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Abstract: Hyperspectral image (HSI) classification is crucial for numerous remote sensing applications. Traditional

deep learning methods may miss pixel relationships and context, leading to inefficiencies. This paper introduces the

spectral band graph convolutional and attention-enhanced CNN joint network (SGCCN) , a novel approach that

harnesses the power of spectral band graph convolutions for capturing long-range relationships, utilizes local

perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention

mechanism to enhance feature extraction. The SGCCN integrates spectral and spatial features through a self-attention

fusion network, significantly improving classification accuracy and efficiency. The proposed method outperforms

existing techniques, demonstrating its effectiveness in handling the challenges associated with HSI data.
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0 Introduction

Hyperspectral remote sensing integrates spatial
and spectral imaging technology, capturing continu-
ous spectrum image data that encompasses both spa-
tial and spectral information of the ground'". Hyper-
spectral image (HSI) classification is one of crucial
research in hyperspectral interpretation, and the cat-
egory division map obtained through the classifica-
tion technology has played a significant role in the

(23] land resourc-

fields of military target recognition
es'*® and situation monitoring'”. However, HSI of-
ten contains redundant information, presenting chal-
lenges such as the same objects with different spec-
trum and the Hughes phenomenon'®. These factors
can contribute to noise in the classification results.
And challenges such as mixed pixel problems and
training under conditions with limited samples add

complexity to the classification task.
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Traditional HSI classification algorithms are
based on machine learning, including K-nearest
neighbor (KNN) ', decision tree''”, random for-

", and support vector machine(SVM)"**¥, Fea-

est
ture extraction methods like principal component
analysis (PCA)", independent component analysis
(ICA)™ | and maximum noise fraction (MNF) ¢
focus on dimensionality reduction. While spatial fea-
ture extraction methods like extended morphological
profiles (EMPs) "'/ enhance neighborhood pixel

1.2 used the extended mor-

structure. Dallamura et a
phological attribute profile (EMAP) to describe the
HSI features in a multi-level and multi-attribute
manner. The drawback of such methods lies in ex-
traction of single feature.

Deep learning (DL) -based classification meth-
ods have demonstrated significant advantages® .
Chen et al.” combined autoencoders with logistic re-

gression, and then introduced deep belief networks
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(DBN) ' for classification to enhance performance.
Since then convolutional neural networks (CNNs)
are widely employed to enhance classification perfor-
mance”*. The one-dimensional CNN (1DCNN)"*"
treats the pixels of each band as a sequence. In con-
trast, the two-dimensional CNN (2DCNN) " re-
gards the pixels of each spectral band in the HSI da-
ta as a feature matrix for classified. Chen et al.""" es-
tablished a deep finite element model using three-di-
mensional CNN (3DCNN) , which realized the ex-
traction of spatial-spectral features and higher classi-
fication accuracy. More CNN-based methods are
employed to extract a variety of features. Guo et
al."”" tried to use CNN to extract spectral features
and multi-scale spatial features for HSI classifica-

33]

tion. Zhong et al."™* proposed the spectral-spatial re-
sidual network (SSRN). It constructs both spectral
and spatial residual module to enhance the gradient
backpropagation and facilitate the extraction of deep-
er spectral features extraction. 3DCNN can extract
more feature information, while it increases the
computational cost. To balance spectral and spatial
characteristics, Roy et al."* introduced a HybridSN
network that integrates 2DCNN and 3DCNN to ex-
tract richer spatial-spectral features and reduce com-
putational complexity. The convolution operation in
CNN is implemented by shifting the convolution
kernel, so the use of CNN is limited to Euclidean
data, that is, regularly arranged data such as images
and text. The constraints of the convolution kernel
pose challenges for the CNN in capturing the rela-
tionship features between pixels and the contextual
features of the HSI.

Graph neural networks (GNNs) have advanced
in processing special graph-structured data such as
images and speech™™'. Kipf et al."* proposed the
graph convolutional network (GCN) model, which
has been instrumental in extracting structural rela-
tionships in HSI data"**"'. Qin et al."**' utilized a spa-
tial-spectral GCN for HSI classification, focusing
on vertex relationships influenced by spectral and
spatial similarities. He et al."**' further enhanced clas-
sification accuracy with a dual graph convolution net-
work. To address computational efficiency, Hong
et al."** proposed miniGCN, which trained in mini-

batch fashion and extracted the features in the sub-

graph of the entire HSI. Wan et al.'*' presented a
multi-scale dynamic graph convolutional neural net-
work (MDGCN) , which employed superpixel seg-
mentation to reduce graph size. Superpixel-based
graph has been further used to enhance computation-
al efficiency and integrate weighted features'***"'. At-
tention mechanisms have also been incorporated into
GCNs™!  Velickovic et al."™ proposed the graph
attention network (GAT) , which integratesed at-
tention mechanisms into GCNs, enabling variable
weighting of vertex relationships and more effective-
ly capturing global dependencies. Wang et al.”* used
GAT to construct a multi-scale pyramid in HSI’ s
spectral dimension for feature extraction. Despite
these advancements, GCN-based HSI classification
methods face challenges in balancing computational
costs and effective utilization of correlation features.
Spatial-based graphs in GCNs, which leverage long-
range spatial information, require substantial train-
ing samples and computational resources, especially
for high-resolution HSI data. Methods focusing on
reducing graph structures for network training have
improved efficiency. However, they may overlook
pixel-level features and fail to fully utilize spectral
channel correlations in HSI.

This paper introduces the spectral band graph
convolutional and attention-enhanced CNN joint net-
work (SGCCN) for HSI classification. The method
constructs a spectral graph from the HSI’ s band di-
mension to model long-distance relationships more
efficiently than spatial-based graphs. It includes a
lightweight spectral band graph convolutional net-
work with attention (SGCN-A) designed to exploit
spectral similarities and reduce computational com-
plexity. The SGCN-A features three feature extrac-
tion blocks, each with a dynamic attention module
(DAM) that adjusts feature weights from spectral
band graph convolutions to emphasize discrimina-
tive features. Concurrently, an attention-enhanced
multi-level CNN (A-MLCN) extracts local spatial
features from 2D neighboring patches. It captures
pixel-level contextual information along the spatial
dimension through multi-level convolution, thereby
complementing spectral features. The attention

module is incorporated in parallel in each layer to
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concentrate on crucial feature and improve represen-
tation performance of features for different catego-
ries across different areas of the HSI. Finally, the
spectral similarity features and spatial context fea-
tures are fused through the self-attention mechanism
within the feature fusion network. This process en-
hances feature diversity, ensures stable statistical
properties, and improves computational efficiency.
Experiments conducted on three HSI data sets
demonstrate that SGCCN improves efficiency and
robustness, and reduces computational costs com-
pared with state-of-the-art methods. In summary,
the main innovative contributions of our proposed
SGCCN are as follows.

(1) A novel spectral band graph convolutional
network with attention is proposed to extract global
spectral similarity features between bands and en-
hance the long-distance feature modeling capabili-
ties, which significantly reduces computational cost
of network by constructing a band graph.

