Nov. 2025

Transactions of Nanjing University of Aeronautics and Astronautics

Equilateral Triangular Array Formation Configuration
Initialization Control for Space-Based Gravitational Wave
Observatory

PAN Zhengzu', BANDO Mai*, ZHU Zhanxia", HOKAMOTO Shinji®

1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, P. R. China;
2. Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395, Japan

(Received 8 June 2025; revised 23 July 2025; accepted 29 August 2025)

Abstract: This paper presents an analysis of an equilateral triangular array formation initialization for space-based
gravitational wave observatory (GWO) near Lagrange points in the circularrestricted three-body problem. A stable
configuration is essential for the continuous observation of gravitational waves (GWs). However, the motion near the
collinear libration points is highly unstable. This problem is examined by output regulation theory. Using the tracking
aspect, the equilateral triangular array formation is established in two periods and the fuel consumption is calculated.
Furthermore, the natural evolution of the formation without control input is analyzed, and the effective stability

duration is quantified to determine the timing of control interventions. Finally, to observe the GW's in same direction
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with different frequency bands, scale reconfiguration is employed.
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0 Introduction

There are many gravitational wave sources in
the universe. Gravitational waves (GWs) are theo-
retically predicted by Einstein’ s field equations'’.
The gravitational wave observatory (GWO) mis-
sions are of great significance for verifying the theo-
ry of relativity and exploring the origin of the uni-
verse'”. Laser interferometer gravitational-wave ob-
servatory (LIGO) successfully observed GW sig-
nals for the first time in 2015, thereby ushering in a
new era in the study of the universe based on
GWs®.  GWOs can be
ground-based GWOs and space-based GWOs.
Ground-based GWOs LIGO™, TA-
MA300" | and GEO600"!. Ground-based GWOs

only observe high-frequency GWs due to the limita-

categorized  into

include

tion of arm length and noise interference. As a re-
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sult, they cannot access the medium- and
low-frequency bands, where a wealth of astrophysi-
cal sources such as massive black hole binaries, ex-
treme massratio inspirals, and stochastic back-
grounds are expected to exist. To overcome these
limitations, space-based GWOs employing space-
craft formation flying are preferred. The European
Space Agency (ESA) and the National Aeronautics
and Space Administration (NASA) first proposed
the laser interferometer space antenna (LISA) in
1993, Since then, numerous GWO mission con-
cepts have been proposed, including DECIGO',
BBO'™, TianQin”', and Taiji'™”. The basic princi-
ple of a space-based GWO is to employ three space-
craft arranged in an equilateral triangular formation.
To date, three effective mechanisms for realizing
such triangular formations have been proposed:

Co-orbital constellation, relative orbit, and triangu-
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lar libration point'*’.

The process of establishing an equilateral trian-
gular formation is referred to as formation initializa-
tion. Although an equilateral triangular configura-
tion is essential for GWOs, relatively few studies
have focused on this problem. Several studies have
proposed equilateral triangular formation design
methods based on orbital geometric relation-
ships'". In Ref.[13], a space circular formation
Clohessy-Wiltshire

(CW) equation. Since the CW equation has only

was constructed using the

14]

first-order accuracy, Jiao et al.""* proposed a spatial

circular  configuration design based on the
second-order CW equation. Additionally, Liu et al."”
proposed a geometric formation design method also
based on the CW equation. To ensure long-term sta-
bility of the configuration, various optimization
methods have also been investigated. Xia et al.''”
optimized the natural orbital configuration of LISA
using a hybrid reactive tabu search algorithm. In
Ref.[17], an adaptive solution space adjustment al-
gorithm was proposed to enhance the convergence
efficiency of the differential evolution (DE) algo-
rithm. Regarding configuration initialization, some
studies have investigated the use of impulse maneu-
vers to guide each spacecraft into its designated posi-
tion"""1¥,

Currently, various control methods can be em-
ployed for spacecraft initialization, among which
output regulation theory is often preferred due to its
straightforward design and computational efficien-
ey, Output regulation theory is a control theory
that aims to regulate the output of a system to fol-
low a desired reference signal, even in the presence
of disturbances and uncertainties. In the field of
spacecraft formation, this theory has been applied to
various  formation

problems,  ranging from

near-Earth formations to Lagrange point forma-
tions' ™"

This paper presents an analysis of the equilater-
al triangular array formation near the Sun-Earth La-
grange points, and a control strategy for a precise
equilateral triangular array formation that can be ap-
plied to the Sun-Earth Lagrange points is proposed.

