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Abstract: To overcome external environmental disturbances， inertial parameter uncertainties and vibration of flexible 
modes in the process of attitude tracking， a comprehensively effective predefined-time guaranteed performance 
controller based on multi⁃observers for flexible spacecraft is proposed. First， to prevent unwinding phenomenon in 
attitude description， the rotation matrix is used to represent the spacecraft’s attitude. Second， the flexible modes 
observer which can guarantee predefined⁃time convergence is designed， for the case where flexible vibrations are 
unmeasurable in practice. What’s more， the disturbance observer is applied to estimate and compensate the lumped 
disturbances to improve the robustness of attitude control. A predefined-time controller is proposed to satisfy the 
prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function. Finally， through 
comparative numerical simulations， the proposed controller can achieve high-precision convergence compared with the 
existing finite-time attitude tracking controller. This paper provides certain references for the high-precision predefined-

time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.
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0 Introduction 

Spacecraft attitude control is of great signifi⁃
cance to the success of space missions， which 
should possess high accuracy， stability， and robust⁃
ness to meet the challenges of space environments 
and diverse mission requirements. In spacecraft’s at⁃
titude tracking control systems， actuators’ outputs 
are adjusted by the control algorithms to minimize 
the attitude errors relative to the desired attitude. 
However， influenced by multiple factors including 
unknown inertial parameters， complex environmen⁃
tal disturbances， and the elastic and rigid coupling 
effects， the actual attitude kinematics and dynamics 
of spacecraft are complex， leading to frequent chal⁃
lenges in attitude tracking process. Thus， a compre⁃

hensively effective controller for spacecraft attitude 
tracking control is essential. Recently， many meth⁃
ods have been proposed to handle these challenges， 
including robust control， adaptive disturbance rejec⁃
tion control， and disturbance observer-based control.

To improve the system’s anti-disturbance capa⁃
bilities， the adaptive control approaches that inte⁃
grate sliding mode control and backstepping method 
are used for spacecraft’s attitude control system， 
which is considered to have extensive conservation 
for the assumption that disturbances meet specific in⁃
equality constraints［1-3］. What’s more， since the neu⁃
ral network has the ability of online learning， which 
can update and adjust parameters to compensate for 
the lumped disturbances with estimation， thus it can 
avoid making priori assumptions［4-5］. However， the 
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disturbance suppression methods based on neural 
network involve a complex parameter tuning pro⁃
cess， which may increase the computational burden 
and the time consumption of the control system. In 
this case， the disturbance observer-based control only 
requires selecting a few appropriate observer’s gains 
to estimate the lumped disturbances in the system.

It can be seen that although these controllers 
have satisfactory robustness to the uncertainty of ex⁃
ternal disturbances and inherent moments of inertia， 
in the design of many of them， full state feedback is 
used. However， in practical applications， it is im⁃
possible to measure certain states of the system. 
The practical spacecraft attitude model is usually af⁃
fected by flexible structures， such as solar cells and 
antennas， leading to a typical rigid-flexible coupling 
characteristic. This coupling effect will increase the 
difficulty of maintaining attitude control accuracy. 
What’s more， modal variables are usually unmea⁃
surable in flexible spacecraft. In recent years， using 
some special materials， such as piezoelectric materi⁃
als， has been investigated by researchers as active 
vibration control strategies［6］. However， piezoelec⁃
tric sensors and actuators change the structure and 
properties of the flexible appendage due to mechani⁃
cal interference， which is not permitted by most 
flexible constructions. Therefore， using piezoelec⁃
tric sensors to measure modal variables of flexible 
spacecraft is not recommended for practical cases.

In addition， studies［7-9］ are modeled based on 
quaternions in describing a specific attitude， which 
may lead to an unwinding phenomenon， meaning 
the spacecraft may ignore one of the two equilibrium 
points of quaternions during the attitude maneuver， 
then it needs to rotate an angle more than 180° to 
reach the steady states， thus increasing unnecessary 
fuel consumption. It is shown by Ref.［10］ which in⁃
troduces a novel attitude error function based on the 
rotation matrix and then proposes a controller to re⁃
alize attitude tracking of rigid spacecraft， thus it can 
essentially avoid the phenomenon of unwinding.

