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Abstract: This paper presents an analysis of an equilateral triangular array formation initialization for space‑based 
gravitational wave observatory （GWO） near Lagrange points in the circular‑restricted three‑body problem. A stable 
configuration is essential for the continuous observation of gravitational waves （GWs）. However， the motion near the 
collinear libration points is highly unstable. This problem is examined by output regulation theory. Using the tracking 
aspect， the equilateral triangular array formation is established in two periods and the fuel consumption is calculated. 
Furthermore， the natural evolution of the formation without control input is analyzed， and the effective stability 
duration is quantified to determine the timing of control interventions. Finally， to observe the GWs in same direction 
with different frequency bands， scale reconfiguration is employed.
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0 Introduction 

There are many gravitational wave sources in 
the universe. Gravitational waves （GWs） are theo‑
retically predicted by Einstein’s field equations［1］. 
The gravitational wave observatory （GWO） mis‑
sions are of great significance for verifying the theo‑
ry of relativity and exploring the origin of the uni‑
verse［2］. Laser interferometer gravitational‑wave ob‑
servatory （LIGO） successfully observed GW sig‑
nals for the first time in 2015， thereby ushering in a 
new era in the study of the universe based on 
GWs［3］. GWOs can be categorized into 
ground‑based GWOs and space‑based GWOs. 
Ground‑based GWOs include LIGO［3］， TA‑
MA300［4］， and GEO600［5］. Ground‑based GWOs 
only observe high‑frequency GWs due to the limita‑
tion of arm length and noise interference. As a re‑

sult， they cannot access the medium‑ and 
low‑frequency bands， where a wealth of astrophysi‑
cal sources such as massive black hole binaries， ex‑
treme mass‑ratio inspirals， and stochastic back‑
grounds are expected to exist. To overcome these 
limitations， space‑based GWOs employing space‑
craft formation flying are preferred. The European 
Space Agency （ESA） and the National Aeronautics 
and Space Administration （NASA） first proposed 
the laser interferometer space antenna （LISA） in 
1993［6］. Since then， numerous GWO mission con‑
cepts have been proposed， including DECIGO［7］， 
BBO［8］， TianQin［9］， and Taiji［10］. The basic princi‑
ple of a space‑based GWO is to employ three space‑
craft arranged in an equilateral triangular formation. 
To date， three effective mechanisms for realizing 
such triangular formations have been proposed： 
Co‑orbital constellation， relative orbit， and triangu‑
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lar libration point［2］.
The process of establishing an equilateral trian‑

gular formation is referred to as formation initializa‑
tion. Although an equilateral triangular configura‑
tion is essential for GWOs， relatively few studies 
have focused on this problem. Several studies have 
proposed equilateral triangular formation design 
methods based on orbital geometric relation‑
ships［11‑12］. In Ref.［13］， a space circular formation 
was constructed using the Clohessy‑Wiltshire 
（CW） equation. Since the CW equation has only 
first‑order accuracy， Jiao et al.［14］ proposed a spatial 
circular configuration design based on the 
second‑order CW equation. Additionally， Liu et al.［15］ 
proposed a geometric formation design method also 
based on the CW equation. To ensure long‑term sta‑
bility of the configuration， various optimization 
methods have also been investigated. Xia et al.［16］ 
optimized the natural orbital configuration of LISA 
using a hybrid reactive tabu search algorithm. In 
Ref.［17］， an adaptive solution space adjustment al‑
gorithm was proposed to enhance the convergence 
efficiency of the differential evolution （DE） algo‑
rithm. Regarding configuration initialization， some 
studies have investigated the use of impulse maneu‑
vers to guide each spacecraft into its designated posi‑
tion［16，18］.

Currently， various control methods can be em ‑
ployed for spacecraft initialization， among which 
output regulation theory is often preferred due to its 
straightforward design and computational efficien‑
cy［19］. Output regulation theory is a control theory 
that aims to regulate the output of a system to fol‑
low a desired reference signal， even in the presence 
of disturbances and uncertainties. In the field of 
spacecraft formation， this theory has been applied to 
various formation problems， ranging from 
near‑Earth formations to Lagrange point forma‑
tions［20‑22］.

This paper presents an analysis of the equilater‑
al triangular array formation near the Sun‑Earth La‑
grange points， and a control strategy for a precise 
equilateral triangular array formation that can be ap‑
plied to the Sun‑Earth Lagrange points is proposed. 
The fuel consumption for maintaining the formation 

at the collinear libration points is evaluated. Further‑
more， the uncontrolled evolution of the equilateral 
triangular array formation is examined， and the ef‑
fective stability duration is quantified to determine 
how long the equilateral triangular array formation 
configuration can remain intact without intervention. 
To observe GWs in the same direction with differ‑
ent frequency bands， reconfiguration control is per‑
formed.

