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Abstract: Current aero-engine life prediction areas typically focus on single-scale degradation features， and the existing 
methods are not comprehensive enough to capture the relationship within time series data. To address this problem， we 
propose a novel remaining useful life （RUL） estimation method based on the attention mechanism. Our approach 
designs a two-layer multi-scale feature extraction module that integrates degradation features at different scales. These 
features are then processed in parallel by a self-attention module and a three-layer long short-term memory （LSTM） 
network， which together capture long-term dependencies and adaptively weigh important feature. The integration of 
degradation patterns from both components into the attention module enhances the model’s ability to capture long-term 
dependencies. Visualizing the attention module’s weight matrices further improves model interpretability. Experimental 
results on the C-MAPSS dataset demonstrate that our approach outperforms the existing state-of-the-art methods.
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0 Introduction 

As a key technology for prediction and health 
management， the remaining useful life （RUL） pre⁃
diction aims to predict the time interval between the 
current moment and the end of an aero-engine’s life 
based on current and historical monitoring data. 
Nowadays RUL prediction methods mainly include 
physical model-based methods and data-driven 
methods. Physical model-based methods are mod⁃
eled by in-depth analysis of the performance degra⁃
dation process and failure mechanisms. Due to the 
complexity of the real world， physics-based ap⁃
proaches are generally only used for component-lev⁃
el failure and RUL prediction. Orsagh et al.［1］ inves⁃
tigated the bearings of turbine engines and proposed 
the Yu-Harris model. Chiachío et al.［2］ proposed the 
reliability-based Shear-Lag model for fatigue degra⁃
dation of composite materials. For some specific fail⁃
ures， such as aero-engine degradation processes dis⁃

turbed by complex mechanical structures and noise， 
physical modeling-based approaches are subject to 
significant limitations.

With the rapid development of sensor technolo⁃
gy and industrial IoT， data-driven methods have re⁃
ceived a lot of attention， and a large amount of data 
has been applied to engineering. Data-driven based 
methods are divided into statistical methods and 
deep learning methods. The former predicts the rele⁃
vant properties of an object based on historical fail⁃
ure data， which usually introduces some assump⁃
tions and constraints， but these assumptions and 
constraints are not guaranteed to be correct in prac⁃
tice. Currently， deep learning methods are the main⁃
stream of RUL prediction algorithms. Babu et al.［3］ 
introduced a deep regression method based on con⁃
volutional neural network （CNN） for RUL predic⁃
tion of aero-engines， and proved that it outperforms 
traditional machine learning methods on publicly 
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available datasets. Li et al.［4］ proposed a two-dimen⁃
sional depth CNN， which utilizes large convolution 
kernels for abstract data extraction， and employs 
sparse connections and weight-sharing strategies to 
effectively address the issue of vanishing gradients. 
Yuan et al.［5］ confirmed that the long short-term 
memory （LSTM） network has better prediction 
performance in time series than other networks by 
using the good diagnosis and prediction performance 
of LSTM in complex operations. Xiang et al.［6］ im⁃
plemented RUL prediction for aero-engines by con⁃
structing a multicellular LSTM model. Liu et al.［7］ 
proposed a multi-stage RUL prediction framework 
based on the fusion of clustering and LSTM for 
aero-engine RUL prediction. Hinchi et al.［8］ pro⁃
posed an end-to-end deep RUL estimation frame⁃
work， which uses CNN to extract local features， 
and then introduces LSTM to capture deep degrada⁃
tion relationships， and finally outputs RUL predic⁃
tions. Ren et al.［9］ combined a deep auto-encoder 
and a deep neural networks （DNN） to estimate the 
RUL of rolling bearings. Features based on the auto-

