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Abstract: In this paper, an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter
(ASTUKEF) is advanced to improve the precision of pose estimation and the stability for data computation. To
suppress high-frequency noise, an infinite impulse response filter (IIRF) is introduced at the front end of ASTUKEF to
preprocess the original data. Then the covariance matrix of the error is corrected and the measurement noise is
estimated in the process of filtering. After that, the data from the experiment were tested on the hardware experiment
platform. The experimental results show that compared to the traditional extended Kalman filter (EKF) and
unscented Kalman filter (UKF) algorithms, the root mean square error (RMSE) of the roll axis results from the
algorithm proposed in this paper is respectively reduced by approximately 57.5% and 36.1% ; the RMSE of the pitch
axis results decreases by nearly 58.4% and 51.5% , respectively; and the RMSE of the yaw axis results decreases
almost 62.8% and 50.9%, correspondingly. The above results indicate that the algorithm enhances the ability of
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resisting high-frequency vibration interference and improves the accuracy of attitude solution.
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0 Introduction

With the widespread application of robots in in-
dustrial production and daily life, the multi-sensor
data fusion is often involved in the robot control. In
some complex environments, inertial measurement
unit (IMU) modules are commonly used to compen-

" IMU is a core component

sate for core sys‘[emsL
that measures the motion state of an object through
built-in inertial sensors. It can output the angular ve-
locity and linear acceleration of the object in real
time. Some advanced models can also directly out-
put the attitude angles (such as Euler angles, qua-
ternions) , and are widely used in unmanned air-
craft, autonomous driving, robots, aerospace, etc.

It is a key technology for achieving “being able to
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inertial measurement unit;

adaptive strong tracking unscented Kalman filter
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sense one’s own movement even without external
reference”. Li et al.”’ proposed a global navigation
satellite system/inertial navigation system (GNSS/
INS) tightly coupled positioning method to enhance
the positioning accuracy of the carrier in harsh envi-
ronments. Wei et al.'”’ introduced a system error
compensation to enhance the positioning accuracy
and stability based on GNSS/IMU integrated navi-
gation. In robot positioning and navigation prob-
lems, the calculation of robot attitude is often ac-
companied by it"*". Therefore, the use of IMU-as-
sisted repositioning method was proposed by Yang
et al."” to enhance the accuracy of its positioning al-
gorithm. Zhang et al.""”’ utilized a tightly coupled ap-
proach to fuse multi-sensor data, which made the

pose calculation for robots more accurate compared
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with single sensors. However, the accelerome-

ters[ll,

and magnetometers in IMU chips of
micro-electro-mechanical system (MEMS) are sus-
ceptible to the interference. Therefore, a more com-
prehensive filtering algorithm is needed to process
the data.

Outputs from the raw data of the IMU system
are the system angular velocity and linear accelera-
tion, and based on these, a new algorithm is needed
to calculate the attitude data of the system at the cur-
rent moment. As calculation errors and measure-
ment errors may occur in the hardware IMU chip,
and if there is any vibration or any other forms of in-
terference in the system, it is highly likely to cause
significant angle errors, or even directly result in da-
ta anomalies, which can lead to more serious errors.
During robot walking, due to the road bumps or vi-
brations generated by the body’s power system, the
outputs of accelerometers and magnetometers are in-
terfered, which directly affects the filter output of
the IMU"™"', Liu et al.""® proposed that the accura-
cy of the output of attitude data from IMU can be
improved with the adaptive unscented Kalman filter-
ing (UKF) algorithm to adaptively adjust the initial
values required by the filtering algorithm. But when
the dimension of state variables in nonlinear systems
is high, the UKF cannot better adapt to high-dimen-
sional systems. Therefore, the fuzzy robust adap-
tive methods were put forward by Qiao et al."” to
enhance the stability of the filter, and thus the cuba-
ture Kalman filter (CKF) algorithm is more suitable
for high-dimensional systems compared with the
UKEF algorithm. Due to the fact that the susceptibili-
ty of inertial sensitive components such as acceler-
ometers and gyroscopes are sensitive to vibration,
Yang et al.”™ advanced the fusion of UKF algo-
rithm and complementary filtering algorithm, which
significantly improved the vibration resistance per-
formance of IMU. The usage of UKF algorithm for
the real-time estimation and calibration of magne-

[21]

tometers was proposed by Shen et al."*" and Lu et

al. [22]

gle estimation. In Ref.[21], the two-stage UKF al-

, which improved the accuracy of heading an-

gorithm was adopted to calibrate magnetometers in

real time, significantly improving their anti-interfer-

ence ability in magnetic environments.