(2) An innovative dynamic attention-enhanced
multi-level convolutional network to effectively cap-
tures local spatial context features from different re-
ceptive field by multi-scale kernel, which utilizes lo-
cal perception and dynamic focus on discriminative
features to address information redundancy.

(3) A robust self-attention feature fusion mech-
anism is employed to enhance classification perfor-
mance by effectively learning, fusing and improving
discrimination ability of spatial-spectral features

with limited samples.

1 Related Work

In this section, we introduce some relevant
knowledge, covering the network structure of CNN
and the fundamental definitions, notations, and net-
work structure of GCN.

1.1 2D convolution neural network

The utilization of convolutional neural net
works has become prevalent in the realm of computer
vision, enhancing feature extraction capabilities™.
The CNN architecture incorporates local connec-
tions and shared weights. In HSI classification,
2DCNN is always used for extracting spatial fea-

tures.

A comprehensive 2DCNN comprises a convo-
lution layer, a pooling layer, and a fully connected
layer. The presentation of a neuron F}” at position
(x, y) within the jth feature map of the ith layer is

expressed as follows

P,—1Q,—1

PO, 2 > 2 WEFE ()
m p=0 ¢g=0

h(z)=ReLU(x)=max(0,x) (2)

where A(x) denotes the Rel.U activation function,
b, the bias of the jth feature map in the ith layer, m
the number of feature map in the (i—1)th layer con-
nected to the jth feature map, W/ the weight at po-
sition ( p, ¢ ) connected to the mth feature map; P,
and Q, represent the height and the width of the 2D
convolution kernel, respectively.

In the pooling layer, the preceding feature map
undergoes sub-sampling to decrease the spatial size.
Then the fully connected (FC) layer integrates all
the extracted features and the classification results
are obtained using the SoftMax classifier'™'. Howev-
er, the feature extracted from CNN captures local
spatial information. Since the network requires the
construction of a neighborhood window around a
central pixel for input, the HSI is divided into sever-
al windows, and each window is relatively indepen-
dent. This implies that only spatial information con-
tained within the neighborhood is obtained, which
may not be sufficient to enhance the classification ef-

fect.
1.2 Graph convolution network

Graphs serve as a modeling tool for capturing
pairwise relationships between objects. As shown in
Fig.1, a graph is made up of vertices, which are con-
nected by edges™™”
denoted by an ordered pair G=(V,E), where V
represents a set of vertices v;&V and E a set of

edges (v, v;)EE.

. Consider the undirected graph

Adjacency
matrix

Image data o

Undirected graph data
Image pixels i

Fig.1 Tllustration of graph data and adjacency matrix
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Adjacency matrix A ER""" is a symmetrical
matrix that records the relationship between verti-
ces, where n is the number of the vertices. The de-
gree matrix D is a diagonal matrix, where the diago-
nal elements are the degrees of each vertex, indicat-
ing the number of edges associated with each vertex.

The continuous aggregation of adjacent verti-
ces enables the graph convolution layer to facilitate
the transfer of neighborhood relationships. The
graph convolution formula is represented as the mul-
tiplication of the input graph data with a filter gy,
shown as

gix X=Ug,U"'X (3)
where U denotes the eigenvectors matrix of the nor-
malized graph Laplacian matrix L= UAU", and A
a diagonal matrix of its eigenvalues. Here, the oper-

¢

ator “ x 7 represents the graph convolution opera-
tion, which performs filtering in the spectral do-
main. In addition, g, can be thought as a function of
the eigenvalues of L, i.e., g,(A). However, it will
cost a lot to decompose the eigenvalue. To address
the problem, the Chebyshev polynomial is em-
ployed to approximate and restrict the layer-wise

convolution operation to 1.
gx X~0 X+ 0{(L—1)X=0,X—0{D éAD %X
(4)
To prevent overfitting and reduce operational
cost in each layer, the two parameters ) and 0/ are
constrained to one single parameter @ =[4,, — 0] ].

The expression is rewritten as follows

Spectral band graph convolution network with attention

{
/

ga*X~(I+D’%AD%)X@ (5)
where the largest eigenvalue of I +D " AD " is 2
and @ the matrix of filter parameters. To address
the problem of numerical instabilities and exploding
or vanishing gradients, renormalization is set for ad-
jacency matrix A=A + I and the degree matrix

lj,-,, = iji,-,j. Consequently, the commonly used
graph convolution formula can be improved to

Z—gxX~D AD X6 ®)
where Z is the convolved signal matrix.

The GCN introduces filters based on principles
of graph signal processing, providing it with a ro-
bust mathematical foundation. In HSI classification,
the relationship between pixels can be obtained by
GCN. However, in many models, constructing a
graph for all pixels in HSI. Given HSI data
TERY* NP a adjacency matrix with the size of
(MXN) X (MXN) is constructed. This will en-
counter a high computational cost particularly when
applied to extensive graph structures, posing a sig-

nificant limitation.

2 Proposed Method

This
about the three modules of the proposed SGCCN,

section provides detailed information
as depicted in Fig.2. It consists of three main compo-
nents. First, a spectral band graph convolution with
attention is used to capture spectral similarity fea-

tures. Second, a spatial context extraction branch

23]

vectors matrix
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1
Spectrum A djacency
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Fig.2 Overview of the spectral band graph convolutional and attention-enhanced CNN joint network
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employs an attention-enhanced multi-level convolu-
tion network. Finally, a self-attention-based feature
fusion and classification network integrates the ex-

tracted features for final prediction.

2.1 Spectral band graph convolutional network

with attention

In this section, we introduce a novel SGCN-

Feature output

A, as depicted in Fig.3. This novel network intro-
duces a new band graph data construction method.
It includes a spectral band graph convolution net-
work and incorporates a dynamic attention module.
Together, these components can exploit spectral
similarity features between any bands, even with
small training samples. Additionally, they signifi-

cantly reduce computational complexity.

L

Spectral band
graph-Conv

Spectrum
vectors

Adjacency
matrix

Fig.3 Flowchart of the spectral band graph convolutional network with attention

Let I€RY" Y represents the original HST da-
taset, where M, N, and B denote the height,
width, and channel bands of the HSI, respectively.
Firstly, PCA"* is used to reduce the dimensionality
of the HSI data to X €RY" V"¢, effectively remov-
ing redundant information and lowering computa-
tional complexity. Here, C is the number of spectral
dimensions after PCA.

Different from commonly used graph construc-
tion methods, SGCN-A adopts a spectral channel
perspective in the band graph construction stage.
This approach captures global spectral relationships
within the HSI. The SGCN-A framework begins by
transforming the HSI cube from the channel dimen-
sion into a 2D matrix X € R** ¢, where S=M X N.
Each frame of the HSI is denoted as a band vector,
represented as a vertex X;& X, with a size of M X
N X 1, and forms the vertex set of the HSI band
graph. This representation facilitates the extraction
of spectral information from limited training pixels.

