optimal overall
performance' "’

Building on this, Sun et al.'"*' developed an in-
tegrated architecture for UAV cooperative control
by combining the improved A* algorithm with the

enhanced particle swarm optimization (PSO) ,

which optimizes task allocation and flight trajectory
planning. Su et al.'”’ introduced the improved ant
colony optimization algorithm to achieve collision-
free cooperative operation of multiple UAVs in

51 combined the

multi-task environments. Qin et al.'
improved genetic algorithm with the enhanced
PSO, which effectively reduced the overall cost
compared to traditional PSO and chaotic immune
PSO. Integrating UAV swarm task allocation with
path planning can significantly enhance mission exe-
cution efficiency, reduce energy consumption, and
improve the adaptability and robustness of UAV
swarms in colmplex environments. Meanwhile, ow-
ing to their exceptional flexibility and strong terrain
adaptability, UAVs have been widely applied in

[16-18]

fields such as environmental monitoring , logis-

19-21] [22-24]

tics distributiont , and emergency response ',
and are increasingly becoming indispensable tools in
disaster relief operations in complex terrains. In en-
vironments with relatively complete communication
infrastructure, UAVs can operate across entire
maps via satellite networks or ad-hoc networks.
However, in complex and large-scale opera-
tional environments, UAV swarm scheduling must
consider the impact of communication conditions.
Wang et al.”™ integrated communication factors,
employing an adaptive large neighborhood search to
effectively reduce communication service time. Con-
sidering the limited transportation capacity under di-
saster conditions, Du et al.”” developed a multi-
stage dynamic programming mode for material allo-
cation and resource deployment. Zhao et al.'"*"’ devel-
oped a spatiotemporal path coordination optimiza-
tion model for drones and support vehicles, effec-
tively mitigating the interference of external informa-
tion on communication quality. Sun et al.”®' tackled
the challenges of collaboration in dynamic environ-
ments by proposing an integrated multi-agent rein-
forcement learning model to enhance the self-orga-
nizing collaborative capabilities of UAV swarms. In
large-scale UAV operational environments, espe-
cially given the extensive distribution of power lines
and complex terrain, communication range limita-
tions pose a significant challenge for UAV swarms

during cooperative operations.
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Zhong et al.® developed a technical approach
for an emergency communication system based on
5G and intelligent UAV networking, providing criti-
cal support for emergency communication capabili-
ties. Wu et al.™ utilized the Poisson point process
(PPP) combined with distance constraints to model
UAYV positions, offering a mathematical framework
for large-scale UAV deployment. Panowicz et al."”"
employed one UAV as an information hub to ex-
change data with the ground control station, thereby
enabling communication within UAV swarms. Al-
though these methods can, to some extent, allevi-
ate the impact of communication range limitations,
they primarily focus on improving communication
quality or reducing signal interference, without con-
sidering collaborative strategies for UAV swarms
under communication distance constraints.

Based on the above research landscape, this pa-
per proposes a UAV swarm task scheduling prob-
lem with limited communication range (UAVS-
LCR), and the main contributions of this paper are
as follows.

(1) For the UAV swarm scheduling problem
under limited communication distance, an integer
linear programming model is proposed. This model
rigorously defines the feasible region for each
UAV, significantly enhancing the model’ s practical
applicability.

(2) By incorporating UAV communication
range constraints as core limitations, this study ef-
fectively improves the scheduling efficiency and reli-
ability of UAVs in complex environments, address-
ing the issue of over-idealized communication as-
sumptions in existing research.

(3) To tackle the non-deterministic polynomi-
al-hard (NP-hard) problem derived from this mod-
el, an efficient heuristic solution algorithm is de-
signed, capable of rapidly generating high-quality
and executable solutions for swarm task allocation

and route planning.
1 UAVS-LCR

1.1 UAYV swarm system

In scenarios such as border control, emergency

rescue, or agricultural production, UAVs often un-
dertake tasks such as information collection, inspec-
tion, material transportation, and low-altitude oper-
ations. However, these environments typically pres-
ent challenges such as complex terrain and extensive
task coverage. Due to limitations in communication
range, a single base station is often insufficient to
cover the entire operational area. In such cases, a
swarm of UAVs must depart from their respective
base stations and collaborate to accomplish all tasks.
To enable UAV swarms to complete all assigned
tasks more rapidly under communication range con-
straints, we propose a task scheduling problem of
UAYV swarm with limited communication range.