1 Equations of Motion in CRTBP 

In this study， the circular restricted three‑body 
problem （CRTBP） is employed to describe the mo‑
tion of a spacecraft P， under the gravitational influ‑
ence of two massive celestial bodies， M 1   and M 2  ， 
which represent the Sun and the Earth， respective‑
ly， as illustrated in Fig.1. The non-dimensional co‑
ordinates of the spacecraft， Sun， and Earth are giv‑
en by ( X，Y，Z )， ( - ρ，0，0 )， and ( 1 - ρ，0，0 )， re‑
spectively. The equations of motion of the space‑
craft in non‑dimensional form are provided in Ref.
［22］.

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï
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(1)

where the mass parameter ρ = M 2

M 1 + M 2
 and 

( ux，uy，uz ) represent the control accelerations in the 
X，Y，and Z directions， respectively. The distances 
between the spacecraft and the two primary bodies 

Fig.1　CRTBP system
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are denoted by r1 and r2， as follows

r1 = ( )X + ρ
2
+ Y 2 + Z 2

r2 = ( )X - 1 + ρ
2
+ Y 2 + Z 2

The equations of motion are normalized， there‑
fore， Eq.（1） includes stationary points known as 
Lagrange points， Li， which satisfy
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(2)

and the positions of the Lagrange points are given by
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L 1 = ( )l1( )ρ ,0,0

L 2 = ( )l2( )ρ ,0,0

L 3 = ( )l3( )ρ ,0,0

L 4 = ( )1/2 - ρ, 3 /2,0

L 5 = ( )1/2 - ρ,- 3 /2,0

(3)

where the values of li are determined by Eq.（3）. To 
describe the equations of motion near a collinear li‑
bration point Li ( i = 1，2，3 )， it is convenient to use 
the coordinate system with its center located at Li. 
Replacing X，Y，and Z by x + li，y，z， Eq.（1） can 
be rewritten as
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where

r1 = ( )x + li + ρ
2
+ y 2 + z2

r2 = ( )x + li - 1 + ρ
2
+ y 2 + z2

Linearized equations in Eq.（4） at the origin are 
expressed as
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z̈ + σi z = uz

(5)

where

σi = ρ

|| li( )ρ - 1 + ρ
3 + 1 - ρ

|| li( )ρ + ρ
3

Then， Eq.（5） can be rewritten in the state 
space form as

ẋ= Ax+ Bu (6)
where

x=[ ]x  y  ẋ  ẏ  z  ż
T
    u=[ ]ux  uy  uz

T
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Similarly， the state‑space form of Eq.（6） can 
be written in a semi‑linear form as

ẋ= Ax+ Bf ( x )+ Bu

where f ( x ) represents the nonlinear component， 
expressed as

f ( x )=
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2 Output Regulation Problem 

In the initialization and configuration design of 
spacecraft formations for space‑based GWOs， main‑

taining a prescribed geometric configuration with 
high precision is of paramount importance， and this 
requirement can be naturally formulated as an out‑
put regulation problem. Output regulation theory 
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provides a systematic and effective framework to ad‑
dress this challenge， as it not only guarantees 
closed‑loop stability but also ensures asymptotic 
tracking of reference trajectories and rejection of ex‑
ternal disturbances， even in the presence of nonlin‑
ear dynamics and perturbations［19］. In this section， a 
general output regulation problem is reviewed with 
the focus placed on state‑feedback formulations. 
Within this framework， the designed controller en‑
ables spacecraft to be steered accurately from their 
initial states to the desired equilateral triangular for‑
mation， and to preserve this configuration over the 
long term by compensating for persistent perturba‑
tions. This capability is critical for supporting the 
stringent interferometric measurement requirements 
of GWOs.

Let us consider a general system defined as fol‑
lows
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ẋ͂= Ax͂+ B 1w+ B 2u
z͂= C 1 x͂+ D 11w+ D 12u
y͂= C 2 x͂+ D 21w

(7)

where x͂∈ R n is the state， initial value x͂ ( 0 ) is given 
and all the matrices are T‑periodic； u∈ Rm is con‑
trol input， z͂∈ R q the output to be regulated， and 
y͂∈ R p an observation available to the controller； the 
exogenous signal w ∈ R s is generated by a periodic 
anti‑stable exogenous system as follows

{ẇ= Sw
w ( 0 )=w 0

(8)

The primary challenge in an output regulation 
problem is to design a stable periodic output feed‑
back controller that drives z͂ ( t ) to zero， regardless 
of the initial conditions x͂ ( 0 ) and w ( 0 ). To address 
this， several standard assumptions and theorems are 
necessary.

Assumption 1 ( A，B 2 ) is stabilizable， for a 
periodic system， its monodromy matrix is stable， 
that is， all of its eigenvalues （Floquet multipliers） 
lie within the unit circle of the complex plane.