The fuel consumption for maintaining the formation

at the collinear libration points is evaluated. Further-
more, the uncontrolled evolution of the equilateral
triangular array formation is examined, and the ef-
fective stability duration is quantified to determine
how long the equilateral triangular array formation
configuration can remain intact without intervention.
To observe GWs in the same direction with differ-
ent {requency bands, reconfiguration control is per-

formed.

1 Equations of Motion in CRTBP

In this study, the circular restricted three-body
problem (CRTBP) is employed to describe the mo-
tion of a spacecraft P, under the gravitational influ-
ence of two massive celestial bodies, M, and M, ,
which represent the Sun and the Earth, respective-
ly, as illustrated in Fig.1. The non-dimensional co-
ordinates of the spacecraft, Sun, and Earth are giv-
enby(X,Y,Z),( —p,0,0), and (1 —p,0,0), re-
spectively. The equations of motion of the space-

craft in non-dimensional form are provided in Ref.
[22].

M, - M,

(=p, 0, 0) (1-p, 0, 0) X
Fig.1 CRTBP system
.. . 1—p
X—2Y —X=—""""(X+p)—
8
© _
S(X—1+p)+tu,
7
’ (1)
. s ou 1—0p Ya
Y+2X—Y= —Y ;Y +u,
ry rs
. 1
i=—L72-C 71w
ri rs
M,
where the mass parameter o=——— and
P T M+ M,

(u,, uy, u.) represent the control accelerations in the

X, Y, and Z directions, respectively. The distances

between the spacecraft and the two primary bodies
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are denoted by r, and 7., as follows

n=J(x+p) + Y+ 2*

rZZJ(X* 1+,0)2+ Y+ Z*
The equations of motion are normalized, there-
fore, Eq.(1) includes stationary points known as
Lagrange points, L,, which satisfy

0

1
X =

0
X+po)+—(X—1+
p (X+p) r;( )
1— (2)
y=—Ly+Ly
ri rs
Z=0
and the positions of the Lagrange points are given by
Ll:(ll(/o)vovo)

where

r]:/(1+li+p)2+y2+zz

72:\/(1‘+Z,-* 1+,0)2+y2+22
Linearized equations in Eq.(4) at the origin are
expressed as
=2y (20, +1)x=u,
4 2i+(o— 1) y=—u,
Ft+oz=u.
where
14 l—p
o) = 1+pl  Ilo) ol

Then, Eq.(5) can be rewritten in the state

+

0;

space form as

L,=(/[(p),0,0) xr=Ax+ Bu (6)
143:(13({0),0,0) (3) where
j— . YAy o> o T — !
Li=(1/2— 0,3 /2,0) Ca=leydyed) w=luu ul
0 0 10 0 0
where the values of /; are determined by Eq.(3). To A= 2o, 11 0 0 2 00
. . . . . 0 l—6, =2 0 0 O
describe the equations of motion near a collinear li-

i _ . o _ 0 0 0O o0 o0 1
bration point L;(i=1, 2, 3), it is convenient to use 0 0 0 0 —o O
the coordinate system with its center located at L,. 0 0 0]

Replacing X, Y,and Z by x + /,y,z, Eq.(1) can 0 0 0
be rewritten as B— 1 0 0
1—p ( 0 1 O
F—2y—ax=1[— r+iL+p)—
Al p o) 00 0
0 L0 0 1]
T;’(IJF L=1tpe)tu Similarly, the state-space form of Eq.(6) can
B _ 1—p 0 ) be written in a semi-linear form as
y+21*yf*Ty*7;y+uy = Ax+ Bf(x)+ Bu
. 1—0p 0 where f(x) represents the nonlinear component,
f=————z— 2T u
r Ty expressed as
_ - -
L= 202~ (a+L+0)—L(x+i—1+p)
i T
1 /
‘ —e P
flx)= e A | =|/
i Ty y;
l=p
0.2 Pt A 1
L & T2 i

2  Output Regulation Problem

In the initialization and configuration design of

spacecraft formations for space-based GWOs, main-

taining a prescribed geometric configuration with
high precision is of paramount importance, and this
requirement can be naturally formulated as an out

put regulation problem. Output regulation theory
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provides a systematic and effective framework to ad-
dress this challenge, as it not only guarantees
closed-loop stability but also ensures asymptotic
tracking of reference trajectories and rejection of ex-
ternal disturbances, even in the presence of nonlin-
ear dynamics and perturbations''’’. In this section, a
general output regulation problem is reviewed with
the focus placed on state-feedback formulations.
Within this framework, the designed controller en-
ables spacecraft to be steered accurately from their
initial states to the desired equilateral triangular for-
mation, and to preserve this configuration over the
long term by compensating for persistent perturba-
tions. This capability is critical for supporting the
stringent interferometric measurement requirements
of GWOs.
Let us consider a general system defined as fol-
lows
Z=AZ+Bw+ Bou
2=Cz+Dyw+ D,u (7)
y=0C,x+ Dyw
where £ € R" is the state, initial value (0 ) is given
and all the matrices are T-periodic; u € R" is con-
trol input, €& R’ the output to be regulated, and
¥y € R? an observation available to the controller; the
exogenous signal w & R" is generated by a periodic
anti-stable exogenous system as follows
w= Sw
w(0)=w, (®)
The primary challenge in an output regulation
problem is to design a stable periodic output feed-
back controller that drives 2(7) to zero, regardless
of the initial conditions #(0) and w(0). To address
this, several standard assumptions and theorems are
necessary.
(A, B,) is stabilizable, for a

