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Abstract: In order to solve the problem of limited computational resources of multi-unmanned systems airborne 
navigation platform， a distributed cooperative positioning method based on confidence evaluation is proposed. Firstly， 
the impact of ranging error， priori information， spatial geometric configuration and adjacent nodes count on 
cooperative positioning performance are analyzed individually. Secondly， a confidence evaluation method for 
measurement information of adjacent nodes is designed according to the cooperative positioning principle， which 
comprehensively considers the coupling relationship between influencing factors. Finally， a distributed cooperative 
navigation filter based on inter-vehicle ranging is designed. Simulation studies show that confidence evaluation method 
proposed in this paper can effectively characterize the contribution of measurement information to positioning results， 
and positioning accuracy under the proposed method is improved by more than 15% compared with the traditional 
screening methods based on optimal geometric configuration and closest distance.
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0 Introduction 

The unmanned system refers to an information-

based physical platform composed of multiple types 
of motion carriers， which fulfils pre-set procedures 
with the help of technologies such as mechanical 
transmission devices， information sensing inputs 
and intelligent decision planning［1］. According to the 
different operating environments and mission charac⁃
teristics of unmanned systems， unmanned systems 
can be divided into unmanned ground system 
（UGS）， unmanned airspace system （UAS）， and 
unmanned maritime system （UMS）［2］. With the rap⁃
id development of sensor technology， communica⁃
tion and sensing network technology， intelligent 
control algorithms and system theory and other cut⁃
ting-edge fields， the autonomy， intelligence and uni⁃
versality of unmanned systems have been greatly im ⁃
proved and gradually become an important comple⁃

mentary part of manned systems［3］.
With its strong mobility， co-ordination and par⁃

allelism， multi-unmanned systems can complete 
complex， dangerous and repetitive high-intensity 
tasks in multiple fields in a more efficient， conve⁃
nient， autonomous and safe way， and it is the inevi⁃
table development trend of the future information-

based military combat system that is dominated by 
intelligent multi-unmanned systems［4］. In the com⁃
plex combat environment， a single type of un⁃
manned system is limited by carrier platform charac⁃
teristics， mobility， mode of operation， physical 
structure and other factors， unable to adapt to the 
combat needs in urban lanes， hills， valleys， under⁃
ground and other environments. Therefore， multi-
unmanned systems consisting of unmanned aerial ve⁃
hicles （UAVs） and unmanned ground vehicles 
（UGVs）， can complement and increase the efficien⁃
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cy of multi-unmanned systems by means of multidi⁃
mensional perception， information interaction， coop⁃
erative interoperability and other techniques， which 
can effectively enhance combat survivability and 
give full play to their overall maximum efficiency［5］. 
At this stage， the research on multi-unmanned sys⁃
tems mainly focuses on the four parts of environ⁃
ment sensing and information fusion， data communi⁃
cation self-organizing network construction， cooper⁃
ative navigation and positioning， and formation con⁃
trol， and this paper mainly focuses on the research of 
cooperative navigation and positioning key technolo⁃
gies［6］.

In current multi-unmanned systems navigation 
and positioning methods， each unmanned carrier it⁃
self is configured with inertial sensors， which can 
complete real-time continuous inertial navigation 
output position solving in full-time and full-area envi⁃
ronment. The inertial navigation has strong anti-jam⁃
ming ability， and the use of the environment is not 
subject to regional limitations， so inertial sensors are 
an important part of the existing combination of navi⁃
gation methods［7］. However， the disadvantage of in⁃
ertial navigation is that the navigation error will be 
accumulated over time， and the high cost， and large 
volume of high-precision inertial devices. UAV and 
other small unmanned systems can only carry⁃lower-

precision micro-electro-mechanical system 
（MEMS） sensors due to the load limitations. And 
they need to use exogenous information， such as 
global navigation satellite system （GNSS）， and in⁃
ertial data fusion to complete the navigation and posi⁃
tioning. Exogenous navigation information， such as 
GNSS， is susceptible to interference and easy to be 
spoofed， so cooperative positioning based on inter-

vehicle ranging is currently an effective method for 
multi-unmanned systems navigation［8］.

