
Vol. 42 No. STransactions of Nanjing University of Aeronautics and AstronauticsNov. 2025

A Hyperspectral Image Classification Based on Spectral Band 
Graph Convolutional and Attention⁃Enhanced CNN 

Joint Network

XU Chenjie， LI Dan*， KONG Fanqiang

College of Astronautics， Nanjing University of Aeronautics and Astronautics， Nanjing 211106， P. R. China

（Received 22 June 2025； revised 30 September 2025； accepted 2 October 2025）

Abstract: Hyperspectral image （HSI） classification is crucial for numerous remote sensing applications. Traditional 
deep learning methods may miss pixel relationships and context， leading to inefficiencies. This paper introduces the 
spectral band graph convolutional and attention-enhanced CNN joint network （SGCCN）， a novel approach that 
harnesses the power of spectral band graph convolutions for capturing long-range relationships， utilizes local 
perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention 
mechanism to enhance feature extraction. The SGCCN integrates spectral and spatial features through a self-attention 
fusion network， significantly improving classification accuracy and efficiency. The proposed method outperforms 
existing techniques， demonstrating its effectiveness in handling the challenges associated with HSI data. 
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0 Introduction 

Hyperspectral remote sensing integrates spatial 
and spectral imaging technology， capturing continu⁃
ous spectrum image data that encompasses both spa⁃
tial and spectral information of the ground［1］. Hyper⁃
spectral image （HSI） classification is one of crucial 
research in hyperspectral interpretation， and the cat⁃
egory division map obtained through the classifica⁃
tion technology has played a significant role in the 
fields of military target recognition［2-3］， land resourc⁃
es［4-6］ and situation monitoring［7］. However， HSI of⁃
ten contains redundant information， presenting chal⁃
lenges such as the same objects with different spec⁃
trum and the Hughes phenomenon［8］. These factors 
can contribute to noise in the classification results. 
And challenges such as mixed pixel problems and 
training under conditions with limited samples add 
complexity to the classification task.

Traditional HSI classification algorithms are 
based on machine learning， including K-nearest 
neighbor （KNN）［9］， decision tree［10］， random for⁃
est［11］， and support vector machine（SVM）［12-13］. Fea⁃
ture extraction methods like principal component 
analysis （PCA）［14］， independent component analysis 
（ICA）［15］， and maximum noise fraction （MNF）［16］ 
focus on dimensionality reduction. While spatial fea⁃
ture extraction methods like extended morphological 
profiles （EMPs）［17-19］ enhance neighborhood pixel 
structure. Dallamura et al.［20］ used the extended mor⁃
phological attribute profile （EMAP） to describe the 
HSI features in a multi-level and multi-attribute 
manner. The drawback of such methods lies in ex⁃
traction of single feature.

Deep learning （DL）-based classification meth⁃
ods have demonstrated significant advantages［21-23］. 
Chen et al.［24］ combined autoencoders with logistic re⁃
gression， and then introduced deep belief networks 
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（DBN）［25］ for classification to enhance performance. 
Since then convolutional neural networks （CNNs） 
are widely employed to enhance classification perfor⁃
mance［26-28］. The one-dimensional CNN （1DCNN）［29］ 
treats the pixels of each band as a sequence. In con⁃
trast， the two-dimensional CNN （2DCNN）［30］ re⁃
gards the pixels of each spectral band in the HSI da⁃
ta as a feature matrix for classified. Chen et al.［31］ es⁃
tablished a deep finite element model using three-di⁃
mensional CNN （3DCNN）， which realized the ex⁃
traction of spatial-spectral features and higher classi⁃
fication accuracy. More CNN-based methods are 
employed to extract a variety of features. Guo et 
al.［32］ tried to use CNN to extract spectral features 
and multi-scale spatial features for HSI classifica⁃
tion. Zhong et al.［33］ proposed the spectral-spatial re⁃
sidual network （SSRN）. It constructs both spectral 
and spatial residual module to enhance the gradient 
backpropagation and facilitate the extraction of deep⁃
er spectral features extraction. 3DCNN can extract 
more feature information， while it increases the 
computational cost. To balance spectral and spatial 
characteristics， Roy et al.［34］ introduced a HybridSN 
network that integrates 2DCNN and 3DCNN to ex⁃
tract richer spatial-spectral features and reduce com ⁃
putational complexity. The convolution operation in 
CNN is implemented by shifting the convolution 
kernel， so the use of CNN is limited to Euclidean 
data， that is， regularly arranged data such as images 
and text. The constraints of the convolution kernel 
pose challenges for the CNN in capturing the rela⁃
tionship features between pixels and the contextual 
features of the HSI.