On another aspect， most space missions （such 
as docking and rendezvous of satellites） require to 
stabilize quickly. Although the finite-time theo⁃
ry［11-12］ can overcome the infinite convergence prob⁃

lem， the convergence time varies with different ini⁃
tial conditions， which cannot be determined in prac⁃
tice since the initial states are not exactly known. 
Fixed⁃time control， as special finite⁃time control， 
further guarantees that the upper bound of conver⁃
gence time is independent of the initial conditions 
and related to the designed parameters［13］. In this 
case， the predefined time control （PTC） theory is 
developed， the notable benefit of which is that the 
system’s maximum convergence time can be explic⁃
itly represented by control parameters to make it a 
hotspot in the past few years［14-17］. The predefined-

time controller proposed in Ref.［14］ proposes a 
novel adaptive nonsingular predefined-time control⁃
ler with backstepping recursive design method， and 
a quadratic function is designed to avoid singulari⁃
ties. Moreover， the authors in Ref.［17］ propose 
two predefined-time sliding-mode observers to esti⁃
mate the desired attitude and angular velocity in the 
case of only a set of spacecraft has access to them， 
and the proposed controller can achieve predefined-

time attitude tracking of a multi-spacecraft system.
The above studies share a common characteris⁃

tic that focuses only on the steady-state behavior 
and do not consider the transient responses. In prac⁃
tice， ensuring ideal transient performance of attitude 
and angular velocity in the tracking process can be 
challenging. The well-known prescribed perfor⁃
mance control （PPC） method has the capability to 
guarantee the system’s transient performance （con⁃
vergence speeds and overshoots） and steady-state 
performance （steady-state errors）， which can meet 
the control requirements of practical tasks［18-20］. The 
upper and lower bounds of the system states are re⁃
ferred as the prescribed performance functions， 
which introduce additional nonlinear constraints to 
the system， therefore increasing the complexity of 
controller design. It is necessary to map the system 
states into an unconstrained space using the transfor⁃
mation function， which leads to a complex structure 
of the system. What’s more， the tracking errors can 
only be driven to a specified residual set as time ap⁃
proaches infinity with traditional performance func⁃
tions.

Inspired by the mentioned studies， this paper 
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designs an attitude tracking controller based on the 
PPC method and PTC theory for flexible spacecraft 
under environmental disturbances， considering the 
inertial parameter uncertainties. The principal contri⁃
butions of this study are concisely outlined as fol⁃
lows：

（1） The advantages of the proposed observers 
are： The convergence time of the estimation errors 
can be explicitly represented in the observers； the 
disturbance observer does not require any priori in⁃
formation.

（2） The upper bound of the convergence time 
of the system states can be arbitrarily predefined by 
setting the control parameters， which is indepen⁃
dent from the system initial conditions.

（3） The combination of finite-time prescribed 
performance functions and barrier Lyapunov func⁃
tions （BLF） avoids introducing transformation func⁃
tions to simplify controller design， which makes it 
more valuable in practical applications.

The rest of the paper is organized as follows： 
Flexible spacecraft attitude tracking error model 
based on the rotation matrix description is devel⁃
oped and the related lemmas are introduced in Sec⁃
tion 1. The flexible mode observer and disturbance 
observer are designed in Section 2， followed by the 
controller design and stability proofs in Section 3. 
The numerical simulations are provided in Section 
4， which can validate the effectiveness of the pro⁃
posed algorithm. The conclusion is given in Sec⁃
tion 5.

1 Spacecraft Modeling and Prob‑
lem Formulation 

1. 1 Model of flexible spacecraft　

To avoid unwinding phenomena during the atti⁃
tude description， the attitude equation of the space⁃
craft based on the rotation matrix is defined as fol⁃
lows

Ṙ= Rω× (1)
where R ∈ R 3 × 3 is the rotation matrix that trans⁃
forms the spacecraft from the body-fixed frame to 
the inertial frame.

In Figs.1，2， O i xi yi zi，O b xb yb zb，O a xa ya za 
and O d xd yd zd represent the inertial frame， the 
body-fixed frame， the appendage frame， and the ref⁃
erence frame， respectively. Considering facts such 
as  external environmental disturbances， inertial ma⁃
trix uncertainties， actuator failures， and input satu⁃
ration， the attitude dynamics of the flexible space⁃
craft based on the hybrid coordinate method can be 
derived using Lagrange’s equations as follows

ì
í
î

Jω̇+ δTη= -ω× ( Jω+ δTη )+ u+ d

η̈+ Cη̇+ Kη= -δω̇
(2)

where J= J0 + ΔJ∈ R 3 × 3 is the actual inertia ma⁃
trix of the spacecraft， containing J0 ∈ R 3 × 3 as the 
nominal component and ΔJ∈ R 3 × 3 as the uncertain 
part； δ∈ R n × 3 represents the coupling matrix be⁃
tween rigid body and flexible structures of the space⁃
craft； C=diag { [ 2ξ1 l1，2ξ2 l2，…，2ξn ln ] }∈R n×n； K= 
diag { [ l 2

