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Abstract: Conflict resolution (CR) is a fundamental component of air traffic management, where recent progress in
artificial intelligence has led to the effective application of deep reinforcement learning (DRL.) techniques to enhance
CR strategies. However, existing DRL models applied to CR are often limited to simple scenarios. This approach
frequently leads to the neglect of the high risks associated with multiple intersections in the high-density and multi-
airport system terminal area (MAS-TMA) , and suffers from poor interpretability. This paper addresses the
aforementioned gap by introducing an improved multi-agent DRL model that adopted to autonomous CR (AutoCR)
within MAS-TMA. Specifically, dynamic weather conditions are incorporated into the state space to enhance
adaptability. In the action space, the flight intent is considered and transformed into optimal maneuvers according to
overload, thus improving interpretability. On these bases, the deep Q-network (DQN) algorithm is further improved
to address the AutoCR problem in MAS-TMA. Simulation experiments conducted in the “Guangdong-Hong Kong-
Macao” greater bay area (GBA) MAS-TMA demonstrate the effectiveness of the proposed method, successfully
resolving over eight potential conflicts and performing robustly across various air traffic densities.
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0 Introduction

With the development of aviation, the multi-
airport system terminal area (MAS-TMA) has
been evolved into an operation environment for high-
density air traffic. The complexity of MAS-TMA is
exerting safety strain on the existing air traffic man-
agement (ATM) system due to the restricted air-
space resource. Additionally, the persistent stagna-
tion in the evolution of tactical decision-making over
the past half-century has left air traffic controllers
(ATCOs) facing operational workload under in-

I These shortcom-

creasingly complex conditions
ings imply that the current ATM system is ill-pre-
pared for high-density, complex, and dynamic air
traffic. Therefore, enhancing the ATM system is

imperative to increase airspace capacity and reduce
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ATCOs workloads.

As a critical component of air traffic manage-
ment, conflict resolution (CR) faces challenges in
achieving effective and optimal resolution. Fortu-
nately, autonomous air traffic control (ATC) has
emerged as a crucial solution to improve the CR.
The initial concept of autonomous CR (AutoCR)
decision-making was introduced in 2005 within the
framework of advanced airspace concept (AAC). It
was originally implemented as designed assistant
tools, including Autoresolver and TSAFE!"*.
While these automated tools were not widely em-
ployed"”, they had brought substantial benefits by
providing tactical advisories for ATCOs. In a sce-
nario exemplified by CR, the advisories are provid-

ed to ensure safety separation and assign adaptive
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routes. Therefore, the AutoCR is emphasized again
for satisfying the previous requirement in high-densi-
ty and dynamic MAS-TMA.

To actualize an autonomous system, a robust
and reliable autonomous decision-making algorithm
should be introduced. Artificial intelligence (AI) is
highly suitable for this purpose. Current research
has explored various Al approaches in ATM, in-
cluding automat theory®, multi-agent formulation'”,
and reinforcement learning (RL)®. Among these,
RL has exhibited auspicious qualities in perceiving
air traffic situations and providing effective advisory
to agents. Nevertheless, the AutoCR applied with
RL still struggles to gain the trust of ATCOs"™"
due to concerns about system deviations from actual
operations. Furthermore, the inherent gap hampers
addressing robustness and adaptability issues are evi-
dent in the lack of adaptability to highly dynamic en-
vironments and the absence of intention learning in
agents for effective action execution.

Considering abovementioned shortcomings,
this paper presents a framework for scalable Au-
toCR in the high-density stochastic MAS-TMA en-
vironment, leveraging multi-agent DRL techniques.
This study presented three primary contributions.
First, the proposed AutoCR approach adopts a
MARL framework, in which every aircraft is mod-
eled as an independent agent. Second, the dynamic
weather conditions are incorporated to ensure the
framework’ s effectiveness to uncertain airspace con-
ditions. Third, the flight intent is emphasized, inte-
grating interpretability into the component of the

multi-agent DRL.

1 Related Work

AutoCR has attracted sustained research atten-
tion over the past decades. This is attributed to the
development of applied methods, including the opti-
mization control method, Markov decision-making
processes (MDPs) approach and multi-agent DRL
techniques. Consequently, the literature review of
AutoCR is categorized into three stages, corre-
sponding to the evolution of the methodology.