Edges between band vector vertices represent
spectral relations in two dimensions. Given HST s
high-dimensional nature, we compute the cosine
similarity between any two band vectors to accurate-

ly capture spectral similarity features, shown as

where cos ( X, X;)€[—1, 1 ]. For the HSI classifica-
tion task, the correlation of spectral channel forms
an undirected graph. Thus, cosine similarities are
normalized and constrained to A,;€[0,1] to con-
struct the adjacency matrix A ,shown as

1—rcos(X,X;)

2
Since the cosine similarity of two vectors to

A, = ij=1,2,--,C (8

each other is the same, i.e, A,,;= A, ,. Additional-
ly, diagonal elements of the matrix that represent
the similarity between a vector and itself are O.
From these, the complete adjacency matrix A of
band vectors can be obtained as
A, e A 0 - Ay
A= N e I : )
Ay o A Ay o 0
By treating each band vector (i.e., each frame
of HSI) as a vertex, the adjacency matrix size is re-
duced from (M X N )X(M X N)to C X C, signifi-
cantly lowering computational costs.
To mitigate the influence of the largest similari-
ty between a vector and itself in convolution, the di-
agonal elements of A are set to 1. Then the adjacen-

cy matrix is transformed as follows
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1 e Ay
A=A+TI=| : 5 (10)
Ao o1
where [ is the identity matrix. Apparently, the de-

gree matrix that contains the degrees of each vertex
A,; can be calculated as Di.,zzj/iw-. Then the

normalized similarity matrix can be obtained as
S—D :AD " an

The cornerstone of the SGCN-A lies in its
unique spectral band graph construction method. By
treating each spectral band of the HSI as a graph
vertex, this innovative network captures global
spectral relationships for accurate classification.

The SGCN-A for the graph-structured HSI da-
ta can be formulated as

X' =h(SX'W'+ ) (12)
where X' represents the output in the ith layer, %(s)
the graph activation function, W' the weights, and
' the bias of the ¢th layer.

A lightweight three-layer SGCN-A architec-
ture 1s designed to enhance spectral correlation fea-
ture extraction. Multi-SGCN-A layers are capable
of aggregating information from neighboring verti-
ces, thereby improving the representation of each
vertex in the spectral space. In the first layer, the
nonlinear activation function ReLU"" is used in con-
junction with convolution to preserve and enhance
the spectral correlations, shown as

X' =ReLU(SX'W'+ ') (13)
where X" is the output feature map in this layer.
In addition, a dropout process is employed to pre-
vent overfitting.

A key innovation of SGCN-A is the integration
of a DAM within the channel graph convolution lay-
ers. The DAM based on SimAM'™' enhances the
discriminative power of the network by dynamically
focusing on the most informative spectral features.
The feature maps can be seen as neurons and the op-
timal closed-form energy function for every neuron
is formulated as follows

L .Y (14)
(t—p)V+ 26"+ 22

where 4 is the average value of the HSI feature in-

put with the convolution and ¢” the variance. The fi-

nal output is gotten by an element-product with a

sigmoid function, which is to control the output
range of the attention vector.

X= sigmoid(;)CDX (15)

where E denotes the set of all e¢; grouped across spa-
tial and spectral dimensions. And F' is restricted by
sigmoid function to prevent too large.

The output of the first layer in the SGCN-A
network is

X' =F""(ReLU (SX'W'+b'),A,,) (16)
where F"* () represents the DAM and A, the atten-
tion map. Each SGCN-A layer enhances spectral
information extraction and utilization.

The subsequent layers are cascaded and identi~
cal, except without the Rel.LU activation function.
These layers refine features to highlight the most
discriminative patterns for classification.

In the final stage of SGCN-A, the Softmax
function 1s adopted to transform spectral similarity
features into a probability distribution for classifica-
tion, shown as

Xiodva= Softmax (F" (X', Apy)) (A7)

This network ensures that the extracted fea-
tures are compatible with spatial features from the
dynamic attention-enhanced multi-level CNN. This
alignment sets the stage for a robust and comprehen-

sive classification process.
2.2 Attention-enhanced multi-level CNN

In this innovative branch network, we intro-
duce A-MLCN designed for advanced spatial fea-
ture extraction in HSI. This network designs multi-
level convolutions by integrating DAM, which
adaptively emphasizes critical features for superior
representation and discrimination. The flowchart of
the A-MLCN network is depicted in Fig.4.

To address the high dimensionality and redun-
dancy in HST data, PCA is adopted for reducing the
original HSI data T€ R """ to X &R ", This
step not only distills representative low-dimensional
spectral features but also significantly lowers compu-
tational costs.

Prior to the 2D convolution operation, neigh-
borhood patches PER"*" are extracted from the
HSI data. Each pixel is centered within a T X T
square window, defining the patch category by the
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Fig.4 Flowchart of attention-enhanced multi-level C

central pixel. For boundary pixels lacking adjacent
data, padding ensures consistent patch generation,
as illustrated in the first step of Fig.4.

Following padding, the HSI data spatial dimen-
sions expand to (M + T — 1)X(N -+ T — 1), facili-
tating the generation of M X N patches for convolu-
tion. As a result, comprehensive local spatial infor-
mation can be effectively extracted.

The

through a series of multi-scale kernel convolutional

preprocessed patches are processed
layers. In the first layer, a 2D convolutional kernel
of size (7X7) is set for larger receptive field to cap-
ture relatively global spatial information. To en-
hance the nonlinear expressiveness and generaliza-

99 and activa-

tion of the model, batch normalization
tion functions (such as RelLU) are interspersed be-
tween the convolutional layers. These components
synergistically enable the A-MLCN network to ex-
tract vital spatial feature necessary for distinguishing
various ground object categories in HSI. The output
of each convolutional block is given by
X""'=ReLU(BN (b, + X' X W) (18)
The network’ s layers are further augmented
with the DAM, which dynamically emphasizes sa-
lient features and suppresses irrelevant information.
Operating in parallel with each convolutional layer,
the DAM refines feature maps at every stage. It ad-
justs attention weights across channels and spatial
domains, calculated as
YT =F" (X" Apy) (19)
The outputs from the convolutional layer and
the DAM are multiplied to produce the enhanced

feature map, shown as

e | |
&2 =
== =3
g ||~ 8|~
QlZ Q%
HE HE

NN

X'=x"Ixy! (20)
where X' ! represents the dynamically weighted fea-
tures.

The feature extraction process spans multiple
layers, with four cascaded convolutional layers en-
hanced by the DAM. For the second convolutional
layer, we begin to focus on more local information
and employ 5X5 convolutional kernel. In the last
two convolutional layers, the convolutional kernel
is set as 3X 3 to reduce computation cost and param-
eters, speed up model training, and enhance non-
linear capabilities. This multi-scale kernel hierarchi-
cal approach captures both fine-grained details and
broad spatial contexts, effectively distinguishing var-
ious categories within HSI data. The final convolu-
tional output is aggregated through fully connected
layers, integrating spatial features for further pro-
cessing. Dropout layers are included to prevent over-
fitting and enhance generalization. The final feature
output is given by

(i viox = ReLU (Dropout (FC(X"))) (21)
where Xty is the output of the A-MLCN net-
work.