Cooperative positioning of multi-unmanned sys⁃
tems is similar to node positioning in wireless sensor 
networks， where distributed positioning solving can 
be accomplished between carriers through informa⁃
tion sharing and inter-vehicle ranging using geomet⁃
ric constraints［9］. The cooperative positioning accura⁃
cy of vehicle depends on the number of reference 
nodes， the quality of the observation data and other 
factors， using a filter based on minimum mean-

square error which is theoretically able to obtain the 
optimal estimation after acquiring different qualities 
of the measurement information in conjunction with 
its own motion model［10］. However， the communica⁃
tion overhead among vehicles increases， and the 
growing computational complexity tends to compro⁃
mise real-time performance［11］. It is necessary to es⁃
tablish performance evaluation systems for coopera⁃
tive positioning of multi-unmanned systems， and  se⁃
lect the measurement information that contributes to 
its own positioning to participate in the computation. 
Scholars have carried out the following studies on the 
performance evaluation of cooperative positioning.

Zhu et al.［12］ proposed a novel navigation perfor⁃
mance evaluation strategy based on Fisher informa⁃
tion and relative entropy. Chen et al.［13］ proposed a 
cooperative navigation method for UAV’s swarm 
based on the cooperative dilution of precision. Yu et 
al.［14］ proposed a method for selecting the optimal de⁃
tection configuration of heterogeneous unmanned 
swarms based on geometrically nested cone struc⁃
tures to achieve accurate detection of targets by un⁃
manned swarms. However， the above evaluation 
methods are only applicable to specific application 
scenarios and do not consider the coupling of all in⁃
fluencing factors.

In the cooperative positioning process of multi-
unmanned systems， the ranging information re⁃
ceived from adjacent nodes contains two categories： 
Anchor nodes and unknown nodes. Traditional dilu⁃
tion of precision （DOP） based evaluation methods 
can only assess the impact of the geometric configu⁃
ration of anchor nodes on positioning accuracy， 
while ignoring priori uncertainty in the state esti⁃
mates of adjacent nodes［15］. Therefore， in coopera⁃
tive positioning performance evaluation， it is neces⁃
sary to represent the uncertainties arising from both 
priori information and measurements within a unified 
weighted information fusion framework， which is 
theoretically more consistent with the modeling ap⁃
proach of the Cramér⁃Rao Bound.

The remainder of this paper is organized as fol⁃
lows. Section 1 describes the cooperative positioning 
scenario and the proposed scheme. Section 2 analyz⁃
es the influencing factors of cooperative positioning. 
Section 3 presents the theoretical derivations and al⁃
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gorithm design. Section 4 validates the effectiveness 
of the proposed algorithm through simulation. Sec⁃
tion 5 concludes the paper.

1 Definition of the Problem 

1. 1 System description　

The cooperative positioning scenario of multi-
unmanned systems is shown in Fig.1， where the 
multi-unmanned systems are composed of UAVs 
and UGVs. Some of UAVs in the swarm are 
equipped with satellite receivers that can acquire ab⁃
solute position information. A few UGVs measure 
the distance and direction of the landmarks， and cal⁃
culate their own incremental position relative to the 
landmarks through the position inverse solution， and 
then finally superimpose the position with the land⁃
marks to obtain their own absolute position informa⁃
tion. The above two types of vehicles can obtain ab⁃
solute position information from external sources 
which are defined as reference nodes. In the absence 
of absolute exogenous measurements， UAVs and 
UGVs that update their navigation states solely 
through cooperative information are defined as un⁃
known nodes.

Each unmanned system carries out cooperative 
messaging and inter-vehicle ranging through the data 
link， and makes use of spatial geometric constraints 
to complete the error correction of inertial navigation 
sensors. At the same time， inertial navigation， with 
its high short-term accuracy， can effectively compen⁃

sate for the non-line of sight （NLOS） and multipath 
effects in ranging， and the mutual checking of the 
output data of the two types of sensors can improve 
the robustness of the positioning system［16］.

1. 2 Cooperative positioning solution design　

MEMS can output the acceleration and angular 
velocity in the direction of three orthogonal axes un⁃
der the high-frequency output system， and use the 
quaternion transforms and integral calculation to 
complete the updating of the three state quantities of 
attitude， velocity and position of the vehicle. It aims 
to maintain the absolute positioning accuracy of the 
unmanned system in a short period of time， and use 
the exogenous measurement information to correct 
and compensate for the cumulative error of the long-

time voyage position projection［17］. Usually， the out⁃
put frequency of MEMS is more than 50 Hz， and 
the communication frequency of data path is about 
1 Hz. Its communication bandwidth is limited by the 
signal modulation method， power， spectrum re⁃
sources and other factors， which will only contain 
the node ID， its own state， absolute position， and 
the priori information of its position error in the coop⁃
erative message transmission. The cooperative posi⁃
tioning scheme for unknown nodes is as follows.