In the pre-RL optimal control stage (prior to

2011), the initial research on conflict resolution fo-
cused on optimization algorithm. This work was pio-
neered by Erzberger®', which automated the control
of aircraft. Specifically, the conflict resolution algo-
rithm involved trajectory programming, candidate
trajectories evaluating until the conflict-free trajecto-
ry was obtained"”. However, it requires transmit-
ting extensive information to ATCOs within a cen-
tralized architecture, which resulted in mishandling
the high-density stochastics airspace.

In the proto-RL MDPs-based stage (2011—
2017) , the MDP gained attention in AutoCR under

W Tt was

uncertainties using probabilistic models"
successfully applied as airborne collision avoidance
system X (ACAS-X) "', Furthermore, the offline
MDP-based methods for autonomous ATC evolved
into various forms, including partially observable
MDP (POMDP)"*, multi-agent MDP (MMDP)"™* ,
and continuous-time MDP (CTMDP) /. While
these MDP formulations have shown promise in
large-scale simulations, they have drawbacks such
as requirements for high computational resources'"”
and limited adaptability in dynamic environments,
thus limiting their applicability in autonomous ATC.
In the On-RL autonomous control stage (since
2018) , RL techniques have been increasingly ap-
plied to address the challenges encountered in MDP-
based AutoCR. The introduction of RL to AutoCR
was initially documented in Ref.[16] for the dynam-
ic enroute sector, characterized by multiple intersec-
tions and merging points. Additionally, the interac-
tive conflict resolver using RL. was emphasized by
considering the preferences of ATCOs""". These
centralized-based approaches focused on single-
agent collisions, which might have limitations in
highly coordinated environments. The multi-agent
RL formulation represents a collaborative solution
that has been explored in Refs.[18-19]. Consequent-
ly, the multi-agent frameworks employing tech-
niques such as the actor-critic (A2C) algorithm"’,
the long shortterm memory (LSTM) model *',
the ORCA algorithm'*', and the DRL model*"
gradually gained application in the field of AutoCR.
While research in automation operations has

yielded promising results, several shortcomings re-



No. S

HUANG Xiao, et al. Autonomous Conflict Resolution (AutoCR) Based on Improved Multi-agent--- 93

main. First, the effectiveness of multi-agent DRL
applied to AutoCR decision-making has not been
proven in high-density and complex scenarios such
as MAS-TMA. Second, dynamic weather condi-
tions are often not incorporated, reducing the frame-
work’ s effectiveness in uncertain airspace. Third,
flight intent is rarely emphasized, leading to poor in-
terpretability and a lack of transparency in multi-

agent DRL.

2 Problem Description

In autonomous ATC systems, multiple aircraft
agents operate collaboratively in the MAS-TMA,
making decisions according to their respective
states. The AutoCR directs aircraft toward the des-
ignated destination airport while reducing spatial
conflicts. However, the sustained growth in air traf-
fic demand mmposes additional complexity on this
collaboration process. To comprehensively address
this problem, a detailed description is presented in
including complex MAS-TMA envi-

interactive conflict solver,

this section,
ronment, and autono-

mous flight scheduling.
2.1 Problem definition

Terminal areas serve as transitional zones be-
tween air routes and airports. The intersections of
arrival routes of airports create a complex operation-
al environment, making it challenging for aircraft to
maneuver while ensuring safety. For improved solu-
tions in the autonomous scheduling of multiple air-
craft, it is crucial to model the MAS-TMA proper-
ly. The MAS-TMA encompasses structured air-
space elements such as arrival points, routes, and
airports. Fig.1 depicts a generalized schematic of
MAS-TMA.
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®{ﬁP6 U= N i Airport(A2)
/DP1X ‘ EF5 *\ \\ = Weather
! e \I \ SN \ “ (Obstacle
I/AY ‘\\ @ AP 4 O Descent point (DP)
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VA ‘\FH \*\Al ,/,/ J ¥ Conflict hotspot (CH)
\ éIDPi\ ‘ CH}\‘/ /' -= Descent route (DR)
Ny -TAP3 - Arrival path of airport 1(AR1)
S~ AP2 7 - Arrival path of airport 2(AR2)