This architecture ensures that the network fo-
cuses on significant features from the initial layers,
with the DAM refocusing these features throughout
the subsequent layers. Upon completing the four-
layer multi-scale kernel convolution extraction pro-
cess, the spatial context features are obtained.
These features are then fused with spectral features
for classification, resulting in a highly effective rep-
resentation for distinguishing different ground ob-

jects in HSI.
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2.3 Self-attention feature fusion network

In the SGCCN framework, the feature fusion
and classification network constitute a pivotal com-
ponent for effective HSI classification. This section
delves into the fusion strategies employed in our
model to integrate spectral and spatial features ex-
tracted from the SGCN-A and A-MLCN branches,
as depicted in Fig.5. The goal of these strategies is

to enhance the model’s classification capabilities.

SGCN-A Self-attention

featutre maps T cature

fusion \J/

=

Self-attention
featutre maps

A-MLCN
features

Fig.5 Flowchart of self-attention feature fusion network

An advanced feature fusion strategy that lever-
ages multi-level integration to augment the model’ s
discriminative power is introduced. This fusion net-
work utilizes a self-attention mechanism to adjust
the importance of features from the two branches.
This ensures that the resulting feature representation
captures the most class-discriminatory information.

Y=A.V=Softmax (QK")V (22)
where As, is the attention matrix, and the queries,
keys and values Q, K,V are computed from the

i viox by the self-attention

branch features X ik,
module.

To further enhance the integration of spectral
and spatial features, a novel modular approach is in-
corporated within the fusion network. This allows
the model to adaptively adjust the fusion ratio based
on the distinctiveness and relevance of the features.
This adaptive fusion method not only enhances the
model’ s sensitivity to diverse data features but also
bolsters its robustness when tackling complex classi-
fication tasks.

Y= Yeoona®Yanmen (23)

where YS(;CN,A represents the spectral similarity fea-

tures from SGCN-A and self-attention and YA,ML(«N
represents the spatial context features from A-
MLCN and self-attention. The operator (D repre-
sents features fusion module.

Following feature fusion, we implement a hier-
archical classifier that refines the integrated features
for precise classification. This classifier employs a
series of fully connected layers and non-linear activa-
tion functions to learn complex relationships be-
tween features. It also uses techniques such as drop-
out and regularization to prevent overfitting, ensur-
ing the model’s generalizability.

Lastly, to further improve classification perfor-
mance, we introduce an optimization strategy based
on gradient clipping. This technique constrains the
growth of gradients during training, helping to
maintain training stability. It also prevents gradient
explosion, which is particularly important for deep
learning models. The combination of these methods
results in a robust and highly effective classification

framework for HSI data.

3 Experiments

In this chapter, the classification performance
of the proposed HSI classification method SGCCN
is analyzed on the three HSI data sets. First, the
three HSI data sets for following experiments are de-
scribed briefly. Then, analysis of several main pa-
rameters for the proposed SGCCN are conducted.
Additionally, ablation study is carried to analyze the
effectiveness of three modules in the SGCCN.
Next, comparison experiments including experi-
ments under different training samples is conducted
for our proposed method and various state-of-the-
art classification methods to verify the superiority.
Finally, computational costs of each method are

compared and analyzed.
3.1 Data description

To assess the effectiveness of the classification
model, experiments were conducted on three sets of
HSI data sets, i.e., Indian Pines, University of Pa-
via and Salinas.

(1) Indian Pines: The HSI data set was ob-

tained in 1992, and the shooting system was



110 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 42

AVIRIS, which imaged an Indian pine forest in
northwest Indiana, USA. The data set dimensions
are 145X 145X 220, including 220 spectral seg-
ments, the spatial resolution is 20 m, and the spec-
tral resolution ranges from 400 nm to 2 500 nm.
Twenty water absorption bands (104—108, 150—
163 and 220) were eliminated. Due to the sensor’s
low spatial resolution and the high altitude of the im~-
aging area, the HSI data exhibit low spatial resolu-
tion. This leads to an increased likelithood of mixed
pixels and higher classification difficulty. The real
images of this data set include 16 different catego-
ries of ground objects, about 66% are crops and
farmland, and the rest are vegetation. The image
and detailed category of the HSI are depicted in
Fig.6 and the Table 1.

M Alfalfa

I Corn-notill

[ Corn-mintil

] Corn

[ Grass-pasture

[ Grass-trees

[ Grass-pasture-mowed
[l Hay-windrowed

[ ] Oats

[ Soybean-mintill

[] Soybean-notill

[l Soybean-clean

[ Wheat

1 Woods

[[] Buildings-grass-trees-drives
[ Stone-steel-towers

Fig.6 Indian pine data set category and ground-truth map

Table 1 Number of training and test samples on Indian

Pines data set

Class Name Training Test Total
1 Alfalfa 5 41 46
2 Corn-notill 143 1285 1428
3 Corn-mintill 83 747 830
4 Corn 24 213 237
5 Grass-pasture 48 434 483
6 Grass-trees 73 657 730
7 Grass-pasture-mowed 3 25 28
8 Hay-windrowed 48 430 478
9 Oats 2 18 20
10 Soybean-notill 97 874 972
11 Soybean-mintill 246 2209 2455
12 Soybean-clean 59 534 593
13 Wheat 21 184 205
14 Woods 127 1138 1265
15 Buldings-grass-trees-drives 39 347 386
16 Stone-steel-towers 9 84 93

Total 1027 9222 10 249

(2) University of Pavia: The HSI data set was
obtained by ROSIS in 2003, and it contained imag-
es of the university and surrounding Italian urban ar-
eas. Its spatial resolution is high, but its spectral res-
olution is low, and it contains a variety of ground
objects. The data set size is 610X 310X 115, with
115 bands, a spatial resolution of 1.3 m, and a spec-
tral resolution of 430—860 nm. Twelve bands con-
taining water absorption and noise were eliminated
from the raw data, leaving 103 bands for classifica-
tion experiments. The HSI includes nine categories
of ground objects, including asphalt roads, trees,
Meadows, gravel, etc. The category information

for this data set is displayed in Fig.7 and Table 2.

[l Aspahit

. Meadows

. Gravel

D Trees

. . Painted metal sheets
D Bare soil

D Bitumen

[ self-blocking bricks
D Shadows

Fig.7 University of Pavia data set category and ground-

truth map

Table 2 Number of training and test samples on Univer-

sity of Pavia data set

Class Name Training  Test Total
1 Asphalt 66 6 565 6631
2 Meadows 186 18463 18649
3 Gravel 21 2078 2099
4 Trees 31 3033 3 064
5 Painted metal sheets 13 1332 1345
6 Bare soil 50 4979 5029
7 Bitumen 13 1317 1330
8 Self-blocking bricks 37 3645 3682
9 Shadows 9 938 947

Total 426 42350 42776

(3) Salinas: The HSI data set was imaged in
Salinas Valley, California, USA. The HSI and In-
dian Pines were also collected in 1998 using the
AVIRIS imaging spectrometer, which had a high
spatial resolution and a relatively uniform distribu-

tion of ground objects. The data set size is 512X
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217X 224, comprising 224 original bands, with a
spatial resolution of 3.7 m and a spectral range of
400—2 500 nm. Twenty water absorption bands
(108—112, 154—167, and 224) were eliminated,
leaving 204 bands for classification experiments.
The HSI contains 16 categories, including crops,
farmland, vegetation, etc. Detailed category and
ground truth map of this HSI is presented in Fig.8
and Table 3.

