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Abstract: In this paper， an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter 
（ASTUKF） is advanced to improve the precision of pose estimation and the stability for data computation. To 
suppress high-frequency noise， an infinite impulse response filter （IIRF） is introduced at the front end of ASTUKF to 
preprocess the original data. Then the covariance matrix of the error is corrected and the measurement noise is 
estimated in the process of filtering. After that， the data from the experiment were tested on the hardware experiment 
platform. The experimental results show that compared to the traditional extended Kalman filter （EKF） and 
unscented Kalman filter （UKF） algorithms， the root mean square error （RMSE） of the roll axis results from the 
algorithm proposed in this paper is respectively reduced by approximately 57.5% and 36.1%； the RMSE of the pitch 
axis results decreases by nearly 58.4% and 51.5%， respectively； and the RMSE of the yaw axis results decreases 
almost 62.8% and 50.9%， correspondingly. The above results indicate that the algorithm enhances the ability of 
resisting high-frequency vibration interference and improves the accuracy of attitude solution.
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0 Introduction 

With the widespread application of robots in in‑
dustrial production and daily life， the multi-sensor 
data fusion is often involved in the robot control. In 
some complex environments， inertial measurement 
unit （IMU） modules are commonly used to compen‑
sate for core systems［1-4］. IMU is a core component 
that measures the motion state of an object through 
built-in inertial sensors. It can output the angular ve‑
locity and linear acceleration of the object in real 
time. Some advanced models can also directly out‑
put the attitude angles （such as Euler angles， qua‑
ternions）， and are widely used in unmanned air‑
craft， autonomous driving， robots， aerospace， etc. 
It is a key technology for achieving “being able to 

sense one’s own movement even without external 
reference”. Li et al.［5］ proposed a global navigation 
satellite system/inertial navigation system （GNSS/
INS） tightly coupled positioning method to enhance 
the positioning accuracy of the carrier in harsh envi‑
ronments. Wei et al.［6］ introduced a system error 
compensation to enhance the positioning accuracy 
and stability based on GNSS/IMU integrated navi‑
gation. In robot positioning and navigation prob‑
lems， the calculation of robot attitude is often ac‑
companied by it［7-8］. Therefore， the use of IMU-as‑
sisted repositioning method was proposed by Yang 
et al.［9］ to enhance the accuracy of its positioning al‑
gorithm. Zhang et al.［10］ utilized a tightly coupled ap‑
proach to fuse multi-sensor data， which made the 
pose calculation for robots more accurate compared 
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with single sensors. However， the accelerome‑
ters［11］ and magnetometers in IMU chips of 
micro‑electro‑mechanical system （MEMS） are sus‑
ceptible to the interference. Therefore， a more com‑
prehensive filtering algorithm is needed to process 
the data.

Outputs from the raw data of the IMU system 
are the system angular velocity and linear accelera‑
tion， and based on these， a new algorithm is needed 
to calculate the attitude data of the system at the cur‑
rent moment. As calculation errors and measure‑
ment errors may occur in the hardware IMU chip， 
and if there is any vibration or any other forms of in‑
terference in the system， it is highly likely to cause 
significant angle errors， or even directly result in da‑
ta anomalies， which can lead to more serious errors. 
During robot walking， due to the road bumps or vi‑
brations generated by the body’s power system， the 
outputs of accelerometers and magnetometers are in‑
terfered， which directly affects the filter output of 
the IMU［12-17］. Liu et al.［18］ proposed that the accura‑
cy of the output of attitude data from IMU can be 
improved with the adaptive unscented Kalman filter‑
ing （UKF） algorithm to adaptively adjust the initial 
values required by the filtering algorithm. But when 
the dimension of state variables in nonlinear systems 
is high， the UKF cannot better adapt to high-dimen‑
sional systems. Therefore， the fuzzy robust adap‑
tive methods were put forward by Qiao et al.［19］ to 
enhance the stability of the filter， and thus the cuba‑
ture Kalman filter （CKF） algorithm is more suitable 
for high-dimensional systems compared with the 
UKF algorithm. Due to the fact that the susceptibili‑
ty of inertial sensitive components such as acceler‑
ometers and gyroscopes are sensitive to vibration， 
Yang et al.［20］ advanced the fusion of UKF algo‑
rithm and complementary filtering algorithm， which 
significantly improved the vibration resistance per‑
formance of IMU. The usage of UKF algorithm for 
the real-time estimation and calibration of magne‑
tometers was proposed by Shen et al.［21］ and Lu et 
al.［22］， which improved the accuracy of heading an‑
gle estimation. In Ref.［21］， the two-stage UKF al‑
gorithm was adopted to calibrate magnetometers in 
real time， significantly improving their anti-interfer‑