Due to the limited effective ranging distance of 
the data link， not all platforms in multi-unmanned 
systems can establish direct data communication 
with one another. As illustrated in Fig.2， the un⁃
known node can establish data links with m adjacent 
nodes and n reference nodes. The adjacent nodes ex⁃
hibit inconsistent priori position errors， and in princi⁃
ple， they can be treated as reference nodes with larg⁃
er position uncertainties during cooperative position⁃
ing computation［18］.

When the number of nodes establishing data 
links with the unknown node is less than or equal to 
four （i. e.，m + n ≤ 4）， the filter fuses all available 
measurements to correct the strapdown inertial navi⁃
gation system （SINS） errors. When the number of 
cooperative measurements exceeds this threshold， 
the varying levels of uncertainty make it suboptimal 
to fuse all cooperative information directly. Incorpo⁃
rating all measurements increases the observation di⁃

Fig.1　Cooperative positioning scenario for multi-unmanned 
systems
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mension of the filter， and the resulting growth in 
computational complexity degrades real-time perfor⁃
mance［19］. Furthermore， if adjacent nodes exhibit 
strong spatial geometric correlation or noise correla⁃
tion， the associated cooperative measurements may 
cause the observation matrix to approach singulari⁃
ty， leading to filter instability. Therefore， confi⁃
dence evaluation is required to assess the contribu⁃
tion of each node to the cooperative positioning per⁃
formance. Node selection is then performed based 
on these contributions， thereby reducing the compu⁃
tational burden while maintaining positioning accura⁃
cy.

2 Determinants of Cooperative Po‑
sitioning Accuracy 

In cooperative positioning system， the position⁃
ing accuracy of unknown nodes depends on four 
main factors： Ranging error， priori information of 
adjacent nodes， spatial configuration， and the num⁃
ber of adjacent nodes. The following theoretical 
analyses are carried out for the effects of influencing 
factors on cooperative positioning respectively.

2. 1 Analysis of ranging error　

The ranging error between vehicles is mainly 
composed of systematic error and random error. 

The equipment calibration， systematic bias can usu⁃
ally be reduced by calibrating the equipment on a 
regular basis. Random error is caused by environ⁃
mental noise， signal attenuation and other random 
factors， and is usually assumed to obey a normal dis⁃
tribution. The ranging error model is given as fol⁃
lows

ε = εsys + ε rand = εsys + N ( )0,( )σ × d
2 (1)

where εsys is the systematic error； ε rand the random er⁃
ror obeying a normal distribution with zero-mean 
and standard deviation proportional to the measure⁃
ment distance； σ the proportionality constant related 
to the equipment and the environment； and d the 
measurement distance between nodes.

When adjacent nodes are located at different 
distances around unknown node， the green dots in 
Fig.3 represent the position error distribution caused 
by systematic errors， while the blue and purple dots 
represent the position error distribution caused by 
signal attenuation. The two ellipses correspond to 
the constraint regions formed by No.1 and No.2 ad⁃
jacent nodes based on the ranging error model. The 
number of particles within each ellipse is identical， 
indicating that under the same confidence probabili⁃
ty， the smaller ellipse area reflects a stronger posi⁃
tion constraint on the unknown node. Therefore， 
when only the ranging error is considered， No.2 ad⁃

Fig.2　General framework diagram of cooperative positioning
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jacent node makes a greater contribution to position⁃
ing performance. In time-of-arrival （TOA） based 
geometric trilateration， it is common practice to se⁃
lect measurements from nearest nodes for coopera⁃
tive positioning［20］.

2. 2 Analysis of priori information　

The geometric interpretation based on the cova⁃
riance ellipse can intuitively describe the influence of 
priori information of adjacent nodes on the coopera⁃
tive positioning performance. Taking the 2D plane 
as an example， when initial positions and position 
covariances of adjacent nodes are known， the distri⁃
bution properties of data can be characterized by an 
ellipse， which is a set of points satisfying the follow ⁃
ing equation

( x - μ )T ψ-1 ( x - μ )= c (2)
where μ is the mean of the positioning result and ψ 
the covariance and typically treated as a constant； c 
is associated with the size of the confidence interval.

Fig.4 illustrates the geometric interpretation un⁃
der heterogeneous priori information for two adja⁃
cent nodes， with particles generated according to 
the Gaussian distribution. In Fig.4， the colored el⁃
lipses represent the covariance equiprobability con⁃
tours （95% confidence） of the corresponding 
nodes， with their principal axes determined by the 
eigen-decomposition of the covariance matrix. The 
narrower shape of the red ellipse along the X-axis in⁃
dicates a smaller variance in that direction， implying 
higher position estimation accuracy. In general， the 
priori uncertainty of the No.1 adjacent node is small⁃
er than that of the No.2 adjacent node.

