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Abstract: Current aero-engine life prediction areas typically focus on single-scale degradation features, and the existing
methods are not comprehensive enough to capture the relationship within time series data. To address this problem, we
propose a novel remaining useful life (RUL) estimation method based on the attention mechanism. Our approach
designs a two-layer multi-scale feature extraction module that integrates degradation features at different scales. These
features are then processed in parallel by a self-attention module and a three-layer long short-term memory (LSTM)
network, which together capture long-term dependencies and adaptively weigh important feature. The integration of
degradation patterns from both components into the attention module enhances the model’s ability to capture long-term
dependencies. Visualizing the attention module’s weight matrices further improves model interpretability. Experimental
results on the C-MAPSS dataset demonstrate that our approach outperforms the existing state-of-the-art methods.
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0 Introduction

As a key technology for prediction and health
management, the remaining useful life (RUL) pre-
diction aims to predict the time interval between the
current moment and the end of an aero-engine’s life
based on current and historical monitoring data.
Nowadays RUL prediction methods mainly include
physical model-based methods and data-driven
methods. Physical model-based methods are mod-
eled by in-depth analysis of the performance degra-
dation process and failure mechanisms. Due to the
complexity of the real world, physics-based ap-
proaches are generally only used for component-lev-
el failure and RUL prediction. Orsagh et al.'" inves-
tigated the bearings of turbine engines and proposed
the Yu-Harris model. Chiachio et al.'” proposed the
reliability-based Shear-l.ag model for fatigue degra-
dation of composite materials. For some specific fail-

ures, such as aero-engine degradation processes dis-
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turbed by complex mechanical structures and noise,
physical modeling-based approaches are subject to
significant limitations.

With the rapid development of sensor technolo-
gy and industrial IoT, data-driven methods have re-
ceived a lot of attention, and a large amount of data
has been applied to engineering. Data-driven based
methods are divided into statistical methods and
deep learning methods. The former predicts the rele-
vant properties of an object based on historical fail-
ure data, which usually introduces some assump-
tions and constraints, but these assumptions and
constraints are not guaranteed to be correct in prac-
tice. Currently, deep learning methods are the main-
stream of RUL prediction algorithms. Babu et al."
introduced a deep regression method based on con-
volutional neural network (CNN) for RUL predic-
tion of aero-engines, and proved that it outperforms

traditional machine learning methods on publicly
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available datasets. Li et al.*’

proposed a two-dimen-
sional depth CNN, which utilizes large convolution
kernels for abstract data extraction, and employs
sparse connections and weight-sharing strategies to
effectively address the issue of vanishing gradients.
Yuan et al.””’ confirmed that the long short-term
memory (LSTM) network has better prediction
performance in time series than other networks by
using the good diagnosis and prediction performance
of LSTM in complex operations. Xiang et al."" im-
plemented RUL prediction for aero-engines by con-
structing a multicellular LSTM model. Liu et al.'”
proposed a multi-stage RUL prediction framework
based on the fusion of clustering and LSTM for
aero-engine RUL prediction. Hinchi et al. '™ pro-
posed an end-to-end deep RUL estimation frame-
work, which uses CNN to extract local features,
and then introduces LSTM to capture deep degrada-
tion relationships, and finally outputs RUL predic-
tions. Ren et al."”’ combined a deep auto-encoder
and a deep neural networks (DNN) to estimate the
RUL of rolling bearings. Features based on the auto-
encoder can retain important information about the

1.1 proposed an integrated

input data. Zhang et a
DBN-based model that uses a multi-objective evolu-
tionary algorithm to optimize the parameters of
deep belief networks (DBN) for RUL prediction.
AL-Dulaimi et al.""" constructed a hybrid deep neu-
ral network for the parallel prediction of RUL,
which combines the ability of CNN and LSTM to
extract spatial and temporal features. Aiming at the
problem of large amount of data and high sample di-
mension, Song et al.'" proposed a hybrid predic-
tion model combining autoencoder and bidirectional
LSTM (BiLSTM) , the monitoring data is com-
pressed by autoencoder, and the remote dependence
of features is captured by BiLSTM. Chen et al.'"*
proposed a deep learning method based on self-atten-
tion to predict the RUL of a machine and demon-
strated that self-attention is effective in RUL predic-