Above studies all mentioned that the measure-
ment errors of IMU sensors were difficult to deter-
mine or the outputs of accelerometers and magne-
tometers were affected by various types of vibra-
tions. Based on these problems that IMU is sensi-
tive to these interferences, and the measurement
noise of sensors is difficult to model and theoretical-
ly eliminate, this paper proposes to adopt the Sage-
Husa adaptive method to estimate the measurement
noise of sensors in real time, so as to improve the at-

titude calculation accuracy of the UKF algorithm.

1 Sage-Husa  Adaptive Strong

Tracking Unscented Kalman Fil-
ter Algorithm

In order to improve the accuracy of the algo-
rithm and adapt to measurement noise under differ-
ent working conditions, an adaptive unscented Kal-
man algorithm based on the Sage-Husa adaptive
method is proposed to work out the attitude angle of
aircraft. The structural diagram of the attitude calcu-
lation system is shown in Fig.1, in which the state
update data are provided by the gyroscope and com-
bined with acceleration measurement and geomag-
netic measurement. After calculating the measure-
ment priori estimate, the innovation matrix and the
Sage-Husa method are used to make suboptimal es-
timate of the measurement noise, and a re-estima-
tion is introduced to ensure the positive definiteness
of the measurement noise matrix. Finally, the Kal-
man gain is calculated and then the attitude angle is

obtained.
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Fig.1 Structure diagram of the adaptive unscented Kalman

filter system
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1.1 State prediction and measurement equa-

tions for nonlinear systems

The nonlinear discrete state prediction equation
for an IMU system is
XK:‘f(XKfI)JF Wi (1)
where X and Xy, respectively represent the priori
estimate of the state variable at the time of K and
the posterior estimate at the time of K—1; fdenotes
the nonlinear propagation of the system; and Wy is
systematic error. E[ Wy ]= 0 is the variance matrix,
and E[ Wy, W ]= Qy is the covariance matrix.
The measurement equation of the system is
ZK:h(XK)+ Vi (2)
where Zy represents the sensor measurements at the
time of K, & the nonlinear propagation of the mea-
surement equation, and Vi is measurement error.
E[Vi]=Vx is the

E[Vy, Vi ]= Ry represents the covariance matrix.

variance  matrix, and

1.2 Unscented Transform and Kalman filtering

framework

The unscented transform (UT) is a nonlinear
transformation method based on the Cholesky de-
composition , which can perform nonlinear propa-
gation on the sampling points of the known da-
ta, thereby directly close to the statistical charac-
teristics of the posterior date. Firstly, sample
the state variables of the system , where the sys-
variables are

tem state represented as Xx—

Lq0, 15 G2y @3, Wy, @y, wz]vl‘. Among them, ¢ is the

quaternion vector and w the three-axis angular veloc-

ity vector. The sampling method for Xy is

XK—lZ[XK—l[XK—1L+ YA Py |:/\;K—1i| -

n

7Py | (3)
where yx—, is the sampling matrix for system state
variables, i.e. Sigma points; y the scale parameter
of the distribution of Sigma points; Py x_, the error
priori covariance matrix, which is iterated after the
initial values are given; )fK | the posterior value of
the previous state variable, and n the dimension of
the system state variables. The nonlinear propaga-

tion of the system yx_, is

XI*.K\(K*I):]C<X1‘,K71) (4)

where . 1 represents the output of the system

state variables after propagation. And the weight

sum can be calculated as follows

2n

JEK\(K—U:ZWI‘MX:.KKK—U (5)

i=0
where x, 1) denotes the 7th column of matrix
Xk 1 W/ the weight value for each column of da-

ta, shown as

= Ay
- (6)

W/ =1/2y"
A=ad(n+k)—n (7)

where « controls the distribution of Sigma points
with the value of 1; and « is used to ensure the
semi-positive definiteness of Py x_,, with the val-
ue of 0. At the present time, the current second
priori estimate value of the state variables can be
obtained as yux 1. The measurement vector for
the system is Yi=1[qo, q1» ¢2» @3, Wx, Wy, ayx, Ay, dz,
my, my, m,) ", with a as the three-axis acceleration
vector, and m as the three-axis geomagnetic data.
Performing the UT on them, the sampling matrix

of the measurement vector 1s
gmu(—1>:[X1<\<K—1)|:XK\<K— I)i| + YA Px.K\(K— 1)

