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Abstract: In order to solve the problem of limited computational resources of multi-unmanned systems airborne
navigation platform, a distributed cooperative positioning method based on confidence evaluation is proposed. Firstly,
the mmpact of ranging error, priori information, spatial geometric configuration and adjacent nodes count on
cooperative positioning performance are analyzed individually. Secondly, a confidence evaluation method for
measurement information of adjacent nodes is designed according to the cooperative positioning principle, which
comprehensively considers the coupling relationship between influencing factors. Finally, a distributed cooperative
navigation filter based on inter-vehicle ranging is designed. Simulation studies show that confidence evaluation method
proposed in this paper can effectively characterize the contribution of measurement information to positioning results,
and positioning accuracy under the proposed method is improved by more than 15% compared with the traditional
screening methods based on optimal geometric configuration and closest distance.
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0 Introduction

The unmanned system refers to an information-
based physical platform composed of multiple types
of motion carriers, which fulfils pre-set procedures
with the help of technologies such as mechanical
transmission devices, information sensing inputs
and intelligent decision planning'"’. According to the
different operating environments and mission charac-
teristics of unmanned systems, unmanned systems
can be divided into unmanned ground system
(UGS), unmanned airspace system (UAS), and
unmanned maritime system (UMS)"™. With the rap-
id development of sensor technology, communica-
tion and sensing network technology, intelligent
control algorithms and system theory and other cut-
ting-edge fields, the autonomy, intelligence and uni-
versality of unmanned systems have been greatly im-

proved and gradually become an important comple-
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mentary part of manned systems'.

With its strong mobility, co-ordination and par-
allelism, multi-unmanned systems can complete
complex, dangerous and repetitive high-intensity
tasks in multiple fields in a more efficient, conve-
nient, autonomous and safe way, and it is the inevi-
table development trend of the future information-
based military combat system that is dominated by
intelligent multi-unmanned systems™. In the com-
plex combat environment, a single type of un-
manned system is limited by carrier platform charac-
teristics, mobility, mode of operation, physical
structure and other factors, unable to adapt to the
combat needs in urban lanes, hills, valleys, under-
ground and other environments. Therefore, multi-
unmanned systems consisting of unmanned aerial ve-
hicles (UAVs) and unmanned ground vehicles

(UGVs), can complement and increase the efficien-
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cy of multi-unmanned systems by means of multidi-
mensional perception, information interaction, coop-
erative interoperability and other techniques, which
can effectively enhance combat survivability and
give full play to their overall maximum efficiency"’.
At this stage, the research on multi-unmanned sys-
tems mainly focuses on the four parts of environ-
ment sensing and information fusion, data communi-
cation self-organizing network construction, cooper-
ative navigation and positioning, and formation con-
trol, and this paper mainly focuses on the research of
cooperative navigation and positioning key technolo-
gies'?.

In current multi-unmanned systems navigation
and positioning methods, each unmanned carrier it-
self is configured with inertial sensors, which can
complete real-time continuous inertial navigation
output position solving in full-time and full-area envi-
ronment. The inertial navigation has strong anti-jam-
ming ability, and the use of the environment is not
subject to regional limitations, so inertial sensors are
an important part of the existing combination of navi-

gation methods'”

. However, the disadvantage of in-
ertial navigation is that the navigation error will be
accumulated over time, and the high cost, and large
volume of high-precision inertial devices. UAV and
other small unmanned systems can only carry-lower-
precision micro-electro-mechanical

(MEMS) sensors due to the load limitations. And

system

they need to use exogenous information, such as
global navigation satellite system (GNSS), and in-
ertial data fusion to complete the navigation and posi-
tioning. Exogenous navigation information, such as
GNSS, is susceptible to interference and easy to be
spoofed, so cooperative positioning based on inter-
vehicle ranging is currently an effective method for
multi-unmanned systems navigation ®’.

Cooperative positioning of multi-unmanned sys-
tems is similar to node positioning in wireless sensor
networks, where distributed positioning solving can
be accomplished between carriers through informa-
tion sharing and inter-vehicle ranging using geomet-
ric constraints . The cooperative positioning accura-
cy of vehicle depends on the number of reference
nodes, the quality of the observation data and other

factors, using a filter based on minimum mean-

square error which is theoretically able to obtain the
optimal estimation after acquiring different qualities
of the measurement information in conjunction with
its own motion model”’. However, the communica-
tion overhead among vehicles increases, and the
growing computational complexity tends to compro-

Tt is necessary to es-

mise real-time performance
tablish performance evaluation systems for coopera-
tive positioning of multi-unmanned systems, and se-
lect the measurement information that contributes to
its own positioning to participate in the computation.
Scholars have carried out the following studies on the
performance evaluation of cooperative positioning.
Zhu et al.""? proposed a novel navigation perfor-
mance evaluation strategy based on Fisher informa-

tion and relative entropy. Chen et al.""*

proposed a
cooperative navigation method for UAV’ s swarm
based on the cooperative dilution of precision. Yu et
al."*' proposed a method for selecting the optimal de-
tection configuration of heterogeneous unmanned
swarms based on geometrically nested cone struc-
tures to achieve accurate detection of targets by un-
manned swarms. However, the above evaluation
methods are only applicable to specific application
scenarios and do not consider the coupling of all in-
fluencing factors.