tion. Xia et al.'**

proposed a distance self-attention
network parallel computing method to estimate the
RUL of an aero-engine. Liu et al."* proposed a du-
al-attention data-driven system to estimate the RUL
6)

of an aero-engine. Liu et al.'' used preprocessed

features as inputs, which were separately fed into

multiple parallel bidirectional gated recurrent units
(Bi-GRUs) and self-attention (SA) networks. This
approach enhanced the accuracy of RUL prediction
by reinforcing important features. Chen et al."'"”’ pro-
posed a RUL prediction method based on residual
nested LSTM and SA, and experiments on degra-
dation datasets showed that the prediction error was

effectively reduced. Zhang et al.'*®

proposed a Bi-
GRU method based on temporal SA for aero-engine
RUL prediction.

However, the above methods only consider the
degradation features of aero-engines for single-
scale, ignoring the degradation details that may ex-
ist at other scales, and the correlation capture prob-
lem between time series is not fully considered. To
address these problems, we propose a deep network
based on the fusion of multi-scale CNN and LSTM
with the attention mechanism (MSCLA ), applying
the self-attention module to a hybrid method com-
bining multiscale CNN and LSTM, which further
extracts the features and emphasizes the long-term
dependencies among the temporal data. Further-
more, the problem of capturing long-term dependen-
cies is comprehensively addressed by assigning
weights to the RUL-related time-series features us-
ing an additional attention module. The main contri-
butions of this paper are as follows:

(1) We propose to use CNN with different siz-
es of convolution kernels to capture degradation fea-
tures at different scales, and then fuse these degra-
dation features at different scales to provide more
complete information for RUL prediction.

(2) When LSTM studies the correlation of
time series data, the attention mechanism highlights
and assigns weights to deep features closely related
to the degradation process, while also comprehen-
sively considering the long-term dependencies with-
in the time series.

(3) Experiments on the commercial modular
aviation power simulation system (C-MAPSS) da-
taset show that the MSCLA can predict the RUL of

aero-engine more accurately.

1 Aero-engine RUL Prediction
Framework Based on MSCLA

The RUL prediction framework of an aero-en-
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gine based on MSCLA includes data preprocessing,
network structure design, model training and perfor-

mance evaluation. The details are shown in Fig.1.
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Fig.1 Flow chart of model training process

1.1 Aero-engine dataset description

We use the dataset generated by the C-MAPSS
for experimental verification'”’, C-MAPSS is a sim-
ulation tool developed for large civil aviation en-
gines. It simulates a thrust of about 90 000 pounds
and can perform simulation experiments on engines
flying at altitudes of 0 to 40 000 feet, Mach num-
bers of 0 to 0.9, and sea level temperatures of —60
to 103 °F'*". The simulation results are given by 26-
dimensional time series data, which specifically re-
cords the engine number, number of operating cy-

cles, flight parameters (altitude, Mach number and

throttle resolver angle) , and the measurements of
21 sensors. The specific expressions of these sen-
sors are shown in Table 1. In Table 1, LPC de-
notes the low-pressure compressor; LPT denotes
the low-—pressure turbine; HPC denotes the high-
pressure compressor; and HPT denotes the high-

pressure turbine.

Table 1 Sensor description in the CMAPSS dataset
Symbol Description Unit
T2 Total temperature at fan inlet ‘R
T24 Total temperature at LPC outlet ‘R
T30 Total temperature at HPC outlet ‘R
T50 Total temperature at LPT outlet ‘R

P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed r/min
Nc Physical core speed r/min
Epr Engine pressure ratio —
Ps30 static pressure at HPC outlet psia
Phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed r/min
NRc Corrected core speed r/min
BPR Bypass ratio —
FarB Burner fuel-air ratio —
htBleed Bleed enthalpy —
Nf_dmd Demanded fan speed r/min
PCNfR_dmd  Demanded corrected fan speed r/min
W3l HPT coolant bleed Ibm/s
W32 LPT coolant bleed Ibm/s

The C-MAPSS dataset provides four subsets,
which represent the degradation data collected by
the engine under different operating conditions and
fault types. Each subset contains three parts: Train-
ing set, test set and test labels. We conduct experi-
ments on all four subsets to verify the performance
of the MSCLA network.