Graph neural networks （GNNs） have advanced 
in processing special graph-structured data such as 
images and speech［35-38］. Kipf et al.［39］ proposed the 
graph convolutional network （GCN） model， which 
has been instrumental in extracting structural rela⁃
tionships in HSI data［40-41］. Qin et al.［42］ utilized a spa⁃
tial-spectral GCN for HSI classification， focusing 
on vertex relationships influenced by spectral and 
spatial similarities. He et al.［43］ further enhanced clas⁃
sification accuracy with a dual graph convolution net⁃
work. To address computational efficiency， Hong 
et al.［44］ proposed miniGCN， which trained in mini⁃
batch fashion and extracted the features in the sub⁃

graph of the entire HSI. Wan et al.［45］ presented a 
multi-scale dynamic graph convolutional neural net⁃
work （MDGCN）， which employed superpixel seg⁃
mentation to reduce graph size. Superpixel-based 
graph has been further used to enhance computation⁃
al efficiency and integrate weighted features［46-47］. At⁃
tention mechanisms have also been incorporated into 
GCNs［48-51］. Velickovic et al.［52］ proposed the graph 
attention network （GAT）， which integratesed at⁃
tention mechanisms into GCNs， enabling variable 
weighting of vertex relationships and more effective⁃
ly capturing global dependencies. Wang et al.［53］ used 
GAT to construct a multi-scale pyramid in HSI’s 
spectral dimension for feature extraction. Despite 
these advancements， GCN-based HSI classification 
methods face challenges in balancing computational 
costs and effective utilization of correlation features. 
Spatial-based graphs in GCNs， which leverage long-

range spatial information， require substantial train⁃
ing samples and computational resources， especially 
for high-resolution HSI data. Methods focusing on 
reducing graph structures for network training have 
improved efficiency. However， they may overlook 
pixel-level features and fail to fully utilize spectral 
channel correlations in HSI.

This paper introduces the spectral band graph 
convolutional and attention-enhanced CNN joint net⁃
work （SGCCN） for HSI classification. The method 
constructs a spectral graph from the HSI’s band di⁃
mension to model long-distance relationships more 
efficiently than spatial-based graphs. It includes a 
lightweight spectral band graph convolutional net⁃
work with attention （SGCN-A） designed to exploit 
spectral similarities and reduce computational com ⁃
plexity. The SGCN-A features three feature extrac⁃
tion blocks， each with a dynamic attention module 
（DAM） that adjusts feature weights from spectral 
band graph convolutions to emphasize discrimina⁃
tive features. Concurrently， an attention-enhanced 
multi-level CNN （A-MLCN） extracts local spatial 
features from 2D neighboring patches. It captures 
pixel-level contextual information along the spatial 
dimension through multi-level convolution， thereby 
complementing spectral features. The attention 
module is incorporated in parallel in each layer to 
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concentrate on crucial feature and improve represen⁃
tation performance of features for different catego⁃
ries across different areas of the HSI. Finally， the 
spectral similarity features and spatial context fea⁃
tures are fused through the self-attention mechanism 
within the feature fusion network. This process en⁃
hances feature diversity， ensures stable statistical 
properties， and improves computational efficiency. 
Experiments conducted on three HSI data sets 
demonstrate that SGCCN improves efficiency and 
robustness， and reduces computational costs com ⁃
pared with state-of-the-art methods. In summary， 
the main innovative contributions of our proposed 
SGCCN are as follows.