1，l 2
2，…，l 2

n ] } ∈ R n × n denotes the damping 

Fig.1　Spacecraft structure with a central rigid body and a 
flexible attachment

Fig.2　Spacecraft coordinate systems
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matrix and the stiffness matrix， where ξi， li ( i =
1，2，…，n ) are damping ratios and natural frequen⁃
cies， respectively； η∈ R n × 1 denotes the flexible 
modes and n is the modal order； d∈ η ∈ ℜn × 13 × 1 
represents the environmental disturbance torque； 
ω=[ ω 1，ω 2，ω 3 ]T∈ R 3 × 1 is the angular velocity of 
spacecraft in the body-fixed frame， and ω× is given 
by

ω× =
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úú
ú

ú0 -ω 3 ω 2

ω 3 0 -ω 1

-ω 2 ω 1 0
(3)

The attitude errors and angular velocity errors 
of the spacecraft are defined， respectively， as shown

R͂= RT
d R (4)

ῶ= ω- R͂Tω d (5)
where R d ∈ R 3 × 3 and ω d ∈ R 3 × 1 denote the desired 
rotation matrix and the desired angular velocity， re⁃
spectively. The challenge in designing the attitude 
controller using the above model comes mainly from 
the complexity of the rotation matrix， which makes 
it more difficult to derive the controller directly. 
Therefore， an equivalent error model based on rota⁃
tion matrix is introduced referring to Ref.［10］.

ψ ( R͂ )= 2 - 1 + tr ( R͂ ) (6)

eR͂ = 1

2 1 + tr ( R͂ )
( R͂- R͂T )∨ (7)

where ψ ( R͂ ) is the attitude error function and 
eR͂ ∈ R 3 the transformed error vector. “∨” denotes 
the inverse operation of “× ”， which can convert 
the skew-symmetric matrix into a three-dimensional 
vector： SO ( 3 ) → R 3 . Based on Eqs.（1，2） and 
Eqs.（6，7）， the attitude tracking error dynamics of 
the spacecraft is derived as

ė R͂ = Eῶ (8)
ì
í
î

Jω̇͂= F+ G+ u
η̈+ Cη̇+ Kη= -δω̇

(9)

E= 1

2 1 + tr ( R͂ )
( tr ( R͂ ) I- R͂T + 2e R͂ e

T
R͂ ) (10)

F= -( ῶ+ R͂Tω d )×J ( ῶ+ R͂Tω d )- JR͂T ω̇ d +
Jῶ× R͂Tω d (11)

G= ῶ×δT η̇-( R͂T ω̇ d )×δT η̇- δT η̇+ d (12)

1. 2 Preliminary　

Lemma 1［21］ For the system ẋ= f ( x )， 

x ( 0 )= 0； for x ∈ R n and f： R n → R n， if a continuous 
positive-definite Lyapunov function V ( x ) satisfies 
the following inequality

V̇ ( x )≤- π
pT 1 λ1 λ2

é
ë
êêêêλ1V

1- p
2 ( x )+λ2V

1+ p
2 ( x ) ù

û
úúúú+ρ

(13)
where λ1， λ2， Tc > 0， 0 < p < 1， 0 < ρ < ∞， then 
the equilibrium point is practically predefined-time 
stable. If there exists 0 < θ < 1， the state of the sys⁃
tem can converge within the predefined-time T =

1

θ
Tc， and the residual set of the solution in sys⁃

tem is given by
lim
t → T

x ∈ { x ∈ R n|V ( x ) ≤ min { D 1,D 2 } }

where  D 1=( ρpTc λ1 λ2

πλ1( )1-θ )
2

2-p

，D 2=( ρpTc λ1 λ2

πλ2( )1-θ )
2

2+p

.

Lemma 2［22］ For any arbitrary constants xi >
0， i = 1，2，…，n and q > 0， the following inequali⁃
ties holds

ì

í

î

ï
ï
ïï
ï
ï

ï

ï
ïï
ï

ï

∑
i = 1

n

xq
i ≥ ( )∑

i = 1

n

xi

q

                0 < q < 1

∑
i = 1

n

xq
i ≥ n1 - q( )∑

i = 1

n

xi

q

           q > 1

Lemma 1 is the predefined-time stability 
theory， which is developed based on the Lyapunov 
direct method. Lyapunov functions related to the 
system states can be constructed empirically， and 
the controller is designed using the backstepping 
method to satisfy Eq.（13）. In this case， the system 
states convergence in predefined time.