ence ability in magnetic environments.
Above studies all mentioned that the measure‑

ment errors of IMU sensors were difficult to deter‑
mine or the outputs of accelerometers and magne‑
tometers were affected by various types of vibra‑
tions. Based on these problems that IMU is sensi‑
tive to these interferences，and the measurement 
noise of sensors is difficult to model and theoretical‑
ly eliminate， this paper proposes to adopt the Sage-

Husa adaptive method to estimate the measurement 
noise of sensors in real time， so as to improve the at‑
titude calculation accuracy of the UKF algorithm.

1 Sage⁃Husa Adaptive Strong 
Tracking Unscented Kalman Fil⁃
ter Algorithm 

In order to improve the accuracy of the algo‑
rithm and adapt to measurement noise under differ‑
ent working conditions， an adaptive unscented Kal‑
man algorithm based on the Sage-Husa adaptive 
method is proposed to work out the attitude angle of 
aircraft. The structural diagram of the attitude calcu‑
lation system is shown in Fig.1， in which the state 
update data are provided by the gyroscope and com ‑
bined with acceleration measurement and geomag‑
netic measurement. After calculating the measure‑
ment priori estimate， the innovation matrix and the 
Sage-Husa method are used to make suboptimal es‑
timate of the measurement noise， and a re-estima‑
tion is introduced to ensure the positive definiteness 
of the measurement noise matrix. Finally， the Kal‑
man gain is calculated and then the attitude angle is 
obtained.

Fig.1　Structure diagram of the adaptive unscented Kalman 
filter system

866



No. 6 LI Na, et al. Dynamic Error Suppression of Inertial Measurement Unit Based on…

1. 1 State prediction and measurement equa⁃
tions for nonlinear systems　

The nonlinear discrete state prediction equation 
for an IMU system is

XK = f ( XK - 1 ) +WK - 1 (1)
where XK and XK−1 respectively represent the priori 
estimate of the state variable at the time of K and 
the posterior estimate at the time of K−1； f denotes 
the nonlinear propagation of the system； and WK is 
systematic error. E [WK ] = 0 is the variance matrix， 
and E [WK，W T

K ] = QK is the covariance matrix.
The measurement equation of the system is

ZK = h ( XK ) + VK (2)
where ZK represents the sensor measurements at the 
time of K， h the nonlinear propagation of the mea‑
surement equation， and VK is measurement error. 
E [VK ] =VK is the variance matrix， and 

E [VK，V T
K ] = RK represents the covariance matrix.

1. 2 Unscented Transform and Kalman filtering 
framework　

The unscented transform （UT） is a nonlinear 
transformation method based on the Cholesky de‑
composition ， which can perform nonlinear propa‑
gation on the sampling points of the known da‑
ta ， thereby directly close to the statistical charac‑
teristics of the posterior date. Firstly ， sample 
the state variables of the system ， where the sys‑
tem state variables are represented as XK =
[ q0，q1，q2，q3，ωX，ωY，ωZ ]

T
. Among them， q is the 

quaternion vector and ω the three-axis angular veloc‑
ity vector. The sampling method for XK is

χK - 1 = é
ë
êêêê X̂K - 1[ ]X̂K - 1

n
+ γ PX,K - 1 [ ]X̂K - 1

n
-

]      γ PX,K - 1  (3)

where χK - 1 is the sampling matrix for system state 
variables， i. e. Sigma points； γ the scale parameter 
of the distribution of Sigma points； PX，K - 1 the error 
priori covariance matrix， which is iterated after the 
initial values are given； X̂K - 1 the posterior value of 
the previous state variable， and n the dimension of 
the system state variables. The nonlinear propaga‑
tion of the system χK - 1 is