[l Brocoli_green_weeds_1
[l Brocoli_green_weeds_2
2 Fallow

] Fallow _rough_plow

[ Fallow_smooth

[ Stubble

[ Celery

[ Grapes_untrained
[]Soil_vineyard_develop

[ ] Corn_senesced_green_weeds
B Lettuce_romaine_4wk
[l Lettuce_romaine_Swk
[ Lettuce_romaine_6wk
] Lettuce_romaine_7wk
[ Vineyard_untrained

[ Vineyard_vertical _treellis

Fig.8 Salinas data set category and ground-truth map

Table 3 Number of training and test samples on Salinas

data set

Class Name Training Test Total
1 Brocoli_green_weeds_1 20 1989 2009
2 Brocoli_green_weeds_2 37 3689 3726
3 Fallow 20 1956 1976
4 Fallow _rough_plow 14 1380 1394
5 Fallow _smooth 27 2651 2678
6 Stubble 40 3919 3959
7 Celery 36 3543 3579
8 Grapes_untrained 113 11158 11271
9 Soil _vinyard _develop 62 6141 6203
10 Corn _senesced _green_weeds 33 3245 3278
11 Lettuce _romaine 4wk 11 1057 1068
12 Lettuce _romaine 5wk 19 1908 1927

13 Lettuce_romaine 6wk 9 907 916
14 Lettuce_romaine 7wk 11 1059 1070
15 Vineyard untrained 73 7195 7268
16 Vineyard _vertical _trellis 18 1789 1807
Total 543 53586 54 129

3.2 Experiments setup

A series of experiments were conducted to test
and evaluate the classification performance of the
proposed method and comparison methods. All ex-

periments were implemented on a computer with a
2.50 GHz Intel Core 15-12400F CPU with 16 GB of

RAM and an NVDIA GeForce RTX 3060 GPU.
The operating system used was Windows 10, and
the experiments were conducted using the PyTorch
1.3.0 deep-learning framework and a Python 3.9
compiler. Moreover, the maximum number of ep-
ochs in training phase is set to 100 for Indian Pines
and Salinas, and 150 for University of Pavia. The
batch size is set to 128 in the training phase. For the
three data sets, samples are spilled randomly into
training set and test set. For Indian Pines 10% of
the samples are used for training. While 1% of the
samples are selected randomly for training in the
case of Salinas and University of Pavia. The de-
tailed number of training and test samples for each
class are listed in Tables 1—3. In following experi-
ments, we employ accuracy of each class, overall
accuracy (OA), average accuracy (AA), and kap-
pa coefficients as the evaluation metric to quantita-
tively evaluate the performance of all methods. We
make the average of the results obtained from 20 dif-
ferent random training sample experiments as the fi-

nal experiment results.
3.3 Ablation study

Ablation experiments were conducted on three
HSI datasets in this section to evaluate the perfor-
mance of each feature extraction branch in the pro-
posed SGCCN. The experiments also assessed their
performance after incorporating the dynamic atten-
tion module. The mean classification results with
standard variance (in percentage) , including the ac-
curacy of each class, OA, AA, and kappa coeffi-
cient, are presented in Tables 4—6. The best one is
shown in bold.

Analysis of individual data sets reveals that the
classification OA for the spectral band graph convo-
lutional network (SGCN) exceeds 80%. For sever-
al classes in the Pavia and Salinas data sets, the ac-
curacy approaches 100%. This highlights the effica-
cy of the newly designed and lightweight SGCN in
capturing spectral similarity features beneficial for
classification. Although the SGCN performs not
well on the Indian Pines data set, which is due to
the low spatial resolution and uneven sample distri-
bution on the data set. Furthermore, the SGCN

model exhibits minimal variance, indicating a high
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degree of stability of our model.

Results indicate that the multi-level convolu-
tional network (MLCN) branch attains superior
classification performance, exemplified by the
98.11% OA achieved on the Salinas data set. The
main reason is that the MLLCN branch consists four
feature extraction blocks, which can extract and
strength spatial context features between samples
step by step. Additionally, the incorporation of
DAM enables the MLLCN branch to focus on valu-
able features, leading to improved accuracy in spe-

cific categories.

tion feature fusion network to fuse features from
SGCN-A and A-MLCN achieves the highest classi-
fication accuracy for all three data sets. Notably, the
accuracy for Alfalfa and Corn in the Indian data set
improves about 5% and reaches 100% and increas-
es nearly 50% on Gravel in Pavia data set. The ma-
jor reason is that the two types of networks capture
spectral and spatial information from different di-
mension to achieve full utilization of HSI feature in-
formation. In conclusion, the combination of these
two networks, leveraging the strengths of different