[AXAK\(K*I)} -7 PX.K\(K—U:| (8)

And the nonlinear propagation is measured on

the sampling matrix.
h(xokix—1) 9)

where 9, x 1) 1 the output of the measured state

Nikk—1)—

variable after propagation, and its weight is calculat-
ed by

2n

YK\(K—1J:zwzmﬂf,fq<x—l) (10)

i=0
where f,q(,(,l) is the measurement priori estimate
value. Then the covariance matrix of system state
variables, the measurement vector covariance ma-
trix, and the covariance matrix of system state vari-

ables and measurement vector can be expressed as
2n

P.Y,K\(K—l): ZWI’L<X;K\(K71) - /\;K\(K—y}) X

i=0
X . T
(Xz',K\(K*l)iXKKKflJ) + Qi (11)

2n

EW;<771‘,K\<K—1> - YK\(K—U) X

i=0

PY,K\(K—I):

~ T
(”f,K\(K—w* Ym(x—n) + Ry (12)
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2n T —
. ~ ExE K=1
Pyy kix I)ZZWI(X[,K\[K n— Xk 1))>< r.= e (17)
=0 (1 —pBx) T+ Brexex K>1
R T
(77’7’““" 0 Y “) (13) ex=2Lk— YAK\(K*I) (18)
where W/ i1s the measurement coefficients of error L1

covariance matrix. Qx_; and Ry are the covariance
matrices for the system noise and measurement
noise. Far from now, the UT is completed, and the
values of Py k1> Pyxix s Pyvice 1> YK\(K 1)
and yy k1) are substituted, which are calculated ini-
tially, into the Kalman filtering algorithm frame-
work.
KK:ny,m(x—np;,lK\(K—l) (14)
XK:XAI&'(K*l)_’_KK(ZK_ YAK\(K*l)) (15)

Finally, the priori error covariance matrix is up-
dated and saved to complete the iteration.
Px,k':Px.m(K—n*KKPY,KMK—UKII (16)
From Eqgs.(11) and (12), it can be found that
the covariance matrices Qx_, and Ry are given as
initial values based on engineering experience and
are not iteratively calculated in engineering calcula-
tions. This will result in significant errors that can-
not be accurately captured by the filter, leading to
blind trust in the measured or predicted values. Due
to the high degree of nonlinearity of the system
equations, the system noise is difficult to estimate,
and the output angular velocity of the gyroscope is
relatively stable. Accordingly, the system noise is
generally small. However, the accelerometers and
magnetometers are highly susceptible to interfer-
ence, so the estimation of measurement noise is cho-
sen to compensate Py i, for the system. In real
engineering environments, the sensitive characteris-
tics of IMU sensors can easily generate outliers as
measurement fault points. Therefore, a strong track-
ing filtering can be introduced to correct the error
priori covariance matrix to improve the data utiliza-

tion and filtering accuracy.

2 Improved UKF Algorithm Based
on Adaptive Strong Tracking Fil-
tering

Starting from the UKF algorithm model men-
tioned above, the innovation matrix ex can be
worked out first by Eq.(10) and the current mea-
sured value Zx of the sensor, and its variance matrix

I'i can be expressed as

where 8= (0 << b6 << 1) is the exponen-

Bkt 0
tial fading factor, fo=1, and f..=1—b. b is usu-
ally taken as 0.95—0.99. Then the measurement
noise estimation formula can be obtained from the

Sage-Husa adaptive method as follows
IéK:(l — ﬂK)IéK—l +18K( €K€;§ - PY,K\(Kfl)) (19)

Due to the independence of measurement, R,
is a positive definite diagonal matrix. Moreover, the
latter term undergoes subtraction in Eq.(19), and
during the iteration process, the value of exex be-
comes smaller and smaller as R5K becomes more ac-
curate, which may result in the iteration of R being
non-positive definite. Usually, this problem can be
solved by adopting sequential filtering, but in robot
control systems, the computing resources are limit-
ed and the real-time requirements are high. There-
fore, it is necessary to make a judgment on the iter-
ated }éK here. If it is found to be non-positive defi-
nite, Ry should be reassigned according to its initial
value and re iterated. This not only solves the non-
positive definite problems, but also enables Ry to
converge more flexibly in the different operating en-
vironments.