χ *
i,K |( K - 1 ) = f ( χ i,K - 1 ) (4)

where χ *
i，K |( K - 1 ) represents the output of the system 

state variables after propagation. And the weight 
sum can be calculated as follows

χ̂K |( K - 1 ) = ∑
i = 0

2n

W m
i χ *

i,K |( K - 1 ) (5)

where χ *
i，K |( K - 1 ) denotes the ith column of matrix 

χ *
K |( K - 1 )； W m

i  the weight value for each column of da‑
ta， shown as

ì
í
î

W m
0 = λ/γ2

W m
i = 1/2γ2 (6)

λ = α2 ( n + κ )- n (7)
where α controls the distribution of Sigma points 
with the value of 1； and κ is used to ensure the 
semi-positive definiteness of PX，K - 1 ， with the val‑
ue of 0. At the present time， the current second 
priori estimate value of the state variables can be 
obtained as χ̂K |( K - 1 ) . The measurement vector for 
the system is YK=［q0，q1，q2，q3，ωX，ωY，aX，aY，aZ，

mX，mY，mZ］T， with a as the three-axis acceleration 
vector， and m as the three-axis geomagnetic data. 
Performing the UT on them， the sampling matrix 
of the measurement vector is

ξK |( K - 1 ) = é
ë
êêêê X̂K |( K - 1 )[ ]X̂K |( K - 1 )

n
+ γ PX,K |( K - 1 )

ù
û
úú          [ ]X̂K |( K - 1 )

n
- γ PX,K |( K - 1 ) (8)

And the nonlinear propagation is measured on 
the sampling matrix.

η i,K |( K - 1 ) = h ( χ i,K |( K - 1 ) ) (9)
where η i，K |( K - 1 ) is the output of the measured state 
variable after propagation， and its weight is calculat‑
ed by

ŶK |( K - 1 ) = ∑
i = 0

2n

W m
i η i,K |( K - 1 ) (10)

where ŶK |( K - 1 ) is the measurement priori estimate 
value. Then the covariance matrix of system state 
variables， the measurement vector covariance ma‑
trix， and the covariance matrix of system state vari‑
ables and measurement vector can be expressed as

PX,K |( K - 1 ) = ∑
i = 0

2n

W c
i ( χ *

i,K |( K - 1 ) - X̂K |( K - 1 ))×

( χ *
i,K |( K - 1 ) - X̂K |( K - 1 )) T

+ QK - 1 (11)

PY,K |( K - 1 ) = ∑
i = 0

2n

W c
i (η i,K |( K - 1 ) - ŶK |( K - 1 ))×

(η i,K |( K - 1 ) - ŶK |( K - 1 )) T
+ RK (12)
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PXY,K |( K - 1 ) = ∑
i = 0

2n

W c
i ( χ i,K |( K - 1 ) - X̂K |( K - 1 ))×

(η i,K |( K - 1 ) - ŶK |( K - 1 )) T
(13)

where W c
i  is the measurement coefficients of error 

covariance matrix. QK - 1 and RK are the covariance 
matrices for the system noise and  measurement 
noise. Far from now， the UT is completed， and the 
values of PX，K |( K - 1 )，PY，K |( K - 1 )， PXY，K |( K - 1 )， ŶK |( K - 1 )， 
and χ̂K |( K - 1 ) are substituted， which are calculated ini‑
tially， into the Kalman filtering algorithm frame‑
work.

KK = PXY,K |( K - 1 )P-1
Y,K |( K - 1 ) (14)

X̂K = X̂K |( K - 1 ) + KK ( ZK - ŶK |( K - 1 )) (15)
Finally， the priori error covariance matrix is up‑

dated and saved to complete the iteration.
PX,K = PX,K |( K - 1 ) - KK PY,K |( K - 1 )K T