Consequently, the primary objective of UAV
cluster task scheduling is to rationally allocate tasks
and determine the operation sequence under multi-
ple physical constraints, aiming to minimize mini-
mal total makespan.

As shown in Fig.1, the UAV swarm needs to
depart from several base stations and proceed to var-
ious task points. Each task point must be serviced
exactly once, with each requiring a dedicated ser-
vice period from the UAVs. The movement process
between two task points consists of three phases,
take-off, cruising, and landing. The total time con-
sumption for this process is calculated as

w

U, (1)

v

L=

where 7, represents the time required for a UAV to
travel from point 7 to point j, v the cruising speed of
the UAV, and w; the distance between locations
7and j; ¢, and ¢, correspond to the time consumed
during take-off and landing procedures, respectively.

Furthermore, communication and energy con-

straints must be taken into account. Each UAV is re-
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Fig.1 Task distribution of a UAV swarm
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stricted to operating within the communication
range of its assigned base station and must return be-

fore its battery is depleted.
1.2 Problem formulation

The node set is defined as N= {1, 2, -+, n} ,
which contains all task points and base stations. The
first / nodes in N represent base station nodes. The
operation time of each task point is D=1{d,, d,, ",
d,!. The base station coverage set is defined as L =
{li<<l}, where [,={jld;<<R,j>>1[} represents
the task point set within the communication range of
base station i, and R the maximum communication
distance between the UAVs and the base station.
The UAV swarm task scheduling problem can be

modeled as a mixed integer programming model
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where Eq.(2) represents the objective function
aimed at minimizing the total makespan; Eq.(3) en-
sures that when a UAV enters a task point, it must
depart from the same point; Eq.(4) guarantees that
each point is serviced exactly once by only one
UAV; Eq.(5) eliminates sub-tours in the UAV
routes; and Eq.(6) restricts UAVs from operating
on task points outside the communication range of
their base stations. Note that for autonomous net-
work systems or satellite communications, the com-
munication range can cover the entire map. In such
cases, the set /, may be the total node set. Eq.(7)
maintains sufficient energy reserves for UAVs dur-

ing operations.

Fig.2 illustrates a task scheduling instance in-
volving 16 task points three base stations and four
UAVs. In this configuration, each UAV departs
from its designated base station and returns to the
same base upon completion of all assigned tasks.
Within the overlapping communication ranges of
base stations, multiple UAVs demonstrate efficient

cooperative capabilities.

Fig.2 A task scheduling instance for power grid mainte-

nance

2  Multi-bidirectional-Link Repre-
sentation

The core of the neighborhood search algorithm
adopted in this paper relies on insertion, swap, and
inversion operators to directly transform solutions,
thereby enabling exploration of the solution space.
The essence of task scheduling for UAV cluster lies
in determining both the allocation of task points and
the sequence in which they are serviced. Therefore,
the solution can be represented by an m-segment dis-
joint sequence. Each sequence represents a closed
tour for a single UAV. Balancing storage space and
computational efficiency, a novel representation for
bidirectional links is designed. This representation
takes the form of a specialized doubly linked list.
Fig.3 shows a sequential bidirectional link. Each
task occupies two storage units. The basic storage
unit is designated as a node. For the same point,
two nodes can be swapped using a twin operation.
Owing to the symmetric nature of the UAV task
scheduling problem, a given sequence is considered
equivalent to its reverse. To leverage this property,
next pointers are used to connect point nodes, there-
by constructing two linked lists that represent both

the given sequence and its reverse. The two nodes
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of a task point maintain a next pointer that connects
the next and the after nodes. Starting from any node
of any point within the linked structure, sequential
or reverse traversal of the sequence can be achieved
by following the next pointers. Switching to the al-
ternate node of the same customer yields the oppo-

site traversal direction.