By introducing a fading factor Ak, the strong
tracking filtering corrects the priori covariance ma-
trix of errors in the UKF algorithm, and the single
fading factor A, can be expressed as

Ax = max I,M (20)
tr(MK)

2n
whereNK:FK*RK,MKZE Wi (ﬂ;;mm—n* YK\(K—U)'

=0
. T
<77,’,K\(K71J7 YKKK,“) , and the corrected priori er-

ror covariance matrix can be expressed as
J— T
Px,K—AKPx,K\(K—l)AK - KKPY.KKK—UKK (21)

where AKZAdiag(JA—k, «/)TM \/A—k,---),and A=
diag (Va, , as , Jas, ) is the predetermined ex-

perience fading ratio coefficient. Here, a,, «, and a;
are the coefficients of the diagonal matrix and used
to adjust the weights.

Due to the susceptibility of sensitive compo-

nents such as accelerometers and gyroscopes to vi-
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bration, they can output high-frequency clutter,
which will cause estimation errors in filters and lead
to misjudgments in decision-making systems. There-
fore, a low-pass filter with a cutoff frequency of
50 Hz and a sampling frequency of 500 Hz is de-
signed to help adaptive strong tracking unscented
Kalman filter (ASTUKF) suppress the high-fre-
quency signals with significant impact. To sum up,
the algorithm steps can be summarized as follows.
Step 1
(IIRF) to the original observation signal to suppress

Apply infinite impulse response filter

high-frequency interference.
Step 2
variance matrix, the process noise covariance ma-

Initialize the state vector, the error co-

trix and the measurement noise covariance matrix.
Furthermore, initialize the adaptive parameters and
the strong tracking factor.

Step 3 Based on the state vector and the error
covariance matrix, generate the Sigma point set us-
ing a symmetric strategy.

Step 4 Perform nonlinear propagation on the
Sigma point set and predict the state vector based on

the nonlinear system.

Step 5 Predict the measurement vector and
calculate the innovation matrix.
Step 6 Calculate the strong tracking fading

factor and update the error covariance matrix.

Step 7 Calculate the Kalman gain, estimate
the system state vector and update the error covari-
ance matrix.

The algorithm proposed in this paper has a
higher overall complexity than the traditional extend-
ed Kalman filter (EKF) and basic UKF, but it still
falls within the range of real-time feasibility for engi-
neering applications. The IIRF introduces linear
complexity, while the complexity of ASTUKF
mainly stems from UT, strong tracking factor calcu-
lation, and Sage-Husa adaptive noise estimation.
Overall, it is of the order of O (»*) regarding the
system state dimension n, which 1s suitable for the

real-time requirements of low-cost MEMS IMUs.

3 Experimental Verification and

Data Analysis

3.1 Experimental platform

In order to verify the correctness of the pro-
posed method, a hardware testing platform was con-
structed using the STM32H743 microcontroller,

the six-axis gyro accelerometer ICM 20689, and the
three-axis magnetometer QMC5883L.. The hard-

ware parameters are shown in Table 1.

Table 1 Parameters of six-axis gyro accelerometer
ICM20689 and
QMC5883L

three-axis magnetometer

The maximum

Sensor type Resolution

measurement range
4096 LSB/g +8g

16.4 LSB/((*)s ") 2000 ()/s
3000 LSB/Gs +8Gs

Accelerometer
Gyroscope

Magnetometer

Note: LSB means the least significant bit.

The output data of ICM20689 include 16-bit
three-axis accelerometer and six-axis gyroscope da-
ta, which are read by the main controller through
the SPI communication protocol. The 16-bit three-
axis geomagnetic data, provided by the QMC5883L
chip, are read by the main controller through the in-
ter-integrated circuit (IIC) communication protocol.
After reading the raw data, the data calculation is
performed in the main controller, and finally the da-
ta are uploaded to the PC to be processed by MAT -
LAB.