periodic system, its monodromy matrix is stable,

Assumption 1

that is, all of its eigenvalues (Floquet multipliers)

lie within the unit circle of the complex plane.
Assumption 2 [( C, D,) (12 ilﬂ is de-

tectable.
Assumption 3  The exosystem is naturally
stable, that is, all eigenvalues of the matrix S are

simple eigenvalues located on the imaginary axis,

with algebraic multiplicities equal to geometric mul-
tiplicities.

Remark It should be emphasized that As-
sumptions 1 — 3 can be satisfied in the proposed
framework. Specifically, Assumption 1 requires the
monodromy matrix of the periodic system to be sta-
ble. This condition is ensured by selecting appropri-
ate periodic orbits under the CRTBP model and de-
signing a periodic feedback gain based on the output
regulation theory, such that the closed-loop Floquet
multipliers lie inside the unit circle. In Assumption
2, the solvability of the regulator equations requires
the extended system to satisfy the observability con-
dition, together with the compatibility condition of
the exosystem. From a physical perspective, this
means that all unstable modes of the plant and the
exosystem can be reconstructed from the chosen out-
puts. Here, the outputs are defined as the relative
position errors of the spacecraft, ensuring the ob-
servability of the extended system. Finally, As-
sumption 3 requires the exosystem to be neutrally
stable. In this study, the exosystem is constructed
to generate the periodic reference signals of the equi-
lateral triangular formation, whose eigenvalues are
purely imaginary and simple, thereby naturally ful-
filling the neutral stability condition. Therefore, As-
sumptions 1—3 are all satisfied in the spacecraft for-
mation control problem considered in this work,
providing the theoretical foundation for applying out-
put regulation theory.

Assuming that Assumptions 1 — 3 hold, the
solvability of the control problem and the design of a
controller capable of achieving output tracking can
be characterized by the output regulation equations,
that is the output regulation problem defined by
Eq.(7) is solvable, if and only if there exist matri-
ces IT and I' which solve Eq.(9) often called the
regulator equation.

AIl —IIS + B, + B, I'=0 )
CIlI+D,+D,I'=0

Proof

Consider the periodic system (Eq.(7) ) , in
which all matrices are T-periodic. An augmented
system is introduced to incorporate periodicity di-

rectly into the state-space formulation, thereby facil-
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itating further analysis of the system’s periodic prop-

erties. The augmented state vector is defined as
.
§=[a"w']

Accordingly, the dynamics of the system can be re-

. |A B, B,
5[0 s}§+[o}"
5:[01 D]l]§+D12u

The periodic system is reformulated as an aug-

written as

mented linear system, whose characteristics are de-
termined by the T-periodic matrices and derived
from the dynamics of the exosystem. The objective
of output regulation is to design the control input u
such that 2(7)— 0 as 1= co, regardless of the initial
disturbance. This requirement leads to the necessity
of solving the output regulation equation (Eq.(9) ).
Here, the matrix IT maps the disturbance state w to
the system state £, while the matrix I' determines
the control law to achieve disturbance rejection or
reference tracking. If the augmented system satisfies
Assumptions 1—3, the system is controllable and
observable, and the output regulation equations ad-
mit a solution. Therefore, Assumptions 1—3 en-
sure the existence of a solution (IT, I') to the regula-
tor equations. Subsequently, the monodromy ma-
trix of the periodic system is analyzed using Floquet
theory. When the control input is given in the form
of a periodic feedback law, it can be expressed as
u(t)=K(t)y(r)
where K (7) is a periodic matrix. In the closed-loop
system, the dynamics of the augmented state can be
expressed as
SZ{A + B,K (1) Bl}g
0 S

According to Floquet theory, the stability of a
periodic system is determined by the state transition
matrix over one period, namely the monodromy ma-
trix. If all Floquet multipliers (i.e., the eigenvalues
of the monodromy matrix) lie within the unit circle
of the complex plane, the system is stable. By prop-
erly designing K (), the stability of the closed-loop
system can be ensured.