Assumption 2 é
ë
êêêê( )C 2 D 21 ( )A B 1

0 S
ù
û
úúúú is de‑

tectable.
Assumption 3 The exosystem is naturally 

stable， that is， all eigenvalues of the matrix S are 
simple eigenvalues located on the imaginary axis， 

with algebraic multiplicities equal to geometric mul‑
tiplicities.

Remark It should be emphasized that As‑
sumptions 1 ─ 3 can be satisfied in the proposed 
framework. Specifically， Assumption 1 requires the 
monodromy matrix of the periodic system to be sta‑
ble. This condition is ensured by selecting appropri‑
ate periodic orbits under the CRTBP model and de‑
signing a periodic feedback gain based on the output 
regulation theory， such that the closed‑loop Floquet 
multipliers lie inside the unit circle. In Assumption 
2， the solvability of the regulator equations requires 
the extended system to satisfy the observability con‑
dition， together with the compatibility condition of 
the exosystem. From a physical perspective， this 
means that all unstable modes of the plant and the 
exosystem can be reconstructed from the chosen out‑
puts. Here， the outputs are defined as the relative 
position errors of the spacecraft， ensuring the ob‑
servability of the extended system. Finally， As‑
sumption 3 requires the exosystem to be neutrally 
stable. In this study， the exosystem is constructed 
to generate the periodic reference signals of the equi‑
lateral triangular formation， whose eigenvalues are 
purely imaginary and simple， thereby naturally ful‑
filling the neutral stability condition. Therefore， As‑
sumptions 1─3 are all satisfied in the spacecraft for‑
mation control problem considered in this work， 
providing the theoretical foundation for applying out‑
put regulation theory.

Assuming that Assumptions 1 ─ 3 hold， the 
solvability of the control problem and the design of a 
controller capable of achieving output tracking can 
be characterized by the output regulation equations， 
that is the output regulation problem defined by 
Eq.（7） is solvable， if and only if there exist matri‑
ces Π and Γ which solve Eq.（9） often called the 
regulator equation.

{AΠ-ΠS+ B 1 + B 2Γ= 0
C 1Π+ D 11 + D 12Γ= 0

(9)

Proof 
Consider the periodic system （Eq.（7））， in 

which all matrices are T‑periodic. An augmented 
system is introduced to incorporate periodicity di‑
rectly into the state‑space formulation， thereby facil‑
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itating further analysis of the system’s periodic prop‑
erties. The augmented state vector is defined as

ξ= [ x͂T,wT ] T

Accordingly， the dynamics of the system can be re‑
written as

ξ
.

= é
ë
êêêê ù

û
úúúúA B 1

0 S
ξ+ é

ë
êêêê ù

û
úúúúB 2

0
u

z͂= [ ]C 1 D 11 ξ+ D 12u

The periodic system is reformulated as an aug‑
mented linear system， whose characteristics are de‑
termined by the T‑periodic matrices and derived 
from the dynamics of the exosystem. The objective 
of output regulation is to design the control input u 
such that z͂ ( t ) → 0 as t → ∞， regardless of the initial 
disturbance. This requirement leads to the necessity 
of solving the output regulation equation （Eq.（9））. 
Here， the matrix Π maps the disturbance state w to 
the system state x͂， while the matrix Γ determines 
the control law to achieve disturbance rejection or 
reference tracking. If the augmented system satisfies 
Assumptions 1—3， the system is controllable and 
observable， and the output regulation equations ad‑
mit a solution. Therefore， Assumptions 1—3 en‑
sure the existence of a solution (Π，Γ ) to the regula‑
tor equations. Subsequently， the monodromy ma‑
trix of the periodic system is analyzed using Floquet 
theory. When the control input is given in the form 
of a periodic feedback law， it can be expressed as

u ( t )= K ( t ) y͂ ( t )
where K ( t ) is a periodic matrix. In the closed‑loop 
system， the dynamics of the augmented state can be 
expressed as

ξ
.

= é
ë
êêêê

ù
û
úúúúA+ B 2K ( t ) B 1

0 S
ξ

According to Floquet theory， the stability of a 
periodic system is determined by the state transition 
matrix over one period， namely the monodromy ma‑
trix. If all Floquet multipliers （i. e.， the eigenvalues 
of the monodromy matrix） lie within the unit circle 
of the complex plane， the system is stable. By prop‑
erly designing K ( t )， the stability of the closed‑loop 
system can be ensured.

According to Assumption 3， the matrix S is 
neutrally stable， with its eigenvalues located on the 
imaginary axis and with algebraic multiplicities 

equal to their geometric multiplicities. Under this 
condition， the solution pair (Π，Γ ) can be em‑
ployed to design the control law， thereby ensuring 
that z͂ ( t ) → 0 and enabling the system to achieve 
both disturbance rejection and reference tracking.

3 Equilateral Triangular Array 
Formation Based on Output 
Regulation Theory

In this section， the design of the GWO array 
formation configuration is presented. Traditionally， 
a GWO formation consists of three spacecraft， and 
its arm length determines the frequency range of the 
GWO. Due to the extremely weak intensity of 
GWs， the noise level of the laser interferometer is 
subject to a notably high noise level； therefore， sen‑
sitivity is regarded as a critical performance parame‑
ter. Additional assumptions are introduced in this 
section.