In the cooperative positioning process of multi-
unmanned systems, the ranging information re-
ceived from adjacent nodes contains two categories:
Anchor nodes and unknown nodes. Traditional dilu-
tion of precision (DOP) based evaluation methods
can only assess the impact of the geometric configu-
ration of anchor nodes on positioning accuracy,
while ignoring priori uncertainty in the state esti-
mates of adjacent nodes”’. Therefore, in coopera-
tive positioning performance evaluation, it is neces-
sary to represent the uncertainties arising from both
priori information and measurements within a unified
weighted information fusion framework, which is
theoretically more consistent with the modeling ap-
proach of the Cramér-Rao Bound.

The remainder of this paper is organized as fol-
lows. Section 1 describes the cooperative positioning
scenario and the proposed scheme. Section 2 analyz-
es the influencing factors of cooperative positioning.

Section 3 presents the theoretical derivations and al-
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gorithm design. Section 4 validates the effectiveness
of the proposed algorithm through simulation. Sec-

tion 5 concludes the paper.
1 Definition of the Problem

1.1 System description

The cooperative positioning scenario of multi-
unmanned systems is shown in Fig.1, where the
multi-unmanned systems are composed of UAVs
and UGVs. Some of UAVs in the swarm are
equipped with satellite receivers that can acquire ab-
solute position information. A few UGVs measure
the distance and direction of the landmarks, and cal-
culate their own incremental position relative to the
landmarks through the position inverse solution, and
then finally superimpose the position with the land-
marks to obtain their own absolute position informa-
tion. The above two types of vehicles can obtain ab-
solute position information from external sources
which are defined as reference nodes. In the absence
of absolute exogenous measurements, UAVs and
UGVs that update their navigation states solely
through cooperative information are defined as un-

known nodes.

Fig.1 Cooperative positioning scenario for multi-unmanned

systems

Each unmanned system carries out cooperative
messaging and inter-vehicle ranging through the data
link, and makes use of spatial geometric constraints
to complete the error correction of inertial navigation
sensors. At the same time, inertial navigation, with

its high short-term accuracy, can effectively compen-

sate for the non-line of sight (NLOS) and multipath
effects in ranging, and the mutual checking of the
output data of the two types of sensors can improve

the robustness of the positioning system"",
1.2 Cooperative positioning solution design

MEMS can output the acceleration and angular
velocity in the direction of three orthogonal axes un-
der the high-frequency output system, and use the
quaternion transforms and integral calculation to
complete the updating of the three state quantities of
attitude, velocity and position of the vehicle. It aims
to maintain the absolute positioning accuracy of the
unmanned system in a short period of time, and use
the exogenous measurement information to correct
and compensate for the cumulative error of the long-

[17]

time voyage position projection . Usually, the out-
put frequency of MEMS is more than 50 Hz, and
the communication frequency of data path is about
1 Hz. Its communication bandwidth is limited by the
signal modulation method, power, spectrum re-
sources and other factors, which will only contain
the node ID, its own state, absolute position, and
the priori information of its position error in the coop-
erative message transmission. The cooperative posi-
tioning scheme for unknown nodes is as follows.

Due to the limited effective ranging distance of
the data link, not all platforms in multi-unmanned
systems can establish direct data communication
with one another. As illustrated in Fig.2, the un-
known node can establish data links with m adjacent
nodes and n reference nodes. The adjacent nodes ex-
hibit inconsistent priori position errors, and in princi-
ple, they can be treated as reference nodes with larg-
er position uncertainties during cooperative position-
ing computation"*.

When the number of nodes establishing data
links with the unknown node is less than or equal to
four (i.e.,m+n<<4), the filter fuses all available
measurements to correct the strapdown inertial navi-
gation system (SINS) errors. When the number of
cooperative measurements exceeds this threshold,
the varying levels of uncertainty make it suboptimal
to fuse all cooperative information directly. Incorpo-

rating all measurements increases the observation di-
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Fig.2 General framework diagram of cooperative positioning

mension of the filter, and the resulting growth in
computational complexity degrades real-time perfor-

mance'

. Furthermore, if adjacent nodes exhibit
strong spatial geometric correlation or noise correla-
tion, the associated cooperative measurements may
cause the observation matrix to approach singulari-
ty, leading to filter instability. Therefore, confi-
dence evaluation is required to assess the contribu-
tion of each node to the cooperative positioning per-
formance. Node selection is then performed based
on these contributions, thereby reducing the compu-

tational burden while maintaining positioning accura-

cy.