According to Assumption 3, the matrix S is
neutrally stable, with its eigenvalues located on the

imaginary axis and with algebraic multiplicities

equal to their geometric multiplicities. Under this
condition, the solution pair (II,I') can be em-
ployed to design the control law, thereby ensuring
that 2(7)—0 and enabling the system to achieve

both disturbance rejection and reference tracking.

3 Equilateral Triangular Array

Formation Based on Output

Regulation Theory

In this section, the design of the GWO array
formation configuration is presented. Traditionally,
a GWO formation consists of three spacecraft, and
its arm length determines the frequency range of the
GWO. Due to the extremely weak intensity of
GWs, the noise level of the laser interferometer is
subject to a notably high noise level; therefore, sen-
sitivity is regarded as a critical performance parame-
ter. Additional assumptions are introduced in this
section.

Assumption 4 The variation in arm length in-
duced by GWs is proportional to both the nominal
arm length as well as to the amplitude and [requency
of GWs.

Assumption 5 The detector’ s sensitivity is
directly determined by the variation in arm length,
which is proportional to the nominal arm length.
There exists an optimal nominal arm length that
maximizes the detector’s sensitivity within a specif-
ic target frequency band.

Assumption 6 The perturbation of the spacet-
ime metric tensor caused by GWs is assumed to be
linear; that is, smaller (or larger) GW perturba-
tions lead to proportionally smaller(or larger) varia-
tions in arm length. These variations depend on
both the strength and frequency of GWs.

Based on the above assumptions, let the arm
length of the interferometer be denoted by L. When
GWs arrive, their effect causes one arm to elongate
while the other arm contracts perpendicularly. Let
AL represent the variation in arm length. Conse-
quently, the two arms become L + AL and
L — AL, respectively. The sensitivity, denoted by
hy, 1s defined as

AL
L

hq (10)
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In Eq.(10), since AL is much smaller than L,
the sensitivity decreases as the arm length increases.
To enhance sensitivity and mitigate laser attenua-
tion, array formations are introduced. In this paper,
the equilateral triangular array formation is intro-
duced, as illustrated in Fig.2.

One-layer Two-layer

Fig.2 Equilateral triangular array formation

In Fig.2, one-layer, two-layer and three-layer
equilateral triangular array formations are designed.
Multiple spacecraft are deployed on each side, form-
ing a “nested” configuration. This method effective-
ly mitigates laser attenuation and enables longer
baselines.

Then, the control law is derived to establish
and maintain the equilateral triangular array forma-
tion using the output regulation theory. If the orbit
of the follower spacecraft, which exhibits a periodic
orbit described by a sinusoidal function, is chosen as
a reference, the equilateral triangular array forma-
tion can be achieved in a given period. Consider a tri-
angular array formation in which the leader space-

craft is located near the L, point, as described by

(wy, wy, wy), it is given by

wy(t)=acos(w,t+ 7,)
wy(t)=2asin(w,t+7,)

wy(1)=+/'3 acos(w,t+ ) (12)

1,2,3

,=0,-n,-mni=

3 3
The trajectory (defined by Eq.(12)) is generat-

ed as follows

w=Sw w(0)=w, (13)
where
0 s 0 0
S — s, O 0 0
0 0 0 1
0 0 —w: O
w;
.§1:77 52:2(1}2 (U>O

Given the general system described by Eq.(7)
and exogenous system described by Eq.(8) , the
output regulation problem aims to find a control law
such that 2(7) converges to zero as time approaches
infinity for any initial conditions of the exosystem.
According to Assumption 1 and Eq.(9), admissible
controllers are given by

u=—Fx+(I'+ FII)w (14)
where F'is an arbitrary feedback gain such that A —
BF is asymptotically stable. Likewise, the triangu-
lar array formation problem for the semi-linear sys-
tem can be solved by the nonlinear feedback control
given by

u=—Fe+f(x,)— f(x)+(T+ FII)w (15)
where e=x — x,. If the full state is available
(x=1y), Eq.(9) is rewritten as follows

All — IS+ BI'=0

Eq.(11) and the reference orbit of the follower CIT+D,=0 (16)
spacecraft is x+tw=(x,+ w,y,+ w., 2, + w;). where
Here (w,, w,, w,) denotes a periodic relative orbit 100 0 0 0 10 0 0
of the follower spacecraft =01 0 0 0 Ol D,=—|0 1 0 0
x,=Ax,+ Bf (x,) x,(0)=x, (11) 0O 0 0 0 1 0 0O 0 1 0
where x, represents a periodic orbit of the leader By solving Eq.(16) , the IT and I' can be
spacecraft near the Lagrange point L, For sought as
(1 0 0]
0 1 0 0 518, — 25, — 20, — 1 0 o 71
T— 0O s 0 O r— 0 s185:+ 25, — 1+ 0; 0
s; 0 0 0 0 0 —w5+ o,
0O 0 1 0 0 0 0
LO 0 O 1]
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4 Simulation Results