Fig.1 Generalized schematic of MAS-TMA

As illustrated in Fig.1, the MAS-TMA graphi-
cally depicted with two concentric circles. Within
circular region, there are three descent points, six

entry fixes, and two destination airports. Once
agents acquire these three positions, the arrival path
is nearly finalized. And, multiple flight trajectories
Pemry Poes link the entry fixed points pp., to their re-
spective destination airports pp.. Intersections
among these routes form potential conflict hotspots,
where the risk of collision is elevated. In the arrival
phase, aircraft must maintain adequate separation
buffers to mitigate potential conflicts. Adverse
weather conditions constitute another category of
hazardous regions that must be avoided, as they are
highly dynamic and subject to real-time variability.
Collectively, these factors constrain aircraft maneu-
verability while ensuring operational safety, and
even minor trajectory adjustments during arrival
may propagate through the system, resulting in cas-
cading effects. Consequently, the primary challenge
is to generate conflict-free trajectories that complete-

ly avoid potential hazards.
2.2 Problem formulation

The AutoCR task can be modeled as a MDP de-
fined by a six-component tuple {S, A, R, P, y, 1),
where S denotes the state space, A the action
space, R the reward function, P(s'ls,a) the state
transition function, y &(0, 1) the discount factor,
and p the initial state distribution. In this frame-
work, each aircraft operates as an independent
agent with state s; at time step 7. Given s;, the agent
selects an action a; according to a probabilistic poli-
cy m(+|s)), aiming to navigate from its current posi-
tion to the assigned destination while avoiding poten-
tial conflicts. The stationary policy r: S— P(A)de-
fines the mapping from any given states to probabili-
ty distributions over possible actions. In MARL,
the objective is to determine an optimal policy =’
that maximizes a performance measure J(r'),
which is typically defined as the finite-horizon dis-

counted return J (x'), shown as

pest

J(x')= E | > ¥ R(s.al.si 1) (1)

~' 1= Ly



94 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 42

Let 7' denote the set of training process vari-
ables, with o'=(s,_,aj .S, a5 S,..a. )
The notation r'~=' indicates that the trajectory dis-
tribution is conditioned on policy x': s ~u,
ay~m(ls;), sio1~P(¢ls;,a;). The variables ‘g,
and 7., represent the time at which aircraft 7 reach-
es its entry fix point and its destination.

For effective conflict resolution, the primary
objective is to generate conflict-free arrival trajecto-
ries. To this end, each state s; must explicitly incor-
porate the position of the corresponding aircraft,
and 7’ should be represented as a trajectory T .

Definition 1 Let F(+)be an injective mapping
from 7' to (), .. .5, ), denoted concisely as
F(o')=C(si, 8t sy ).

Entry

Definition 2 Let G(-) be an injective map-
ping from s} to (a4, y,), expressed as G(+):si—pi,
where p; corresponds to the spatial coordinates
(x1, yi) of the aircraft 7 at time 7.

Then, the T associated with policy #' is for-

mulated as
ai~m(+]s)),5i~P(els,a;)
T ={pp 1= Linuys Leniry + 15 *** 5 Lpest @
FONE ()= s),si e si)

G(s)=puop.=(2,y;)
where p; p;, , represents the trajectory segment from
point p; to point p..,. The spatial relation between
adjacent points is defined as
P =pit vt (3)
And the any trajectory points p;.,., along
pipis . can be expressed as
Divan=pi T v, X AAL
A€(0,1),0,€[ Vb, Vnax ] (4)
where p;. ., denotes the spatial coordinates of trajec-
tory point of aircraft 7 at (#+ A)Az and v, the air-
speed executed under action ai.

Eq.(2) provides the trajectory of the aircraft.
Nevertheless, this representation does not account
for potential hazards created by surrounding aircraft.
As a result, an action a; sampled from the policy
a;~m(+]s;) often directs the aircraft directly toward
its destination, which may maximize the reward
function. However, this outcome is unrealistic in ac-

tual operations. After an action is executed, the sub-

sequent aircraft state s,,, must also comply with
safety-separation requirements. These requirements
include maintaining adequate separation between air-
craft and avoiding proximity to hazardous weather
regions, which can be formally described as

Constraint 1 || p/. s, p/ia [|= Dsyrs m,n €T,
A€(0,1).