2 Determinants of Cooperative Po-

sitioning Accuracy

In cooperative positioning system, the position-
ing accuracy of unknown nodes depends on four
main factors: Ranging error, priori information of
adjacent nodes, spatial configuration, and the num-
ber of adjacent nodes. The following theoretical
analyses are carried out for the effects of influencing

factors on cooperative positioning respectively.
2.1 Analysis of ranging error

The ranging error between vehicles is mainly

composed of systematic error and random error.

The equipment calibration, systematic bias can usu-
ally be reduced by calibrating the equipment on a
regular basis. Random error is caused by environ-
mental noise, signal attenuation and other random
factors, and is usually assumed to obey a normal dis-
tribution. The ranging error model is given as fol-

lows

e=cptem=c.tN(0.(oXd)) ()

where e, 1s the systematic error; €., the random er-

s
ror obeying a normal distribution with zero-mean
and standard deviation proportional to the measure-
ment distance; o the proportionality constant related
to the equipment and the environment; and d the
measurement distance between nodes.

When adjacent nodes are located at different
distances around unknown node, the green dots in
Fig.3 represent the position error distribution caused
by systematic errors, while the blue and purple dots
represent the position error distribution caused by
signal attenuation. The two ellipses correspond to
the constraint regions formed by No.1l and No.2 ad-
jacent nodes based on the ranging error model. The
number of particles within each ellipse is identical,
indicating that under the same confidence probabili-
ty, the smaller ellipse area reflects a stronger posi-
tion constraint on the unknown node. Therefore,

when only the ranging error is considered, No.2 ad-
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jacent node makes a greater contribution to position-
ing performance. In time-of-arrival (TOA) based
geometric trilateration, it is common practice to se-
lect measurements from nearest nodes for coopera-
tive positioning ™.
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Fig.3 Ranging error influencing factors
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2.2 Analysis of priori information

The geometric interpretation based on the cova-
riance ellipse can intuitively describe the influence of
priori information of adjacent nodes on the coopera-
tive positioning performance. Taking the 2D plane
as an example, when initial positions and position
covariances of adjacent nodes are known, the distri-
bution properties of data can be characterized by an
ellipse, which is a set of points satisfying the follow-
ing equation

(x—p)'¢ (x—p)l=c (2)
where p is the mean of the positioning result and ¢
the covariance and typically treated as a constant; ¢
is associated with the size of the confidence interval.

Fig.4 illustrates the geometric interpretation un-
der heterogeneous priori information for two adja-
cent nodes, with particles generated according to
the Gaussian distribution. In Fig.4, the colored el-
lipses represent the covariance equiprobability con-
tours  (95%

nodes, with their principal axes determined by the

confidence) of the corresponding

eigen-decomposition of the covariance matrix. The
narrower shape of the red ellipse along the X-axis in-
dicates a smaller variance in that direction, implying
higher position estimation accuracy. In general, the
priori uncertainty of the No.1 adjacent node is small-
er than that of the No.2 adjacent node.

After ignoring the ranging error between the ad-
jacent node and the unknown node, the contribution

of the adjacent node to cooperative positioning can
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Fig.4 Geometric interpretation of priori information

be expressed in terms of the particles in the cross
section of the covariance ellipse, and the contribu-
tion to the positioning solution with different priori
information 1s shown in the following figure.
Cooperative positioning is the combined geo-
metric constraint of measurements from multiple
nodes, and selected adjacent nodes with comple-
mentary directional constraints can reduce the over-
all position uncertainty. Fig.5 shows that the smaller
width of the circle of particle distribution, the stron-
ger its constraint on the positioning result, and the
No.1 adjacent node has a higher contribution com-
pared to the No.2 adjacent node. In three-dimension-
al space, the covariance matrix can be simplified in-
to an ellipsoid by solving its eigenvalues and eigen-
vectors. The direction of its main axis is determined
by the eigenvectors, and the length of its main axis
is determined by the square root of the eigenvalues.
The ellipsoid equation characterizes the distribution
and directional uncertainty of the priori information

of adjacent nodes.
2.3 Analysis of geometric configuration

In satellite navigation systems, geometric dilu-
tion of precision (GDOP) is usually used to mea-

sure the influence of satellite spatial distribution on
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Fig.5 Contribution under different priori information

receiver positioning performance. But GDOP is un-
der the assumption that satellite position error is neg-
ligible, and only spatial configuration is considered
as an influencing factor®’. However, in multi-un-
manned systems cooperative positioning, adjacent
nodes exist with different position confidence,
which may have a good spatial configuration distri-
bution but a poor effect on cooperative performance
enhancement. And when two adjacent nodes are co-
located with the unknown node, geometrical con-
straints between the nodes are weak, which is easy
to produce multiple solutions or no solutions, so a
reasonable geometrical configuration needs to be
considered in node screening.