In this section, the multi-layer triangular array
formation is design based on the output regulation
theory. The control laws described by Eqs. (14, 15)
are applied to the motion equations for the
Sun-Earth CRTBP. The Lagrange point is specified
as L. The period and radius of the Sun-Earth system
are T=365.26 d and R,= 1.496 X 10°km(=1 AU),
respectively. The remaining parameters are o=
3.0542 X 10°°%, 6,=4.0611, 6,=3.9404, ;= 1,
and a=1 X 10 AU (&= 1.49 X 10°km ), and the
phase angles of the equilateral triangular array for-
mation are specified as [z, 75, 7; ] =[0°, 120°, 240°].
To maintain the reference orbit, feedback control is
essential. The feedback gain F for the feedback
term in Eqs.(14, 15) can be chosen arbitrarily, pro-
vided that A— BF is asymptotically stable.

In this paper, the feedback gain is designed
based on linear quadratic regulator theory, in which
the gain is defined as F= R 'BX, with X being the
solution of the Riccati equation (17) , Q =1, and
R=1. The fuel consumption AV required to main-
tain this orbit in two periods is evaluated.

AX+ XA+ Q— XBR 'BX=0 (17)

4.1 Initialization of equilateral triangular ar-

ray formation configuration

To ensure the initialization of the equilateral tri-
angular array formation, the output regulation theo-
ry is used. The initial states of the spacecraft, denot-
ed by z,(0)(i=1,2,3, ), are given by

,(0)=[0,0,0,0,0,0] (18)

and the initial conditions w, (0 ) are given by

w,(0)=[acost,2asint,3 acost,

—+/3 awsint; ] (19)

2 4
=0, —n,—=x
3 3

which is illustrated in Fig.3. Fig.3 illustrates the ref-
erence orbit generated by the exosystem, which pro-
vides the periodic signal required for the initializa-
tion of the triangular array formation.

To demonstrate that an equilateral triangular ar-

ray formation is achieved, we define

Vol. 42
2
1
2
o 0
Nl
-2
2 1.0
0 0.5 :
2 — = 0.0
s e 0.5 A0
0%, 2710 "0 N
Fig.3 A circular orbit
d(t)=Jwi(t)+wi(t)+wil)
1=1,2,3 (20)

An equilateral triangular array formation is
shown in Fig.4 and Fig.5, which show the
two-layer and three-layer equilateral triangular array
formations, respectively. These results demonstrate
that equilateral triangular array formation is formed
in two periods owing to the output regulation.

The error histories are shown in Figs.6,7 (on-
ly illustrated the two-layer equilateral triangular ar-
ray formation). The errors converge to zero, indi-
cating that the spacecraft finish the initialization pro-
cess and maintain it according to the control law.

As time progresses, d, converges to constant

values(Figs.8,9), thereby demonstrating the estab-

0

Vs~ T
4w 52

Fig.4 Two-layer equilateral triangular array formation for

nonlinear system

E. _ 04
4 42 ! X]\QSP‘O

Fig.5 Three-layer equilateral triangular array formation for

nonlinear system
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lishment of an equilateral triangular array formation.
Next, using the coordinate system centered at
Lagrange points L, L,, Ly calculate the AV (L -
norm of control input) , as is shown in Fig.10 (only
calculate one-layer equilateral triangular formation).

In Fig.10, the AV values of three spacecraft

5.0f
4000002
4.8  4.000000
=
2 3.999 998
461
o < 3.999996
44T 3009904
=
3.999 992
=~ 4.2r
= 15
4.0

Satl/out-circle
3.81 —-—- Sat2/out-circle
= = Sat3/out-circle

3.6C . . . . . . .
2 4 6 8 10 12 14
Period
Fig.9 Values of ¢, (out-circle)
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L, —— L,
—e L2 —— L2
:_\1000-—0—1,3 ?/.\200_—»—3
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E 600 £
2 g
;1" ;1_ 100
3 400 3
g g
200 | i
04 : 0 i
107 10° 10° 10* 107 10° 10° 10"
a/ AU a/ AU
(a) In plane (b) Out of plane

Fig.10 Total values of L,-norm for nonlinear system

centered at Lagrange points L, and L, are shown to
be larger than those at L.agrange point Ls;. When a =
10 AU (&= 1.49 X 10" km) , the maximum values
are 1 013 m/s(for Lagrange point L,), 991.9 m/s
(for Lagrange point L,), 673.3 m/s (for Lagrange
point L;) for in plane, respectively. As for out of
plane, the maximum values are 243.4 m/s (for La-
grange point L,) , 234.3 m/s (for Lagrange point
L,), 12.87 m/s (for Lagrange point L,) , respec-
tively.