Lemma 2 is typically employed in stability 
proofs for the constructed Lyapunov functions to sat⁃
isfy Eq.(13).

2 Predefined‑Time Observer 

2. 1 Predefined‑time flexible mode observer　

To cope with problem of the unmeasurable 
flexible modes in practical situations， a predefined-

time observer is designed for estimating the modes， 
and the convergence time of the estimation errors 
can be explicitly represented in the observer.

Denote ϕ= η̇+ δω， and ϕ̇= -(Cψ+ Kη-
Cδω )， the second equation in Eq.（9） can be rewrit⁃
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ten as
χ̇= Āχ+ B̄ω (14)

where

χ=
é

ë

ê
êê
ê ù

û

ú
úú
úη

ϕ
,Ā= é

ë
êêêê ù

û
úúúú0 In × n

-K -C
,B̄= é

ë
êêêê ù

û
úúúú-δ

Cδ

The form of the predefined-time observer is

χ̇̂= Āχ̂+ B̄ω- ( )π
2p1T 1

( )sig1 - p1 ( χ- χ̂ )+ 3
p1

2 sig1 + p1 ( χ- χ̂ ) + Ā ( )χ- χ̂ - a sign ( )χ- χ̂ (15)

where χ̂= [ η̂ ϕ̂ ] T
，0 < p1 < 1，a > 0，and T 1 > 0 

is the upper bound on the convergence time of the 
estimation errors， which can be predefined. Denote 
the estimation errors as χ͂= χ- χ̂， the predefined-

time convergence of the proposed observer （Eq.（16）） 

can be proved by defining the Lyapunov candidate 
function as follows

V χ = 1
2 χ͂

T χ͂ (16)

The derivative of V χ can be obtained as follows

V̇ χ = χ͂T ( χ̇- χ̇̂ )= χ͂T ( - π
2p1T 1 (sig1 - p1( χ͂ ) + 3

p1

2 sig1 + p1( χ͂ ) )- a sign ( χ͂ ))=

- π
2p1T 1

∑
m = 1

3 ( )( || χ͂m

2
)

2 - p1

2 + 3
p1

2 ( || χ͂m

2
)

2 + p1

2 + a ∑
m = 1

3

( || χ͂m )2 ≤ - π
2p1T 1 ((∑m = 1

3
|| χ͂m

2 )
2 - p1

2

+

(∑
m = 1

3
|| χ͂m

2 )
2 + p1

2 )+ a ∑
m = 1

3
|| χ͂m

2
= - π

p1T 1 λ1 λ2
( )λ1V χ

1 - p1

2 + λ2V χ
1 + p1

2 + ρ1 （17）

where λ1 = 2
2 - p1

2 ，λ2 = 2
2 + p1

2 ，ρ1 = a ∑
m = 1

3
|| χ͂m

2
.

Based on the above results， it can be concluded 
by Lemma 1 that χ̂ converges to χ in a predefined 
time T 1. The proof of this theorem is completed.

2. 2 Predefined‑time disturbance observer　

Consider the uncertainty of inertia moment ΔJ， 
the dynamics of Eq.（9） can be transformed into

ω̇͂= J-1
0 (-( )ῶ+ R͂Tω d J0 ( ῶ+ R͂Tω d )+

  J0 ( ῶ× R͂T ω̇ d - R͂Tω d )-( ῶ+ R͂Tω d )×
  ΔJ ( ῶ+ R͂Tω d )+ ΔJ ( ῶ× R͂T ω̇ d - R͂Tω d )+
  ΔJJ-1 ( ῶ+ R͂Tω d )×J ( ῶ+ R͂Tω d )+
  ( I- ΔJJ-1 )G- ΔJJ-1 J ( ῶ× R͂Tω d - R͂T ω̇ d )+

)u = F 1 + G 1 + J0
-1u (18)

where
F 1 = J-1

0 ( -( ῶ+ R͂Tω d ) J0 ( ῶ+ R͂Tω d )+

J0 ( ῶ× R͂T ω̇ d - R͂Tω d ) )

G 1=J-1
0 (-( )ῶ+R͂Tω d

×
ΔJ ( ῶ+R͂Tω d )+

ΔJ ( ῶ× R͂T ω̇ d-R͂Tω d )+ΔJJ-1 ( ῶ+R͂Tω d )×·
J ( ῶ+R͂Tω d )-ΔJJ-1 J ( ῶ× R͂Tω d-R͂T ω̇ d )+
( I-ΔJJ-1 ) )( )ῶ×δT η̇-( R͂T ω̇ d )×δT η̇-δT η̇+d