Assuming that X is the time series data collect-
ed by the aero-engine, N is the total number of life
cycles, and V is the total dimension of sensors.
Then X can be expressed as

Ty T ot Ty
=gt e (1)

Iy Tnz o Tw
where xyy refers to the value of the V-dimensional
sensor data of the engine at time N. The life predic-
tion value at the next moment is related to the pre-

diction value at the current moment and the sensor
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data at the next moment.

This paper aims to use the deep learning net-
work to extract sensor data features from engines,
construct a regression model based on these fea-
tures, and ultimately predict the RUL at the next

time step.
1.2 Data pre-processing

When the engine runs under various operating
conditions, its degradation characteristics are partic-
ularly complex. To eliminate the influence of operat-
ing conditions on the original data sequence®"’, we
used the K-means algorithm'®’ to cluster different
operating conditions and adopted the Min-Max
method for normalizing. The normalization method
is shown as

* I[j—li

7 = T (2)

n n

Lip — L,
where z;" represents the normalized measurement
value of the i-th sensor, and xj the jth measure-
ment value of the 7-th sensor under working condi-

1

tion n. 2} and x} represent the maximum and mini-

mum values of the i-th sensor data under working
condition 7, respectively.

Due to the high dimensionality and nonlinearity
of the aero-engine degradation dataset, kernel princi-
pal component analysis (KPCA)'#' is introduced to
reduce the dimension of the normalized data. Addi-
tionally, a sparse matrix is employed to enhance the
computational efficiency of the dimensionality reduc-
tion process.

Sliding window processing relies on two crucial
parameters™®’ : The window length T and the slid-
ing step size S. Typically, T is set to the minimum
time cycle observed in each engine, while S is set to
1. For a multi—sensor time series with a length of N,
the data is segmented into N—7T-+1 time windows
by sliding along the time axis with a step size of S
and a window length of T..

In the field of RUL prediction, it is generally
believed that the equipment operates normally in the
early stage, experiences wear over time, and subse-
quently exhibits a decline in performance. The piece-
wise linear function, as shown in Eq.(3) , can be

used to mark the useful life of the data.

Rearly RUL 2 Rearly
RUL RUL<CR..q

where R..,, represents the time when the engine be-

RUL = (3)

gins to degrade, and its value is generally set be-
tween 110 and 130"*'. In this paper, 125 is adopted.
The basic situation of the pre-processed samples is

presented in Table 2.

Table 2 Preprocessed input sample details and labels

Dataset FD001 FD002  FDO003 FDO004

Training engine 100 260 100 249

Training sample 17 731 48819 21 820 56 518
Testing engine 100 259 100 248
Operating condition 1 6 1 6
Fault mode HPC HPC HPC&FAN HPCR.FAN
Input size 30X9 20X10  30X9 20X 10

After preprocessing the data, we construct the
MSCLA network, which incorporates the FEB and
LLPB blocks. The network utilizes mean squared er-
ror (MSE) as the loss function and employs the Ad-
am optimizer for training. To prevent overfitting,
1.2 regularization is incorporated. The weights are

initialized using the Xavier initializer.

1.3 Model training and performance evalua-
tion
During model training, early stopping is em-
ployed to monitor the performance of the validation
set, which helps to prevent overfitting and enhance
convergence efficiency. The test sets corresponding
to the four subsets are input into the model, and the
model’s performance is evaluated using evaluation
indicators.
We use the root mean square error (RMSE)
and the score function as the evaluation indicator of

the model performance, the formulas are as follows

N oy
2(610— 1) r=r

i=1

where 7, represents the predicted value of RUL, and
r, the actual RUL value. The Score function is ad-

opted due to its asymmetric penalty on the predicted



68 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 42

results. Specifically, when the predicted value of
RUL exceeds the true value, a heavier penalty is im~-
posed. This means that the penalty for aggressive
prediction results is more severe than that for conser-
vative prediction results, as aggressive predictions

often lead to catastrophic accidents.

2 MSCLA Network Structure De-
sign

This section will elaborate on the specific
framework of the MSCLA network for aero-engine
RUL prediction. The network consists of two com-

ponents. The feature extraction block and the life

Feature extraction block

Multi-scale feature
extraction module

Input

|
G
~_ |
Y
Add layer

Initial Conv
Add layer

o

prediction block. The network structure of MSCLA
is shown in Fig.2, and two components are repre-
sented by dotted lines of different colors. Conv rep-
resents the convolutional layer, “1X17, “5X57,
and “7X 7" represent the size of the convolution ker-
nel, the Add layer represents additive fusion, and
the Flatten layer reshapes the features from the pre-
vious layer into one-dimensional vectors.