After ignoring the ranging error between the ad⁃
jacent node and the unknown node， the contribution 
of the adjacent node to cooperative positioning can 

be expressed in terms of the particles in the cross 
section of the covariance ellipse， and the contribu⁃
tion to the positioning solution with different priori 
information is shown in the following figure.

Cooperative positioning is the combined geo⁃
metric constraint of measurements from multiple 
nodes， and selected adjacent nodes with comple⁃
mentary directional constraints can reduce the over⁃
all position uncertainty. Fig.5 shows that the smaller 
width of the circle of particle distribution， the stron⁃
ger its constraint on the positioning result， and the 
No.1 adjacent node has a higher contribution com ⁃
pared to the No.2 adjacent node. In three-dimension⁃
al space， the covariance matrix can be simplified in⁃
to an ellipsoid by solving its eigenvalues and eigen⁃
vectors. The direction of its main axis is determined 
by the eigenvectors， and the length of its main axis 
is determined by the square root of the eigenvalues. 
The ellipsoid equation characterizes the distribution 
and directional uncertainty of the priori information 
of adjacent nodes.

2. 3 Analysis of geometric configuration　

In satellite navigation systems， geometric dilu⁃
tion of precision （GDOP） is usually used to mea⁃
sure the influence of satellite spatial distribution on 

Fig.3　Ranging error influencing factors

Fig.4　Geometric interpretation of priori information
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receiver positioning performance. But GDOP is un⁃
der the assumption that satellite position error is neg⁃
ligible， and only spatial configuration is considered 
as an influencing factor［21］. However， in multi-un⁃
manned systems cooperative positioning， adjacent 
nodes exist with different position confidence， 
which may have a good spatial configuration distri⁃
bution but a poor effect on cooperative performance 
enhancement. And when two adjacent nodes are co-

located with the unknown node， geometrical con⁃
straints between the nodes are weak， which is easy 
to produce multiple solutions or no solutions， so a 
reasonable geometrical configuration needs to be 
considered in node screening.

In Fig.6， when three adjacent nodes possess a 
favorable spatial geometric distribution and have 
small priori position errors， the cooperative position⁃
ing error is theoretically equal to ranging error multi⁃
plied by the geometric dilution factor. But when two 
adjacent nodes are co-located， the GDOP tends to 
infinity， and the positioning solution of unknown 
nodes cannot be completed. Previous studies based 
on the optimal geometric configuration mainly use 
empirical inference， which can only optimally con⁃
figure the position distribution of reference nodes un⁃
der a limited number， so as to derive coupling rela⁃

tionship between the ratio of reference nodes at dif⁃
ferent heights and the pitch angle. But in the case of 
inconsistent position confidence of reference nodes， 
the traditional node screening strategy based on em ⁃
pirical inference is no longer applicable.

2. 4 Analysis of node count　

When many adjacent nodes surround an un⁃
known node， and effects of ranging error and prior 
information are ignored， increasing the amount of 
measurement information enlarges the system’s 
geometric matrix， effectively reducing the sensitivi⁃
ty of the positioning solution to input perturbations 
and thereby enhancing the system’s geometric 
strength. However， when the geometric distribution 
of reference nodes therein reaches the optimal con⁃
figuration， the positioning accuracy can be close to 
the theoretical optimum， and the additional increase 
in the number of reference nodes enhances the posi⁃
tioning results less， and the existence of the perfor⁃
mance saturation phenomenon can be characterized 
by the logarithmic curve.

Err ( N )= A ⋅ log N + B (3)
where Err ( N ) is the positioning error in the pres⁃
ence of N adjacent nodes； A the slope of the curve， 
reflecting the sensitivity of the system positioning er⁃
ror to changes in the number of adjacent nodes； and 
B  the initial positioning accuracy of the system.

Meanwhile， in complex environments such as 
cities， canyons and forests， data link signals may 
generate interference， multipath effects and NLOS 
errors， which may cause jumps in the positioning re⁃
sults if the wrong measurement information cannot 
be isolated. Therefore， when the number of adja⁃
cent nodes meets the minimum number of require⁃
ments for positioning solving， it is necessary to es⁃
tablish a confidence evaluation system and screen 

Fig.5　Contribution under different priori information

Fig.6　Contributions under different geometric distributions
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the adjacent nodes with high contribution for the 
measurement updating calculation.