encoder can retain important information about the 
input data. Zhang et al.［10］ proposed an integrated 
DBN-based model that uses a multi-objective evolu⁃
tionary algorithm to optimize the parameters of  
deep belief networks （DBN） for RUL prediction. 
AL-Dulaimi et al.［11］ constructed a hybrid deep neu⁃
ral network for the parallel prediction of RUL， 
which combines the ability of CNN and LSTM to 
extract spatial and temporal features. Aiming at the 
problem of large amount of data and high sample di⁃
mension， Song et al.［12］ proposed a hybrid predic⁃
tion model combining autoencoder and bidirectional 
LSTM （BiLSTM）， the monitoring data is com ⁃
pressed by autoencoder， and the remote dependence 
of features is captured by BiLSTM. Chen et al.［13］ 
proposed a deep learning method based on self-atten⁃
tion to predict the RUL of a machine and demon⁃
strated that self-attention is effective in RUL predic⁃
tion. Xia et al.［14］ proposed a distance self-attention 
network parallel computing method to estimate the 
RUL of an aero-engine. Liu et al.［15］ proposed a du⁃
al-attention data-driven system to estimate the RUL 
of an aero-engine. Liu et al.［16］ used preprocessed 
features as inputs， which were separately fed into 

multiple parallel bidirectional gated recurrent units 
（Bi-GRUs） and self-attention （SA） networks. This 
approach enhanced the accuracy of RUL prediction 
by reinforcing important features. Chen et al.［17］ pro⁃
posed a RUL prediction method based on residual 
nested LSTM and SA， and experiments on degra⁃
dation datasets showed that the prediction error was 
effectively reduced. Zhang et al.［18］ proposed a Bi-
GRU method based on temporal SA for aero-engine 
RUL prediction.

However， the above methods only consider the 
degradation features of aero-engines for single-

scale， ignoring the degradation details that may ex⁃
ist at other scales， and the correlation capture prob⁃
lem between time series is not fully considered. To 
address these problems， we propose a deep network 
based on the fusion of multi-scale CNN and LSTM 
with the attention mechanism （MSCLA）， applying 
the self-attention module to a hybrid method com ⁃
bining multiscale CNN and LSTM， which further 
extracts the features and emphasizes the long-term 
dependencies among the temporal data. Further⁃
more， the problem of capturing long-term dependen⁃
cies is comprehensively addressed by assigning 
weights to the RUL-related time-series features us⁃
ing an additional attention module. The main contri⁃
butions of this paper are as follows：

（1） We propose to use CNN with different siz⁃
es of convolution kernels to capture degradation fea⁃
tures at different scales， and then fuse these degra⁃
dation features at different scales to provide more 
complete information for RUL prediction.

（2） When LSTM studies the correlation of 
time series data， the attention mechanism highlights 
and assigns weights to deep features closely related 
to the degradation process， while also comprehen⁃
sively considering the long-term dependencies with⁃
in the time series.

（3） Experiments on the commercial modular 
aviation power simulation system （C-MAPSS） da⁃
taset show that the MSCLA can predict the RUL of 
aero-engine more accurately.

1 Aero⁃engine RUL Prediction 
Framework Based on MSCLA

The RUL prediction framework of an aero-en⁃
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gine based on MSCLA includes data preprocessing， 
network structure design， model training and perfor⁃
mance evaluation. The details are shown in Fig.1.

1. 1 Aero⁃engine dataset description　

We use the dataset generated by the C-MAPSS 
for experimental verification［19］. C-MAPSS is a sim ⁃
ulation tool developed for large civil aviation en⁃
gines. It simulates a thrust of about 90 000 pounds 
and can perform simulation experiments on engines 
flying at altitudes of 0 to 40 000 feet， Mach num⁃
bers of 0 to 0.9， and sea level temperatures of -60 
to 103 °F［20］. The simulation results are given by 26-

dimensional time series data， which specifically re⁃
cords the engine number， number of operating cy⁃
cles， flight parameters （altitude， Mach number and 

throttle resolver angle）， and the measurements of 
21 sensors. The specific expressions of these sen⁃
sors are shown in Table 1. In Table 1， LPC de⁃
notes the low-pressure compressor；LPT denotes 
the low-pressure turbine；HPC denotes the high-

pressure compressor；and HPT denotes the high-

pressure turbine.

The C-MAPSS dataset provides four subsets， 
which represent the degradation data collected by 
the engine under different operating conditions and 
fault types. Each subset contains three parts： Train⁃
ing set， test set and test labels. We conduct experi⁃
ments on all four subsets to verify the performance 
of the MSCLA network.