Assumption 4 The variation in arm length in‑
duced by GWs is proportional to both the nominal 
arm length as well as to the amplitude and frequency 
of GWs.

Assumption 5 The detector’s sensitivity is 
directly determined by the variation in arm length， 
which is proportional to the nominal arm length. 
There exists an optimal nominal arm length that 
maximizes the detector’s sensitivity within a specif‑
ic target frequency band.

Assumption 6 The perturbation of the spacet‑
ime metric tensor caused by GWs is assumed to be 
linear； that is， smaller （or larger） GW perturba‑
tions lead to proportionally smaller（or larger） varia‑
tions in arm length. These variations depend on 
both the strength and frequency of GWs.

Based on the above assumptions， let the arm 
length of the interferometer be denoted by L. When 
GWs arrive， their effect causes one arm to elongate 
while the other arm contracts perpendicularly. Let 
ΔL represent the variation in arm length. Conse‑
quently， the two arms become L + ΔL and 
L - ΔL， respectively. The sensitivity， denoted by 
hd， is defined as

hd = ΔL
L

(10)
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In Eq.（10）， since ΔL is much smaller than L， 
the sensitivity decreases as the arm length increases. 
To enhance sensitivity and mitigate laser attenua‑
tion， array formations are introduced. In this paper， 
the equilateral triangular array formation is intro‑
duced， as illustrated in Fig.2.

In Fig.2， one‑layer， two‑layer and three‑layer 
equilateral triangular array formations are designed. 
Multiple spacecraft are deployed on each side， form‑
ing a “nested” configuration. This method effective‑
ly mitigates laser attenuation and enables longer 
baselines.

Then， the control law is derived to establish 
and maintain the equilateral triangular array forma‑
tion using the output regulation theory. If the orbit 
of the follower spacecraft， which exhibits a periodic 
orbit described by a sinusoidal function， is chosen as 
a reference， the equilateral triangular array forma‑
tion can be achieved in a given period. Consider a tri‑
angular array formation in which the leader space‑
craft is located near the Li point， as described by 
Eq.（11） and the reference orbit of the follower 
spacecraft is xl+w=( xl + w 1，yl + w 2，zl + w 3 ). 
Here ( w 1，w 2，w 3 ) denotes a periodic relative orbit 
of the follower spacecraft

ẋ l = Ax l + Bf ( x l ) x l ( 0 )= x l0 (11)
where xl represents a periodic orbit of the leader 
spacecraft near the Lagrange point Li. For 

( w 1，w 2，w 3 )， it is given by
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w 1( )t = a cos ( )ω 1 t + τi

w 2( )t = 2a sin ( )ω 1 t + τi

w 3( )t = 3 a cos ( )ω 2 t + τi

τi = 0, 2
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The trajectory （defined by Eq.（12）） is generat‑
ed as follows

ẇ= Sw w ( 0 )=w 0 (13)
where

S=

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú0 s1 0 0
s2 0 0 0
0 0 0 1
0 0 -ω 2

2 0

s1 = - ω 1
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Given the general system described by Eq.（7） 
and exogenous system described by Eq.（8）， the 
output regulation problem aims to find a control law 
such that z͂ ( t ) converges to zero as time approaches 
infinity for any initial conditions of the exosystem. 
According to Assumption 1 and Eq.（9）， admissible 
controllers are given by

u= -Fx+ ( Γ+ FΠ )w (14)
where F is an arbitrary feedback gain such that A-
BF is asymptotically stable. Likewise， the triangu‑
lar array formation problem for the semi‑linear sys‑
tem can be solved by the nonlinear feedback control 
given by

u= -Fe+ f ( x l )- f ( x )+ ( Γ+ FΠ )w (15)
where e= x- x l. If the full state is available 
（x= y）， Eq.（9） is rewritten as follows

{AΠ-ΠS+ BΓ= 0
CΠ+ D 1 = 0 (16)
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By solving Eq.（16）， the Π and Γ can be 
sought as
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Fig.2　Equilateral triangular array formation
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4 Simulation Results 

In this section， the multi‑layer triangular array 
formation is design based on the output regulation 
theory. The control laws described by Eqs.（14，15） 
are applied to the motion equations for the 
Sun‑Earth CRTBP. The Lagrange point is specified 
as L 1. The period and radius of the Sun‑Earth system 
are T=365.26 d and R 0 = 1.496 × 108 km（=1 AU）， 
respectively. The remaining parameters are ρ =
3.054 2 × 10-6，σ1 = 4.061 1，σ2 = 3.940 4，σ3 = 1，
and a = 1 × 10-5AU (≈ 1.49 × 103 km )， and the 
phase angles of the equilateral triangular array for‑
mation are specified as [ τ1，τ2，τ3 ] = [ 0°，120°，240°]. 
To maintain the reference orbit， feedback control is 
essential. The feedback gain F for the feedback 
term in Eqs.（14，15） can be chosen arbitrarily， pro‑
vided that A-BF is asymptotically stable.