feature categories, leads to improved classification

Furthermore, the SGCCN combined self-atten- accuracy.
Table 4 Overall accuracy, average accuracy and kappa coefficients of ablation experiments on Indian Pines %
Class SGCN SGCN-A MLCN A-MLCN SGCCN
1 11.1140.07 10.67+0.05 95.12+5.78 1000 10040
2 64.930.03 68.67+0.04 94.79-+0.89 92.76+1.17 99.68+0.52
3 52.21+0.01 55.70+0.02 99.73+1.78 1000 99.20+0.28
4 21.46+0.04 18.724+0.03 94.84+1.93 98.12+2.33 10040
5 86.59+0.02 84.32+0.03 97.01+0.87 98.62+0.66 98.85+0.57
6 94.93+0.02 92.6440.01 10040 100+0 99.39+0.18
7 69.23+0.03 53.85+0.06 100+0 1000 100+0
8 99.05+0.01 99.76+0.01 10040 100+0 10040
9 44.44+0.09 22.22+0.10 83.33+13.56 1000 100+0
10 63.76£0.03 63.99+0.04 97.83+0.76 99.3140.98 98.86+0.35
11 80.40+0.02 81.76+0.02 99.054+0.29 99.95+1.27 97.47+0.20
12 63.97+0.03 62.10+0.03 93.261.67 94.19+1.85 99.43+0.73
13 90.27+0.03 75.68+0.08 100+0 98.38+2.22 99.46+1.23
14 91.85+0.02 91.42+0.02 10040 99.82+0.46 99.82+0.07
15 58.08+0.03 55.39+0.02 98.85+3.02 97.12+2.36 99.14+0.09
16 82.1440.02 90.48+0.01 91.67+3.88 90.48+2.83 96.43+1.31
OA 74.63+0.01 74.91+0.01 97.99+0.46 98.22+0.51 98.94+0.10
AA 67.15+0.01 64.10+0.02 96.59+1.52 98.04+0.91 99.13+1.37
Kappa 70.88+0.01 71.20£0.01 97.71+£0.53 97.97+0.58 98.78+0.12
Table 5 Overall accuracy, average accuracy and kappa coefficients of ablation experiments on University of Pavia %
Class SGCN SGCN-A MLCN A-MLCN SGCCN
1 86.34+0.03 88.69+0.01 84.664+2.02 86.38+3.24 99.75+0.89
2 93.81+0.01 93.6740.01 99.66+0.24 99.87+0.34 99.94+0.09
3 45.18+0.05 45.66+0.06 67.42+12.03 56.11+12.26 99.51+2.87
4 76.91+0.01 77.73+£0.03 87.0845.42 82.5642.99 96.83+0.83
5 98.66+0.01 98.28+0.01 90.54+2.40 94.52+2.40 10040
6 74.48+0.03 72.5540.03 10040 98.23+1.74 99.86+0.08
7 42.2240.05 41.6140.06 61.12+10.54 55.354-16.40 95.49+2.44
8 68.71+0.06 67.0940.05 68.12+8.25 94.21+5.76 97.54+0.57
9 94.11+0.02 92.18+0.02 39.70+11.28 60.51+6.43 85.85+5.70
OA 83.18+0.01 83.13£0.01 89.37+1.14 91.29+1.69 98.95+0.22
AA 75.60+0.01 75.27+0.01 77.59+2.67 80.86+3.99 97.89+0.67
Kappa 77.47+0.01 77.36+0.01 85.874+1.52 88.38+2.27 98.61+0.29
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Table 6 Overall accuracy, average accuracy and kappa coefficients of ablation experiments on Salinas %
Class SGCN SGCN-A MLCN A-MLCN SGCCN
1 99.90+0.01 99.25+0.01 99.95+1.48 99.75+2.48 99.90+0.01
2 98.45+0.01 99.57+0.01 100+0 100+0 100+0
3 97.7940.02 96.8240.01 98.6740.75 99.494+1.56 10040
4 80.15+0.03 79.0840.04 94.1342.42 97.61+1.64 98.7840.07
5 96.03+0.02 96.64+0.02 99.13+0.78 87.74+2.72 99.77+1.11
6 99.64+0.01 99.67+0.01 100+0 99.44+0.18 100+0
7 99.60+0.01 99.75+0.01 100+0 99.10+0.85 100+0
8 87.24+0.02 86.6340.02 97.174+0.94 96.074+1.25 99.08+0.17
9 99.70+0.01 99.5940.01 10040 100+0 99.9840.01
10 96.01+0.01 95.74+0.01 100+£0 96.52+1.01 99.57+0.01
11 93.19+0.02 92.24+0.01 86.66+3.78 99.24+3.28 99.91+0.34
12 84.31+0.03 91.32+0.02 98.32+2.57 97.12+3.22 99.90+3.44
13 88.09+0.06 93.3840.10 90.9645.83 93.1642.00 99.89+0.35
14 92.73+0.04 79.13£0.04 99.43+1.51 92.824+1.75 99.90+£0.44
15 51.33+0.04 54.4640.05 95.734+10.67 99.19+£6.07 100+£0
16 98.43+0.01 98.88+0.01 100+0 100+0 100+0
OA 88.48+0.01 88.8440.01 98.1141.60 97.6940.85 99.72+0.18
AA 91.4240.01 91.3840.01 97.514+1.13 97.334+0.60 99.53+0.23
Kappa 87.13£0.01 87.54+0.01 97.89+1.79 97.4340.95 99.69-+0.20

3.4 Comparison with state-of-the-art methods

A comparative analysis was conducted to evalu-
ate our proposed SGCCN model against several state-
of-the-art methods, including the 2DCNN*' , the
3DCNN"“", the HybridSN"', the MiniGCN""', the
MDGCN*", the CNN-enhanced GCN (CEGCN)®"
and the HybridFormer'®'. Here, MiniGCN,
MDGCN and CEGCN are the representative classi-
fication methods based on GCN and HybridFormer
is the latest model based on attention mechanism.
All the compared methods are designed for HSI
classification under limited training sample situation.
For fair comparisons and the best performance, the
parameter settings of compared methods remained
consistent with those detailed in the original papers.
The division of the training and testing sets for all
classification methods in the subsequent experiments
are configured identically as listed in Tables 1—3.
The accuracy of each class, OA, AA, and Kappa
are employed to evaluate the classification perfor-
mance of each method. Comprehensive results, in-
cluding mean values and standard variance, for all
methods on Indian Pines, University of Pavia, and
Salinas data sets are presented in Tables 7—9 (The
best one is shown in bold). Classification maps for
these data sets are also shown in Figs. 9—11.

Compared with other competitor methods, our

proposed SGCCN achieves the best classification

performance. The SGCCN achieves OA and AA
scores of approximately 99% on the Indian Pines da-
ta set. In particular, SGCCN achieves the highest
classification accuracy of 98.95% and 99.72% with
only 1% training samples for the University of Pa-
via and Salinas data sets. These results demonstrate
that SGCCN outperforms other methods. What
stands out in this result is that the SGCCN achieves
the highest accuracy in most categories across the
three data sets. Especially, SGCCN achieves 100%
accuracy in the Corn category for Indian Pines and
in Fallow, Celery, Vineyard_untrained and Vine-
yard _vertical _trellis categories for Salinas. This can
be attributed to the design of our proposed
SGCCN, which incorporates an SGCN-A based on
spectral band graph structure construction to extract
spectral similarity features. This allows for the exca-
vation of intrinsic connections between the spectrum
of HSI, leading to enhanced computational efficien-
cy. Then, the joint application of SGCN-A and A-
MLCN allows the model to extract more unseen
complementary spectral-spatial relations, facilitat-
ing the identification of challenging categories. Addi-
tionally, the SGCCN outperforms other spatial-
based GCN methods and the joint CNN HybridSN
method. The major reason is that the SGCN-A