Assuming that X is the time series data collect⁃
ed by the aero-engine， N is the total number of life 
cycles， and V is the total dimension of sensors. 
Then X can be expressed as 

X=
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(1)

where xNV refers to the value of the V-dimensional 
sensor data of the engine at time N. The life predic⁃
tion value at the next moment is related to the pre⁃
diction value at the current moment and the sensor 

Table 1　Sensor description in the CMAPSS dataset

Symbol
T2

T24
T30
T50
P2

P15
P30
Nf
Nc
Epr

Ps30
Phi
NRf
NRc
BPR
FarB

htBleed
Nf_dmd

PCNfR_dmd
W31
W32

Description
Total temperature at fan inlet

Total temperature at LPC outlet
Total temperature at HPC outlet
Total temperature at LPT outlet

Pressure at fan inlet
Total pressure in bypass⁃duct
Total pressure at HPC outlet

Physical fan speed
Physical core speed

Engine pressure ratio
static pressure at HPC outlet

Ratio of fuel flow to Ps30
Corrected fan speed

Corrected core speed
Bypass ratio

Burner fuel⁃air ratio
Bleed enthalpy

Demanded fan speed
Demanded corrected fan speed

HPT coolant bleed
LPT coolant bleed

Unit
°R
°R
°R
°R

psia
psia
psia

r/min
r/min
—

psia
pps/psi
r/min
r/min
—
—
—

r/min
r/min
lbm/s
lbm/s

Fig.1　Flow chart of model training process
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data at the next moment.
This paper aims to use the deep learning net⁃

work to extract sensor data features from engines， 
construct a regression model based on these fea⁃
tures， and ultimately predict the RUL at the next 
time step.

1. 2 Data pre⁃processing　

When the engine runs under various operating 
conditions， its degradation characteristics are partic⁃
ularly complex. To eliminate the influence of operat⁃
ing conditions on the original data sequence［21］， we 
used the K-means algorithm［22］ to cluster different 
operating conditions and adopted the Min-Max 
method for normalizing. The normalization method 
is shown as

xi
* = xn

ij - xn
imin

xn
imax - xn

imin

(2)

where xi
* represents the normalized measurement 

value of the i-th sensor， and xn
ij the j-th measure⁃

ment value of the i-th sensor under working condi⁃
tion n. xn

imax and xn
imin represent the maximum and mini⁃

mum values of the i-th sensor data under working 
condition n， respectively.

Due to the high dimensionality and nonlinearity 
of the aero-engine degradation dataset， kernel princi⁃
pal component analysis （KPCA）［23］ is introduced to 
reduce the dimension of the normalized data. Addi⁃
tionally， a sparse matrix is employed to enhance the 
computational efficiency of the dimensionality reduc⁃
tion process.

Sliding window processing relies on two crucial 
parameters［24］： The window length T and the slid⁃
ing step size S. Typically， T is set to the minimum 
time cycle observed in each engine， while S is set to 
1. For a multi-sensor time series with a length of N， 
the data is segmented into N-T+1 time windows 
by sliding along the time axis with a step size of S 
and a window length of T.

In the field of RUL prediction， it is generally 
believed that the equipment operates normally in the 
early stage， experiences wear over time， and subse⁃
quently exhibits a decline in performance. The piece⁃
wise linear function， as shown in Eq.（3）， can be 
used to mark the useful life of the data.

RUL =ì
í
î

R early      RUL ≥ R early

RUL     RUL ≤ R early
(3)

where R early represents the time when the engine be⁃
gins to degrade， and its value is generally set be⁃
tween 110 and 130［25］. In this paper， 125 is adopted. 
The basic situation of the pre-processed samples is 
presented in Table 2.

After preprocessing the data， we construct the 
MSCLA network， which incorporates the FEB and 
LPB blocks. The network utilizes mean squared er⁃
ror （MSE） as the loss function and employs the Ad⁃
am optimizer for training. To prevent overfitting， 
L2 regularization is incorporated. The weights are 
initialized using the Xavier initializer.

1. 3 Model training and performance evalua⁃
tion　

During model training， early stopping is em ⁃
ployed to monitor the performance of the validation 
set， which helps to prevent overfitting and enhance 
convergence efficiency. The test sets corresponding 
to the four subsets are input into the model， and the 
model’s performance is evaluated using evaluation 
indicators.