In Fig.6, when three adjacent nodes possess a
favorable spatial geometric distribution and have
small priori position errors, the cooperative position-
ing error is theoretically equal to ranging error multi-
plied by the geometric dilution factor. But when two
adjacent nodes are co-located, the GDOP tends to
infinity, and the positioning solution of unknown
nodes cannot be completed. Previous studies based
on the optimal geometric configuration mainly use
empirical inference, which can only optimally con-
figure the position distribution of reference nodes un-

der a limited number, so as to derive coupling rela-
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Fig.6  Contributions under different geometric distributions

tionship between the ratio of reference nodes at dif-
ferent heights and the pitch angle. But in the case of
inconsistent position confidence of reference nodes,
the traditional node screening strategy based on em-

pirical inference is no longer applicable.
2.4 Analysis of node count

When many adjacent nodes surround an un-
known node, and effects of ranging error and prior
information are ignored, increasing the amount of
measurement information enlarges the system’s
geometric matrix, effectively reducing the sensitivi-
ty of the positioning solution to input perturbations
and thereby enhancing the system’s geometric
strength. However, when the geometric distribution
of reference nodes therein reaches the optimal con-
figuration, the positioning accuracy can be close to
the theoretical optimum, and the additional increase
in the number of reference nodes enhances the posi-
tioning results less, and the existence of the perfor-
mance saturation phenomenon can be characterized
by the logarithmic curve.

Err(N)=A-logN+ B (3)
where Err(N ) is the positioning error in the pres-
ence of N adjacent nodes; A the slope of the curve,
reflecting the sensitivity of the system positioning er-
ror to changes in the number of adjacent nodes; and
B the initial positioning accuracy of the system.

Meanwhile, in complex environments such as
cities, canyons and forests, data link signals may
generate interference, multipath effects and NLLOS
errors, which may cause jumps in the positioning re-
sults if the wrong measurement information cannot
be isolated. Therefore, when the number of adja-
cent nodes meets the minimum number of require-
ments for positioning solving, it is necessary to es-

tablish a confidence evaluation system and screen
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the adjacent nodes with high contribution for the __0d, d
measurement updating calculation.
ad, 8d» ad,
. eye —8x,; +—— 0Oy, +—— 0z, + ¢ (6)
3 Cooperative Positioning Method 0z, v, "z,

Based on Confidence Evaluation

In this subsection, the weighted cooperative di-
lution of precision (WCDOP) is constructed to char-
acterize the adjacent nodes’ confidence level by con-
sidering the influencing factors of the positioning
performance, and the positioning information is ob-
tained by fusing the selected measurement with an

inertial navigation system.
3.1 Confidence evaluation methodology

The position of the unknown node in the earth-
centered, earth-fixed (ECEF) coordinate system is
x=(x,y,z). Assuming that m adjacent nodes with
data communication can be established, the posi-
tions of the adjacent nodes are &, = ( 'y, Vu» 20 ), TE

spectively, and the true distance between adjacent

nodes and the unknown node is d,=| x — x
sidering the priori information about the position er-
ror of adjacent nodes dx,; and their own position er-
ror o, the measured distance d/is denoted as
d!=|x+ 6x—(x,+ ox.) |+ & (4)
vector

where J6x 1s the correction

[ é\-T’ 5)’» 62 :l’l- ’

position
dx, the priori position error of the
No.i adjacent node, and ¢, the ranging error.

In solving for the positioning of unknown node
using a closed-form analytic algorithm, the non-lin-
ear quantitative equations first need to be converted
into pseudo-linear equations, and then the optimal
solution of the objective function is solved using op-
timization theory.

After linearizing Eq.(4) and neglecting higher

order terms, we obtain

d:’/% H X Ty
P4
ad,; ad, 8a’,
—0xy T =0y Tz, T ¢, (5)
al‘ i ay i az i

The element of No.7 row of the ranging residu-
al vector v is v;= d!— d,, which can be obtained by

bringing the results of linear approximation

Represent the ranging residuals of all adjacent
nodes in vector form
v=Gdéx + Jox, + € (7)
where G is the geometric matrix with » X 3 dimen-
sion, J the adjacent node position error impact ma-
trix with n X 3n dimension, and e the ranging error
vector.
The regression estimates under observations
with different variances are obtained by introducing

weighted matrix, and W is as follows

. 1 1 1
W =diag| —,— ., (8)

2’ 2
Iy Ly g‘rrm

where ¢, is the variance of the total position error of
adjacent nodes.

The objective function is constructed as follows
— Gox )'W (v — Gox) 9)

Normally G is full rank, which ensures the

ming, (v

uniqueness and stability of the solution, obtained by

taking derivative of objective function with respect

to dx and setting the derivative to zero
ox=(G"WG) 'G'"Wy (10)

The covariance matrix of dx directly reflects
the distribution of estimation error and is defined as
Cov(dx)=E[(6x—E[dx )(dx— E[dx )" 11)
where E [ « ]is the mean and Cov(+) the covariance.

It is assumed that ranging error e, satisfies a
normal distribution with zero-mean, the variance is
positively correlated with the distance, and individu-
al ranging errors are independent of each other. The
priori position errors ox,; of each adjacent node is in-
dependent of each other.