（1） A novel spectral band graph convolutional 
network with attention is proposed to extract global 
spectral similarity features between bands and en⁃
hance the long-distance feature modeling capabili⁃
ties， which significantly reduces computational cost 
of network by constructing a band graph.

（2） An innovative dynamic attention-enhanced 
multi-level convolutional network to effectively cap⁃
tures local spatial context features from different re⁃
ceptive field by multi-scale kernel， which utilizes lo⁃
cal perception and dynamic focus on discriminative 
features to address information redundancy.

（3） A robust self-attention feature fusion mech⁃
anism is employed to enhance classification perfor⁃
mance by effectively learning， fusing and improving 
discrimination ability of spatial-spectral features 
with limited samples.

1 Related Work 

In this section， we introduce some relevant 
knowledge， covering the network structure of CNN 
and the fundamental definitions， notations， and net⁃
work structure of GCN.

1. 1 2D convolution neural network　

The utilization of convolutional neural net⁃
works has become prevalent in the realm of computer 
vision， enhancing feature extraction capabilities［54］. 
The CNN architecture incorporates local connec⁃
tions and shared weights. In HSI classification， 
2DCNN is always used for extracting spatial fea⁃
tures.

A comprehensive 2DCNN comprises a convo⁃
lution layer， a pooling layer， and a fully connected 
layer. The presentation of a neuron F xy

ij  at position 
( x，y ) within the jth feature map of the ith layer is 
expressed as follows

F xy
ij = h (bij + ∑

m
∑
p = 0

Pi - 1

∑
q = 0

Qi - 1

W pq
ijm F ( x + p ) ( y + q )

( i - 1 ) m ) (1)

h ( x )= ReLU ( x )= max ( 0,x ) (2)
where h ( x ) denotes the ReLU activation function， 
bij the bias of the jth feature map in the ith layer， m 
the number of feature map in the （i-1）th layer con⁃
nected to the jth feature map， W pq

ijm the weight at po⁃
sition ( p，q ) connected to the mth feature map； Pi 

and Q i represent the height and the width of the 2D 
convolution kernel， respectively.

In the pooling layer， the preceding feature map 
undergoes sub-sampling to decrease the spatial size. 
Then the fully connected （FC） layer integrates all 
the extracted features and the classification results 
are obtained using the SoftMax classifier［55］. Howev⁃
er， the feature extracted from CNN captures local 
spatial information. Since the network requires the 
construction of a neighborhood window around a 
central pixel for input， the HSI is divided into sever⁃
al windows， and each window is relatively indepen⁃
dent. This implies that only spatial information con⁃
tained within the neighborhood is obtained， which 
may not be sufficient to enhance the classification ef⁃
fect.

1. 2 Graph convolution network　

Graphs serve as a modeling tool for capturing 
pairwise relationships between objects. As shown in 
Fig.1， a graph is made up of vertices， which are con⁃
nected by edges［56］. Consider the undirected graph 
denoted by an ordered pair G = (V，E )， where V 
represents a set of vertices vi ∈ V and E a set of 
edges ( vi，vj )∈ E.

Fig.1　Illustration of graph data and adjacency matrix
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Adjacency matrix A ∈ R n × n is a symmetrical 
matrix that records the relationship between verti⁃
ces， where n is the number of the vertices. The de⁃
gree matrix D is a diagonal matrix， where the diago⁃
nal elements are the degrees of each vertex， indicat⁃
ing the number of edges associated with each vertex.