treats each band frame of HSI as a vertex to con-
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Table 7 Classification results of different methods on Indian Pines %
Class 2DCNN 3DCNN HybridSN MiniGCN MDGCN CEGCN HybridFormer  SGCCN
1 49.124£1.56 75.99412.19 96.104+3.48 71.660.06 93.75+0 50.6940.42 97.21+11.35 100+0
2 68.974+0.53 88.10£2.62 94.79+1.21 84.92+0.03 92.63£0.01 90.06+£0.08 97.31£6.18 99.684+0.52
3 67.78+0.38 78.34+£7.18 98.864+1.28 75.984+0.03 93.12+0.01 98.21+0.02 98.24+0.97 99.204+0.28
4 53.374£0.90 78.51£7.38 93.9944.04 76.51+0.05 96.14£0.01 82.8240.14 96.98£1.67 100+0
5 93.574+0.31 89.164+2.95 97.68+1.5 88.88+£0.03 96.03£0.01 98.55+0.01 97.84+1.81 98.854+0.57
6 97.20+0.30 97.10£1.36 98.694+0.59 90.26+0.02 97.43+0.01 97.28+0.02 99.19+0.46 99.394+0.18
7 76.19+£1.2 68.38+20.96 1000 85.44+0.05 69.234+0.01 27.874+0.35 98.4249.86 100+=0
8 95.764+0.01 96.934+1.45 99.954+0.09 95.10£0.01 97.99£0.01 89.76+0.15 99.6540.34 100+0
9 90.91+6.49 64.364+19.49 83.89+13.02 79.00+0.11 100+0 0+0 95.71+7.91 100+0
10 70.0240.25 81.13%+5.84 98.80+£0.90 83.30£0.03 84.3940.01 97.524+0.02 96.044+13.8 98.86+0.35
11 76.97+0.24 87.56+£3.22 99.32+0.65 86.1740.02 94.93+0.01 92.79£0.03 98.32+2.97 97.4740.20
12 68.10+1.47 80.52+6.13 93.48+3.60 87.644+0.02 90.05+0.02 98.33+0.02 96.91+0.72 99.434+0.73
13 99.464+0.16 98.52+1.44 99.24+0.69 84.75+0.05 100+0 77.65+£0.34 99.39+0.62 99.464+1.23
14 94.62+0.12 96.42£0.69 99.70£0.21 96.2840.01 99.35+0.01 92.23£0.14 99.70+0.04  99.8240.07
15 82.72+0.59 73.42+2.28 98.56+1.58 80.564+0.02 98.884+0.01 77.75+37 98.674+0.55 99.14+0.09
16 97.114+0.02 89.01+£14.73 93.45+4.77 93.60£0.04 98.414+0.01 97.83+0.03 95.524+0.56 96.43+1.31
OA  79.63+0.17 86.60£2.70 97.974+0.41 86.484+0.01 94.34+0.01 92.40£0.03 98.12+1.41 98.9440.10
AA  774940.35 81.084+4.29 96.654+1.00 85.06+0.01 93.90£0.01 79.33+£0.08 98.04+0.56 99.134+1.37
Kappa 76.754+0.19 84.70+3.13 97.68+0.47 84.56+0.01 93.514+0.01 91.36+0.04 97.86+1.82 98.78+0.12
Table 8 Classification results of different methods on University of Pavia %
Class 2DCNN 3DCNN HybridSN MiniGCN MDGCN CEGCN HybridFormer ~ SGCCN
1 91.30+0.12 89.59+£1.19 95.274+3.94 96.994+0.01 59.37+0.06 96.41+0.02 98.67+1.49 99.754+0.89
2 93.714£0.04 91.97£0.89 99.2941.38 94.504+0.01 78.61£0.03 95.95£0.08 98.85+0.11 99.9440.09
3 61.92+0.36 75.88+£3.84 91.7745.32 84.27+0.03 77.48+0.02 89.43+0.07 94.21+25.86 99.514+2.87
4 89.2840.06 94.554+2.00 85.384+4.74 85.89+0.01 73.47+0.03 94.56+0.01 96.93+1.01 96.83+0.83
5 100+0 96.91+£1.21 97.354£2.68 99.734+0.01 95.67+0.02 98.01£0.02 99.72+0.04 100+0
6 81.294£0.12 84.1243.54 95.174+6.24 92.04+£0.01 80.760.02 92.064+0.06 99.49+0.19 99.86+0.08
7 81.89+0.31 82.6943.04 97.96+4.85 74.61+0.04 78.92+0.04 90.514+0.09 98.51+£7.63 95.49+2.44
8 72.65+0.24 84.42+1.86 87.5443.29 69.784+0.03 43.78+0.06 94.87+0.03 95.79+7.28 97.544+0.57
9 96.80+0.18 91.55£1.76 77.7449.89 94.704+0.01 67.94+0.03 84.17£0.11 98.11+0.48 85.854+5.70
OA 88.26+0.04 87.514+0.82 95.13+0.91 90.21+0.01 72.77£0.03 94.684+0.03 97.91+0.87 98.95+0.22
AA  83.92£0.05 85.514+1.28 91.62+1.41 88.06£0.01 72.8940.02 92.894+0.12 97.82+0.73 97.89+0.67
Kappa 84.284+0.05 83.63+1.02 93.53+1.22 86.77+0.01 65.364+-0.03 93.01+0.04 97.244+1.49 98.614+0.29
Table 9 Classification results of different methods on Salinas %
Class 2DCNN 3DCNN HybridSN MiniGCN MDGCN CEGCN SGCCN
1 99.9240.02 96.7340.47 99.97+0.05 99.8040.01 88.83+0.09 92.8940.09 99.9040.01
2 99.964+0.02 99.054+0.31 100+0 99.79+0.01 95.83+0.02 94.77+0.06 100+0
3 99.21+0.01 97.4740.89 99.97+0.08 99.33+0.01 92.70+0.08 93.93+0.06 100+0
4 98.2540.17 98.58+1.12 96.384+2.72 97.6040.01 94.3540.03 94.1840.02 98.78+0.07
5 97.50+0.04 98.664+0.97 98.12+1.35 88.66+0.04 63.67+0.10 86.89+0.07 99.77+1.11
6 100+0 98.26+1.07 99.68+0.94 99.95+0.01 93.08+0.08 96.42+0.03 100+0
7 99.7740.01 98.47+0.75 99.964+0.08 99.21+0.01 80.73+0.10 94.3240.03 100+0
8 84.52+0.17 86.77+5.37 98.80+1.32 78.08+0.01 69.21+0.24 78.26+0.15 99.08+0.17
9 99.30+0.01 98.9940.30 99.99+0.03 99.49+0.01 88.74+0.05 88.69+0.08 99.98+0.01
10 96.5440.06 93.15+2.36 99.16+£0.51 88.2940.02 88.98+0.12 97.49+0.01 99.57+0.01
11 98.334+0.15 94.304+0.92 96.77+2.43 82.50+0.04 87.28+0.08 81.55+0.21 99.91+0.34
12 99.04+0.06 97.734+1.46 97.86+3.34 96.67+0.01 92.30+0.05 98.54+0.02 99.90+3.44
13 92.20+£1.42 97.3041.89 98.53+1.30 93.61+0.01 77.77+0.01 83.71£0.18 99.89+0.35
14 93.6040.13 96.8942.67 99.114+1.07 99.5140.01 80.48+0.02 86.93+0.06 99.90+0.44
15 77.81+0.22 78.33+7.78 96.32+5.28 71.57+0.04 81.86+0.06 74.66+0.15 100+0
16 99.414+0.03 76.45+£1.65 99.94+£0017 99.29+0.01 96.45+0.06 91.544+0.04 1000
OA 92.9240.03 91.4841.78 98.8140.76 89.5440.01 83.08+0.07 87.11+0.03 99.72+0.18
AA 95.944+0.08 93.674+0.90 98.79+0.51 93.33+0.01 85.77+0.05 89.67+0.02 99.53+0.23
Kappa  92.134+0.04 90.534+1.96 98.67+0.85 88.36+0.01 81.30+0.07 85.70£0.03 99.69+0.20
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(d) HybridSN  (¢) MiniGCN
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Fig.9 Ground truth and classification maps acquired by different methods on Indian Pines
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Fig.10  Ground truth and classification maps acquired by different methods on University of Pavia
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Fig.11 Ground truth and classification maps acquired by different methods on Salinas

struct HST graph data. This approach extracts spec-
tral features while preserving pixel-level, fine-
grained spatial-spectral information. While subgraph
represents local region information or superpixel
graph ignores detailed spatial information, resulting
less effective in capturing detailed features on com-
plex distribution data sets. Despite HybridSN also
adopts the hybrid CNN, the ability in modeling
channel spectral relations between any vertex of
SGCN-A outperforms CNNs that can only extract
information in a local region. Furthermore, the accu-
racy for each category, OA, AA and Kappa of the
SGCCN exhibit relatively small variance, indicating
a high degree of stability in the classification out-
comes. This verifies the efficiency and superiority of
our classification network.