L Node 7
4 Twin~~. 1 _ S 4
| gpointer| [ T N L]
.
Twin V] -k
pointer A//;.':_ _ <____\\~
Node

Fig.3 Bidirectional link reversal

A bidirectional link can store a symmetrical cir-
cular path with a space complexity of O (n). For a
task scheduling problem with m UAVs, one of its
solutions can be expressed as m-segment bidirection-
al links. Similar to a linked list, the swap operation
removes the task point from the bidirectional link
and then implements it by changing only a fixed
number of next pointers. Therefore, their computa-
tional complexity is O (1). The inversion of some
fragments of a linked list needs to be realized by
breaking the pointers of points at the beginning and
the end of the fragment, and reversing the pointers
of all points in the fragment. The process takes
O(n) time. The reverse of the bidirectional link can
be achieved by only changing the node pointer of the
point at the head and tail of the fragment, as seen in
Fig.4.

-
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Fig.4 Buidirectional link

The time-consuming process does not increase
with the length of the sequence. The bidirectional
link mechanism leverages the symmetry of data

structures, with its core concept being the creation

of two mirror-image storage nodes (node A and
node B) for each point. Through a specific pointer
linkage method, both forward and reverse sequenc-
es of the same path are encoded simultaneously
within a single structure. Each node’s next pointer
strictly points to the corresponding node of the next
task point, not arbitrarily, but maintains a fixed
mapping: The current node A, points to the next
node A,, node B; to node B,, and so on. Two
nodes at the same task point are interconnected via
twin pointers, enabling instant switching. During
traversal, the directionality is determined by the ini-
tial node selection rather than pointer orientation.
Starting from node A,, traversal along the next
pointer yields the forward sequence A\ —A,—A;—
A,—A;. Conversely, starting from node B,, travers-
al produces the identical path B,—B,—B;—B,—Bs.
However, since the chain inherently encodes re-
verse information, the sequence appears in a reverse
B:—B,—B,—B,—B,.

starting from node A,, the next pointer should nor-

order: Therefore, when
mally jump to the next node A,. But through the
twin pointer’s instant switching mechanism, it
jumps to node B,, completing the entire storage pro-
cess sequentially. This bidirectional link representa-
tion method not only achieves simultaneous encod-
ing of both forward and reverse paths in structure,
but also provides significant convenience at the algo-
rithmic application level. Moreover, the architecture
supports efficient insertion and deletion operations.
When adjusting a task point in the path, simply
modifying the pointer direction of relevant nodes en-
ables rapid updates without reconstructing the entire

path.

3 Multi-neighborhood Iterative Lo-
cal Search

3.1 Overall framework

In order to solve UAVS-LCR, the proposed
approach 1s built upon the iterated local search
(ILS) framework,

three specific neighborhoods, swap, insertion, and

incorporating exploration of

reversal. These neighborhoods are designed to per-

form interroute swap and insertion operations,
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along with intra-route inversion operations. Inter-
route operators enhance task allocation, while intra-
route operators improve the execution order within
individual UAV routes. Additionally, a segment
mutation mechanism is introduced within the multi-
neighborhood ILS (MNILS) to stochastically modi-
fy sub-paths of certain UAV, thereby enabling es-
cape from local optima and mitigating premature
convergence.

The detailed procedure of the algorithm is illus-
trated in Fig.5. Initially, MNILS constructs an ini-
tial solution using a nearest-neighbor heuristic. Sub-
sequently, three local search operators-insertion, se-
quential swap, and two-opt are applied iteratively to
optimize both task assignment and execution order.
If no improvement is achieved by any of these three
local search operators, a fragment mutation opera-
tor perturbs the current solution, accepting inferior

solutions to facilitate escape from local optimal.

Start

| Initialization |
]

I Insertion search |<—
]

I Multi-swap search |

)

l Two-opt |

End

Fig.5 Process of MNILS

3.2 Initialization

We use the greedy nearest neighbor strategy to
construct the initial solution of the algorithm. First,
we set the base station corresponding to each UAV
as the starting point of all UAV paths. Second, we
insert all tasks into the current solution step by step
in a random order. The specific UAV path and cor-

responding position for insertion can be calculated as

p(j)= argmin w; + w; 4, — w, ;- 9)
i€r,keU(j)

where U (j) denotes the set of UAVs that can per-
form task j; and r, the path of UAV £ U(j) en-
sures that task j can only be assigned to UAV's with-
in the communication range of their respective base
stations. Additionally, during the construction pro-
cess, we need to verify the battery constraint accord-