Constraint 2 H Pi e DY H — D" = Dy,
i€Z,A€(0,1).

m

where | p/ pi| denotes the Euclidean distance be-
tween aircraft m and n; the term || p!p)’ | represents

the distance between aircraft i and the center of a
hazardous weather; the two parameters, Ds,, and
Ds.s, specify the minimum separation require-
ments, with one defining aircraft to aircraft separa-
tion and the other defining aircraft to weather separa-
tion; D" is the radius and p; is the scaling factor,
which together define the weather-influenced region
of airspace; the set Z denotes all arriving aircraft op-
erating within the MAS-TMA.

Conflict resolution is not executed at every
time step. Instead, it is activated only when a con-
flict 1s detected, determined by comparing the calcu-
lated separation with the prescribed safety separa-
tion thresholds.

In summary, the conflict-free trajectory set for
all arriving aircraft is formulated as

1€ 1,17 Lenuy Lenuy + 15 " 5 Lpest
T=\T"A€(0,1),0,€[ v}, V] (5)
Constraint 1 A Constraint 2

Hence, the objective of AutoCR task is
achieved once conflict-free trajectories are obtained.
To derive a shared optimal policy for all aircraft, we
adopt the objective of minimizing the flight distance
within the MAS-TMA, which is formally ex-
pressed as

arg min [2| T |} (6)

el

3 Improved Multi-agent Reinforce-
ment Learning
Given the aforementioned problem, this sec-

tion focuses on constructing a multi-agent conflict re-

solver for aircraft flying to destination airports with-
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in the MAS-TMA. The framework is commenced
with significant model elements, including state ob-

servation, action space, and reward function.
3.1 State

In MARL, the agent makes decisions based on
the state received from the environment. This reli-
ance on environmental state information under-
scores the need for the state space to encompass all
pertinent data required by the agent for decision-
making. Hence, the state space S should contain at
least two critical components: The state informa-

tion of aircraft s} and the dynamic weather s;'.
Sj\ - {( pt’pEnlryvacsu hdhvr)| pte ’C /\pl& ’Cl } (7)
st ={(pl v}, D" 0 )| pr €K, p'€[0,2]} (8)

The state information of aircraft includes its
current position p,, designated entry fix pg..,, desti-
nation airport pp.., heading hd,, and velocity wv,.
The state information of weather consists of the cen-
ter location p;’, effective influence radius D", and
velocity v ™. The IC denotes the MAS-TMA air-

space. IC, is the hazardous weather region.
3.2 Action

Drawing inspiration from recent developments
in advanced action space design within MARL, this
study refines the representation of flight intention
and embeds it adaptively into the action space.
Here, the flight intention is defined in two dimen-
sions, represented by two sub-actions: Airspeed in-

tention a;**

and heading intention a;*“™. These
sub-actions can be formulated as

1 Lower speed

a¥ =<2 Normal speed 9)
3 Higher speed
1 Yaw left
gdne =<2 Aiming (10)
3 Yaw right

Once the action space is defined, agent maneu-
vers are modeled to resolve potential conflicts. The
aircraft are capable of performing different maneu-
vers within their performance envelopes. Thus, ma-
neuverability 1s characterized through predefined
bounds, expressed in terms of aircraft overload to

quantify the feasible maneuver set for each agent.

Overload is defined as the ratio of the resultant
aerodynamic and thrust forces to the gravity acting
on the aircraft. The upper and lower maneuvering
limits are determined by the maximum permissible
overload. According to CCAR-25 regulation, the
overload experienced during maneuvering must re-
main within [ — 1, 2.5]. The maneuvering space
can therefore be expressed as

M= ( mISpeed, m[lleading) (11)
where M denotes a two-dimensional space for the
agent’s actions. The limits on speed maneuvers are
defined by constraining the allowable range of accel-
eration and deceleration within [ — 6%, 3% ]. Ac-
cordingly, the speed adjustment available to each

agent can be formulated as

0.940) =1
m[Spt‘ed — 'U; a?perd — 2 (12)
1.03v) a>'=3

As indicated in Eq.(12), the adjustment of air-
speed is formulated in terms of a rate of change rath-
er than maintaining a constant speed. For example,
when agent i repeatedly applies a deceleration com-
mand over three steps (from r— 1 to ¢+ 1), its
speed v, , will evolve to 0.94%+v, | which is not
constant. Thus, the speed is continuously updated
over time instead of remaining constant.