3 Cooperative Positioning Method 
Based on Confidence Evaluation

In this subsection， the weighted cooperative di⁃
lution of precision （WCDOP） is constructed to char⁃
acterize the adjacent nodes’ confidence level by con⁃
sidering the influencing factors of the positioning 
performance， and the positioning information is ob⁃
tained by fusing the selected measurement with an 
inertial navigation system.

3. 1 Confidence evaluation methodology　

The position of the unknown node in the earth-

centered， earth-fixed （ECEF） coordinate system is 
x= ( x，y，z ). Assuming that m adjacent nodes with 
data communication can be established， the posi⁃
tions of the adjacent nodes are x ri = ( x ri，y ri，z ri )， re⁃
spectively， and the true distance between adjacent 
nodes and the unknown node is di = x- x ri . Con⁃
sidering the priori information about the position er⁃
ror of adjacent nodes δx ri and their own position er⁃
ror δx， the measured distance d 'i is denoted as

d 'i = x+ δx- ( )x ri + δx ri + εi (4)
where δx is the position correction vector 
[ δx，δy，δz ]T， δx ri the priori position error of the 
No.i adjacent node， and εi the ranging error.

In solving for the positioning of unknown node 
using a closed-form analytic algorithm， the non-lin⁃
ear quantitative equations first need to be converted 
into pseudo-linear equations， and then the optimal 
solution of the objective function is solved using op⁃
timization theory.

After linearizing Eq.（4） and neglecting higher 
order terms， we obtain

d 'i ≈ x- x ri + ∂di

∂x
δx + ∂di

∂y
δy + ∂di

∂z
δz +

      ∂di

∂x ri
δx ri +

∂di

∂y ri
δy ri +

∂di

∂z ri
δz ri + ε i  (5)

The element of No.i row of the ranging residu⁃
al vector ν is νi = d 'i - di， which can be obtained by 
bringing the results of linear approximation

νi ≈ ∂di

∂x
δx + ∂di

∂y
δy + ∂di

∂z
δz +

        ∂di

∂x ri
δxri +

∂di

∂y ri
δy ri +

∂di

∂z ri
δz ri + εi (6)

Represent the ranging residuals of all adjacent 
nodes in vector form

ν= Gδx+ Jδx ri + ε (7)
where G is the geometric matrix with n × 3 dimen⁃
sion， J the adjacent node position error impact ma⁃
trix with n × 3n dimension， and ε the ranging error 
vector.

The regression estimates under observations 
with different variances are obtained by introducing 
weighted matrix， and W  is as follows

W= diag ( )1
σ 2
x r1

, 1
σ 2
x r2

,⋯, 1
σ 2
x rm

(8)

where σ 2
x ri is the variance of the total position error of 

adjacent nodes.
The objective function is constructed as follows

minδx ( ν- Gδx )TW ( ν- Gδx ) (9)
Normally G is full rank， which ensures the 

uniqueness and stability of the solution， obtained by 
taking derivative of objective function with respect 
to δx and setting the derivative to zero

δx= (G T WG )-1G TWν (10)
The covariance matrix of δx directly reflects 

the distribution of estimation error and is defined as
Cov ( δx )= E [ ( δx- E [ δx ] ) ( δx- E [ δx ] )T ](11)
where E [ · ] is the mean and Cov ( · ) the covariance.

It is assumed that ranging error εi satisfies a 
normal distribution with zero-mean， the variance is 
positively correlated with the distance， and individu⁃
al ranging errors are independent of each other. The 
priori position errors δx ri of each adjacent node is in⁃
dependent of each other.

From the systematic error propagation model， 
the covariance matrix of ranging residual vector ν is 
defined as

Cov ( ν )= JCov ( δx r ) J T + Cov ( ε ) (12)
where Cov ( δx r ) is composed of Cov ( δx ri ) which re⁃
flects the distribution of position error of each adja⁃
cent node. Cov ( δx ri ) is the diag ( σ 2

x ri，σ 2
y ri，σ 2

z ri ). 
Cov ( ε ) is ranging error covariance， which is posi⁃
tively correlated with the size of distance by the 
ranging error model and R= k ⋅ diag ( d 2

1，d 2
2，⋯，d 2

n ) 
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is obtained according to the ranging error model 
σ 2

i = kd 2
i .