In this paper， the feedback gain is designed 
based on linear quadratic regulator theory， in which 
the gain is defined as F= R-1 ḂX， with X being the 
solution of the Riccati equation（17）， Q= I， and 
R= I. The fuel consumption ΔV required to main‑
tain this orbit in two periods is evaluated.

ȦX+ XA+ Q- XBR-1 ḂX= 0 (17)

4. 1 Initialization of equilateral triangular ar⁃
ray formation configuration　

To ensure the initialization of the equilateral tri‑
angular array formation， the output regulation theo‑
ry is used. The initial states of the spacecraft， denot‑
ed by x͂ i ( 0 ) ( i = 1，2，3，… )， are given by

x͂ i ( 0 )= [ 0,0,0,0,0,0] (18)
and the initial conditions w i ( 0 ) are given by
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w i ( 0 )=[ a cos τi,2a sin τi, 3 a cos τi,
                  - 3 aω sin τi ]

τi = é
ë
êêêê

ù
û
úúúú0, 2

3 π, 4
3 π

(19)

which is illustrated in Fig.3. Fig.3 illustrates the ref‑
erence orbit generated by the exosystem， which pro‑
vides the periodic signal required for the initializa‑
tion of the triangular array formation.

To demonstrate that an equilateral triangular ar‑
ray formation is achieved， we define

d i( t ) = w 2
ix( )t + w 2

iy( )t + w 2
iz( )t  

i = 1,2,3 (20)
An equilateral triangular array formation is 

shown in Fig.4 and Fig.5， which show the 
two‑layer and three‑layer equilateral triangular array 
formations， respectively. These results demonstrate 
that equilateral triangular array formation is formed 
in two periods owing to the output regulation.

The error histories are shown in Figs.6，7 （on‑
ly illustrated the two‑layer equilateral triangular ar‑
ray formation）. The errors converge to zero， indi‑
cating that the spacecraft finish the initialization pro‑
cess and maintain it according to the control law.

As time progresses， di converges to constant 
values（Figs.8，9）， thereby demonstrating the estab‑

Fig.3　A circular orbit

Fig.4　Two‑layer equilateral triangular array formation for 
nonlinear system

Fig.5　Three‑layer equilateral triangular array formation for 
nonlinear system
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lishment of an equilateral triangular array formation.
Next， using the coordinate system centered at 

Lagrange points L 1，L 2，L 3 calculate the ΔV（L 1‑ 
norm of control input）， as is shown in Fig.10 （only 
calculate one‑layer equilateral triangular formation）.

In Fig.10， the ΔV values of three spacecraft 

centered at Lagrange points L 1 and L 2 are shown to 
be larger than those at Lagrange point L 3. When a =
10-4AU（≈ 1.49 × 104 km）， the maximum values 
are 1 013 m/s（for Lagrange point L 1）， 991.9 m/s
（for Lagrange point L 2）， 673.3 m/s （for Lagrange 
point L 3） for in plane， respectively. As for out of 
plane， the maximum values are 243.4 m/s （for La‑
grange point L 1）， 234.3 m/s （for Lagrange point 
L 2）， 12.87 m/s （for Lagrange point L 3）， respec‑
tively.

Lagrange points L 1 and L 2 are located on the 
side of the Earth， where both the points balance the 
gravitational force of the Sun and the Earth. Al‑
though they are equilibrium points， spacecraft at 
these locations require more fuel to maintain stabili‑
ty because the difference in gravitational forces from 
the Sun and Earth is significant. In contrast， La‑
grange point L 3 is located on the opposite side of 
Earth’s orbit， farther from the influence of both the 
Sun and Earth. Although this point also balances the 
gravitational forces of the Sun‑Earth system， the 

Fig.10　Total values of L 1‑norm for nonlinear system

Fig.9　Values of di (out‑circle)

Fig.6　Errors for two‑layer equilateral triangular array 
formation for nonlinear system (in‑circle)

Fig.7　Errors for two‑layer equilateral triangular array 
formation for nonlinear system (out‑circle)

Fig.8　Values of di (in‑circle)
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spacecraft at Lagrange point L 3 experience less grav‑
itational perturbation from external sources， thereby 
requiring less fuel to maintain formation stability. 
Positioned on the far side of the Sun‑Earth system， 
this point is more stable and subject to fewer exter‑
nal disturbances. According to the CRTBP， La‑
grange points L 1 and L 2 are unstable equilibrium 
points and Lagrange point L 3 is also unstable. How‑
ever， its degree of instability is slightly lower com ‑
pared with Lagrange points L 1 and L 2. Although La‑
grange point L 3 is not a fully stable point， the re‑
duced external disturbances make it easier to main‑
tain stability， thus requiring less control input.