The heading maneuver limits are specified by
constraining the allowable range of directional
changes within [ —=/9, /9] Accordingly, the

heading adjustment for each agent can be expressed as

Heading __
a, =1

hd — —
9

m/Heading — hd;

a}—lcading — 2 (13)
b+ al =3

As described in Eq. (13) , the adjustment of
heading is implemented through interpolation be-
tween discrete action points with a fixed step of 7/9.
For instance, if the current heading is hd;, the head-
ing at the next step may become hd; = hd, — /9,
hd!.,=hd! (maintain) , or hd.,=hd + =/9
(right turn) , and consecutive iterations continue
with the same n/9 incremental change, thereby en-
suring a smooth transition rather than a fixed head-

ing.
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3.3 Reward

The reward functions incorporated in this study
are consisted of destination-reached reward, destina-
tion-approaching reward, weather-entered reward,
and collision reward.

In the CR task within the MAS-TMA, aircraft
should receive a reward upon successfully reaching
their destinations. More specifically, the reward
r*" is assigned according to the proportion of air-
craft that arrive on time. The punctual ratio of air-
port j can be calculated as
>iov o
a szl | pi — pii [=0
S 0  Otherwise

where 6"/ is an indicator variable that equals “17 if

p= (14)

aircraft successfully arrives at destination airport,
and “0” otherwise; /7 denotes the total number of
aircralt. Accordingly, the on-time arrival rate ¢/ can
be defined as the ratio of successful arrivals. Then,

Reach

the reward " is represented as

RRcach V]E J,/lj — 1

chach — ;7#/ ) (15)
7><I€Reach Hjej,ﬂ/io
0 Otherwise

The position reward r*"*"¢ is designed to
encourage agents to reach their destination airports

efficiently. It can be formulated as

rAPproaching _ H P17 Poest ” * H D Poest H (16)

H pEme 7 pDesI “

When an aircraft violates the separation con-

straint (Constraint 1) with another aircraft, it re-
ceives a substantial penalty specified in 7",

shown as
Collid
Collide —R" H Dl Pl an H< DSepl
0 Otherwise

When an aircraft violates the separation con-

(17)

straint (Constraint 2) with hazardous weather, it re-

Enter

ceives a substantial penalty specified in 7", shown

as
—R™ H piﬂmpf&w H_ DW'PzW<DSep2
0 Otherwise

rEnler —

(18)
In EqS(15_18> , RReach, R(‘,ollide, and REnter are

constant values.

4 Simulation Results

This section presents simulations performed on
the deep Qnetwork (DQN) algorithm. The aim is
to validate the performance of the scalable autono-
mous conflict resolution within MAS-TMA. Specifi-
cally, this section introduces the relevant content of
simulation, including environmental parameters and

results discussion.
4.1 Environment setting

The “Guangdong-Hong Kong-Macao” greater
bay area (GBA) MAS-TMA ranks among the busi-
est airspace in China, and provides a representative
case for modeling MAS-TMA operations. The sim-
ulation environment is constructed primarily on the
basis of the airspace configuration, as depicted in
Fig.2.

Fig.2 Simulation scenario

Within the realistic simulation environment,
the hyperparameters were adjusted to satisfy algo-
rithmic requirements while ensuring suitability for
the AutoCR task. The principal hyperparameter set-

tings are summarized in Table 1.
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Table 1 Key hyperparameters of overall DQN

Parameter Notation Value
Learning rate a 0.5
Discount factor Y 0.9
Exploration rate 1—e 0.1
Greedy rate 5 0.9
Replay buffer size N 20 000
Batch size Nis 100
Replay sampling times Nist 10
Target network update frequency Niy 20