The term G 1 can be calculated by estimating 

the modal variables η̂ using the proposed observer 
（Eq.（16）） ， and thus， it can be rewritten as

Ḡ 1 = J-1
0 (-( )ῶ+ R͂Tω d

×
ΔJ ( ῶ+ R͂Tω d )+

ΔJ ( ῶ× R͂T ω̇ d - R͂Tω d )+ ΔJJ-1 ( ῶ+ R͂Tω d )×·
J ( ῶ+ R͂Tω d )- ΔJJ-1 J ( ῶ× R͂Tω d - R͂T ω̇ d ) +
( I- ΔJJ-1 ) ( ῶ×δT η̇̂-( R͂T ω̇ d )×δT η̇̂-

))δT η̇̂+ d

The system of Eq.（18） is rewritten as
ω̇͂= -b1 ῶ+ F 1 + N+ J-1

0 u (19)
where N = b1 ῶ + Ḡ 1，b1 > 0 . For system of 
Eq.（19）， the following auxiliary system is defined

ẋ= -b1 x+ F 1 + J-1
0 u (20)

Define the discrepancy between ῶ and x by
z= ῶ- x (21)

Then， the error dynamics can be expressed as
ż= ω̇͂- ẋ= -b1 z+ N (22)

Inspired by Ref.［23］， the estimation raw of 
the lumped disturbance is designed as

Ĝ̄ 1 = N̂- b1 ῶ (23)
where N̂= b1 ẑ+ ż， and ẑ represents the estima⁃
tion of z.

Therefore， the estimated error of the lumped 
disturbance is
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G͂ 1 = Ḡ 1 - Ĝ̄ 1 = N- b1 ῶ- ( N̂- b1 ῶ)=
N- b1 ẑ- ż= N- b1 ẑ+ b1 z- N=
b1( z- ẑ ) (24)

A nonlinear predefined-time observer is con⁃
structed as

ż̂= -b2 b3 z͂+ ż+ π
2p2T 2 (3 p2

2 sig1 + p2( z͂ ) +

sig1 - p2( z͂ ) )- c sign ( z͂ ) (25)

where b2 > 0，b3 > 0，0 < p2 < 1，c > 0， z͂= z- ẑ，

T 2 > 0 is the upper bound on the convergence time 
of the error z͂.

Construct a Lyapunov function as

V z = 1
2 z

T z (26)

Similarly， we can prove that

V̇ z ≤ - π
p2T 2 λ3 λ4

( λ3V
1 - p2

2
z + λ4V

1 + p2

2
z )+ ρ2

(27)

where λ3 = 2
2 - p2

2 ，λ4 = 2
2 + p2

2 ，ρ2 = a ∑
m = 1

3
|| z͂m

2.

Based on the above results， it can be concluded 
by Lemma 1 that ẑ converges to z in a predefined 
time T 2. The proof of this theorem is completed. 

Therefore， it is inferred that Ĝ̄ 1 is reconstructed by 

Ĝ̄ 1 after T 2.

3 Guaranteed Performance Con‑
troller Design 

3. 1 Controller design　

Consider a predefined performance function 
ρ ( t ) proposed in Ref.［24］.

ì
í
î

ïï

ïï

ρ ( 0 )= ρ0

ρ̇ ( t )= -μ || ρ ( t )- ρT

γ
sign ( )ρ ( t )- ρT

(28)

where μ = ( ρ ( t )- ρT )
1 - γ

/ ( 1 - γ ) /Te，Te is the 
convergence time of the system states which can be 
predefined， γ is a constant and γ ∈ ( 0，1)， ρ0 is the 
initial value of the performance function ρ ( t )， and 
ρT is the final value of ρ ( t )， and it satisfies

ρ ( t )= ρT       ∀t ≥ Te

In order to stabilize the system （Eq.（18）），an 
virtual error angular velocity is designed as