After the input layer, we set an initial convolu-
tion layer to increase the number of channels, avoid
the slow convergence caused by excessive calcula-
tion in the deep network, and enhance the integrity
of the imnput information as well as the ability of

cross-channel information exchange.

Self-attention
module

Value

Fig.2 Network structure of MSCLA framework

2.1 Feature extraction block design

The feature extraction block (FEB) is depicted
by the red dotted line in Fig.2. Following the initial
convolution layer, two layers of the same multi-
scale feature extraction module are superimposed to
iteratively extract and reconstruct the intrinsic fea-
tures of the preceding output. The specific details of
this module are presented in Fig.3. Each multi-scale
feature extraction module comprises three convolu-
tional networks arranged in parallel with different

0 to extract degradation features at various

sizes
scales and enhance feature extraction efficiency
through parallel convolution operations. The pro-

cess of extracting input features by CNN is de-

pa—
Attention
module

Output
(RUL prediction)

scribed in Eq.(6), and we employ padding to main-
tain the feature dimension unchanged after the con-
volution operation.

y=ReLU(x' ' X w'+b") (6)
where y represents the output feature map of the cur-
rent convolutional layer, x'~ ' the feature map of the
previous layer, w' the weight matrix of the current
layer, &' the bias vector, and ReL.U(*) represents
the activation function of the convolutional layer.

In order to reduce the sensitivity to network ini-
tialization and accelerate the operation of the convo-
lutional network, a batch normalization layer is add-
ed after the convolutional layer. The calculation for-

mula for this layer is shown as
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== (7)

where x] represents the i-th value in the j-th batch,
xp; the normalized value, p,; the mean value of the
current batch, oy the standard deviation of the cur-
rent batch, and e the minimum positive number set
to prevent the denominator from being zero.

Finally, we utilize the Add layer to perform
the additive fusion of features extracted at different
scales. This approach not only retains the unique
features extracted by each convolutional network at
their respective scales but also enhances the com-
mon features after the additive fusion. The features
fused by the Add layer contain more comprehensive
engine degradation information, which ultimately
aids in improving the prediction accuracy. The fu-

sion formula for the Add layer is shown as

i=1
where Y,y is the output of the add layer; and yi,
¥4, ¥ represent the feature maps of the ith channel
from three different convolutional networks in

MFE, respectively.
2.2 Life prediction block design

The life prediction block (LLPB) comprises

[27]

LSTM, attention mechanism'*" and linear regres-
sion layer. As illustrated by the blue dotted line in
Fig. 2, the fused features obtained after MFE are
transformed into one-dimensional vectors through
the Flatten layer, and subsequently fed into both the
self-attention module and LSTM network.

We use a three-layer LSTM to capture long-

term dependencies from input data and learn the cor-
relation between previous samples and the subse-
quent lifetime labels. Nevertheless, LSTM is sus-
ceptible to losing important information when han-

dling very long sequences ™

. To mitigate this is-
sue, we introduce the self-attention mechanism. By
swiftly calculating the dependencies between any
two positions in the sequence, self-attention enables
the model to capture relationships within ultra-long
sequences, ultimately achieving more accurate
RUL predictions.
2.2.1 Long shortterm memory network

The reshaped one-dimensional vectors of the
Flatten layer are fed into the three-layer stacked
LSTM to capture the long-term dependencies be-
tween time series. The LSTM network can effective-
ly alleviate the gradient vanishing and exploding prob-
lems of the RNN. The information is filtered through
three gating mechanisms, to eliminate redundant in-
formation while retaining useful information, thus,
effectively combining new information and old mem-
ories. The LSTM structure is shown in Fig.4. The
following are the calculation formulas of LSTM.