3.2 Comparison experiments

3.2.1 Data comparison during IMU in static
state

An experience was conducted by using the
STM32H743 microcontroller to implement EKF ,
UKF , ASTUKF , and infinite impulse response-
ASTUKF (IIR-ASTUKF) , and the comparison
are made among those data. The sampling frequen-
cy of the system is 500 Hz, and the samples are
from the roll, pitch, and yaw axes. 30 000 sampling
points are sampled on each axis, and the root mean
square error (RMSE) of each filtering algorithm is
calculated by the true values of the data to evaluate
the accuracy of the output angle. Figs.2 (a, ¢, e)
show the angle output curves of the roll axis, pitch
axis, and yaw axis, respectively. And the corre-
sponding angle errors of the roll axis, pitch axis,
and yaw axis are respectively displayed in Figs.2(b,
d, ). The Fourier transform is performed on the fil-
tered angle data, and then their spectrums are ob-
tained, which can be seen in Fig.3. The comparison
of RMSEs of the three axis angles is shown in Ta-
ble 2.
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Fig.2 Three-axis attitude changes and measurement errors when IMU 1is in static state
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Table 2 RMSE comparison when IMU is in static state increases, the amplitude of the data output gradual*
©) ly decreases. It should be noticed that the frequency
Attitulde EKF  UKF ASTUKF TR-ASTUKF of the data output in this experiment is beyond
angle . . .
d 50 Hz. When in higher frequencies from 50 Hz to
Roll axis  0.0034 0.0028  0.0017 0.001 6 . .
_ ) 500 Hz, the interference signals can be greatly sup-
Pitch axis  0.0035 0.0028  0.0018 0.001 7 ¢
. . Th , in the stati , the high
Vaw axis 05738 05547  0.536 5 05346 pressed erefore, n the static state, the higher
the frequency is, the relatively smaller the jumps of
Fig.3 shows that when the sensor is in a static the output data are, and the more remarkable its
interference environment, its output assignment of ability to suppress interference is. This further veri-

the normal data is not affected, but as the frequency fies the validity and effectiveness of the algorithm
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proposed in this paper.

When IMU is in a static state, the data variance
can also be used to evaluate the degree of dispersion
of the data relative to the true value. Therefore, as
shown in Fig.2, the variances of the rolling axis in
EKF, UKF, and our algorithms are 0.058 31,
0.052 64, and 0.040 62, respectively; the variances
of the pitch axis in EKF, UKF, and our algorithms
are 0.058 93, 0.052 49, and 0.040 65, respectively;
and the variances of the yaw axis in EKF, UKF, and
our algorithms are 0.757 5, 0.744 8, and 0.731 2,
correspondingly. Compared with the traditional al-
goithms of EKF and UKF, the algorithm advanced
in this paper tends to be much closer to the true val-
ue in static state. Moreover, it can be found from Ta-
ble 2 that RMSEs of the three-axis data calculated
by the algorithm in this paper are relatively small.
Therefore, compared with the traditional algorithms
of EKF and UKF, our algorithm has higher estima-
tion accuracy in static state.

3.2.2 Comparison of measurement data during
IMU in motion

In order to be close to the actual working condi-
tions, the unmanned vehicle is used as the experi-
mental platform to detect the anti-vibration interfer-
ence ability of the IMU system. The experimental

platform of the unmanned vehicle is shown in Fig.4.

Fig.4 Unmanned vehicle experimental platform

When the IMU system is working normally, an
order is given to make the roll and pitch angles in
IMU move freely within ==50°, and the yaw angle
move freely between 240" and 360° at the frequency
of 500 Hz. Then the roll, pitch, and yaw axes are
sampled separately, and each 10 000 sampling points
are sampled for the purpose that the accuracy of the

output angle can be evaluated by calculating RMSEs

of each filtering algorithm with the true values of the
data. Figs.5(a, c, e) show the angle output curves of
the roll axis, pitch axis, and yaw axis, respectively.
And the angle errors of the roll axis, pitch axis, and
yaw axis are presented in Figs.5(b, d, [) correspond-
ingly. Then the Fourier transform is performed on
the filtered angle data to obtain their spectrums,
shown in Fig.6. Moreover, the comparison of RM-
SEs of the three axis angles is shown in Table 3.