ing to Eq.(7).
3.3 Insertion search

The insertion search employs path inter-node
neighborhoods, which are constrained by the com-
munication range and power constraints shown in
Eqs.(6, 7). The insertion search immediately at-
tempts to relocate all tasks using a new mechanism.
It removes a task from the current solution, finds
UAV that satisfy both communication range and
power constraints, and calculates insertion costs at
all locations along the UAV routes. Once a solution
with lower relocation costs is found during travers-
al, the algorithm immediately replaces the current
solution with this improved one. Insertion search
will try all possible insertion operation with a posi-
tion and a task. Therefore, its time complexity is

o).
3.4 Multi-swap search

Algorithm 1 presents the pseudo-code for the
multi-swap search. This procedure utilizes a novel
swap operator designed to exchange the positions of
only two tasks within a solution. A local search em-
ploying solely this basic swap operator would be un-
able to discover the solution depicted in Fig.6(a).
This is because swapping only tasks 7 and 5 would
yield the inferior solutions shown in Figs.6(b, ¢),
causing the algorithm to naturally reject such a
move. To achieve the improved solution in Fig.6(d),
the algorithm must first swap tasks 7 and 5, and
then subsequently swap customers 5 and 8. To ad-
dress this limitation, the sequential swap search is
proposed.

Algorithm 1 Continues multi-swap search

Input: Current solution S.

(1) ForpeSdo

(2) S'<S; Improved<-False; f,,<J;



858

Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 42

(a) Initial route

4

8

‘B—o

(b) The worse route obtained by
swapping node 7 and node 8
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(c) The worse route by swapping (d) The improved route by the

node 5 and node 8

(3)
(4)
(5)
(6)

(7)
(8)
(9)
(10)
(11)
(12)
(13)

(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

(22)

continuous exchanging node 5
with node 7 and node 8

Fig.6 Multi-swap operation

Forstep=1, 2, 3, 4, 5do

Sy
ForieSdo
S'<— Swap(S, 7, p); // Swap cus-
tomer 7 and p. // S'is the solution
obtained by swap.
If£(S") << f(S)then
S<—S/;
Improved<—True;
Break;
End If
I £(S") < fonor frw=~) then
Suw<=S's fuw<f(S) 5 // Sy i
the best solution in the current
layer local search.
End If
End For
If Improved then
Break;
End If
S’« Slml,;
if £(S")<<f(S,)or S,=C) then
S,< S'; // S, records the best so-
lution during the whole multi step
swap search.
End If

(23) End For
(24) Pt<-Rand(0, 1);
(25) If Pr(S,S,, T)=Pt then // Pr is the

probability to accept the worse solu-

tion S,.
(26) S<5S;;
(27) EndIf

(28) End For

The multi-swap search operates by attempting
multi-step continuous swap operations for each posi-
tion in the solution. For a given swap position P,
the procedure iterates over all other tasks in the solu-
tion, evaluating the change in solution quality result-
ing from each possible swap. If this step swap im-
proves the current solution, the multi-step operation
is terminated. Otherwise, the swap operation with
the minimum cost increase is retained and the algo-
rithm proceeds to the next swap operation. This pro-
cess repeats for up to five sequential steps. If an im-
proved solution is found within these five steps, it is
accepted. If no improvement is found, an inferior so-
lution may be accepted with a probability defined by
Eq.(10), following a simulated annealing strategy.

Pr(S,8,T )= ¢/ /0T (10)

The number of multi-swap steps for a given po-
sition is not fixed. For instance, if an improved solu-
tion is found at the third step, the swapping process
terminates immediately, resulting in a total of three
steps for that sequence. Throughout the search,
each candidate swap must be evaluated for feasibili-
ty, ensuring that the involved task point can serve
the swapped tasks and that all capacity constraints
remain satisfied. Specifically, if the task at position
p falls outside the communication range of the base
station assigned to the UAV currently handling task
7, the swap operation will not be executed. In this
case, Swap(S, i, p) directly returns the current solu-
tion S. The same applies conversely. Additionally,
the swap operation checks whether the two UAVs
would exceed their total travel distance limits after
the exchange. If so, the swap is likewise not per-
formed.