K (16)
From Eqs.（11） and （12）， it can be found that 

the covariance matrices QK - 1 and RK are given as 
initial values based on engineering experience and 
are not iteratively calculated in engineering calcula‑
tions. This will result in significant errors that can‑
not be accurately captured by the filter， leading to 
blind trust in the measured or predicted values. Due 
to the high degree of nonlinearity of the system 
equations， the system noise is difficult to estimate， 
and the output angular velocity of the gyroscope is 
relatively stable. Accordingly， the system noise is 
generally small. However， the accelerometers and 
magnetometers are highly susceptible to interfer‑
ence， so the estimation of measurement noise is cho‑
sen to compensate PY，K |( K - 1 ) for the system. In real 
engineering environments， the sensitive characteris‑
tics of IMU sensors can easily generate outliers as 
measurement fault points. Therefore， a strong track‑
ing filtering can be introduced to correct the error 
priori covariance matrix to improve the data utiliza‑
tion and filtering accuracy.

2 Improved UKF Algorithm Based 
on Adaptive Strong Tracking Fil⁃
tering 

Starting from the UKF algorithm model men‑
tioned above， the innovation matrix εK can be 
worked out first by Eq.（10） and the current mea‑
sured value ZK of the sensor， and its variance matrix 
ΓK can be expressed as

ΓK =
ì
í
î

ïï
ïï

εK εT
K                                            K = 1

( )1 - βK ΓK - 1 + βK εK εT
K     K > 1 (17)

εK = ZK - ŶK |( K - 1 ) (18)

where βK = βK - 1

βK - 1 + b
 （0 < b < 1） is the exponen‑

tial fading factor， β0 = 1， and β∞ = 1 - b. b is usu‑
ally taken as 0.95—0.99. Then the measurement 
noise estimation formula can be obtained from the 
Sage-Husa adaptive method as follows
R̂K = ( 1 - βK ) R̂K - 1 + βK( εK εT

K - PY,K |( K - 1 ) )   (19)
Due to the independence of measurement， R̂K 

is a positive definite diagonal matrix. Moreover， the 
latter term undergoes subtraction in Eq.（19）， and 
during the iteration process， the value of εK εT

K be‑
comes smaller and smaller as R̂K becomes more ac‑
curate， which may result in the iteration of R̂K being 
non‑positive definite. Usually， this problem can be 
solved by adopting sequential filtering， but in robot 
control systems， the computing resources are limit‑
ed and the real-time requirements are high. There‑
fore， it is necessary to make a judgment on the iter‑
ated R̂K here. If it is found to be non-positive defi‑
nite， R̂K should be reassigned according to its initial 
value and re iterated. This not only solves the non-

positive definite problems， but also enables R̂K to 
converge more flexibly in the different operating en‑
vironments.

By introducing a fading factor λK， the strong 
tracking filtering corrects the priori covariance ma‑
trix of errors in the UKF algorithm， and the single 
fading factor λK can be expressed as

λK = max
é

ë

ê
êê
ê
ê
ê1, tr ( )NK

tr ( )MK

ù

û

ú
úú
ú (20)

where NK=ΓK-RK，MK=∑
i=0

2n

W c
i   (η i，K |( K-1 )-ŶK |( K-1 )) ·

( )η i，K |( K - 1 ) - ŶK |( K - 1 )

T
， and the corrected priori er‑

ror covariance matrix can be expressed as
PX,K = ΛK PX,K |( K - 1 )ΛK - KK PY,K |( K - 1 )K T

K (21)
where ΛK = A diag ( λk ， λk ， λk ，… )，and A=
diag ( a1 ， a2 ， a3 ，… ) is the predetermined ex‑
perience fading ratio coefficient. Here， a1， a2 and a3 
are the coefficients of the diagonal matrix and used 
to adjust the weights.

Due to the susceptibility of sensitive compo‑
nents such as accelerometers and gyroscopes to vi‑
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bration， they can output high-frequency clutter， 
which will cause estimation errors in filters and lead 
to misjudgments in decision-making systems. There‑
fore， a low-pass filter with a cutoff frequency of 
50 Hz and a sampling frequency of 500 Hz is de‑
signed to help adaptive strong tracking unscented 
Kalman filter （ASTUKF） suppress the high-fre‑
quency signals with significant impact. To sum up， 
the algorithm steps can be summarized as follows.

Step 1 Apply infinite impulse response filter
（IIRF） to the original observation signal to suppress 
high-frequency interference.