We use the root mean square error （RMSE） 
and the score function as the evaluation indicator of 
the model performance， the formulas are as follows

RMSE = 1
N ∑

i = 1

N

( )r̂ i - ri
2 (4)
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N ( )e- r̂ i - ri

13 - 1   r̂ i < ri

∑
i = 1

N ( )e
r̂ i - ri

10 - 1   r̂ i ≥ ri

(5)

where r̂ i represents the predicted value of RUL， and 
ri the actual RUL value. The Score function is ad⁃
opted due to its asymmetric penalty on the predicted 

Table 2　Preprocessed input sample details and labels

Dataset
Training engine
Training sample
Testing engine

Operating condition
Fault mode
Input size

FD001
100

17 731
100

1
HPC
30×9

FD002
260

48 819
259

6
HPC

20×10

FD003
100

21 820
100

1
HPC&FAN

30×9

FD004
249

56 518
248

6
HPC&FAN

20×10

67



Vol. 42 Transactions of Nanjing University of Aeronautics and Astronautics

results. Specifically， when the predicted value of 
RUL exceeds the true value， a heavier penalty is im ⁃
posed. This means that the penalty for aggressive 
prediction results is more severe than that for conser⁃
vative prediction results， as aggressive predictions 
often lead to catastrophic accidents.

2 MSCLA Network Structure De⁃
sign

This section will elaborate on the specific 
framework of the MSCLA network for aero-engine 
RUL prediction. The network consists of two com ⁃
ponents. The feature extraction block and the life 

prediction block. The network structure of MSCLA 
is shown in Fig. 2， and two components are repre⁃
sented by dotted lines of different colors. Conv rep⁃
resents the convolutional layer， “1×1”， “5×5”， 
and “7×7” represent the size of the convolution ker⁃
nel， the Add layer represents additive fusion， and 
the Flatten layer reshapes the features from the pre⁃
vious layer into one-dimensional vectors.

After the input layer， we set an initial convolu⁃
tion layer to increase the number of channels， avoid 
the slow convergence caused by excessive calcula⁃
tion in the deep network， and enhance the integrity 
of the input information as well as the ability of 
cross-channel information exchange.

2. 1 Feature extraction block design　

The feature extraction block （FEB） is depicted 
by the red dotted line in Fig.2. Following the initial 
convolution layer， two layers of the same multi-
scale feature extraction module are superimposed to 
iteratively extract and reconstruct the intrinsic fea⁃
tures of the preceding output. The specific details of 
this module are presented in Fig.3. Each multi-scale 
feature extraction module comprises three convolu⁃
tional networks arranged in parallel with different 
sizes［26］， to extract degradation features at various 
scales and enhance feature extraction efficiency 
through parallel convolution operations. The pro⁃
cess of extracting input features by CNN is de⁃

scribed in Eq.（6）， and we employ padding to main⁃
tain the feature dimension unchanged after the con⁃
volution operation.

y= ReLU ( xl- 1 × wl + bl ) (6)
where y represents the output feature map of the cur⁃
rent convolutional layer， x l - 1 the feature map of the 
previous layer， w l the weight matrix of the current 
layer， b l the bias vector， and ReLU ( · ) represents 
the activation function of the convolutional layer.

In order to reduce the sensitivity to network ini⁃
tialization and accelerate the operation of the convo⁃
lutional network， a batch normalization layer is add⁃
ed after the convolutional layer. The calculation for⁃
mula for this layer is shown as

Fig.2　Network structure of MSCLA framework
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x *
B = xj

i - μB

σB
2 + ε

(7)

where xj
i represents the i-th value in the j-th batch， 

x *
B  the normalized value， μB the mean value of the 

current batch， σB the standard deviation of the cur⁃
rent batch， and ε the minimum positive number set 
to prevent the denominator from being zero.

Finally， we utilize the Add layer to perform 
the additive fusion of features extracted at different 
scales. This approach not only retains the unique 
features extracted by each convolutional network at 
their respective scales but also enhances the com ⁃
mon features after the additive fusion. The features 
fused by the Add layer contain more comprehensive 
engine degradation information， which ultimately 
aids in improving the prediction accuracy. The fu⁃
sion formula for the Add layer is shown as

Y add = ∑
i = 1

c

( y i
1 + y i

2 + y i
3 ) (8)

where Y add is the output of the add layer； and y i
1， 

y i
2， y i

3 represent the feature maps of the ith channel 
from three different convolutional networks in 
MFE， respectively.