The continuous aggregation of adjacent verti⁃
ces enables the graph convolution layer to facilitate 
the transfer of neighborhood relationships. The 
graph convolution formula is represented as the mul⁃
tiplication of the input graph data with a filter gθ，

shown as
gθ ⋆X= UgθU TX (3)

where U denotes the eigenvectors matrix of the nor⁃
malized graph Laplacian matrix L= UΛU T， and Λ 
a diagonal matrix of its eigenvalues. Here， the oper⁃
ator “ ⋆ ” represents the graph convolution opera⁃
tion， which performs filtering in the spectral do⁃
main. In addition， gθ can be thought as a function of 
the eigenvalues of L， i.e.， gθ ( Λ ). However， it will 
cost a lot to decompose the eigenvalue. To address 
the problem， the Chebyshev polynomial is em ⁃
ployed to approximate and restrict the layer-wise 
convolution operation to 1.

gθ ⋆X≈ θ ′0X+ θ ′1 ( L- I ) X= θ ′0X- θ ′1D
- 1

2 AD
- 1

2 X

(4)
To prevent overfitting and reduce operational 

cost in each layer， the two parameters θ ′0 and θ ′1 are 
constrained to one single parameter Θ =[ θ ′0，-θ ′1 ]. 
The expression is rewritten as follows

gθ ⋆X≈ ( I+ D
- 1

2 AD
- 1

2 ) XΘ (5)
where the largest eigenvalue of I+ D-1/2AD-1/2 is 2 
and Θ the matrix of filter parameters. To address 
the problem of numerical instabilities and exploding 
or vanishing gradients， renormalization is set for ad⁃
jacency matrix A͂= A+ I and the degree matrix 
D͂ i，i = ∑j

A͂ i，j. Consequently， the commonly used 

graph convolution formula can be improved to

Z= gθ ⋆X≈ D͂
- 1

2 A͂D͂
- 1

2 XΘ (6)
where Z is the convolved signal matrix.

The GCN introduces filters based on principles 
of graph signal processing， providing it with a ro⁃
bust mathematical foundation. In HSI classification， 
the relationship between pixels can be obtained by 
GCN. However， in many models， constructing a 
graph for all pixels in HSI. Given HSI data 
I∈ RM × N × B， a adjacency matrix with the size of 
（M×N）×（M×N） is constructed. This will en⁃
counter a high computational cost particularly when 
applied to extensive graph structures， posing a sig⁃
nificant limitation.

2 Proposed Method 

This section provides detailed information 
about the three modules of the proposed SGCCN， 
as depicted in Fig.2. It consists of three main compo⁃
nents. First， a spectral band graph convolution with 
attention is used to capture spectral similarity fea⁃
tures. Second， a spatial context extraction branch 

Fig.2　Overview of the spectral band graph convolutional and attention-enhanced CNN joint network
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employs an attention-enhanced multi-level convolu⁃
tion network. Finally， a self-attention-based feature 
fusion and classification network integrates the ex⁃
tracted features for final prediction.

2. 1 Spectral band graph convolutional network 
with attention　

In this section， we introduce a novel SGCN-

A， as depicted in Fig. 3. This novel network intro⁃
duces a new band graph data construction method. 
It includes a spectral band graph convolution net⁃
work and incorporates a dynamic attention module. 
Together， these components can exploit spectral 
similarity features between any bands， even with 
small training samples. Additionally， they signifi⁃
cantly reduce computational complexity.

Let I∈ RM × N × B represents the original HSI da⁃
taset， where M， N， and B denote the height， 
width， and channel bands of the HSI， respectively. 
Firstly， PCA［14］ is used to reduce the dimensionality 
of the HSI data to X ∈ RM × N × C， effectively remov⁃
ing redundant information and lowering computa⁃
tional complexity. Here， C is the number of spectral 
dimensions after PCA.

Different from commonly used graph construc⁃
tion methods， SGCN-A adopts a spectral channel 
perspective in the band graph construction stage. 
This approach captures global spectral relationships 
within the HSI. The SGCN-A framework begins by 
transforming the HSI cube from the channel dimen⁃
sion into a 2D matrix X ∈ R S × C， where S = M × N. 
Each frame of the HSI is denoted as a band vector， 
represented as a vertex X i ∈ X， with a size of M ×
N × 1， and forms the vertex set of the HSI band 
graph. This representation facilitates the extraction 
of spectral information from limited training pixels.