Forget gate is given as

fi=mo(Welh, \x.]+ b)) 9)
Input gate is given as
ii=oc(W[h,_ x,]+b) (10)
Candidate cell state is given as

C,=tanh(W. [ h, \,x,]+ b.) (11)
New cell state is given as

C.=iRC, +£DC, (12)
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Output gate is given as
O,=c(W,[h,_,x,]+b,) (13)
New hidden value is given as
h,= 0,X tanh(C,) (14)
where W and b are weight and bias, respectively,
which gradually change with the training process.
2.2.2 Attention mechanism

Another parallel route of the reshaped one-di-
mensional vector is fed to the self-attention module,
which automatically gives greater weight to key fea-
tures through the unique structure of the self-atten-
tion itself, allowing the network to focus on parts of
the data that are closely related to the degradation
process. Meanwhile, the computational efficiency
can be efficiently processed through multiple parallel
heads.

The input of the attention module comprises
query vector (Q) , key vector (K), and value vec-
tor (V) , as vividly depicted in Fig.5. The attention
matrix is derived by scaling the dot product of Q and
K, which is subsequently multiplied by V to yield a

Multi-head attention

Scaled dot-product
attention

- ~)

(Linear Q) (Linea:r K) (Linear V] - | | /
| | | kK ¢ v
o K v

Fig.5 Multi-head attention mechanism and scaled dot prod-

uct

weighted data sample. The calculation of the dot
product is outlined in Eq.(12).

T

Attention( Q,K,V )= softmax( vV (12)

Jd,
where d, denotes the dimension of K.
The calculation method of the multi-head atten-
tion is shown as
y= MultiHead (Q,K,V )=
concat ( head,,head,,--,head, ) W’ (13)
head, = Attention( QW 2, KW X, VW)
where A is the number of heads in the multi-head
self-attention, and W7, W2, W5, W) are all pa-
rameters that can be learned during the training pro-
cess. Each head represents a scaled dot product.
Due to the varying correlations of head emphases,
the weights obtained in training are also different.
The degradation patterns learned by the three-
layer LSTM network are taken as K and V', while
the deep features closely related to the degradation
process learned by the self-attention module serve
as Q. These are combined as inputs to the attention
module. This approach allows the LPB to further
emphasize features pertinent to RUL by taking de-
pendencies into account. Consequently, the LPB
provides a more comprehensive approach to captur-
ing long-term dependencies in time series prediction
problems.
2.2.3 Regression layer
Finally, the knowledge learned by LPB is
mapped to the RUL prediction by a linear regression
layer containing one neuron. The calculation meth-
od of the linear layer is shown as
Yoea =0z, W+ b) (14)
where x, is the output of the attention module, w
the weight matrix, & the bias, ¢ the sigmoid activa-

tion function, and y,... the RUL prediction.

3 Analysis and Discussion of Ex-

perimental Results

In order to have more samples for training, the
first 80% of each training dataset is selected for
model training, and the remaining 20% is used as

the validation set. The model is conducted on a
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workstation equipped with Intel Xeon Gold 6 226R
(2.90 GHz) CPU, 256 GB memory, and Microsoft
Windows 10 operating system, and the experimen-
tal results are compared with other state-of-the-art
(SOTA) results based on C-MAPSS datasets.

3.1 Hyperparameter tuning experiment

3.1.1 Batch size test

Since the model built in this paper adopts a
mini-batch training mode, it is necessary to conduct
relevant experiments to determine the optimal batch
size. With the epoch number set to 100, we utilize
early-stopping and vary the batch sizes to assess the
model’s performance. The relationship between the
batch size and the corresponding test results is illus-

trated in Fig.6.
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Fig.6 Results from batch size test

Fig.6(a) shows the test results of RMSE, and
Fig.6 (b) displays the test results of Score. Lower
values in both metrics indicate better model perfor-
mance. As illustrated in Fig.6, model performance
does not consistently improve with larger batch siz-
es. The RMSE and Score are lowest when the
batch size is 64 or 512. However, during training,

we observed that with a batch size of 64, the valida-

tion loss function curve began to increase, indicating
overfitting. Therefore, we have set the training
batch size to 256 for optimal performance.
3.1.2 Different kernel sizes test

Our proposed network utilizes three different
convolution kernels to extract information at differ-
ent scales, necessitating experiments with different
kernel sizes to determine the optimal combination.
Due to the dimensions of the four subsets being re-
duced to 9, 10, 9 and 10, respectively, the maxi-
mum size for the convolution kernel is constrained
to ‘9X9’. Initially, we set the convolution kernel
sizes based on Ref.[29] to ‘[1X1, 3X3, 5X5]’
(abbreviated as [1, 3, 5], the same below). Larg-
er convolution kernels capture broader degradation
trends by extracting large-scale features, while
smaller kernels focus on finer details of the degrada-