2. 2 Life prediction block design　

The life prediction block（LPB） comprises 
LSTM， attention mechanism［27］ and linear regres⁃
sion layer. As illustrated by the blue dotted line in 
Fig. 2， the fused features obtained after MFE are 
transformed into one-dimensional vectors through 
the Flatten layer， and subsequently fed into both the 
self-attention module and LSTM network.

We use a three-layer LSTM to capture long-

term dependencies from input data and learn the cor⁃
relation between previous samples and the subse⁃
quent lifetime labels. Nevertheless， LSTM is sus⁃
ceptible to losing important information when han⁃
dling very long sequences［28］. To mitigate this is⁃
sue， we introduce the self-attention mechanism. By 
swiftly calculating the dependencies between any 
two positions in the sequence， self-attention enables 
the model to capture relationships within ultra-long 
sequences， ultimately achieving more accurate 
RUL predictions.
2. 2. 1 Long short⁃term memory network　

The reshaped one-dimensional vectors of the 
Flatten layer are fed into the three-layer stacked 
LSTM to capture the long-term dependencies be⁃
tween time series. The LSTM network can effective⁃
ly alleviate the gradient vanishing and exploding prob⁃
lems of the RNN. The information is filtered through 
three gating mechanisms， to eliminate redundant in⁃
formation while retaining useful information， thus， 
effectively combining new information and old mem ⁃
ories. The LSTM structure is shown in Fig. 4. The 
following are the calculation formulas of LSTM.

Forget gate is given as 
ft = σ (W f ⋅ [ht- 1 ,xt ] + b f ) (9)

Input gate is given as
it = σ (W i ⋅[ht- 1 ,xt ] + b i ) (10)

Candidate cell state is given as
C͂ t = tanh (W c ⋅[ht- 1 ,xt ] + b c ) (11)

New cell state is given as
Ct = it ⊗ Ct- 1 + ft ⊗ C͂ t (12)

Fig.3　Multi-scale feature extraction module
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Output gate is given as
Ot = σ (W o ⋅[ht- 1 ,xt ] + bo ) (13)

New hidden value is given as
ht = Ot ⊗ tanh (Ct ) (14)

where W  and b are weight and bias， respectively， 
which gradually change with the training process.
2. 2. 2 Attention mechanism　

Another parallel route of the reshaped one-di⁃
mensional vector is fed to the self-attention module， 
which automatically gives greater weight to key fea⁃
tures through the unique structure of the self-atten⁃
tion itself， allowing the network to focus on parts of 
the data that are closely related to the degradation 
process. Meanwhile， the computational efficiency 
can be efficiently processed through multiple parallel 
heads.

The input of the attention module comprises 
query vector （Q）， key vector （K）， and value vec⁃
tor （V）， as vividly depicted in Fig.5. The attention 
matrix is derived by scaling the dot product of Q and 
K， which is subsequently multiplied by V to yield a 

weighted data sample. The calculation of the dot 
product is outlined in Eq.（12）.

Attention (Q,K,V ) = softmax ( QK T

dk
)V (12)

where dk denotes the dimension of K.
The calculation method of the multi-head atten⁃

tion is shown as
y = MultiHead (Q,K,V ) =
   concat ( head1 ,head2 ,… ,headh )W O

head i = Attention (QW Q
i ,KW K

i ,VW V
i )

 (13)

where h is the number of heads in the multi-head 
self-attention， and W O， W Q

i ， W K
i ， W V

i  are all pa⁃
rameters that can be learned during the training pro⁃
cess. Each head represents a scaled dot product. 
Due to the varying correlations of head emphases， 
the weights obtained in training are also different.

The degradation patterns learned by the three-

layer LSTM network are taken as K and V， while 
the deep features closely related to the degradation 
process learned by the self-attention module serve 
as Q. These are combined as inputs to the attention 
module. This approach allows the LPB to further 
emphasize features pertinent to RUL by taking de⁃
pendencies into account. Consequently， the LPB 
provides a more comprehensive approach to captur⁃
ing long-term dependencies in time series prediction 
problems.
2. 2. 3 Regression layer

Finally， the knowledge learned by LPB is 
mapped to the RUL prediction by a linear regression 
layer containing one neuron. The calculation meth⁃
od of the linear layer is shown as

ypred = σ ( xew+ b ) (14)
where xe is the output of the attention module， w 
the weight matrix， b the bias， σ the sigmoid activa⁃
tion function， and ypred the RUL prediction.