However, if the number of steps is switched,

the computational complexity of the algorithm will
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also increase at the polynomial level. For the effi-
ciency of continuous multi-exchange search, we con-
sider the Euclidean characteristic of customer distri-
bution, introduce k-neighbor candidate sets, limit
each layer search only among k-neighbor tasks, and
then limit the computational complexity of each lay-
er search to k4. The continues multi-swap search
aims to find an improved multi-swap operation with
a position and a tasks sequence. The elements in the
sequence is from the kneighbor tasks set of the posi-
tion. There are n positions need to be search. And 4
tasks should be examined in each swap step. The

time complexity of the multi-swap search is O(nk’).
3.5 Two-opt

Two-opt 1s a well-known local search algo-
rithm for solving the traveling salesman problem
(TSP). It improves solution quality by swapping
two edges in the route to achieve fine-grained se-
quence optimization. In the context of the UAVS-
LCR, two-opt serves as a UAV path optimization
algorithm, and does not change the task allocation.
It always ensures that the communication range con-
straint remains satisfied. Since two-opt only reduces
the total travel distance of UAVs, the energy con-
straint is likewise never violated. Similar to other op-
erators, two-opt employs an immediate update
mechanism. It is important to note that updating the
current solution shifts the neighborhood center.
Therefore, the search process is reset after each im-
provement to ensure a comprehensive exploration of
the new neighborhood. Two-opt can be seen as a

flip search. Its time complexity is O(n*).
3.6 Fragment mutation

When the algorithm becomes trapped in a local
optimum, the fragment mutation module introduces
a perturbation. This operator randomly selects a seg-
ment from a UAV’s route, with a length equal to
approximately 20% of the route, and reinserts it in-
to a randomly chosen feasible position elsewhere in
the solution while ensuring communication range
and power constraints remain satisfied. By disrupt-
ing the current solution structure in this way, the
mutation enables the search to escape into previous-

ly unexplored regions of the solution space.

4 Computational Complexity Anal-
ysis

In MNILS, insertion search, swap search,
two-opt, and fragment mutation are performed itera-
tively. Therefore, the complexity of the algorithm is
mainly composed of four modules. The search oper-
ation has a two-tier loop. In the worst case, that is,
the search requires a complete search for all feasi-
ble, and its time complexity is O(n"). The continu-
ous switching search is a five-step continuous
switching operation for n positions, and each step of
switching needs to search for %2 neighboring points,
so its computational complexity is O (n£’). Similar
to this search, two-opt has a computational com-
plexity of O (#*). Genetic mutation is to relocate
0.2n tasks, and its computational complexity is
O(n).
main loop is O(2n° + 0.2nk").

In summary, the time complexity of the

5 Experimental Analysis

5.1 Experimental setup

The communication range-constrained UAV
scheduling problem and its MNILS solution algo-
rithm have broad applicability. For instance, in
wide-area scenarios such as power grid maintenance
or disaster relief, the base station communication
range R can be derived using the calculation method
provided in the appendix. UAV swarms can operate
around their respective base stations and collaborate
within overlapping communication areas. In scenari-
os with better communication conditions or narrow -
er coverage areas, the communication range can be
set to cover the entire map to adapt accordingly.

Moreover, the concept of communication
range defined here is rather broad. In specialized in-
spection or maintenance contexts, UAVs of differ-
ent types may have distinct functional responsibili-
ties. Certain tasks may only be performed by one or
several specific types of UAVs. In such cases, the
base station coverage set can extend beyond commu-
nication limitations to describe the operational feasi-
bility of heterogeneous UAVs for given tasks. In

other words, if a certain type of UAV is stationed at
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base j and is capable of performing task 7, task 7 can
be assigned to that UAV.

Similarly, in UAV swarm transportation sce-
narios, different bases may store distinct types of
cargo. Different locations may require different
goods. The matching relationship between location
demands and cargo types can also be described
through the base station coverage set L. This prob-
lem and its solution provide an effective approach
for some application scenarios in the low-altitude

economy.
5.2 Verification experiment

Fig.7 presents the UAV swarm routing dia-
gram for instance 1 obtained by MNILS. As ob-
served in Fig.7, all UAVs perform inspection tasks
within their respective base station coverage areas,
satisfying all constraints defined in UAVS-LCR.
Notably, within overlapping regions of adjacent
base stations, UAVs demonstrate effective coopera-
tive capabilities. Compared to scheduling methods
that strictly enforce non-overlapping operational
zones, the proposed approach achieves significantly
higher UAV utilization rates. Furthermore, the
communication range of the second base station can
be covered by the other two. The first and the third
UAVs are sufficient to complete all tasks. Howev-
er, due to energy constraints, all three UAVs are
required to operate jointly across the entire map,
with no task preemption occurring. We design 12
UAVS-LCR test instances by modifying the Travel-
ing Salesman Problem Library (TSPLIB) datasets.
They are listed in Table 1.