Substituting Eq.（12） into Eq.（11）， then ex⁃
panding and defusing Cov ( δx ) which can be defined 
as
Cov ( δx )= (G TWG )-1 [ G TWJCov ( δx r ) J TWG+

σ 2G TWRWG ] (G TWG )-1                                 ( 13 )
The position covariance Cov ( δx ) contains the 

contributions of all influencing factors， where the di⁃
agonal element directly quantifies positioning accura⁃
cy of unknown node in three-axis direction， de⁃
scribes the uncertainty of positioning solution， and 
can provide a basis for optimizing cooperative posi⁃
tioning performance by defining the WCDOP as

WCDOP = trace ( Cov ( δx ) )1/2 (14)

3. 2 Cooperative positioning filter design　

In cooperative positioning of multi-unmanned 
systems based on confidence evaluation， the east-
north-up （ENU） geographic system is used as navi⁃
gation coordinate system， and the state quantities in 
cooperative positioning filter are defined as

X=[ φ    δv    δp    εb    ε r    ∇∇ ]T (15)
where φ = [ φE    φN    φU ] is the platform error an⁃
gle of inertial navigation system in east， north， and 
up directions； δv= [ δvE    δvN    δvU ] the velocity 
error of vehicle in east， north， and up directions； 
δp= [ δL    δλ    δh ] the latitude， longitude， and al⁃
titude errors of vehicle； εb = [ εbx    εby    εbz ] the gy⁃
roscopic constant drift error； ε r = [ ε rx    ε ry    ε rz ] the 
gyroscopic first-order Markovian drift error； ∇∇ =
[ ∇∇ x    ∇∇ y    ∇∇ z ] the accelerometer first-order Markov⁃
ian state quantity.

The state transfer equation in discrete form is 
constructed from the inertial error differential equa⁃
tion

X ( k ) =Φ ( k|( k - 1 ) )X ( k - 1 ) + G ( k - 1 )W ( k - 1 ) (16)
where Φ ( k|( k - 1 ) ) is the error state transfer matrix， 
G ( k - 1 ) the system noise matrix， and W ( k - 1 ) the sys⁃
tem noise.

When unknown node receives cooperative mea⁃
surement information， it completes confidence eval⁃
uation according to Eq.（13）. When the system is 
set to select measurement information of four adja⁃
cent nodes to participate in cooperative positioning 
solution， then after traversing various permutations 

and combinations， four nodes are designated as opti⁃
mal cooperative nodes when the value of WCDOP 
is smallest.

In summary， the cooperative positioning algo⁃
rithm for multi-unmanned systems based on confi⁃
dence evaluation is outlined in flowchart shown in 
Fig.7.

The construction of system measurement mod⁃
el is completed in Section 3.1， but the geographic 
system is used in inertial navigation system， and 
transformation matrix H g

e  needs to be used to estab⁃
lish a uniform magnitude of position error in both co⁃
ordinate systems.

H g
e =

é

ë

ê

ê

ê
êê
ê
ê

ê

ê

ê -( RN + h ) sin L cos λ

-( RN + h ) sin L sin λ

[ RN( )1 - f 2 + h ] cos L

-( RN + h ) cos L sin λ

( RN + h ) cos L cos λ
0

ù

û

ú

úú
ú
ú

úcos L cos λ
cos L sin λ

sin L
(17)

where RN is the radius of curvature of prime vertical 
and f  the earth oblateness.

The cooperative positioning system measure⁃
ment equation is as follows

Z ( k ) = [ 0n × 6     H iH g
e      0n × 9 ] X ( k ) + V ( k ) (18)

where V ( k ) is the total error of the cooperative node 
after the preferred selection.

Fig.7　Flowchart of cooperative positioning algorithm

45



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

4 Experimental Simulation and Re‑
sults 

In this subsection， the validation of the confi⁃
dence evaluation will be accomplished through simu⁃
lation， using cooperative positioning filters to fuse 
the measurement information， and the positioning 
results are analyzed finally.

4. 1 Simulation condition setting　

Multi-unmanned systems consist of six plat⁃
forms， including UAVs and UGVs. Considering 
the existence of five adjacent nodes around No.6 un⁃
known node， it can obtain information of ID， time⁃
stamp， position， and position error of adjacent 
nodes through the data link， in which two nodes can 
obtain absolute position information through GNSS/
optical electro sight （OES） as a high-precision refer⁃
ence node. The other three nodes can only correct 
state quantity of their own projected position 
through a cooperative algorithm， so they have larg⁃
er position error. The configured barometric altime⁃
ter measures the change of atmospheric pressure and 
combines with standard barometric pressure model 
to obtain real-time altitude information and perform 
damping calculation. The initial distribution of all 
nodes is shown as Fig.8.