3 Analysis and Discussion of Ex⁃
perimental Results 

In order to have more samples for training， the 
first 80% of each training dataset is selected for 
model training， and the remaining 20% is used as 
the validation set. The model is conducted on a 

Fig.4　LSTM structure

Fig.5　Multi-head attention mechanism and scaled dot prod⁃
uct
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workstation equipped with Intel Xeon Gold 6 226R 
（2.90 GHz） CPU， 256 GB memory， and Microsoft 
Windows 10 operating system， and the experimen⁃
tal results are compared with other state-of-the-art 
（SOTA） results based on C-MAPSS datasets.

3. 1 Hyperparameter tuning experiment　

3. 1. 1 Batch size test

Since the model built in this paper adopts a 
mini-batch training mode， it is necessary to conduct 
relevant experiments to determine the optimal batch 
size. With the epoch number set to 100， we utilize 
early-stopping and vary the batch sizes to assess the 
model’s performance. The relationship between the 
batch size and the corresponding test results is illus⁃
trated in Fig.6.

Fig.6（a） shows the test results of RMSE， and 
Fig. 6（b） displays the test results of Score. Lower 
values in both metrics indicate better model perfor⁃
mance. As illustrated in Fig. 6， model performance 
does not consistently improve with larger batch siz⁃
es. The RMSE and Score are lowest when the 
batch size is 64 or 512. However， during training， 
we observed that with a batch size of 64， the valida⁃

tion loss function curve began to increase， indicating 
overfitting. Therefore， we have set the training 
batch size to 256 for optimal performance.
3. 1. 2 Different kernel sizes test

Our proposed network utilizes three different 
convolution kernels to extract information at differ⁃
ent scales， necessitating experiments with different 
kernel sizes to determine the optimal combination. 
Due to the dimensions of the four subsets being re⁃
duced to 9，10，9 and 10， respectively， the maxi⁃
mum size for the convolution kernel is constrained 
to ‘9×9’. Initially， we set the convolution kernel 
sizes based on Ref.［29］ to ‘［1×1， 3×3， 5×5］’ 
（abbreviated as ［1， 3， 5］， the same below）. Larg⁃
er convolution kernels capture broader degradation 
trends by extracting large-scale features， while 
smaller kernels focus on finer details of the degrada⁃
tion process［30］. For our experiments， we consider a 
range of convolution kernel sizes： ［1， 3， 5， 7， 9］. 
These five kernel sizes were tested in all possible 
combinations of three kernels per group. The results 
of these experiments are presented in Fig.7.

Fig. 7 demonstrates that the convolution kernel 
combination ［1， 5， 7］ yields the smallest RMSE 
and Score， followed by ［3， 7， 9］， while the combi⁃
nation ［1， 3， 5］ performs the worst. This indicates 
that the choice of kernel size significantly impacts 
model performance. Additionally， using either larg⁃
er or smaller kernels does not consistently improve 
performance， likely due to the varying sensitivity of 
different-sized filters in capturing degradation fea⁃
tures.

Fig.6　Results from batch size test

Fig.7　Results of different convolution kernel size combina⁃
tions
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Other hyperparameters are determined through 
empirical methods and cross-validation to identify 
the optimal values. Finally， the model hyperparame⁃
ters were set as detailed in Table 3. The data from 
four subsets， FD001—FD004， were then used to 
test and evaluate the model’s performance.

3. 2 Learned attention weight distribution　

To illustrate the attention mechanism in RUL 
prediction， Fig.8 provides an example using the life 
prediction of the 80th engine from the FD001 test 
set. The attention weights learned by the MSCLA 
model are visualized here. With a sliding window 

size of 30 for the FD001 subset， the resulting 
weight matrix is ‘30×30’， representing the contri⁃
bution of features at each time step to the final RUL 
prediction. Darker colors in the matrix indicate a 
greater contribution to the prediction.

In the traditional LSTM， only the features 
from the last time step are utilized for classification 
or regression tasks. In contrast， this work incorpo⁃
rates an attention mechanism following the LSTM 
layer to adaptively assign weights based on the rele⁃
vance of deep features to the degradation process. 
This approach addresses the challenge of capturing 
long-term dependencies in time series data more ef⁃
fectively， leading to more accurate RUL predictions.