Step 2 Initialize the state vector， the error co‑
variance matrix， the process noise covariance ma‑
trix and the measurement noise covariance matrix. 
Furthermore， initialize the adaptive parameters and 
the strong tracking factor.

Step 3 Based on the state vector and the error 
covariance matrix， generate the Sigma point set us‑
ing a symmetric strategy.

Step 4 Perform nonlinear propagation on the 
Sigma point set and predict the state vector based on 
the nonlinear system.

Step 5 Predict the measurement vector and 
calculate the innovation matrix.

Step 6 Calculate the strong tracking fading 
factor and update the error covariance matrix.

Step 7 Calculate the Kalman gain， estimate 
the system state vector and update the error covari‑
ance matrix.

The algorithm proposed in this paper has a 
higher overall complexity than the traditional extend‑
ed Kalman filter （EKF） and basic UKF， but it still 
falls within the range of real-time feasibility for engi‑
neering applications. The IIRF introduces linear 
complexity， while the complexity of ASTUKF 
mainly stems from UT， strong tracking factor calcu‑
lation， and Sage-Husa adaptive noise estimation. 
Overall， it is of the order of O（n²） regarding the 
system state dimension n， which is suitable for the 
real-time requirements of low-cost MEMS IMUs.

3 Experimental Verification and 
Data Analysis 

3. 1 Experimental platform　

In order to verify the correctness of the pro‑
posed method， a hardware testing platform was con‑
structed using the STM32H743 microcontroller， 

the six-axis gyro accelerometer ICM20689， and the 
three-axis magnetometer QMC5883L. The hard‑
ware parameters are shown in Table 1.

The output data of ICM20689 include 16-bit 
three-axis accelerometer and six-axis gyroscope da‑
ta， which are read by the main controller through 
the SPI communication protocol. The 16-bit three-

axis geomagnetic data， provided by the QMC5883L 
chip， are read by the main controller through the in‑
ter-integrated circuit（IIC） communication protocol. 
After reading the raw data， the data calculation is 
performed in the main controller， and finally the da‑
ta are uploaded to the PC to be processed by MAT ‑
LAB.
3. 2 Comparison experiments　

3. 2. 1 Data comparison during IMU in static 
state　

An experience was conducted by using the 
STM32H743 microcontroller to implement EKF ， 
UKF ， ASTUKF ， and infinite impulse response‑
ASTUKF （IIR-ASTUKF）， and the comparison 
are made among those data. The sampling frequen‑
cy of the system is 500 Hz， and the samples are 
from the roll， pitch， and yaw axes. 30 000 sampling 
points are sampled on each axis， and the root mean 
square error （RMSE） of each filtering algorithm is 
calculated by the true values of the data to evaluate 
the accuracy of the output angle. Figs.2（a， c， e） 
show the angle output curves of the roll axis， pitch 
axis， and yaw axis， respectively. And the corre‑
sponding angle errors of the roll axis， pitch axis， 
and yaw axis are respectively displayed in Figs.2（b， 
d， f）. The Fourier transform is performed on the fil‑
tered angle data， and then their spectrums are ob‑
tained， which can be seen in Fig.3. The comparison 
of RMSEs of the three axis angles is shown in Ta‑
ble 2.

Table 1　Parameters of six⁃axis gyro accelerometer 
ICM20689 and three⁃axis magnetometer 
QMC5883L

Sensor type

Accelerometer
Gyroscope

Magnetometer

Resolution

4 096 LSB/g
16.4 LSB/((°)·s-1)

3 000 LSB/Gs

The maximum 
measurement range

±8g
2 000 (°)/s

±8 Gs
Note: LSB means the least significant bit.
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Fig.3 shows that when the sensor is in a static 
interference environment， its output assignment of 
the normal data is not affected， but as the frequency 

increases， the amplitude of the data output gradual‑
ly decreases. It should be noticed that the frequency 
of the data output in this experiment is beyond 
50 Hz. When in higher frequencies from 50 Hz to 
500 Hz， the interference signals can be greatly sup‑
pressed. Therefore， in the static state， the higher 
the frequency is， the relatively smaller the jumps of 
the output data are， and the more remarkable its 
ability to suppress interference is. This further veri‑
fies the validity and effectiveness of the algorithm 