Since training independent Q-networks are
more suited to heterogeneous tasks, the employed
DQN algorithm adopts a shared neural network
with two hidden layers. This design enables parame-
ter updates to be applied across all agents, thereby
lowering computational overhead, accelerating con-
vergence by exploiting multi-agent experiences, and
promoting cooperative decision-making under a uni-
fied policy. The shared DQN processes local obser-
vations collected by agents through their interactions
with the environment and outputs Q-values for the
respective available actions. During training, gradi-
ents from all agents are aggregated to update the
shared parameters using mini-batch stochastic gradi-
ent descent with experience replay and a target net-
work. The Adam optimizer is applied for training,
and the loss is evaluated using the mean squared er-

ror (MSE) criterion.
4.2 Results and discussion

(1) Training curves

Fig.3 presents the training results of conflict res-
olution. Two key evaluation metrics, namely the
conflict rate and the resolution rate, are employed
to assess system performance. Both indicators con-
verge after roughly 2 000 episodes. At the outset of
training, the resolution rate is about 20% , but it ris-
es steadily and stabilizes near 96% alter conver-
gence. The resolution curve remains relatively
smooth, reflecting the robustness of the algorithm.
By contrast, the conflict rate decreases from approx-
imately 16% to below 2%, although the curve ex-
hibits noticeable fluctuations, which may be attribut-
ed to the structural complexity of the airspace.

Overall, the training curves demonstrate that the al-

100 : 16
= o
~ 80 112 &
g {10 2
g 60 —Resolutionrate ] g §
=1 . Q
E 40 Conflict rate 16 é
g 48
~ 20 ™ ‘ )

0 . 0
0 2000 4000 6000 8000 10000

Episode

Fig.3 Training curves

gorithm achieves reliable conflict resolution perfor-
mance.

(2) CR sample results

To evaluate the AutoCR capability of the pro-
posed method, representative samples were drawn
from the 1 000th, 5 000th, and 10 000th training ep-
isodes, corresponding to the early, middle, and fi-
nal stages of training, respectively. Fig.4 illustrates
the comparison between the initial planning trajecto-
ries and the conflict-free trajectories within the
MAS-TMA.

The overall airspace environment in the figure
is the same as the simulation scenario. The dotted
lines in the solution diagram represent the deconflict
trajectories of the aircraft. Each point on the dotted
lines indicates the decision-making of the agents.
The green dotted lines indicate high speed and the
blue ones indicate low speed. The pink barred area
indicates the conflict hot zone (higher risk of con-
flict) , while the red bar indicates that flying the ini-
tially planned path at the current speed and heading
conditions will generate a conflict. The pink circle
indicates hazardous weather.

Overall, the model is capable of selecting ap-
propriate evasive actions during the training process
to resolve potential conflicts in the initial planned
path. There are multiple conflict pairs and conflict
groups in the initial planning trajectories in the ear-
ly, middle, and late phases. The conflicts can be
effectively detected in the middle and late phases
and effectively avoided in accordance with the priori-
ty strategy. However, the action selected is not the
optimal extrication maneuver under the conflict in
the scenarios of a small training episode. Conse-
quently, there remains a risk of conflict at the point

where trajectories intersect even after executing a
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Fig.4 Sampling results of training comparison between original planned trajectories and conflict-resolved trajectories

maneuver. Moreover, the impact of dynamic weath-
er conditions and preemptive conflict resolution can
lead to secondary flight conflicts, even when flight
conflicts in the initial planned trajectory are effective-
ly resolved. As depicted in Fig.4(a), there is no flight
conflict between Aircraft 1, departing from the en-
try point (116, — 11) bound for the airport ( — 1,
—93), and Aircraft 2, departing from the entry
point (42, —144) heading towards the airport (14,
—78). However, due to Aircraft 1 altering its path
and speed to resolve a conflict with Aircraft 3 near
point (57, —49), and Aircraft 2 changing path to
evade adverse weather conditions, a secondary con-
flict arises near point (14, — 89). This is consistent
with the conflict resolution rate shown in Fig.3,
which indicates that the rate approaches 100% only
after nearly 2 000 training episodes.