From the systematic error propagation model,
the covariance matrix of ranging residual vector v is
defined as

Cov(v)=JCov(dx,)J" + Cov(e) (12)
where Cov(dx,)is composed of Cov(dx, ) which re-
flects the distribution of position error of each adja-
cent node. Cov(dx,) is the diag(o/,a),0l).
Cov(e) is ranging error covariance, which is posi-
tively correlated with the size of distance by the

ranging error model and R = k+diag(d{, d3, -+, d})
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is obtained according to the ranging error model
ol = kd?.

Substituting Eq.(12) into Eq.(11) , then ex-
panding and defusing Cov(dx ) which can be defined
as
Cov(ox)=(G'"WG) 'l G'WJCov(dx,)J " WG+

c’G'"WRWG [(G'WG)! (13)

The position covariance Cov(dx ) contains the
contributions of all influencing factors, where the di-
agonal element directly quantifies positioning accura-
cy of unknown node in three-axis direction, de-
scribes the uncertainty of positioning solution, and
can provide a basis for optimizing cooperative posi-
tioning performance by defining the WCDOP as

WCDOP = trace(Cov(dx )" (14)

3.2 Cooperative positioning filter design

In cooperative positioning of multi-unmanned
systems based on confidence evaluation, the east-
north-up (ENU) geographic system is used as navi-
gation coordinate system, and the state quantities in
cooperative positioning filter are defined as

X=[¢p o0v 6p & e VI (15)
where ¢ =[ ¢ ¢y ¢y ] is the platform error an-
gle of inertial navigation system in east, north, and
up directions; v =[dvy Jvy Jdvy] the velocity
error of vehicle in east, north, and up directions;
op=I[J8L 062 O&h]the latitude, longitude, and al-
titude errors of vehicle; e,=[e, &, e.] the gy-
roscopic constant drift error; e, =[e, e, e.] the
gyroscopic first-order Markovian drift error; V=
[V. v, V. ] the accelerometer first-order Markov-
ian state quantity.

The state transfer equation in discrete form is
constructed from the inertial error differential equa-
tion

X(/c):qj(/c\(/e*l))X(k*lJ+ G(/e*l)Wu’*l) (16)
where @“* "V is the error state transfer matrix,
G~ " the system noise matrix, and W~ " the sys-
tem noise.

When unknown node receives cooperative mea-
surement information, it completes confidence eval-
uation according to Eq.(13). When the system is
set to select measurement information of four adja-
cent nodes to participate in cooperative positioning

solution, then after traversing various permutations

and combinations, four nodes are designated as opti-
mal cooperative nodes when the value of WCDOP
is smallest.

In summary, the cooperative positioning algo-
rithm for multi-unmanned systems based on confi-
dence evaluation is outlined in flowchart shown in
Fig.7.

Initialization

Cooperative
positioning
results

(  Kalmanfilter |

. Measurement |
|[ Time update ] [ update ]

—

Data link

Removal of
collinear nodes
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Fig.7 Flowchart of cooperative positioning algorithm

The construction of system measurement mod-
el 1s completed in Section 3.1, but the geographic
system is used in inertial navigation system, and
transformation matrix H & needs to be used to estab-
lish a uniform magnitude of position error in both co-
ordinate systems.

—(Ry+ h)sinL cosA
—(Ry+ h)sinLsinA

[Ro(1—f)*+ hlcosL

—(Ry+ h)cosLsind  cosL cosA

(Ry+h)cosLcosA cosLsind| (17)
0 sin L

H=

where Ry is the radius of curvature of prime vertical
and /* the earth oblateness.
The cooperative positioning system measure-
ment equation is as follows
ZW=[0,., HH! 0, ,] X"+ V" (18)
where V" is the total error of the cooperative node

after the preferred selection.
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4 Experimental Simulation and Re-

sults

In this subsection, the validation of the confi-
dence evaluation will be accomplished through simu-
lation, using cooperative positioning filters to fuse
the measurement information, and the positioning

results are analyzed finally.
4.1 Simulation condition setting

Multi-unmanned systems consist of six plat-
forms, including UAVs and UGVs. Considering
the existence of five adjacent nodes around No.6 un-
known node, it can obtain information of ID, time-
stamp, position, and position error of adjacent
nodes through the data link, in which two nodes can
obtain absolute position information through GNSS/
optical electro sight (OES) as a high-precision refer-
ence node. The other three nodes can only correct
state quantity of their own projected position
through a cooperative algorithm, so they have larg-
er position error. The configured barometric altime-
ter measures the change of atmospheric pressure and
combines with standard barometric pressure model
to obtain real-time altitude information and perform
damping calculation. The initial distribution of all

nodes is shown as Fig.8.
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The trajectory generator is used in simulation
to generate different motion modes of unmanned
systems. And at the same time, angular velocity me-
ter, gyroscope, GNSS, barometric altimeter, rang-
ing and other sensors’ information is simulated ac-
cording to characteristics of the motion. The config-
uration of simulation sensor parameters is shown in
Table 1.