ω* = E-1

é

ë

ê

ê

ê
êê
ê
ê

ê
- σ1eR͂ - 2σ1

ρ2
1

π φ 1 tan ( )πeT
R͂ eR͂

2ρ2
1

-

π
pTe k1 k2

φ 1

æ

è

ç
çç
ç
ç
çk1 ( )ρ2

1

π tan ( )πeT
R͂ eR͂

2ρ2
1

1 - p
2

+

ö

ø

÷
÷÷
÷
÷
÷k2 2

p
2 ( )ρ2

1

π tan ( )πeT
R͂ eR͂

2ρ2
1

1 + p
2
ù

û

ú

ú
úúú
ú

ú

ú
(29)

where v1 = eR͂/ cos2( πeT
R͂ eR͂

2ρ2
1 )，σ1 = ( )ρ̇1

ρ1

2

+ Δ 1 ，ρ1 

is the performance function to constrain the tracking 
error eR͂， Δ 1 is a small positive constant， φ 1 =
eR͂

 eR͂
2 cos2( πeT

R͂ eR͂
2ρ2

1 )， k1 > 0，k2 > 0，and 0 < p < 1.

Denote ω e as the error between the error angu⁃
lar velocity and the virtual error angular velocity， 
that is

ω e = ῶ- ω* (30)
Then， based on the estimation results of the in⁃

troduced observer （Eq.（25））， the following pre⁃
defined-time controller can be designed for the atti⁃
tude error system.

u= -J0

é

ë

ê

ê

ê
êê
ê
ê

ê
F 1 + Ĝ̄ 1 - ω̇* + cos2( πωT

e ω e

2ρ2
2 ) Ev1 +

2σ2
ρ2

2

π φ 2 tan ( πωT
e ω e

2ρ2
2 )+

π
pTe k1 k2

φ 2

æ

è

ç
çç
ç
ç
çk1 ( )ρ2

1

π tan ( )πωT
e ω e

2ρ2
2

1 - p
2

+

ö

ø

÷
÷÷
÷
÷
÷k2 2

p
2 ( )ρ2

1

π tan ( )πωT
e ω e

2ρ2
2

1 + p
2

- h2

2 v2

ù

û

ú

ú
úúú
ú

ú

ú
(31)

where v2 = ω e cos2( )πωT
e ω e

2ρ2
2

，σ2 = ( )ρ̇2

ρ2

2

+ Δ 2 ，

ρ2 is the performance function to constrain the track⁃
ing error ω e， Δ 2 is a small positive constant， φ 2 =
ω e

 ω e
2 cos2( πωT

e ω e

2ρ2
2 )，and h > 0.
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3. 2 Stability analysis　

Define the tan-type BLF as

V 1 = ρ2
1

π tan ( πeT
R͂ eR͂

2ρ2
1 ) (32)

The time-derivative of the BLF is obtained as

V̇ 1 = 2ρ1 ρ̇1

π tan ( πeT
R͂ eR͂

2ρ2
1 )- ρ̇1

ρ1

eT
R͂ eR͂

cos2( )πeT
R͂ eR͂

2ρ2
1

+

eT
R͂

cos2( )πeT
R͂ eR͂

2ρ2
1

ė R͂ ≤ 2σ1
ρ2

1

π tan ( πeT
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Another BLF is considered as

V 2 = ρ2
2

π tan ( πeT
R͂ eR͂

2ρ2
2 ) (34)

The time derivative of V 2 can be written as fol⁃
lows

V̇ 2 = 2ρ2 ρ̇2

π tan ( πωT
e ω e

2ρ2
2 )- ρ̇2

ρ2

ωT
e ω e

cos2( )πωT
e ω e
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2

+

ωT
e

cos2( )πωT
e ω e
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2
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2
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σ2vT
2 ω e + vT
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T
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p
2V
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2

2 (35) 

It is worth noting that e= Ḡ 1 - Ĝ̄ 1 = 0 is ob⁃
tained for T ≥ T 2 .

DefineV = V 1 + V 2， and it can be derived that
V̇ = V̇ 1 + V̇ 2 ≤

- π
pTe k1 k2

(k1 ( )V 1
1 - p

2 + V 2
1 - p

2 +

)k2 2
p
2 ( )V

1 + p
2

1 + V
1 + p

2
2 + 1

2h2
 v2

2 (36)

It can be derived by Lemma 2 that

V
1 - p

2
1 + V

1 - p
2

2 ≥ (V 1 + V 2 ) 1 - p
2

V
1 + p

2
1 + V

1 + p
2

2 ≥ 2- p
2 (V 1 + V 2 ) 1 + p

2

With the above relations， it can be obtained 
from Eq.（36） that

V̇ ≤ - π
pTe k1 k2

(k1V
1 - p

2 + k2V
1 + p

2 )+ ρ3 (37)

where ρ3 = h2

2
 v2

2. According to Lemma 1， it can 

be proved that the BLF V will converge to a bound⁃
ed domain within predefined-time. According to the 
property of BLF，  eR͂ ≤ ρ1 ( t )， ω e ≤ ρ2 ( t ) al⁃

ways exist. Therefore， the prescribed performance 
functions ρ1 ( Te ) constraints eR͂ and ρ2 ( Te ) con⁃
straints ω e after Te. Thus， the virtual error angular 
velocity ω* approaches 0， from which we can obtain 
that the spacecraft’s angular velocity error ῶ→ 0 
within Te.