Lagrange points L, and L, are located on the
side of the Earth, where both the points balance the
gravitational force of the Sun and the Earth. Al-
though they are equilibrium points, spacecraft at
these locations require more fuel to maintain stabili-
ty because the difference in gravitational forces from
the Sun and Earth is significant. In contrast, La-
grange point L; is located on the opposite side of
Earth’s orbit, farther from the influence of both the
Sun and Earth. Although this point also balances the

gravitational forces of the Sun-Earth system, the
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spacecraft at LLagrange point L, experience less grav-
itational perturbation from external sources, thereby
requiring less fuel to maintain formation stability.
Positioned on the far side of the Sun-Earth system,
this point is more stable and subject to fewer exter-
nal disturbances. According to the CRTBP, La-
grange points L, and L, are unstable equilibrium
points and Lagrange point L; is also unstable. How-
ever, its degree of instability is slightly lower com-
pared with Lagrange points L, and L,. Although La-
grange point L is not a fully stable point, the re-
duced external disturbances make it easier to main-

tain stability, thus requiring less control input.

4.2 Natural stability analysis of uncontrolled

equilateral triangular array formation

In Section 4.1, the configuration design and ini-
tialization control of the equilateral triangular array
formation were accomplished, ensuring that the
three spacecraft establish a strict equilateral triangu-
lar array formation under the output regulation theo-
ry. Nevertheless, in GWO missions, the propulsion
system must be deactivated during the scientific
phase in order to avoid non-inertial disturbances in-
duced by continuous thrust, such that the spacecraft
remain in a pure state for accurate interferometric
measurements of GW signals. Consequently, to
guarantee the feasibility and continuity of the obser-
vation mission, it is essential to systematically eval-
uate the geometric and dynamical stability of the for-
mation without control input, thereby identifying
the intrinsic timescale of natural configuration main-
tenance as well as the appropriate timing for control
intervention.

In actual mission operations, continuous con-
trol not only introduces non-inertial disturbances but
also increases fuel consumption. Therefore, once
initialization is completed, the spacecraft typically
drift”

short-term observational capability relies on the in-

enter a “natural phase, during which
trinsic dynamical stability of the triangular configura-
tion. Accordingly, this section investigates the evo-
lution of the equilateral triangular array formation af-
ter initialization under the Sun-Earth CRTBP dy-

namical model, without using any control input. By

comparing with the performance requirements of the
LISA mission, it is noted that, during the scientific
phase, the variation in arm length is typically main-
11]

tained within 1.5%—2% of its nominal value' in

order to ensure interferometric measurement accura-

cy.

Therefore, this section systematically analyzes
the natural stability of the equilateral triangular for-
mation from two perspectives.

4.2.1 Analysis of arm-length evolution of the
equilateral triangular array formation
without control input

This section investigates the temporal evolu-
tion of the three arm lengths of the formation, aim-
ing to evaluate the capability of the equilateral trian-
gular array formation configuration and preserve its
geometric structure without control input. To en-
sure the ranging accuracy of the observation, the
stability of the formation must be constrained within
2% according to the requirements of GWO. Among
these parameters, the arm length serves as the fun-
damental baseline of the interferometer, and its rela-
tive variation directly reflects the integrity and stabil-
ity of the formation. In GWO missions, if the varia-
tion in the inter-spacecraft arm length exceeds 2%
of the nominal value, the interferometric measure-
ment accuracy is severely degraded, and the forma-
tion is generally regarded as having failed. There-
fore, by tracking the time history of the arm length
variations and identifying the first instance when the
threshold is exceeded, the natural maintenance dura-
tion of the formation can be quantified, thereby pro-
viding a theoretical basis for the scheduling of con-
trol interventions.

In the natural stability analysis conducted in
this section, the formation radius is set to
a=10"" AU, which corresponds to approximately
1 490 km. The resulting arm length of the equilater-
al triangular array formation is about 2 581.99 km.
Considering the stability requirements of GWO mis-
sions, this study adopts the same as the LISA mis-
sion, namely that the arm length variation must not
exceed 2%. Accordingly, the maximum allowable
arm length deviation is determined as follows

AL, =2% XL (21)
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where AL, denotes the maximum arm length varia-
tion and L the nominal arm length of the equilateral
triangular array formation. The calculated maximum
variation is 51.64 km, which is adopted as the criti-
cal threshold for determining formation failure.
Once the actual distance variation between any two
spacecraft exceeds it, the formation is regarded as
invalid, as it can no longer meet the baseline stabili-
ty required for interferometric measurements.