Table 1 Sensor configuration and simulation parameters

Sensor Parameter Value
GNSS Position noise standard deviation/m 0.5
Update frequency/Hz 1
Random constant drift/((*)sh™") 10
White noise/((°)sh™") 10
Gyroscope First-order Markov drift/((*)h ™) 10
First-order Markov correlation time/s 3 600
Update frequency/Hz 50
First-order Markov drift/g 107
Accelerometer First-order Markov correlation time/s 1 800
Update frequency/Hz 50
Baro.metrlc Height measurement error/m 5
altitude
Wireless Ranging noise/m 1
ranging Update frequency/Hz 1

4.2 Analysis of simulation results

Firstly, the confidence evaluation proposed in
this paper is validated by setting No.l and No.3 as
high-precision reference nodes, and No.2, No.4
and No.5 with large position errors. Simulation re-
sults of the variation surface of positioning perfor-
mance of unknown nodes on a plane with a height
of 25 m are given, respectively. When only geomet-
ric configuration is considered, the position dilution
of precision (PDOP) is typically employed to evalu-
ate positioning performance, defined as PDOP =
trace(Cov(dx))"*, with an equal weighted matrix
setto W=1I.

From Fig.9, it can be seen that when ignoring
position error influences, the optimal position gain
can be obtained with the plane coordinates around
(—7, —13), where only the amplification effect of
spatial geometric distribution on position error is
considered. When priori information, ranging error,
and geometric distribution are considered in perfor-
mance evaluation, the overall WCDOP value be-
comes larger, which reasonably characterizes the
coupling relationship between position error and
three influencing factors.

Due to the better elevation angle of the No.2
node compared to others, this node has a greater de-
gree of contribution to the positioning performance
improvement when considered only in terms of its
spatial geometrical configuration. When the size of
priori position error of the No.2 node is not consis-
tent, its performance variation curve is shown in fol-

lowing figures.
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Fig.9 Positioning performance change curves

Fig.10 shows that when priori position error of
No.2 node is smaller, its contribution to the posi-
tioning solution is larger. When priori position error
becomes larger, even though it is more advanta-
geous in spatial geometric configuration, the region
that can obtain a larger gain in positioning perfor-
mance is concentrated in the plane formed by per-
pendicular projections of No.l, No.3, No.4, and
No.5 nodes. In cooperative positioning systems, on-
ly the number of adjacent nodes is increased, and
other influencing factors are ignored. It does not sig-
nificantly improve positioning accuracy. The system
first screens nodes with high contribution when per-
forming measurement update.

After completing the simulation verification of
confidence evaluation for adjacent nodes, different
maneuvering trajectories are assigned to all nodes
according to the motion characteristics of quadrotor
UAVs and UGVs, while keeping the parameter
configurations of various navigation sensors consis-
tent with those in Table 1. Motion trajectories of
multi-unmanned systems are shown in Fig.11. It is
assumed that each platform can broadcast and re-
ceive cooperative information via the data link, and

that all navigation information is time-synchronized,
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Fig.10 Positioning performance under different priori posi-
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Fig.11 Trajectories of multi-unmanned systems

with no out-of-sequence or delayed measurements
present'®,

In order to comprehensively verify the effective-
ness of the cooperative positioning algorithm pro-
posed in this paper, the node information after confi-
dence evaluation and screening (Method 1) is used
for filter updating, and the results are compared
with those obtained using the nearest nodes (Meth-
od 2), and nodes selected via the optimal geometric
configuration (Method 3), representing two alterna-
tive selection mechanisms. Cooperative positioning
error curves along three axes of platform are shown
as Fig.12.
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Fig.12 Cooperative positioning error curves

To visually compare the positioning perfor-
mance under different node selection mechanisms,
the root mean square error (RMSE) in different di-

rections is defined as

1 & ‘
RMSE = /NZua—x;“ y (19)

i=1
where N is the number of data samples, x the coop-
erative positioning result of platform, and x™ the
true position of the platform.
The RMSE of positioning for different selec-

tion mechanisms is given in Table 2.

Table 2 RMSE of unknown node

Longitude  Latitude  Altitude
Method
error/m error/m  error/m
Highest confidence 3.21 2.96 3.01
Nearest distance 3.81 3.12 4.18
Optimal configuration 3.70 3.43 3.48

Using the information {rom nearest nodes can
reduce the impact of ranging noise. However, it
may result in an overly concentrated spatial distribu-
tion of selected nodes, thereby degrading geometric
constraints and significantly reducing positioning ac-
curacy in vertical direction. Using information from
nodes with optimal geometric configuration can
slightly improve the overall positioning accuracy,
but it does not take into account priori position er-
rors of adjacent nodes. As a result, nodes with fa-
vorable geometric distribution but large position un-

certainty may be introduced into the solution, caus-

ing noise to propagate throughout multi-unmanned
systems.