From a detailed perspective, the transition of
conflict resolution actions from the early to the late
stages of training reveals that there is an increase in
heading-changing actions and a decrease in the use
of deceleration actions. At the 1 000th, 5 000th,
and 10 000th training episodes, the aircraft are able

to successfully avoid the weather. If the weather can-
not be avoided, the training episode is terminated.
To further validate the effectiveness of the pro-
posed framework, four additional DRI algorithms
(DDQN, DDPG, PPO, and SAC) were com-
pared with the proposed AutoCR method under
varying traffic scales. Fig.5 presents the comparative

results for conflict resolution. The results in Fig.5

—
(=]

« 19T —DDQN
3 8 F—DDPG
s 6 PPO
B 4 | —SAC | Z
% — Proposed
2
3 ok L _ 4
4 12 20 28 36 44 52 60 68 76 84 92
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(a) Conflict rate
2 100.0
AR — N
§ 95.0—DDQN -
£ 92.5r—DDPG
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Fig.5 Comparison of conflict resolution performance be-

tween the DRL and proposed method
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confirm that the proposed method achieves superior
conflict resolution performance across most traffic
conditions. The difference between the proposed
method and SAC is relatively small, as both exhibit
closely aligned conflict rates and resolution rates,
and both outperform the other three DRL methods.
In medium-density cases (up to 60 aircraft) , both
approaches maintain a conflict rate below 0.35%
and a resolution rate above 98.9%. The other meth-
ods demonstrate acceptable performance only in
low-density scenarios (no more than 36 aircraft).

(3) Discussion

We further analyze how variations in air traffic
density influence the number of conflicts. Fig.6 pres-
ents the conflict counts observed under different
density levels. Combining results in Fig.3, it can be
concluded that the number of conflicts per episode
stabilizes, once a sufficient number of training epi-
sodes has been completed. Therefore, only data
from the first 2 000 episodes are considered here to
more clearly examine the relationship between con-
flict occurrence and airspace density. In addition,
published results from other studies are incorporated
to further demonstrate the performance advantages

of the joint approach proposed in this work.
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:g 50 | — Median
* Results of Method 1
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Fig.6 Variation in conflict trends under different air traffic

densities

The results reveal that conflict occurrence
grows exponentially with increasing airspace densi-
ty. This sharp escalation can be attributed to conges-
tion effects at high traffic levels, which increase the
probability of separation loss between aircraft. For
instance, when the MAS-TMA density is set to
52, the total number of potential conflicts remains
below 10, with minimal variation between the maxi-
mum and minimum cases. In contrast, at a density

of 92, the maximum number of conflicts observed

during training reaches 50, with each aircraft experi-
encing an average of 0.32—0.54 conflicts. Since
such traffic density exceeds that encountered in cur-
rent operational environments, the pronounced in-
crease in conflicts is consistent with expectations.
These findings underscore the importance of imple-
menting pre-tactical conflict-free trajectory planning
in future high-density scenarios, rather than relying
solely on tactical-level conflict resolution.

In comparison with other approaches reported
in previous studies, the proposed method provides a
more robust solution for conflict resolution, as
shown in Fig.6. In low-density scenarios, results ob-
tained with Method 1 exhibit an increase in con-
flicts, whereas the proposed method keeps conflict
levels close to zero, demonstrating its effectiveness
in globally mitigating conflicts in sparse traffic envi-
ronments. For medium-density scenarios, the pro-
posed approach consistently achieves approximately
eight fewer conflicts on average than that of Method
2. At a traffic level of 70 aircraft, the number of po-
tential conflicts is reduced by about 40 relative to
the results obtained using Method 3. Methods 1, 2,
and 3 are adopted from Refs.[24-26], respectively.
Importantly, the proposed method maintains its ef-
fectiveness even in high-density scenarios, yielding
on average eight fewer conflicts across low-, medi-
um-, and high-density scenarios compared with the

benchmark methods.

5 Conclusions

This paper introduces an autonomous conflict
resolution framework designed for complex and
high-density MAS-TMA environments. The Au-
toCR problem is formulated as a multi-agent rein-
forcement learning, with improvements made to the
DQN algorithm by incorporating dynamic weather
conditions and flight intent. Simulation experiments
were conducted in the GBA MAS-TMA to demon-
strate the effectiveness of the proposed method. The
algorithm’s performance was validated using conflict
rate and resolution rate metrics. Early-, middle-,
and late-stage training results were sampled to bet-
ter verify the algorithm’s conflict resolution capabili-

ty in high-density MAS-TMA. Comparisons with
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other methods also indicate that the proposed meth-

od is effective in resolving conflicts, successfully

eliminating over eight potential conflicts.
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