Upon inspecting the classification maps of each
classification method on the three data sets, as pre-
sented in Figs.9—11. It is evident that the classifica-
tion maps of 2DCNN, 3DCNN, and MiniGCN

contain pepper noise. In contrast, the maps obtained

by MDGCN and CEGCN show jagged boundaries
and large areas of window-level misclassifications.
Although HybridSN and HybridFormer acquire rela-
tively accurate classification maps, they still have
classification errors in the boundary area. The classi-
fication maps demonstrate the superior performance
of SGCCN, characterized by smoother boundaries
and accurate pixel-level maps. This could be attrib-
uted to the effective feature fusion network, which
introduces an attention mechanism to adjust weights
for more valuable information. It also employs multi-
ple fusion processes to combine complex relational
features from diverse layers.

In summary, the proposed SGCCN integrates
global spectral features and local spatial features de-
rived from SGCN-A and A-MLCN. By emphasiz-
ing fused features through attention modules,
SGCCN demonstrates superior classification perfor-
mance. It also shows greater robustness across vari-
ous HSI data sets compared with other advanced

classification methods.
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3.5 Effect of the training sample rate

To analyze the impact of the training sample
rate, experiments are conducted for various classifi-
cation methods on the three data sets, and the results
are shown in Fig. 12. Notably, the abscissas of (b)
and (¢) in Fig.12 adopt a non-arithmetic progression
distribution. This is because in the key low-propor-
tion interval with scarce training samples, model per-
formance fluctuates significantly. Dense sampling in
this interval can accurately capture performance vari-
ations. As the number of training samples increases,
model performance gradually stabilizes. A larger
step size 1s therefore adopted to reduce redundant ex-
perimental points, optimizing data presentation effi-
ciency while ensuring the integrity of the perfor-
mance trend. In the following experiments, the se-
lected training samples per class range from 2% to
12% in steps of 1% for the Indian Pines data set.
For the Pavia and Salinas data sets, the training
samples per class are set as 0.1%, 0.2%, 0.3%,
0.4%,0.5%, 0.8%, 1%, 1.25% and 1.5%.

As is evident, the proposed SGCCN consis-
tently achieves the highest classification accuracy on
all three data sets, particularly in scenarios with few-
er training samples. The SGCCN achieves an accu-
racy of 90% with only 2% training samples on the
Indian Pines data set. It surpasses other methods by
more than 10% with only 0.1% training samples on
the University of Pavia data set. On the Salinas data
set, SGCCN consistently outperforms most meth-
ods by at least 5% in OA under varying training
sample rates. The main reason is that SGCCN em-
ploys a dual-branch feature extraction network. It
extracts spectral similarity of any band and local con-
text information for every neighboring patch, which
comprehensively utilizes global and local feature in-
formation of the HSI. Although HybridSN and Hy-
bridFormer achieve relatively high accuracy with
more training samples, the limitation of CNNs in
extracting information only from local regions re-
stricts their performance. This issue is particularly
evident in complex data sets, such as Pavia, and in
small-sample scenarios. In summary, experimental
results validate the superior learning ability of our

proposed SGCCN method. Its classification perfor-
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data sets

mance is particularly strong under conditions of lim-

ited training samples.
3.6 Comparison of training time and test time

To further assess the performance of this pro-
posed SGCCN model, the training time and test
time of different methods on the three HSI data sets
are compared in Table 10. All experiments are con-
ducted on the same computer.

As evident from the table, our novel SGCCN
requires less computational time than other GCN-
based classification methods. This is mainly due to
that we construct a graph from the channel dimen-
sion and design an efficient channel graph convolu-
tional network. Additionally, the feature extraction

network with dynamic attention module yields fewer
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Table 10 Training time and test time of different methods on three data sets S
Data set Method 2DCNN  3DCNN MiniGCN MDGCN CEGCN  HybridFormer SGCCN
Training time 38.71 109.48 131.53 269.88 16.31 312.56 97.98
Indian Pines Test time 5.33 0.99 1.32 1.11 0.37 4.72 2.72
Total time 44.04 110.47 132.85 270.99 16.61 317.28 100.70
Training time 17.81 69.84 579 1205.24 163.7 84.37 119.304
University of Pavia Test time 21.47 5.89 45.29 2.94 2.08 25.38 19.696
Total time 39.28 75.73 624.29 1208.18 165.79 109.75 139.00
Training time 18.66 159.85 300.32 242.96 79.6 171.51 94.25
Salinas Test time 27.56 5.48 47.50 1.39 1.53 22.97 24.65
Total time 46.22 165.33 347.82 244.35 43.98 194.48 118.9

parameters to compute, which improves computa-
tional efficiency and classification accuracy. The lon-
ger training time compared with CNN-based meth-
ods is attributed to SGCCN creating neighboring
patches for each pixel to extract local context fea-
tures. It also incorporates an additional spectral simi-
larity feature extraction branch, which adds to the
computational cost. In addition, CNN-based meth-
ods are not always the fastest on different data sets.
On the Indian Pines and Salinas data sets, the
SGCCN outperforms the 3DCNN, which indicates
higher classification ability and robustness on vari-
ous data sets. Considering the complexity and classi-
fication accuracy of networks, all these results dem-
onstrate that the proposed SGCCN performs rela-

tively better and costs less computational time.

4 Conclusions

We propose an innovative HSI classification
method and the SGCCN model, which combines
the advantages of spectral band graph convolutional
networks with attention and attention-enhanced
multi-level CNN. The model also incorporates a
self-attention feature fusion network to effectively
extract both spectral and spatial features of the HSI.
Our model constructs a novel spectral band graph
structure by treating each band of the HSI as a ver-
tex of the graph, which significantly improves com-
putational efficiency. The SGCN-A enhances the
expressive ability of features by lightweight spectral
band graph convolutions. At the same time, the A-
MILCN branch in the model focuses on local spatial
information to supplement the spectral features. It
enhances classification accuracy through a multi-lev-

el convolutional network. The dynamic attention al-

so plays a huge role in extracting key features.

After a series of experimental verifications,
SGCCN has achieved excellent classification results
on multiple standard HST data sets, surpassing vari-
ous existing advanced methods. Especially when the
number of samples is limited, SGCCN exhibits ex-
cellent learning ability and robustness. Further-
more, our model reduces the computational time re-
quired for training and testing. It maintains high clas-
sification accuracy, demonstrating its potential and
efficiency in practical applications.

In future research, we plan to further explore
and optimize the SGCCN model from the improve-
ment of feature fusion and model generalization abili-
ty. We will research more advanced feature fusion
technology to more effectively integrate features
from different network branches and further improve
classification accuracy. Introducing more types of at-
tention mechanisms and regularization techniques is
another direction to improve the model’s generaliza-
tion ability on unseen data. This allows the model to
adapt to more diverse HSI data sets. Through these
future research directions, we expect that the
SGCCN model will not only achieve greater break-
throughs in the field of HSI classification.
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