Simulation results indicate that, compared with
traditional selection methods based on optimal geo-
metric configuration and nearest distance, the use of
the highest-confidence nodes prioritizes retaining
node information that is both geometrically con-
straining and positionally reliable. This approach
avoids geometric degradation and reduces the influ-
ence of ranging noise, thereby improving the posi-
tioning accuracy of platforms by more than 15%.

To reflect the overall cooperative positioning
accuracy of multi-unmanned systems, No.2, No.4,
and No.5 nodes are solved using the above algo-
rithm, and cumulative distribution function (CDF)
of the total positioning error for all nodes is present-
ed. The overall cooperative positioning error of plat-
forms is defined as

E =/ Erri+ Erry + Err (20)

where Errg, Erry, Erry are the estimation errors of

cooperative positioning results in the east, north,
and up directions, respectively.

In Fig.13, a steeper CDF curve indicates that
cooperative positioning errors are more concentrated
within a smaller range, implying better stability and
consistency of positioning results. A curve posi-
tioned further to the left indicates higher positioning
accuracy at the same cumulative probability. With
Method 2, achieving 80% CDF requires 13.5 m,
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indicating the poorest positioning accuracy and sta-
bility. Method 3 performs between the proposed
method and Method 2, reaching 80% cumulative
distribution within 11 m. For the proposed method,
the total cooperative positioning error is less than
8.5 m at 95% CDF. These simulation results verify
the effectiveness of the proposed algorithm in sup-
pressing the propagation of ranging errors and priori
position uncertainties in cooperative positioning sys-
tem, thereby improving the overall positioning accu-

racy of multi-unmanned systems.

5 Conclusions

Under the satellite denial or restricted environ-
ment, multi-unmanned systems can complete time
update of navigation state volume by constructing
the inertial recursive model. The confidence evalua-
tion method is used to complete screening of mea-
surement information, followed by the distributed
cooperative filter to correct its own positioning er-
ror, which reduces the dependence on large band-
width and high frequency of group communication in
multi-unmanned systems cooperative navigation.
The size of the swarm number supports dynamic ex-
pansion, which reduces the computational complexi-
ty while ensuring the positioning accuracy.
References
[1] BIW H, ZHANG M Q, CHEN H, et al. Coopera-

tive task allocation method for air-sea heterogeneous

unmanned system with an application to ocean environ-
ment information monitoring[J]. Ocean Engineering,

2024, 309: 118496.

[2] CHENJ, CHEN T, CAOY, et al. Information-inte-
gration-based optimal coverage path planning of agri-

cultural unmanned systems formations: From theory

[4]

[5]

[6]

[8]

[10]

[11]

[13]

to practice[J]. Journal of Industrial Information Inte-
gration, 2024, 40: 100617.

MENG D D, LI X, WANG W, et al. Deep learning-
driven DOA estimation for distributed unmanned sys-
tems: Overcoming direction-dependent mutual cou-
pling challenges[J]. IEEE Internet of Things Journal,
2025. DOI: 10.1109/J10T.2025.3543021.

LICL, LIW S, ZHANG Z J. Composite anti-distur-
bance predictive control of unmanned systems with
time-delay using multi-dimensional net-
work[J]. Chinese Journal of Aeronautics, 2025, 38
(7):103279.

DU S, ZHONG G, WANG F, et al. Safety risk mod-

elling and assessment of civil unmanned aircraft sys-

Taylor

tem operations: A comprehensive review[J]. Drones,
2024, 8(8): 354.

CHEN J, SUN J, WANG G. From unmanned sys-
tems to autonomous intelligent systems[J]. Engineer-
ing, 2022, 12: 16-19.

LIXX,LISY, ZHOU Y X, et al. Continuous and
precise positioning in urban environments by tightly
coupled integration of GNSS, INS and vision[J].
IEEE Robotics and Automation Letters, 2022, 7(4) :
11458-11465.

LAIJZ, BAISY, XU X W, etal. A generic plug-
and-play navigation fusion strategy for land vehicles in
GNSS-denied environment|J]. Transactions of Nan-
jing University of Aeronautics and Astronautics,
2019, 36(2): 197-204.

SHIC F, XIONG Z, CHEN M X, et al. Cooperative
navigation for heterogeneous air-ground vehicles based
on interoperation strategy[J]. Remote Sensing, 2023,
15(8): 2006.

YUE P Y, XINJ, HUANG Y, et al. UAV autono-
mous navigation system based on air-ground collabora-
tion in GPS-denied environments[J]. Drones, 2025, 9
(6):442.

BONO F M, POLINELLI A, RADICIONI L, et al.
Wireless accelerometer architecture for bridge SHM :
From sensor design to system deployment[J]. Future
Internet, 2025, 17(1): 29.

ZHU X D, LAIJZ, ZHOU B C, et al. Weight factor
graph co-location method for UAV formation based on
navigation performance evaluation[J]. IEEE Sensors
Journal, 2023, 23(12): 13037-13051.