4. 2 Natural stability analysis of uncontrolled 
equilateral triangular array formation　

In Section 4.1， the configuration design and ini‑
tialization control of the equilateral triangular array 
formation were accomplished， ensuring that the 
three spacecraft establish a strict equilateral triangu‑
lar array formation under the output regulation theo‑
ry. Nevertheless， in GWO missions， the propulsion 
system must be deactivated during the scientific 
phase in order to avoid non‑inertial disturbances in‑
duced by continuous thrust， such that the spacecraft 
remain in a pure state for accurate interferometric 
measurements of GW signals. Consequently， to 
guarantee the feasibility and continuity of the obser‑
vation mission， it is essential to systematically eval‑
uate the geometric and dynamical stability of the for‑
mation without control input， thereby identifying 
the intrinsic timescale of natural configuration main‑
tenance as well as the appropriate timing for control 
intervention.

In actual mission operations， continuous con‑
trol not only introduces non‑inertial disturbances but 
also increases fuel consumption. Therefore， once 
initialization is completed， the spacecraft typically 
enter a “natural drift” phase， during which 
short‑term observational capability relies on the in‑
trinsic dynamical stability of the triangular configura‑
tion. Accordingly， this section investigates the evo‑
lution of the equilateral triangular array formation af‑
ter initialization under the Sun‑Earth CRTBP dy‑
namical model， without using any control input. By 

comparing with the performance requirements of the 
LISA mission， it is noted that， during the scientific 
phase， the variation in arm length is typically main‑
tained within 1.5% ─ 2% of its nominal value［11］， in 
order to ensure interferometric measurement accura‑
cy.

Therefore， this section systematically analyzes 
the natural stability of the equilateral triangular for‑
mation from two perspectives.
4. 2. 1 Analysis of arm‑length evolution of the 

equilateral triangular array formation 

without control input　

This section investigates the temporal evolu‑
tion of the three arm lengths of the formation， aim‑
ing to evaluate the capability of the equilateral trian‑
gular array formation configuration and preserve its 
geometric structure without control input. To en‑
sure the ranging accuracy of the observation， the 
stability of the formation must be constrained within 
2% according to the requirements of GWO. Among 
these parameters， the arm length serves as the fun‑
damental baseline of the interferometer， and its rela‑
tive variation directly reflects the integrity and stabil‑
ity of the formation. In GWO missions， if the varia‑
tion in the inter‑spacecraft arm length exceeds 2% 
of the nominal value， the interferometric measure‑
ment accuracy is severely degraded， and the forma‑
tion is generally regarded as having failed. There‑
fore， by tracking the time history of the arm length 
variations and identifying the first instance when the 
threshold is exceeded， the natural maintenance dura‑
tion of the formation can be quantified， thereby pro‑
viding a theoretical basis for the scheduling of con‑
trol interventions.

In the natural stability analysis conducted in 
this section， the formation radius is set to 
a = 10-5 AU， which corresponds to approximately 
1 490 km. The resulting arm length of the equilater‑
al triangular array formation is about 2 581.99 km. 
Considering the stability requirements of GWO mis‑
sions， this study adopts the same as the LISA mis‑
sion， namely that the arm length variation must not 
exceed 2%. Accordingly， the maximum allowable 
arm length deviation is determined as follows

ΔLmax = 2% × L (21)
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where ΔLmax  denotes the maximum arm length varia‑
tion and L the nominal arm length of the equilateral 
triangular array formation. The calculated maximum 
variation is 51.64 km， which is adopted as the criti‑
cal threshold for determining formation failure. 
Once the actual distance variation between any two 
spacecraft exceeds it， the formation is regarded as 
invalid， as it can no longer meet the baseline stabili‑
ty required for interferometric measurements.

Fig.11 illustrates the arm length variation be‑
tween the three spacecraft （only show one‑layer）. 
At the initial state， all arm lengths are approximate‑
ly 2 581.99 km. According to the stability criterion， 
the maximum allowable arm‑length variation is with‑
in ±2%， that is， Lmin ≈ 2 530.35 km and Lmax ≈
2 633.63 km. Once the distance between any two 
spacecraft without control input exceeds Lmin or 
Lmax， the formation is considered to have lost the 
geometric stability required for interferometric mea‑
surements.

As shown in Fig.11， the distance between Sat1 
and Sat2 increases most rapidly and first exceeds the 
upper bound of 2 633.63 km at T = 7.552 d. In 
contrast， the arm length between Sat2 and Sat3 
gradually decreases and reaches the lower bound of 
2 530.35 km at T = 8.132 d. Since the criterion for 
formation failure is defined as the first crossing of 
the tolerance threshold by any arm， the effective sta‑
bility duration of the formation under uncontrolled 
conditions is determined to be T stable = 7.552 d.