4 Simulation Results 

To verify the effectiveness of the proposed pre⁃
defined-time controller， numerical simulations for a 
flexible spacecraft are conducted in two cases， and 
the sampling time is 0.01 s. A set of comparative 
simulation experiments with Ref.［25］ of finite-time 
attitude tracking controller （FTATC） are carried 
out to reflect the superiority of the proposed control 
algorithm in terms of settling time， convergence ac⁃
curacy and fault⁃tolerant performance. A flexible 
spacecraft［26］ characterized by a nominal inertia ma⁃
trix J0=［22，0.3，-0.4；0.3，23，0.3；-0.4，0.3，
24］kg ⋅ m2 and a uncertain inertia matrix ΔJ= 0.1J 
is considered， respectively. The initial states are 
presented as

R ( 0 )=
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úú
ú

ú0.288 7 0.480 2 -0.866 0
-0.816 5 0.577 4 0

0.500 0 0.070 1 0.500 0
η ( 0 )= [ 0 0 0 0 ] T

η̇ ( 0 )= [ 0 0 0 0 ] T

ω ( 0 )= [ 0 0 0 ] T

Moreover， the damping ratio， the natural fre⁃
quency and the coupling matrix are respectively 
computed as
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ξ1 = 0.056,ξ2 = 0.086,ξ3 = 0.08,ξ4 = 0.02,l1 =
1.079 3,l2 = 1.276 1,l3 = 1.635 8,l4 = 2.289 3 

δ=

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú1.352 5 1.278 4 2.153 0
-1.151 9 1.017 6 -1.224

2.216 7 1.589 1 -0.832 4
1.236 7 -1.653 7 0.225 1

The disturbances are set as
d ( t )=[ sin ( 0.1t ), cos ( 0.2t ), sin ( 0.2t ) ]T N ⋅ m

The desired attitude and angular velocity are re⁃
spectively

R d ( 0 )= I

ω d = 0.05 [ sin ( πt/100 )，-cos ( 2πt/100 )，
sin ( 3πt/100 ) ]T rad/s 

The parameters of the prescribed performance 
function are set as ρ ( 0 )= 0.7， γ = 0.15， Te = 20， 
the final value of eR͂ is ρ1 ( t )= 0.01， and the final 
value of ω e is ρ2 ( t )= 0.005. The virtual estimation 
error of ω e is limited by ρ2 and the attitude error eR͂ is 

limited by ρ1. Therefore， ρ1 ( 0 )> eR͂ ( 0 ) ，ρ2 ( 0 )>

 ω e ( 0 ) . And the setting of Te affects the slope of 
ρ ( t )， which exerts an influence on the changing 
trend of eR͂ and ω e. Besides， ρ1 ( Te )，ρ2 ( Te ) deter⁃

mine the steady-state errors of  eR͂ ，  ω e .

In addition， the parameters of the predefined 
time observers are appointed as p1 = 0.15，T 1 =
5，a = 0.01，p2 = 0.005， T 2 = 10，c = 0.01，b1 =
0.95，b2 = 0.2，b3 = 0.2. To design the disturbance 
observer （Eq.（25））， it is necessary to obtain the es⁃
timations of flexible modes through the modal ob⁃
server（Eq.（15））. Therefore， the relationship of the 
two parameters T 1 and T 2 is T 1 < T 2. Besides， the 
setting of T 1 and T 2 can impact the convergence 
time of the two observers. And the other parameters 
can be adjusted through a trial-and-error method. 
What’s more， the impact of parameters on the ob⁃
server’s performance is tested by observing the esti⁃
mation errors of η and G 1， and the following control⁃
ler parameters have no effect on the observer’s re⁃
sults.

The parameters related to the predefined-time 
prescribed performance controller （PTPPC） are 
p = 0.9， k1 = 0.2， k2 = 0.2， Te = 20. The design⁃
ing of controller （Eq.（31）） is based on an ideal esti⁃

mation effect of the above observers， which is the 
reason for Te > T 1， Te > T 2.