“ For our experiments, we consider a

tion process'
range of convolution kernel sizes: [1, 3, 5, 7, 9].
These five kernel sizes were tested in all possible
combinations of three kernels per group. The results

of these experiments are presented in Fig.7.
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Fig.7 Results of different convolution kernel size combina-

tions

Fig.7 demonstrates that the convolution kernel
combination [1, 5, 7] yields the smallest RMSE
and Score, followed by [3, 7, 9], while the combi-
nation [1, 3, 5] performs the worst. This indicates
that the choice of kernel size significantly impacts
model performance. Additionally, using either larg-
er or smaller kernels does not consistently improve
performance, likely due to the varying sensitivity of
different-sized filters in capturing degradation fea-

tures.
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Other hyperparameters are determined through
empirical methods and cross-validation to identify
the optimal values. Finally, the model hyperparame-
ters were set as detailed in Table 3. The data from
four subsets, FDOO1—FDO004, were then used to

test and evaluate the model’s performance.

Table 3 Optimal parameters of the proposed framework

Parameter Value
Max _epochs 100
Batch _size 512
Kernel size [1,5,7]
L2 coefficient 0.006
R 125
Embed _size 512
Heads number 4
Learning rate 0.000 1
Waiting epochs 10

3.2 Learned attention weight distribution

To illustrate the attention mechanism in RUL
prediction, Fig.8 provides an example using the life
prediction of the 80th engine from the FDOO1 test
set. The attention weights learned by the MSCLA

model are visualized here. With a sliding window
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(c) The attention weight of head 3

size of 30 for the FDOO1 subset, the resulting
weight matrix is ‘30X 30’ , representing the contri-
bution of features at each time step to the final RUL
prediction. Darker colors in the matrix indicate a
greater contribution to the prediction.

In the traditional LSTM, only the features
from the last time step are utilized for classification
or regression tasks. In contrast, this work incorpo-
rates an attention mechanism following the LSTM
layer to adaptively assign weights based on the rele-
vance of deep features to the degradation process.
This approach addresses the challenge of capturing
long-term dependencies in time series data more ef-
fectively, leading to more accurate RUL predictions.

Figs.8 (a—d) illustrates the attention weights
extracted by the four attention ‘heads’. Although
the numerical ranges for each ‘head’ are normalized
and appear similar, a closer inspection reveals that
most regions are lighter while only a few regions are
darker. This variation indicates that each attention
‘head’ focuses on different aspects of the data, al-
lowing the model to capture diverse features from
various segments of the input. By adaptively assign-
ing weights, the model effectively prioritizes fea-
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Fig.8 Learned attention weight of MSCLA
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tures that are more relevant to the degradation pro-
cess. For instance, Fig.8(d) shows that the weights
are significantly higher near time steps 7—11 and
22—27, highlighting that these specific features
have a greater impact on the degradation of the aero-

engines.

3.3 Comprehensive prediction performance

analysis

To evaluate the model’s performance in aero-
engine prediction tasks, we compared it with other
SOTA methods using the C-MAPSS dataset. The
results, presented in Table 4 and Table 5, show the
RMSE and Score, respectively, where bold indi-
cates optimal results, while underlined indicates

sub-optimal results.

Table 4 RMSE comparison of different methods

Method FD0O01 FD002 FDO003 FD003
CNNP! 18.45 30.29 19.82  29.16
DCNN® 12.61 2236 12.64 23.31
HDNN™ 13.02 15.24 12.22  18.16
MHNN" — 18.88 — 21.32

NLSTM-Attn"” 12.53  20.51 12.15 22.36
BiGRU-TSAM" 12.56  18.94 12.45  20.47

MSTformer'?" — 14.48 — 15.03
MS-DCNN®! 11.44 19.35 11.67 22.22
MSFM TP 13.24  14.83  11.17  14.09

MSCLA (This work) 10.82  14.75 12.71  14.07

Table 5 Score comparison of different methods

Method FD001 FD002 FD003 FDO003
CNN" 1287 13570 1596 7886
DCNNWY 273 10412 284 12466
HDNN™ 245 1282 288 1527
MHNN" — 1308 — 2225
NLSTM-Attn"” 265 1195 284 2692
BiGRU-TSAM" 213 2264 233 3610
MSTformer™" — 1099 — 1012
MS-DCNN®! 196 3747 241 4844