This result indicates that， during the natural 
drift of the three spacecraft without control input， 
the stability of the equilateral triangular array forma‑

tion is limited. Therefore， control correction is re‑
quired approximately every 7.552 d to ensure the 
continuity of the GWO mission.
4. 2. 2 Evolution of equilateral triangular array 

formation deviation under uncontrolled 

conditions　

As indicated in Section 4.2.1 on arm length 
variations， under uncontrolled conditions the forma‑
tion arm lengths rapidly deviate from their initial 
values， exceeding the tolerance threshold in approx‑
imately 7.552 d and leading to formation failure. Al‑
though arm length variation effectively characterizes 
the overall stability boundary of the formation and 
serves as the primary criterion for mission toler‑
ance， this metric mainly reflects the relative geo‑
metric relationships among the spacecraft. It does 
not， however， reveal the absolute deviations of 
each spacecraft from their nominal trajectories un‑
der uncontrolled conditions. Therefore， to more 
comprehensively evaluate formation stability， it is 
necessary to further analyze the position errors of 
each spacecraft relative to the initialized reference 
orbit.

As shown in Fig.12， under uncontrolled condi‑
tions the three spacecraft exhibit significant orbital 
deviations after approximately 7.552 d （i. e.， when 
the formation fails）， with the deviations occurring 
primarily along the X‑axis （the Sun‑Earth direc‑
tion）. Specifically， at 7.552 d of natural drift， the 
maximum deviation of Sat1 along the X‑axis reaches 
180.7 km， while those of Sat2 and Sat3 are −89.92 
and −90.82 km， respectively. The deviations of the 
three spacecraft are opposite in direction but compa‑
rable in magnitude， indicating a strongly divergent 
trend along the X‑axis. This result demonstrates 
that， near the Sun‑Earth Lagrange point L 1， the in‑
stability in the X‑axis dominates the evolution of the 
formation.

In the Sun‑Earth system， the Lagrange point 
L 1 is a typical saddle equilibrium position， whose 
stability characteristics can be analyzed by lineariza‑
tion under the CRTBP. After linearizing the system 
near Lagrange point L 1， the corresponding Jacobian 
matrix consists of one pair of real eigenvalues ±λ 
and two pairs of purely imaginary conjugate eigen‑

Fig.11　Arm length variation (only show one‑layer)
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values ±iω 1  and ±iω 2. The real eigenvalues corre‑
spond to directions aligned with the Sun‑Earth di‑
rection （i. e.， the X‑axis direction）， implying that 
any small perturbation along this direction will en‑
large exponentially within the unstable subspace 
without control input. This dynamical mechanism 
fundamentally explains why the deviations of the 
spacecraft are most divergent along the X‑axis and 
why the formation configuration fails first in this di‑
rection.

Above all， the results show that， without opti‑
mization， the equilateral triangular array formation 
maintains its stability for about 7.5 d under uncon‑
trolled conditions. This interval is noticeably shorter 
than the correction cycles reported in established 
missions such as LISA， suggesting a higher frequen‑
cy of intervention. However， it should be empha‑
sized that the present result is obtained without any 
optimization of orbital parameters， initial condi‑
tions， or control strategies， indicating substantial 
potential for further improvement. More important‑
ly， this study represents the first extension of forma‑
tion stability and maintenance analysis to arbitrary 
orbital environments， rather than being confined to 
traditional heliocentric or specific mission orbits. 
This not only demonstrates the universality and fea‑
sibility of the proposed approach but also provides 
new theoretical insights and technical references for 
future GWO missions in diverse orbital scenarios， 
thereby carrying significant importance.

4. 3 Reconfiguration control of equilateral tri⁃
angular array formation　

To ensure the long‑term stability of GWO， for‑
mation reconfiguration control is an inevitable re‑
quirement. The dynamic nature of GWO mission de‑
mands imposes more flexible and adaptive require‑
ments on the configuration. These requirements are 
reflected in two main aspects. On one hand， as the 
frequency band of GWs in a fixed direction changes， 
the inter‑spacecraft distance must be dynamically ad‑
justed to optimize the interferometric sensitivity for 
different frequency bands and this type is referred to 
as scale reconfiguration. On the other hand， when 
the position or direction of the GW source changes， 
the orbital plane of the formation must be adjusted 
accordingly to achieve optimal pointing for observa‑
tion. This type of reconfiguration is referred to as 
pointing reconfiguration. This study primarily focus‑
es on scale reconfiguration.

When observing GWs of different frequencies 
from the same direction， configuration reconfigura‑
tion control is required.

During the implementation of scale reconfigura‑
tion， a scaling factor λ is introduced， and the config‑
uration position vectors are expanded or contracted 
as
w scale ( t )= λ· [ ]w 1 ( t ) w 2 ( t ) w 3 ( t ) λ > 0 (22)

where λ determines the scale reconfiguration. When 
λ > 1， the formation enlarges and the 
inter‑spacecraft distances increase， leading to an ex‑
tended arm length that is favorable for observing 
low‑frequency GWs. Conversely， when λ < 1， the 
formation contracts， which is suitable for 
high‑frequency GWs.