Figs. 8（a—d） illustrates the attention weights 
extracted by the four attention ‘heads’. Although 
the numerical ranges for each ‘head’ are normalized 
and appear similar， a closer inspection reveals that 
most regions are lighter while only a few regions are 
darker. This variation indicates that each attention 

‘head’ focuses on different aspects of the data， al⁃
lowing the model to capture diverse features from 
various segments of the input. By adaptively assign⁃
ing weights， the model effectively prioritizes fea⁃

Fig.8　Learned attention weight of MSCLA

Table 3　Optimal parameters of the proposed framework

Parameter
Max_epochs
Batch_size
Kernel size

L2 coefficient
Rearly

Embed_size
Heads number
Learning rate

Waiting epochs

Value
100
512

[1, 5, 7]
0.006
125
512

4
0.000 1

10
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tures that are more relevant to the degradation pro⁃
cess. For instance， Fig.8（d） shows that the weights 
are significantly higher near time steps 7—11 and 
22—27， highlighting that these specific features 
have a greater impact on the degradation of the aero-

engines.

3. 3 Comprehensive prediction performance 
analysis　

To evaluate the model’s performance in aero-

engine prediction tasks， we compared it with other 
SOTA methods using the C-MAPSS dataset. The 
results， presented in Table 4 and Table 5， show the 
RMSE and Score， respectively， where bold indi⁃
cates optimal results， while underlined indicates 
sub-optimal results.

As shown in Tables 4 and 5， our model 
achieves the best results on the FD001 and FD004 
subsets and is nearly optimal on the FD002 and 
FD003 subsets. Compared to the methods in 
Refs.［3⁃4］， which used only CNN， our model re⁃

duces RMSE by 14.19%， 34.03%， and 39.64%， 
on the FD001， FD002， and FD004 subsets， re⁃
spectively， and decreases the Score by 40.66%， 
87.3%， and 92.64%. When compared to Ref.［11］， 
which combined CNN and LSTM， our model re⁃
duces RMSE by 16.9% and 22.52% on the FD001 
and FD004 subsets and lowers the Score by 
33.88% and 39.88%. Compared to Refs.［16⁃18，
21］， which used LSTM/GRU and attention mecha⁃
nism， our model decreases RMSE by 13.65% and 
6.39% on the FD001 and FD004 subsets and reduc⁃
es the Score by 23.94% and 9.29%. Against 
Refs.［26，29］， which employed CNN for multi-
scale feature extraction， our model lowers RMSE 
by 5.42%， 0.54%， and 0.14% on the FD001， 
FD002， and FD004 subsets， and reduces the Score 
by 17.08%， 64.72%， and 81.05%， respectively. 
These results demonstrate the successful integration 
of the advantages of CNN， LSTM， and attention 
mechanisms in our study， validating the effective⁃
ness of MSCLA and showing that combining multi⁃
ple networks achieves superior performance com ⁃
pared to using a single network alone.

To further observe and analyze the results pro⁃
duced by the model， the engines have been sorted in 
ascending order based on the actual RUL. The pre⁃
dicted life spans for these engines are then com ⁃
pared. The results are illustrated in Figs.9（a—d） 
showing the RUL prediction results for the 100， 
259， 100， and 248 engines from the FD001， 
FD002， FD003， and FD004 test sets， respective⁃
ly. The results demonstrate that the predicted degra⁃
dation trends closely align with the actual degrada⁃
tion patterns， further validating the effectiveness of 
our model in accurately predicting overall degrada⁃
tion trends.

Finally， an engine was randomly selected from 
the FD001—FD004 test set， and its predicted 
RUL was compared with the actual RUL as well as 
with predictions from DCNN［4］， HDNN［11］， NL⁃
STM-Attn［17］， MS-DCNN［26］， and MSFMTP［29］ 
methods， as shown in Fig. 10. The predicted RUL 
closely follows the actual RUL trajectory， reflect⁃
ing superior performance in capturing local degrada⁃

Table 4　RMSE comparison of different methods

Method
CNN[3]

DCNN[4]

HDNN[11]

MHNN[16]

NLSTM⁃Attn[17]

BiGRU⁃TSAM[18]

MSTformer[21]

MS⁃DCNN[26]

MSFMTP[29]

MSCLA (This work)