The trajectory generator is used in simulation 
to generate different motion modes of unmanned 
systems. And at the same time， angular velocity me⁃
ter， gyroscope， GNSS， barometric altimeter， rang⁃
ing and other sensors’ information is simulated ac⁃
cording to characteristics of the motion. The config⁃
uration of simulation sensor parameters is shown in 
Table 1.

4. 2 Analysis of simulation results　

Firstly， the confidence evaluation proposed in 
this paper is validated by setting No.1 and No.3 as 
high-precision reference nodes， and No.2， No.4 
and No.5 with large position errors. Simulation re⁃
sults of the variation surface of positioning perfor⁃
mance of unknown nodes on a plane with a height 
of 25 m are given， respectively.When only geomet⁃
ric configuration is considered， the position dilution 
of precision （PDOP） is typically employed to evalu⁃
ate positioning performance， defined as PDOP =
trace ( Cov ( δx ) )1/2， with an equal weighted matrix 
set to W= I.

From Fig.9， it can be seen that when ignoring 
position error influences， the optimal position gain 
can be obtained with the plane coordinates around 
（-7， -13）， where only the amplification effect of 
spatial geometric distribution on position error is 
considered. When priori information， ranging error， 
and geometric distribution are considered in perfor⁃
mance evaluation， the overall WCDOP value be⁃
comes larger， which reasonably characterizes the 
coupling relationship between position error and 
three influencing factors.

Due to the better elevation angle of the No.2 
node compared to others， this node has a greater de⁃
gree of contribution to the positioning performance 
improvement when considered only in terms of its 
spatial geometrical configuration. When the size of 
priori position error of the No.2 node is not consis⁃
tent， its performance variation curve is shown in fol⁃
lowing figures.

Fig.8　Initial position distribution

Table 1　Sensor configuration and simulation parameters

Sensor

GNSS

Gyroscope

Accelerometer

Barometric 
altitude

Wireless 
ranging

Parameter
Position noise standard deviation/m

Update frequency/Hz
Random constant drift/((°)·h-1)

White noise/((°)·h-1)
First⁃order Markov drift/((°)·h-1)

First⁃order Markov correlation time/s
Update frequency/Hz

First⁃order Markov drift/g
First⁃order Markov correlation time/s

Update frequency/Hz

Height measurement error/m

Ranging noise/m
Update frequency/Hz

Value
0.5
1

10 
10
10

3 600
50 

10-4

1 800
50 

5

1
1

46



No. S SHI Chenfa, et al. Cooperative Positioning Method for Multi-unmanned Systems Based on…

Fig.10 shows that when priori position error of 
No.2 node is smaller， its contribution to the posi⁃
tioning solution is larger. When priori position error 
becomes larger， even though it is more advanta⁃
geous in spatial geometric configuration， the region 
that can obtain a larger gain in positioning perfor⁃
mance is concentrated in the plane formed by per⁃
pendicular projections of No.1， No.3， No.4， and 
No.5 nodes. In cooperative positioning systems， on⁃
ly the number of adjacent nodes is increased， and 
other influencing factors are ignored. It does not sig⁃
nificantly improve positioning accuracy. The system 
first screens nodes with high contribution when per⁃
forming measurement update.

After completing the simulation verification of 
confidence evaluation for adjacent nodes， different 
maneuvering trajectories are assigned to all nodes 
according to the motion characteristics of quadrotor 
UAVs and UGVs， while keeping the parameter 
configurations of various navigation sensors consis⁃
tent with those in Table 1. Motion trajectories of  
multi-unmanned systems are shown in Fig. 11. It is 
assumed that each platform can broadcast and re⁃
ceive cooperative information via the data link， and 
that all navigation information is time-synchronized， 

with no out-of-sequence or delayed measurements 
present［22］.

In order to comprehensively verify the effective⁃
ness of the cooperative positioning algorithm pro⁃
posed in this paper， the node information after confi⁃
dence evaluation and screening （Method 1） is used 
for filter updating， and the results are compared 
with those obtained using the nearest nodes （Meth⁃
od 2）， and nodes selected via the optimal geometric 
configuration （Method 3）， representing two alterna⁃
tive selection mechanisms. Cooperative positioning 
error curves along three axes of platform are shown 
as Fig.12.

Fig.11　Trajectories of multi-unmanned systems

Fig.9　Positioning performance change curves Fig.10　Positioning performance under different priori posi⁃
tion error
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To visually compare the positioning perfor⁃
mance under different node selection mechanisms， 
the root mean square error （RMSE） in different di⁃
rections is defined as

RMSE = 1
N ∑

i = 1

N

( x̂ i - x true
i )2 (19)

where N is the number of data samples， x̂ the coop⁃
erative positioning result of platform， and x true the 
true position of the platform.