CHEN M X, XIONG Z, LIUJ Y, et al. Cooperative
navigation of unmanned aerial vehicle swarm based on
cooperative dilution of precision[ J]. International Jour-
nal of Advanced Robotic Systems, 2020, 17(3):
1729881420932717.

YURH, LIUY L, MENG Y T, et al. Optimal con-



50 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 42

figuration of heterogeneous swarm for cooperative de-
tection with minimum DOP based on nested cones[J].
Drones, 2024, 8(1): 11.

[15] LIUJ W, WANG K, EL-MOWAFY A, et al. Dilu-
tion of precision for LEO satellite precise orbit and
clock determination[J]. Advances in Space Research,
2025, 76(8): 4336-4348.

[16] HAN S D, XIONG Z, SHI C F. An adaptive cooper-
ative localization method for heterogeneous air-to-
ground robots based on relative distance constraints in
a satellite-denial environment|[J]. Sensors, 2024, 24
(14): 4543.

[17] HUANG F R, WANG Z, XING L R, et al. A
MEMS IMU gyroscope calibration method based on
deep learning[J]. IEEE Transactions on Instrumenta-
tion and Measurement, 2022, 71: 1003009.

[18] SHIRAZI M, VOSOUGHI A. On Bayesian fisher in-
formation maximization for distributed vector estima-
tion[J]. IEEE Transactions on Signal and Information
Processing Over Networks, 2019, 5(4): 628-645.

[19] XING Y, HE Z M, WANG J Q, et al. TOA posi-
tioning algorithm of LBL system for underwater target
based on PSO[J]. Journal of Systems Engineering and
Electronics, 2023, 34(5): 1319-1332.

[20] SHEN J Y, MOLISCH A F, SALMI J. Accurate
passive location estimation using TOA measure-
ments[J]. IEEE Transactions on Wireless Communi-
cations, 2012, 11(6): 2182-2192.

[21] SHARPI, YUK, GUO Y J. GDOP analysis for posi-
tioning system design[J]. IEEE Transactions on Ve-
hicular Technology, 2009, 58(7): 3371-3382.

[22] SHIC F, XIONG Z, CHEN M X, et al. Cooperative
navigation of unmanned aerial vehicle formation with
delayed measurement[J]. Measurement Science and
Technology, 2024, 35(6): 066302.

Acknowledgements  This work was supported in part

by National Natural Science Foundation of China
(Nos.62073163, 62103285, 62203228) , National Defense
Basic Research Program (No.JCKY2020605C009) , Aero-
nautic Science Foundation of China (Nos.ASFC-2020Z0710
52001, 202055052003) , Foundation Strengthening Pro-
gram Technology 173 Field Fund (No.2021-JCJQ-JJ-0308).

Authors

The first author Mr. SHI Chenfa received the B.S. and
M.S. degrees from Tianjin University of Technology. He is
currently pursuing the Ph.D. degree in control science and en-
gineering in College of Automation Engineering, Nanjing
University of Aeronautics and Astronautics. His research in-
terests include cooperative navigation and multiple un-
manned system.

Prof. XIONG Zhi received his

Ph.D. degree in navigation, guidance and control from Nan-

The corresponding author

jing University of Aeronautics and Astronautics in 2004. He
is currently a professor with Nanjing University of Aeronau-
tics and Astronautics. His current research interests include

inertial navigation and integrated navigation system.

Author contributions Mr. SHI Chenfa designed the
study, developed the models, conducted the simulations and
data analysis, interpreted the results, and drafted the
manuscript. Prof. XIONG Zhi supervised the research,
provided guidance on methodology, and contributed to
manuscript revision. Mr. WU Tianxu contributed to data and
model components for the cooperative localization model.
Mr. LI Qijie contributed to data for the performance
evaluation analysis. Mr. WANG Huiming contributed to the
discussion and literature background of the study. Mr.
ZHOU Haoyu assisted in data processing and result
visualization. All authors commented on the manuscript draft

and approved the submission.

Competing interests The authors declare no competing

interests.

(Production Editor: WANG Jie)

ETEGRENMEMNEEAREHREMTT E

X RKE &

H,RRM, FEA, BN, ARTF

(P A= AL R R A S fksABe , 1 At 211106, &)

WEAHSTSAAZENRGRFSHARR SR PR, BRT AR TFERAFEN>HXWRE ZALF %
Boh, M BB £ IR AT 8 (R RIUUUAT M AL ARAR T B F A A T W S AT BT P R R A AR 60 vl s Bk AR
Pth B EAL RIIE TAARY L FNE LN BREE RS R, A RBEYMBA EZNMB/AS LR ;R , &
T — AR T AUE M BB 69 o A KXW B FATIR K BB 45 AAF AW, AR LTI 69 B AS IR AE ok A A Ao R AR F )
BT LR TRE MR THALATIUTHE Rk TS REXA/AFET R, MR T EN M

ERGAT15%,

KBR:BCEFF ;>0 XNEM; R EAHERT; S RBRA