Fig.2　Three-axis attitude changes and measurement errors when IMU is in static state 

Fig.3　Three-axis spectrum of IMU in static state

Table 2　RMSE comparison when IMU is in static state
(°)

Attitude 
angle

Roll axis
Pitch axis
Yaw axis

EKF

0.003 4
0.003 5
0.573 8

UKF

0.002 8
0.002 8
0.554 7

ASTUKF

0.001 7
0.001 8
0.536 5

IIR‑ASTUKF

0.001 6
0.001 7
0.534 6
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proposed in this paper.
When IMU is in a static state， the data variance 

can also be used to evaluate the degree of dispersion 
of the data relative to the true value. Therefore， as 
shown in Fig.2， the variances of the rolling axis in 
EKF， UKF， and our algorithms are 0.058 31， 
0.052 64， and 0.040 62， respectively； the variances 
of the pitch axis in EKF， UKF， and our algorithms 
are 0.058 93， 0.052 49， and 0.040 65， respectively； 
and the variances of the yaw axis in EKF， UKF， and 
our algorithms are 0.757 5， 0.744 8， and 0.731 2， 
correspondingly. Compared with the traditional al‑
goithms of EKF and UKF， the algorithm advanced 
in this paper tends to be much closer to the true val‑
ue in static state. Moreover， it can be found from Ta‑
ble 2 that RMSEs of the three-axis data calculated 
by the algorithm in this paper are relatively small. 
Therefore， compared with the traditional algorithms 
of EKF and UKF， our algorithm has higher estima‑
tion accuracy in static state.
3. 2. 2 Comparison of measurement data during 

IMU in motion　

In order to be close to the actual working condi‑
tions， the unmanned vehicle is used as the experi‑
mental platform to detect the anti-vibration interfer‑
ence ability of the IMU system. The experimental 
platform of the unmanned vehicle is shown in Fig.4.

When the IMU system is working normally， an 
order is given to make the roll and pitch angles in 
IMU move freely within ±50°， and the yaw angle 
move freely between 240° and 360° at the frequency 
of 500 Hz. Then the roll， pitch， and yaw axes are 
sampled separately， and each 10 000 sampling points 
are sampled for the purpose that the accuracy of the 
output angle can be evaluated by calculating RMSEs 

of each filtering algorithm with the true values of the 
data. Figs.5（a， c， e） show the angle output curves of 
the roll axis， pitch axis， and yaw axis， respectively. 
And the angle errors of the roll axis， pitch axis， and 
yaw axis are presented in Figs.5（b， d， f） correspond‑
ingly. Then the Fourier transform is performed on 
the filtered angle data to obtain their spectrums， 
shown in Fig.6. Moreover， the comparison of RM ‑
SEs of the three axis angles is shown in Table 3.

From Figs.5（a， c， e）， it can be seen that in 
contrast to traditional EKF and UKF algorithms， 
the attitude angle curve worked out by the algorithm 
put forward in this paper is much smoother. In the 
process of IMU motion， due to the real-time adap‑
tive measurement noise and the correction effect of 
strong tracking algorithms on priori error covari‑
ance， more accurate reference is provided for the 
Kalman gain calculation in UKF. On the other 
hand， as shown in Figs.5（b， d， f）， our algorithm 
has the smallest error among the three algorithms.

Fig.6 shows that when the sensor is in a dy‑
namic interference environment， its data output as‑
signment is not actually affected， but as the frequen‑
cy increases， the data output amplitude gradually de‑
creases. During the dynamic conditions， the output 
data of the sensor may experience significant fluctua‑
tions. However， compared with the static condi‑
tions， the normal output of data is prioritized for as‑
surance， resulting in less suppression of high-fre‑
quency signals. But compared with traditional algo‑
rithms， its anti-interference ability is superior near 
the frequency of 500 Hz.