80
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§40-
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Fig.7 UAV routes of Eil101-3-3 instance
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Table1 UAVS-LCR instances

No.  Instances  Checkpoints Base station  UAV
1 Eil101-3-3 101 3 3
2 Eil101-3-5 101 3 5
3 Eil101-5-5 101 5 5
4 Eil101-7-9 101 7 9
5  Ratb75-3-3 575 3 3
6  Rat575-3-5 575 3 5
7 Rat575-5-5 575 5 5
8  Ratb75-7-9 575 7 9
9  Prl002-3-3 1002 3 3
10 Pr1002-3-5 1002 3 5
11 Pr1002-5-5 1002 5 5
12 Pr1002-7-9 1002 7 9

5.3 Parameter experiment

To achieve the best performance of MNILS,
the influence of different parameter settings is inves-
tigated. Fig.8 illustrates the convergence behavior of
MNILS on the Rat575 instance under varying num-
bers of swap steps. As shown in Fig.§, increasing
the number of swap steps enhances the search capa-
bility of the algorithm, leading to a gradual improve-
ment in solution quality. However, an excessive
number of swaps increases computational complexi-
ty and eventually degrades performance. The algo-
rithm achieves the best balance between computa-
tional efficiency and search effectiveness when the

number of swap steps is set to 5.

3000 -
2800 -
2600 -
2400
2200 -
2000 [
1800
1600, ; .

Makespan / min

0 5 100 15 20 25 30

t/s
Fig.8 Convergence curves of MNILS with different 4 values

Furthermore, when the number of swap steps
is set to 1, the multi-swap search reduces to a sim-
ple swap search algorithm. In this case, the algo-
rithm tends to converge prematurely, often becom-

ing trapped in a local optimum early in the process
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and failing to escape. These experimental results
validate the effectiveness of the proposed multi-

swap search strategy.
5.4 Comparative experiments

To evaluate the performance of MNILS, three
the algorithm
(GA), the artificial bee colony (ABC), the ant col-
ony optimization (ACO), and the variable neighbor-

comparative algorithms, genetic

hood search (VNS), are implemented on the same
platform. To enhance the performance of the com-
parative algorithms, an efficient two-opt algorithm
is applied to optimize the routes of the best individu-
als within the three population-based algorithms.
VNS adopts the same initialization method with
MNILS. All four algorithms are evaluated through

ten independent runs on each of the 12 UAVS-LCR
instances, with a computational time limit of 1 min/
run. Table 2 summarizes the best and average
makespan values obtained by each algorithm over
the ten runs. As shown in Table 2, the proposed
MNILS outperforms all comparative algorithms on
ten instances, achieving the best results in both solu-
tion quality and consistency. We also conduct the
Wilcoxon signed-rank test to verify the conclusion.
The p-value is less than 0.05. It means the gaps be-
tween algorithms are robust. Z values indicate that
MNILS is superior than others. Furthermore, the
performance advantage of MNILS become more
pronounced as the scale of the instances increased,
demonstrating its stronger scalability and robustness

in handling larger problem sizes.