FD001
18.45
12.61
13.02
—

12.53
12.56
—

11.44
13.24
10.82

FD002
30.29
22.36
15.24
18.88
20.51
18.94
14.48

19.35
14.83
14.75

FD003
19.82
12.64
12.22
—

12.15
12.45
—

11.67
11.17

12.71

FD003
29.16
23.31
18.16
21.32
22.36
20.47
15.03
22.22
14.09
14.07

Table 5　Score comparison of different methods

Method
CNN[3]

DCNN[4]

HDNN[11]

MHNN[16]

NLSTM⁃Attn[17]

BiGRU⁃TSAM[18]

MSTformer[21]

MS⁃DCNN[26]

MSFMTP[29]

MSCLA (This work)

FD001
1 287
273
245
—

265
213
—

196
34 051

162

FD002
13 570
10 412
1 282
1 308
1 195
2 264
1 099

3 747
131 190

1 322

FD003
1 596
284
288
—

284
233

—

241
32 817

896

FD003
7 886

12 466
1 527
2 225
2 692
3 610
1 012
4 844

254 290
918
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tion trends. Notably， the MSCLA model provides 
precise predictions even for the more complex deg⁃
radation trends observed in the FD002 and FD004 

subsets， showcasing the effective integration of 
multi-scale feature extraction and attention mecha⁃
nisms.

Fig.9　RUL prediction results for all engines (FD001—FD004)

Fig.10　RUL prediction for a single engine (FD001—FD004)
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4 Conclusions 

In this paper， we propose a deep learning mod⁃
el combining multi-scale CNN and LSTM frame⁃
works with the attention mechanism for RUL pre⁃
diction of aero-engines. The degradation informa⁃
tion at different scales is first extracted and integrat⁃
ed using a two-layer multi-scale feature extraction 
module. These integrated degradation features are 
then processed separately by the self-attention mod⁃
ule and the three-layer LSTM network. The self-at⁃
tention model focuses on identifying and emphasiz⁃
ing the most relevant features within the data， while 
the LSTM learns long-term dependencies in the 
temporal data during the degradation process. Final⁃
ly， the degradation patterns learned by the self-at⁃
tention module and the LSTM are combined and 
processed through the attention module. This ap⁃
proach enhances the capture of comprehensive time-

dependent features， enabling more accurate RUL 
prediction.

Since batch size significantly influences model 
performance， we investigated how varying batch siz⁃
es affect our mode. We then identified the optimal 
convolution kernel combination by evaluating differ⁃
ent kernel sizes. By visualizing the attention weights 
for each head， we can assess the impact of each 
time step on the final RUL prediction. When com⁃
paring our model to SOTA methods， we found that 
the MSCLA model demonstrates superior predic⁃
tion accuracy on the FD001 and FD004 test sets， 
and its performance remains competitive with cur⁃
rent mainstream algorithms.

In the future， dynamic values could be as⁃
signed to features at different scales to enhance the 
network’s feature extraction capability. Additional⁃
ly， leveraging the attention mechanism opens the 
possibility of further integrating Transformers with 
LSTM to improve long-term dependency learning.
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基于注意力机制的多尺度 CNN与 LSTM 网络及

在剩余使用寿命预测中的应用

段佳俊 1，2， 陆 中 1， 杜志强 1

（1.南京航空航天大学民航学院，南京 211106，中国； 
2.四川航天中天动力装备有限责任公司，成都 610100，中国）

摘要：当前航空发动机寿命预测领域通常聚焦于单尺度退化特征，现有方法未能充分捕捉时间序列数据中的内

在联系。为解决此问题，本文提出一种基于注意力机制的新型剩余使用寿命（Remaining useful life， RUL）预测

方法。本文设计了两层多尺度特征提取模块，以整合不同尺度的退化特征，这些特征随后通过并行的自注意力

模块与 3 层长短期记忆（Long short⁃term memory， LSTM）网络进行处理，共同捕捉长期依赖关系并自适应关键

权重特征。最后将两部分的退化模式集成至注意力模块，显著增强了模型捕捉长期依赖关系的能力。通过可视

化注意力模块的权重矩阵，进一步提升了模型可解释性。在 C⁃MAPSS 数据集上的实验结果表明，本方法优于现

有最先进的方法。

关键词：注意力机制；卷积神经网络；长短期记忆网络；多尺度特征提取
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