The high⁃accuracy of the proposed controller is 
observed by selecting the variation curves of the 
tracking errors. The simulation results of this paper 
are compared with those of the finite-time controller 
（FTC） in Ref.［25］， and the initial conditions and 
flexible spacecraft model are the same for both. As⁃
suming the attitude errors are less than 5 × 10-4 
that reaches the stable accuracy. Fig.3 reflects the 
results of the attitude tracking of PTPPC， from 
which it can be seen that the attitude tracking errors 
converge to equilibrium within 18 s. Fig.4 shows 
that with the simulation results of FTC designed in 
Ref.［25］， the attitude errors converge to 5 × 10-4 
after 30 s， and fluctuations occur in attitude tracking 
process during subsequent.

Fig.5 shows the spacecraft’s angular velocity 
curves， from which it can be seen that the angular 
velocity errors of PTPPC converge to the equilibri⁃
um at 18.5 s and the accuracy can reach 5 × 10-5， 
while FTC needs 30.5 s in Fig.6. Moreover， sup⁃
posing that the final values of angular velocity errors 
in simulations represent attitude control accuracy， 

Fig.3　Response curves of attitude tracking errors eR͂ of 
PTPPC

Fig.4　Response curves of attitude tracking errors eR͂ of FTC
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the final attitude stability of PTPPC is much higher 
than that of FTC.

In addition， Fig.7 illustrates the control torque 
of the flexible spacecraft， from which it can be seen 
that the maximum torque is 1.6 N·m of the actua⁃
tor. The PTPPC has much smaller maximum than 
that of FTC （Fig.8）， meaning it is more suitable 
for practical applications. As the spacecraft ap⁃
proaches the desired attitude， the control torques 
gradually decrease.

The flexible vibrations are represented in 
Fig.9， it is seen that the flexible vibrations are 
bounded. The estimation performance of the observ⁃
er is shown in Fig.10 and Fig.11. From Fig.12 and 

Fig.13， it can be seen that the  eR͂  and  ω e  consis⁃
tently satisfy the constraints of the performance func⁃
tion.

Fig.5　Response curves of angular velocity tracking errors ῶ 
of PTPPC

Fig.8　Response curves of control torque u of FTC

Fig.9　Response curves of flexible vibration η of PTPPC

Fig.10　The estimation of η of PTPPC

Fig.11　Estimation errors of lumped disturbance G͂ 1 of 
PTPPC

Fig.6　Response curves of angular velocity tracking errors 
ῶ of FTC

Fig.7　Response curves of control torque u of PTPPC
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To sum up， the proposed PTPPC has faster 
transient response and higher convergence quality 
compared with those of FTC. Thus， the practicality 
and superiority of the controller designed in this pa⁃
per are verified.

5 Conclusions 

For the attitude tracking problem in the attitude 
tracking process of flexible spacecraft， a predefined-

time guaranteed performance controller based on 
multi⁃observer is proposed. The convergence time 
of the system can be predefined， which is not affect⁃
ed by the initial conditions. Moreover， the designed 
controller is capable to handle multiple disturbances 
to achieve robustness. The superiority of the pro⁃
posed controller is validated compared with that of 
the finite-time controller. The higher control preci⁃
sion， faster convergence rate， and smaller control 
inputs are all achieved.
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基于多观测器的挠性航天器

预设时间保证性能姿态跟踪控制

邓兴婷 1，2， 张子扬 1， 王北超 1， 王国华 2， 李芳芳 2， 李 爽 1

（1.南京航空航天大学航天学院，南京  211106，中国； 2.上海微小卫星工程中心，上海  201306，中国）

摘要：为解决挠性航天器在姿态跟踪过程中存在的外部环境干扰、惯性参数不确定性及挠性模态振动等问题，提

出一种基于多观测器的预设时间保证性能控制器。首先，为避免姿态描述中出现退绕问题，基于旋转矩阵描述

了航天器的姿态。其次，针对实际情况中挠性模态难以测量的情况，设计了能在预设时间内收敛的挠性模态观

测器；此外，引入干扰观测器对集总扰动进行估计与补偿，以提高姿态控制的鲁棒性；提出了一种基于障碍 Ly⁃
apunov 函数的预设时间控制器，用于保证系统状态达到预先设定的性能并稳定姿态跟踪系统。最后，对比仿真

实验结果表明，与现有的有限时间姿态跟踪控制器相比，本文的控制器能够实现更高精度的收敛。本文为存在

多种扰动的挠性航天器高精度预设时间保证性能姿态跟踪提供了参考。

关键词：挠性航天器；保证性能；预设时间控制；多观测器
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