Table 2 Comparison results min
MNILS ABC GA ACO VNS
Instance
Min Avg Min Avg Min Avg Min Avg Min Avg
1 115.9 119.3 120.4 121.8 126.5 127.5 116.2 120.3 115.1 118.7
2 120.2 122.9 148.7 158.8 140.9 165.1 121.7 129.6 120.2 123.3
3 136.3 138.4 162.1 173.9 181.4 181.9 135.7 141.1 137.2 140.5
4 167.9 172.0 178.1 182.9 198.1 201.3 172.6 173.2 169.4 171.8
5 1173.2 1174.0 1244.3 1247.9 1348.7 1365.4 1292.2 13174 1198.9 1247.3
6 1200.3 1223.9 1283.7 1295.6 1401.2 1412.6 1319.6 1331.9 1270.6 1313.7
7 1256.2 1260.1 1386.0 1406.4 1546.9 1552.2 1379.0 1402.1 1322.1 1352.0
8 12754 1283.0 1450.2 1452.9 1560.9 1591.4 1406.1 1407.6 1341.2 1367.6
9 43120.5 43552.1 45403.8 46277.4 45875.8 46104.9 49228.8 50211.8 44582.5 461255
10 43 819.7 44 042.1 47 210.2 474847 44 803.9 46790.7 49117.0 499419 45207.2 46771.9
11 45598.6 46 020.6 48954.9 493734 48869.0 50091.9 51211.7 517355 46982.6 48753.3
12 46 074.5 46 550.0 49529.9 50340.6 48725.7 50143.3 52064.6 52756.8 49005.1 50123.7
4 — — —3.059 —3.059 —3.059 —3.059 —2.903 —3.059 —2.845 —2.746
2.218 X 2.218 X 2.218 X 2.218 X 3.702 X 2.218 X 4.439 X 6.040 X
prvalue = B 10 107 107" 107" 10 10 107" 10
We also compare the convergence performance 220011 — MNILS
of MNILS with four benchmark algorithms. Fig.9 — VNS
. = 2000 — ABC
shows the convergence curves of these five algo- ‘g — ACO
rithms. The three population-based algorithms use g S oA
the same population initialization method, and they é 1600 -
consistently underperform the two search-based al- 1400 Q—
gorithms throughout the entire iteration cycle. VNS 1200 1 . ) : . :

adopts the same initialization method as MNILS, so
it can start from the same initial point as MNILS.

However, as the iteration proceeds, MNILS dem-

0 5 10 15 20 25 30
t/s

Fig.9 Convergence curves of MNILS and comparative al-

gorithms
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onstrates strong search capability and eventually

converges to a better local optimum.

6 Conclusions

A novel task scheduling problem for UAV
swarm-based power grid maintenance is introduced,
which comprehensively considers complex con-
straints including UAV energy limitations and com-
munication range. To solve the UAVS-LLCR prob-
lem, an MNILS algorithm is proposed, featuring
enhanced exploration capabilities through sequential
swap operations. MNILS demonstrates the ability
to obtain high-quality solutions for medium and
large-scale instances containing up to 1 000 inspec-
tion points within 1 min. The proposed problem
model and its solution algorithm can be effectively
applied to wide-area inspection, maintenance, and
transportation scenarios. The communication range
constraint can be generalized to describe the execut-
ability of tasks by UAV swarms. For UAV swarm
scheduling problems under complex communication
conditions and in heterogeneous equipment environ-
ments, the methodological framework proposed in

this study offers an effective solution.
Appendix Communication Range

To ensure the continuous availability of the control link
between the UAV and the ground base station, the calcula-
tion method of the communication range is elaborated here.
When the distance between a UAV and the base station is
R, the received signal power is

P(R)=P,+G—L(R)— L, (A.1)
where P, is the transmission power; G the antenna gain;
L., the miscellaneous line loss, and L( R ) the path loss.

The noise power at the receiver is

N=—174+ 10logB+ F (A.2)

where 174 dBm/Hz is the thermal noise spectral density at

room temperature; B the bandwidth; and F the receiver

noise figure. Thus, the communication signal-to-noise ratio

(SNR) between the UAV and the base station can be ex-
pressed as

SNR(R)=P.(R)— N (A.3)

To guarantee communication quality, we set y as the
minimum SNR threshold. The maximum allowable path loss
can then be derived as

L(R)<P,+G—Ly.—N—7y (A.4)

Note that the right side of the inequality is a constant,

denoted as L,.. In the context of power grid inspection,
UAVs typically operate at relatively high altitudes with rela-
tively open inspection paths. Therefore, the airto-ground
link can be modeled on a large scale using free-space propaga-
tion as the baseline. This paper adopts the free-space attenua-
tion calculation method provided by ITU-R Recommenda-
tion P.525. When frequency is in the unit of MHz and the dis-
tance in km
L(R)<{32.45+ 20logf, + 20logR (A.5)
The maximum communication range between the base

station and the UAV is
Lo — 32.45— 20logf,,

R,.=10 * (A.6)

where £, is the communication frequency.
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