From Figs.5(a, ¢, e), it can be seen that in
contrast to traditional EKF and UKF algorithms,
the attitude angle curve worked out by the algorithm
put forward in this paper is much smoother. In the
process of IMU motion, due to the real-time adap-
tive measurement noise and the correction effect of
strong tracking algorithms on priori error covari-
ance, more accurate reference is provided for the
Kalman gain calculation in UKF. On the other
hand, as shown in Figs.5(b, d, ), our algorithm
has the smallest error among the three algorithms.

Fig.6 shows that when the sensor is in a dy-
namic interference environment, its data output as-
signment is not actually affected, but as the frequen-
cy increases, the data output amplitude gradually de-
creases. During the dynamic conditions, the output
data of the sensor may experience significant fluctua-
tions. However, compared with the static condi-
tions, the normal output of data is prioritized for as-
surance, resulting in less suppression of high-fre-
quency signals. But compared with traditional algo-
rithms, its anti-interference ability is superior near
the frequency of 500 Hz.

Moreover, from Table 3, it can be concluded
that RMSEs of the three axes in the algorithm pro-
posed in this paper are relatively small. Therefore,
under normal measured motion conditions, the algo-
rithm proposed in this paper has more advantages
and higher estimation accuracy. Due to the small
and high frequency vibration in the movement of the
vehicle IMU system, the unmanned vehicle plat-
form shown in the test system has a rigid connection
between the IMU and the vehicle body, and no buf-
fer processing is done. This leads to that the interfer-
ence of the vehicle body vibration will be directly
transmitted to the IMU system, resulting in more

serious interference or error. However, it can be
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Fig.5 Three-axis attitude changes and measurement errors during IMU in motion
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Fig.6 Three-axis spectrum during IMU in motion
Table 3 RMSE camparison when IMU is in motion unmanned vehicles. It can also illustrate the suppres-

O sion effect of the proposed algorithm for high-fre-

A;Tg‘i‘ie EKE  UKF ASTUKF IIR-ASTUKF quency interference signals.
Roll axis  0.6304 0.4196  0.278 5 0.178 0 4 Conclusions
Pitch axis 0.4596 0.3941 0.3187 0.1910
Yaw axis 31522 2.2329  1.690 6 0.830 6 When solving IMU data, the EKF algorithm
can solve the nonlinear problems of the system, but
seen from Fig.5 that the angle output data are nor- it also introduces errors in high-order Taylor terms
mal and there are few outliers in the measured data and operations of Jacobian matrix, resulting in a

values, which can be used to guide the navigation of large computational workload for EKF. By the
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method of approximating the posterior probability
statistical characteristics of variables, the UKF algo-
rithm improves the above problems, however, it
can cause significant errors when the measurement
noise cannot be accurately obtained. This paper pro-
poses a second-order Butterworth low-pass filter to
process sensor raw data, avoiding interference from
outliers and high-frequency noise. On this basis, the
Sage-Husa adaptive method is introduced to im-
prove the UKF algorithm so as to estimate measure-
ment noise while iterating the algorithm. The Sage-
Husa adaptive method is only a suboptimal estima-
tion, but it can estimate noise based on the read
measurement data and update the measurement
noise with historical information. Pleasantly, it can
solve the problem of outliers in actual systems
through strong tracking filtering. This method signif-
icantly improves the filtering accuracy of the system
without reducing data utilization. Moreover, the
RMSE in the proposed algorithm is the smallest
compared to EKF and UKF, which can meet the
of low—cost MEMS

IMU systems and is applicable to unmanned vehi-

measurement requirements

cles or unmanned aerial vehicle systems.
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TE:ARZNEAGE LA T HE ARSI TR, BT — 20 RF AE RN ERIZELHF R LI
(Adaptive strong tracking unscented Kalman filter, ASTUKF) 3% . 4 7 474 %95, % H % £ ASTUKF #7 3%
BN —FF T b oem R % 9% %% (Infinite impulse response filter, [IRF ) 5 JR %4 2 P54 TR 4L 22 5 R G f2 98 Ik a9 i A2 P af
REW T EAEMERATEE A EMNRFTHAT AT REAEBREGERME LTS LMK, FREREAN AL
SEik 2OV MR SRR B 45 R0y ¥ o AR £ (Root mean square error, RMSE) # 4 % 4 & F R 2 8 %% (Extended Kal-
man filter, EKF ) = £ 3 & /R Z & 7% (Unscented Kalman filter, UKF) # % 2 %) A& T 45 57.5% .36.1 % ; i 44 25 £
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