Moreover， from Table 3， it can be concluded 
that RMSEs of the three axes in the algorithm pro‑
posed in this paper are relatively small. Therefore， 
under normal measured motion conditions， the algo‑
rithm proposed in this paper has more advantages 
and higher estimation accuracy. Due to the small 
and high frequency vibration in the movement of the 
vehicle IMU system， the unmanned vehicle plat‑
form shown in the test system has a rigid connection 
between the IMU and the vehicle body， and no buf‑
fer processing is done. This leads to that the interfer‑
ence of the vehicle body vibration will be directly 
transmitted to the IMU system， resulting in more 
serious interference or error. However， it can be 

Fig.4　Unmanned vehicle experimental platform
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seen from Fig.5 that the angle output data are nor‑
mal and there are few outliers in the measured data 
values， which can be used to guide the navigation of 

unmanned vehicles. It can also illustrate the suppres‑
sion effect of the proposed algorithm for high-fre‑
quency interference signals.

4 Conclusions 

When solving IMU data， the EKF algorithm 
can solve the nonlinear problems of the system， but 
it also introduces errors in high-order Taylor terms 
and operations of Jacobian matrix， resulting in a 
large computational workload for EKF. By the 

Fig.5　Three-axis attitude changes and measurement errors during IMU in motion 

Fig.6　Three-axis spectrum during IMU in motion 

Table 3　RMSE camparison when IMU is in motion  
(°)

Attitude 
angle

Roll axis
Pitch axis
Yaw axis

EKF

0.630 4
0.459 6
3.152 2

UKF

0.419 6
0.394 1
2.232 9

ASTUKF

0.278 5
0.318 7
1.690 6

IIR‑ASTUKF

0.178 0
0.191 0
0.830 6
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method of approximating the posterior probability 
statistical characteristics of variables， the UKF algo‑
rithm improves the above problems， however， it 
can cause significant errors when the measurement 
noise cannot be accurately obtained. This paper pro‑
poses a second-order Butterworth low-pass filter to 
process sensor raw data， avoiding interference from 
outliers and high-frequency noise. On this basis， the 
Sage-Husa adaptive method is introduced to im ‑
prove the UKF algorithm so as to estimate measure‑
ment noise while iterating the algorithm. The Sage-

Husa adaptive method is only a suboptimal estima‑
tion， but it can estimate noise based on the read 
measurement data and update the measurement 
noise with historical information. Pleasantly， it can 
solve the problem of outliers in actual systems 
through strong tracking filtering. This method signif‑
icantly improves the filtering accuracy of the system 
without reducing data utilization. Moreover， the 
RMSE in the proposed algorithm is the smallest 
compared to EKF and UKF， which can meet the 
measurement requirements of low-cost MEMS 
IMU systems and is applicable to unmanned vehi‑
cles or unmanned aerial vehicle systems.
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基于改进无损卡尔曼滤波的惯性测量单元动态误差抑制

李 娜 1， 李 坤 1， 贺海育 2， 景 敏 3

（1.陕西理工大学数学与计算机科学学院，汉中 723000，中国； 2.陕西理工大学特莱恩工学院，汉中 723000，
中国； 3.陕西理工大学机械工程学院，汉中 723000，中国）

摘要：为提高机器人的位姿估计精度以及数据解算的稳定性，提出了一种量测噪音自适应强跟踪无损卡尔曼滤波

（Adaptive strong tracking unscented Kalman filter，ASTUKF）算法。为了抑制高频噪音，该算法在 ASTUKF 前端

引入一种无限冲激响应滤波器（Infinite impulse response filter，IIRF）对原始数据做预处理；然后在滤波的过程中对

误差协方差矩阵进行修正，并对量测噪音进行估计；最后在搭建的硬件实验平台上进行测试。实验结果表明：本文

算法数据解算横滚轴结果的均方根误差（Root mean square error， RMSE）较传统扩展卡尔曼滤波（Extended Kal‑
man filter，EKF）和无损卡尔曼滤波（Unscented Kalman filter， UKF）算法分别降低了约 57.5%、36.1%；俯仰轴结果

的 RMSE 较传统 EKF 和 UKF 算法分别降低了约 58.4%、51.5%；偏航轴结果的 RMSE 较传统 EKF 和 UKF 算法分

别降低了约 62.8%、50.9%。结果表明本文算法增强了抗高频振动干扰的能力，提高了姿态解算精度。

关键词：加速度计；惯性测量单元；自适应强跟踪无损卡尔曼滤波；四元数；卡尔曼滤波器
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