The RMSE of positioning for different selec⁃
tion mechanisms is given in Table 2.

Using the information from nearest nodes can 
reduce the impact of ranging noise. However， it 
may result in an overly concentrated spatial distribu⁃
tion of selected nodes， thereby degrading geometric 
constraints and significantly reducing positioning ac⁃
curacy in vertical direction. Using information from 
nodes with optimal geometric configuration can 
slightly improve the overall positioning accuracy， 
but it does not take into account priori position er⁃
rors of adjacent nodes. As a result， nodes with fa⁃
vorable geometric distribution but large position un⁃
certainty may be introduced into the solution， caus⁃

ing noise to propagate throughout multi-unmanned 
systems.

Simulation results indicate that， compared with 
traditional selection methods based on optimal geo⁃
metric configuration and nearest distance， the use of 
the highest-confidence nodes prioritizes retaining 
node information that is both geometrically con⁃
straining and positionally reliable. This approach 
avoids geometric degradation and reduces the influ⁃
ence of ranging noise， thereby improving the posi⁃
tioning accuracy of platforms by more than 15%.

To reflect the overall cooperative positioning 
accuracy of multi-unmanned systems， No.2， No.4， 
and No.5 nodes are solved using the above algo⁃
rithm， and cumulative distribution function （CDF） 
of the total positioning error for all nodes is present⁃
ed. The overall cooperative positioning error of plat⁃
forms is defined as

E = Err 2
E + Err 2

N + Err 2
U (20)

where ErrE，ErrN，ErrU are the estimation errors of 
cooperative positioning results in the east， north， 
and up directions， respectively.

In Fig.13， a steeper CDF curve indicates that 
cooperative positioning errors are more concentrated 
within a smaller range， implying better stability and 
consistency of positioning results. A curve posi⁃
tioned further to the left indicates higher positioning 
accuracy at the same cumulative probability. With 
Method 2， achieving 80% CDF requires 13.5 m， 

Fig.12　Cooperative positioning error curves

Table 2　RMSE of unknown node

Method

Highest confidence
Nearest distance

Optimal configuration

Longitude 
error/m

3.21
3.81
3.70

Latitude 
error/m

2.96
3.12
3.43

Altitude 
error/m

3.01
4.18
3.48
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indicating the poorest positioning accuracy and sta⁃
bility. Method 3 performs between the proposed 
method and Method 2， reaching 80% cumulative 
distribution within 11 m. For the proposed method， 
the total cooperative positioning error is less than 
8.5 m at 95% CDF. These simulation results verify  
the effectiveness of the proposed algorithm in sup⁃
pressing the propagation of ranging errors and priori 
position uncertainties in cooperative positioning sys⁃
tem， thereby improving the overall positioning accu⁃
racy of multi-unmanned systems.

5 Conclusions 

Under the satellite denial or restricted environ⁃
ment， multi-unmanned systems can complete time 
update of navigation state volume by constructing 
the inertial recursive model. The confidence evalua⁃
tion method is used to complete screening of mea⁃
surement information， followed by the distributed 
cooperative filter to correct its own positioning er⁃
ror， which reduces the dependence on large band⁃
width and high frequency of group communication in 
multi-unmanned systems cooperative navigation. 
The size of the swarm number supports dynamic ex⁃
pansion， which reduces the computational complexi⁃
ty while ensuring the positioning accuracy.
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基于置信度评估的多无人系统协同定位方法

史晨发， 熊 智， 武天煦， 李其杰， 王慧明， 周昊宇
（南京航空航天大学自动化学院，南京  211106，中国）

摘要：针对多无人系统机载导航平台计算资源受限的问题，提出了一种基于置信度评估的分布式协同定位方法。

首先，从测距误差、先验信息、空间几何构型、相邻节点数量 4 个方面单独分析其对协同定位性能的影响；其次，根

据协同定位原理设计了相邻节点量测信息的置信度评估方法，综合考虑各影响因素之间的耦合关系；最后，设计

了一种基于机间测距的分布式协同导航滤波器。仿真研究表明，本文所提的置信度评估方法能有效地表征量测

信息对定位结果的贡献度，相较于传统基于几何构型最优和基于距离最近这两种筛选方法，所提方法的定位精

度提高超过 15%。

关键词：置信度评估；分布式架构；协同定位；精度因子；多源融合
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