During the formation scaling adjustment， the 
inter‑spacecraft relative distance varies with λ， and 
can be expressed as
d scale

ij ( t )= |w scale
i ( t )- w scale

j ( t ) | = λ|w i ( t )- w j ( t ) |
i = 1,2,3; j = 1,2,3; i ≠ j (23)

As shown in Eq.（23）， the scale reconfiguration 
process is directly reflected as a proportional change 
in the inter‑spacecraft distances， while the geometric 
similarity of the formation remains unchanged.

In Fig.13， when GWs from the same direction 

Fig.12　Evolution of formation deviation under uncontrolled 
conditions (only show one‑layer)
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are relatively weak， it becomes necessary to per‑
form scale reconfiguration. This process involves ad‑
justing the triangular formation by expanding its con‑
figuration under the application of control forces. In 
Fig.14， when GWs from the same direction are rela‑
tively strong， it also becomes necessary to perform 
scale reconfiguration by contracting its configuration 
under the application of control forces. It allows the 
triangular formation to maintain optimal sensitivity 
and detection capability， ensuring that the triangular 
formation is appropriately aligned to observe the 
weaker GWs.

While scale expansion in GWO missions is pri‑
marily intended to enhance sensitivity to 
low‑frequency and weak signals， scale contraction 
is not “unnecessary” . The key lies in the distinct re‑
sponse of interferometric measurements across dif‑
ferent frequency bands. When the arm length be‑
comes too long， high‑frequency signals may experi‑
ence excessive phase differences between space‑
craft， leading to phase decorrelation and reduced 
measurement effectiveness. Thus， the purpose of 
scale contraction is not to address “strong” GWs， 
but rather to adapt the formation to high‑frequency 

signals， ensuring optimal signal‑to‑noise ratio and 
measurement precision in that regime. From a mis‑
sion design perspective， scale reconfiguration is not 
envisioned as a frequent operation but as a limited， 
stage‑specific adjustment. By predefining a small 
number of scaling maneuvers within the mission 
plan， it is possible to balance scientific return with 
propellant consumption， thereby preserving mission 
feasibility while significantly extending the accessi‑
ble frequency range.

5 Conclusions 

An equilateral triangular array formation initial‑
ization near Lagrange point L 1 is examined. To es‑
tablish the equilateral triangular array formation and 
maintain it in two periods， the tracking aspect of out‑
put regulation theory is employed. For the equilater‑
al triangular array formation， the reference trajecto‑
ry is generated by an exosystem. Then， the equilat‑
eral triangular array formations are established and 
maintained. The errors are calculated， demonstrat‑
ing that the equilateral triangular array formation is 
well‑maintained. In addition， to evaluate the forma‑
tion configuration after initialization under uncon‑
trolled conditions， a natural stability analysis is con‑
ducted. The results show that， with an orbital radius 
of a = 1 490 km， the arm length of the formation ex‑
ceeds the tolerance of 2% within approximately 
7.552 d， indicating the onset of configuration failure. 
The deviations of the three spacecraft are most pro‑
nounced along the X‑axis （the Sun‑Earth direction）， 
reflecting the inherent dynamical instability of the 
Lagrange point L 1   in this direction. Subsequently， 
the fuel consumption for the formation initialization 
at the Lagrange points L 1，L 2，and L 3 are calculated， 
respectively. It is found that the fuel consumption re‑
quired at the Lagrange point L 3 is significantly lower 
than that at other points. Finally， when observing 
GWs from the same direction with different frequen‑
cy bands， configuration scale reconfiguration control 
is performed.
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天基引力波探测等边三角形阵列编队构形初始化控制

潘政旭 1， BANDO Mai2， 朱战霞 1， HOKAMOTO Shinji2

（1.西北工业大学航天学院，西安 710072，中国； 2.九州大学航空航天系，福冈 819‑0395，日本）

摘要：分析了圆形限制性三体问题中拉格朗日点附近的天基引力波探测（Gravitational wave observatory， GWO）

等边三角形阵列编队初始化问题。稳定的编队构型对于引力波（Gravitational waves， GWs）的连续探测至关重

要，然而共线平动点附近的运动极不稳定。鉴于此，本文利用输出调节理论对该问题进行了研究。利用输出调

节理论中的轨迹跟踪方法，在两个周期内建立等边三角形阵列编队并进行了构型保持，同时计算了燃料消耗。

此外，分析了无控状态下等边三角形阵列编队的自然演化过程，量化了有效探测的持续时间，以确定控制干预的

时机。最后，为了探测同一方向不同频段的引力波，进行了编队尺度重构控制。

关键词：天基引力波探测；等边三角形阵列编队初始化；拉格朗日点；输出调节理论
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