MSFMTP™ 34051 131190 32817 254290

MSCLA (This work) 162 1322 896 918

As shown in Tables 4 and 5, our model
achieves the best results on the FD0O1 and FDO004
subsets and is nearly optimal on the FD00O2 and
FDOO3 subsets. Compared to the methods in
Refs.[3-4], which used only CNN, our model re-

duces RMSE by 14.19%, 34.03%, and 39.64%,
on the FD001, FDO002, and FDO00O4 subsets, re-
spectively, and decreases the Score by 40.66%,
87.3%, and 92.64%. When compared to Ref.[11],
which combined CNN and LSTM, our model re-
duces RMSE by 16.9% and 22.52% on the FD001
and FDO04 subsets and lowers the Score by
33.88% and 39.88%. Compared to Refs.[16-18,
21], which used LSTM/GRU and attention mecha-
nism, our model decreases RMSE by 13.65% and
6.39% on the FDOO1 and FD004 subsets and reduc-
es the Score by 23.94% and 9.29%. Against
Refs.[26, 29] , which employed CNN for multi-
scale feature extraction, our model lowers RMSE
by 5.42%, 0.54%, and 0.14% on the FDO0OI,
FDO002, and FD004 subsets, and reduces the Score
by 17.08%, 64.72%, and 81.05%, respectively.
These results demonstrate the successful integration
of the advantages of CNN, LSTM, and attention
mechanisms in our study, validating the effective-
ness of MSCLA and showing that combining multi-
ple networks achieves superior performance com-
pared to using a single network alone.

To further observe and analyze the results pro-
duced by the model, the engines have been sorted in
ascending order based on the actual RUL. The pre-
dicted life spans for these engines are then com-
pared. The results are illustrated in Figs.9(a—d)
showing the RUL prediction results for the 100,
259, 100, and 248 engines from the FDOO01,
FD002, FDO003, and FDOO4 test sets, respective-
ly. The results demonstrate that the predicted degra-
dation trends closely align with the actual degrada-
tion patterns, further validating the effectiveness of
our model in accurately predicting overall degrada-
tion trends.

Finally, an engine was randomly selected from
the FDOO1—FDO004 test set, and its predicted
RUL was compared with the actual RUL as well as
with predictions from DCNN'"/, HDNN'"  NL-
STM-Attn'"', MS-DCNN"", and MSFMTP™"
methods, as shown in Fig.10. The predicted RUL
closely follows the actual RUL trajectory, reflect-

ing superior performance in capturing local degrada-
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tion trends. Notably, the MSCLA model provides subsets, showcasing the effective integration of

precise predictions even for the more complex deg- multi-scale feature extraction and attention mecha-

radation trends observed in the FD002 and FD004 nisms.
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4 Conclusions

In this paper, we propose a deep learning mod-
el combining multi-scale CNN and LSTM frame-
works with the attention mechanism for RUL pre-
diction of aero-engines. The degradation informa-
tion at different scales is first extracted and integrat-
ed using a two-layer multi-scale feature extraction
module. These integrated degradation features are
then processed separately by the self-attention mod-
ule and the three-layer LSTM network. The self-at-
tention model focuses on identifying and emphasiz-
ing the most relevant features within the data, while
the LSTM learns long-term dependencies in the
temporal data during the degradation process. Final-
ly, the degradation patterns learned by the self-at-
tention module and the LSTM are combined and
processed through the attention module. This ap-
proach enhances the capture of comprehensive time-
dependent features, enabling more accurate RUL
prediction.

Since batch size significantly influences model
performance, we investigated how varying batch siz-
es affect our mode. We then identified the optimal
convolution kernel combination by evaluating differ-
ent kernel sizes. By visualizing the attention weights
for each head, we can assess the impact of each
time step on the final RUL prediction. When com-
paring our model to SOTA methods, we found that
the MSCLA model demonstrates superior predic-
tion accuracy on the FDOO1 and FDOO4 test sets,
and its performance remains competitive with cur-
rent mainstream algorithms.

In the future, dynamic values could be as-
signed to features at different scales to enhance the
network’s feature extraction capability. Additional-
ly, leveraging the attention mechanism opens the
possibility of further integrating Transformers with

LSTM to improve long-term dependency learning.
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