Fig.11 illustrates the arm length variation be-
tween the three spacecraft (only show one-layer).
At the initial state, all arm lengths are approximate-
ly 2 581.99 km. According to the stability criterion,
the maximum allowable arm-length variation is with-
in £2%, that is, L,;,~~2530.35 km and L, .=~
2633.63 km. Once the distance between any two
spacecraft without control input exceeds L, or
L..., the formation is considered to have lost the

geometric stability required for interferometric mea-

surements.
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Fig.11 Arm length variation (only show one-layer)

As shown in Fig.11, the distance between Satl
and Sat2 increases most rapidly and first exceeds the
upper bound of 2 633.63 km at T=7.552 d. In
contrast, the arm length between Sat2 and Sat3
gradually decreases and reaches the lower bound of
2 530.35 km at T=8.132 d. Since the criterion for
formation failure is defined as the first crossing of
the tolerance threshold by any arm, the effective sta-
bility duration of the formation under uncontrolled
conditions is determined to be T = 7.552 d.

This result indicates that, during the natural
drift of the three spacecraft without control input,

the stability of the equilateral triangular array forma-

tion is limited. Therefore, control correction is re-

quired approximately every 7.552 d to ensure the

continuity of the GWO mission.

4.2.2 Evolution of equilateral triangular array
formation deviation under uncontrolled
conditions

As indicated in Section 4.2.1 on arm length
variations, under uncontrolled conditions the forma-
tion arm lengths rapidly deviate from their initial
values, exceeding the tolerance threshold in approx-
imately 7.552 d and leading to formation failure. Al-
though arm length variation effectively characterizes
the overall stability boundary of the formation and
serves as the primary criterion for mission toler-
ance, this metric mainly reflects the relative geo-
metric relationships among the spacecraft. It does
not, however, reveal the absolute deviations of
each spacecraft from their nominal trajectories un-
der uncontrolled conditions. Therefore, to more
comprehensively evaluate formation stability, it is
necessary to further analyze the position errors of
each spacecraft relative to the initialized reference
orbit.

As shown in Fig.12, under uncontrolled condi-
tions the three spacecraft exhibit significant orbital
deviations after approximately 7.552 d (i.e., when
the formation fails) , with the deviations occurring
primarily along the X-axis (the Sun-Earth direc-
tion). Specifically, at 7.552 d of natural drift, the
maximum deviation of Satl along the X-axis reaches
180.7 km, while those of Sat2 and Sat3 are —89.92
and —90.82 km, respectively. The deviations of the
three spacecraft are opposite in direction but compa-
rable in magnitude, indicating a strongly divergent
trend along the X-axis. This result demonstrates
that, near the Sun-Earth Lagrange point L,, the in-
stability in the X-axis dominates the evolution of the
formation.

In the Sun-Earth system, the Lagrange point
L, is a typical saddle equilibrium position, whose
stability characteristics can be analyzed by lineariza-
tion under the CRTBP. After linearizing the system
near Lagrange point L,, the corresponding Jacobian
matrix consists of one pair of real eigenvalues + 2

and two pairs of purely imaginary conjugate eigen-
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Fig.12 Evolution of formation deviation under uncontrolled

conditions (only show one-layer)

values t+iw, and *iw,. The real eigenvalues corre-
spond to directions aligned with the Sun-Earth di-
rection (i.e., the X-axis direction) , implying that
any small perturbation along this direction will en-
large exponentially within the unstable subspace
without control input. This dynamical mechanism
fundamentally explains why the deviations of the
spacecraft are most divergent along the X-axis and
why the formation configuration fails first in this di-
rection.

Above all, the results show that, without opti-
mization, the equilateral triangular array formation
maintains its stability for about 7.5 d under uncon-
trolled conditions. This interval is noticeably shorter
than the correction cycles reported in established
missions such as LISA, suggesting a higher frequen-
cy of intervention. However, it should be empha-
sized that the present result is obtained without any
optimization of orbital parameters, initial condi-
tions, or control strategies, indicating substantial
potential for further improvement. More important-
ly, this study represents the first extension of forma-
tion stability and maintenance analysis to arbitrary
orbital environments, rather than being confined to
traditional heliocentric or specific mission orbits.
This not only demonstrates the universality and fea-
sibility of the proposed approach but also provides
new theoretical insights and technical references for
future GWO missions in diverse orbital scenarios,

thereby carrying significant importance.

4.3 Reconfiguration control of equilateral tri-

angular array formation

To ensure the long-term stability of GWO, for-
mation reconfiguration control is an inevitable re-
quirement. The dynamic nature of GWO mission de-
mands imposes more flexible and adaptive require-
ments on the configuration. These requirements are
reflected in two main aspects. On one hand, as the
frequency band of GWs in a fixed direction changes,
the inter-spacecraft distance must be dynamically ad-
justed to optimize the interferometric sensitivity for
different frequency bands and this type is referred to
as scale reconfiguration. On the other hand, when
the position or direction of the GW source changes,
the orbital plane of the formation must be adjusted
accordingly to achieve optimal pointing for observa-
tion. This type of reconfiguration is referred to as
pointing reconfiguration. This study primarily focus-
es on scale reconfiguration.

When observing GWs of different frequencies
from the same direction, configuration reconfigura-
tion control is required.

During the implementation of scale reconfigura-
tion, a scaling factor A is introduced, and the config-
uration position vectors are expanded or contracted
as

W ()= 2w, (1) w.(2) w;(z)] A>0(22)
where A determines the scale reconfiguration. When
A>1,  the

inter-spacecraft distances increase, leading to an ex-

formation  enlarges and  the
tended arm length that is favorable for observing
low-frequency GWs. Conversely, when A<C1, the
formation contracts, which is suitable for
high-frequency GWs.

During the formation scaling adjustment, the
inter-spacecraft relative distance varies with A, and
can be expressed as
d; ()= [ (1)— w; (1) = Alw, (1 )— w,(1)]

i=1,2,3; j=1,2,3; i#j (23)

As shown in Eq.(23), the scale reconfiguration
process is directly reflected as a proportional change
in the inter-spacecraft distances, while the geometric
similarity of the formation remains unchanged.

In Fig.13, when GWs from the same direction
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are relatively weak, it becomes necessary to per-
form scale reconfiguration. This process involves ad-
justing the triangular formation by expanding its con-
figuration under the application of control forces. In
Fig.14, when GWs from the same direction are rela-
tively strong, it also becomes necessary to perform
scale reconfiguration by contracting its configuration
under the application of control forces. It allows the
triangular formation to maintain optimal sensitivity
and detection capability, ensuring that the triangular
formation is appropriately aligned to observe the
weaker GWs.

While scale expansion in GWO missions is pri-
marily intended to enhance sensitivity to
low-frequency and weak signals, scale contraction
is not “unnecessary” . The key lies in the distinct re-
sponse of interferometric measurements across dif-
ferent frequency bands. When the arm length be-
comes too long, high-frequency signals may experi-
ence excessive phase differences between space-
craft, leading to phase decorrelation and reduced
measurement effectiveness. Thus, the purpose of
scale contraction is not to address “strong” GWs,

but rather to adapt the formation to high-frequency

Fig.13 One-layer equilateral triangular formation configura-

tion reconfiguration (¢ = 10" °AU,1 = 3)

Fig.14 One-layer equilateral triangular formation configura-

tion reconfiguration (¢ = 10"°AU,1=0.5)

signals, ensuring optimal signal-to-noise ratio and
measurement precision in that regime. From a mis-
sion design perspective, scale reconfiguration is not
envisioned as a frequent operation but as a limited,
stage-specific adjustment. By predefining a small
number of scaling maneuvers within the mission
plan, it is possible to balance scientific return with
propellant consumption, thereby preserving mission
feasibility while significantly extending the accessi-

ble frequency range.

5 Conclusions

An equilateral triangular array formation initial-
ization near Lagrange point L, is examined. To es-
tablish the equilateral triangular array formation and
maintain it in two periods, the tracking aspect of out-
put regulation theory is employed. For the equilater-
al triangular array formation, the reference trajecto-
ry is generated by an exosystem. Then, the equilat-
eral triangular array formations are established and
maintained. The errors are calculated, demonstrat-
ing that the equilateral triangular array formation is
well-maintained. In addition, to evaluate the forma-
tion configuration after initialization under uncon-
trolled conditions, a natural stability analysis is con-
ducted. The results show that, with an orbital radius
of a=1490 km, the arm length of the formation ex-
ceeds the tolerance of 2% within approximately
7.552 d, indicating the onset of configuration failure.
The deviations of the three spacecraft are most pro-
nounced along the X-axis (the Sun-Earth direction) ,
reflecting the inherent dynamical instability of the
Lagrange point L, in this direction. Subsequently,
the fuel consumption for the formation initialization
at the Lagrange points L, L,,and L, are calculated,
respectively. It is found that the fuel consumption re-
quired at the Lagrange point L; is significantly lower
than that at other points. Finally, when observing
GWs from the same direction with different frequen-
cy bands, configuration scale reconfiguration control

is performed.
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