Edges between band vector vertices represent 
spectral relations in two dimensions. Given HSI’s 
high-dimensional nature， we compute the cosine 
similarity between any two band vectors to accurate⁃
ly capture spectral similarity features，shown as

cos ( X i,X j )=
X i,X j

|| X i 2
|| X j 2

 i,j = 1,2,⋯,C   (7)

where cos ( X i，X j )∈ [-1，1 ]. For the HSI classifica⁃
tion task， the correlation of spectral channel forms 
an undirected graph. Thus， cosine similarities are 
normalized and constrained to A i，j ∈ [ 0，1 ] to con⁃
struct the adjacency matrix A，shown as

A ij = 1 - cos ( X i,X j )
2  i,j = 1,2,⋯,C (8)

Since the cosine similarity of two vectors to 
each other is the same， i. e， A i，j = A j，i. Additional⁃
ly， diagonal elements of the matrix that represent 
the similarity between a vector and itself are 0. 
From these， the complete adjacency matrix A of 
band vectors can be obtained as

A= ( )A 11 … A 1C

⋮ ⋮
AC1 ⋯ ACC

= ( )0 … AC1

⋮ ⋮
AC1 ⋯ 0

(9)

By treating each band vector （i. e.， each frame 
of HSI） as a vertex， the adjacency matrix size is re⁃
duced from ( M × N )×( M × N ) to C × C， signifi⁃
cantly lowering computational costs.

To mitigate the influence of the largest similari⁃
ty between a vector and itself in convolution， the di⁃
agonal elements of A are set to 1. Then the adjacen⁃
cy matrix is transformed as follows

Fig.3　Flowchart of the spectral band graph convolutional network with attention
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A͂= A+ I= ( )1 … AC1

⋮ ⋮
AC1 ⋯ 1

(10)

where I is the identity matrix. Apparently， the de⁃
gree matrix that contains the degrees of each vertex 
A i，j can be calculated as D͂ i，i = ∑j

A͂ i，j. Then the 

normalized similarity matrix can be obtained as

 S͂= D͂
- 1

2 A͂D͂
- 1

2 (11)
The cornerstone of the SGCN-A lies in its 

unique spectral band graph construction method. By 
treating each spectral band of the HSI as a graph 
vertex， this innovative network captures global 
spectral relationships for accurate classification.

The SGCN-A for the graph-structured HSI da⁃
ta can be formulated as

X i + 1 = h ( S͂X iW i + bi ) (12)
where X i represents the output in the ith layer， h (⋅) 
the graph activation function， W i the weights， and 
bi the bias of the ith layer.

A lightweight three-layer SGCN-A architec⁃
ture is designed to enhance spectral correlation fea⁃
ture extraction. Multi-SGCN-A layers are capable 
of aggregating information from neighboring verti⁃
ces， thereby improving the representation of each 
vertex in the spectral space. In the first layer， the 
nonlinear activation function ReLU［57］ is used in con⁃
junction with convolution to preserve and enhance 
the spectral correlations， shown as

X i + 1 = ReLU ( S͂X iW i + bi ) (13)
where X i + 1 is the output feature map in this layer. 
In addition， a dropout process is employed to pre⁃
vent overfitting.

A key innovation of SGCN-A is the integration 
of a DAM within the channel graph convolution lay⁃
ers. The DAM based on SimAM［58］ enhances the 
discriminative power of the network by dynamically 
focusing on the most informative spectral features. 
The feature maps can be seen as neurons and the op⁃
timal closed-form energy function for every neuron 
is formulated as follows

e*
t = 4 ( σ̂ 2 + λ )

( t - μ̂ )2 + 2σ̂ 2 + 2λ
(14)

where μ̂ is the average value of the HSI feature in⁃
put with the convolution and σ̂ 2 the variance. The fi⁃
nal output is gotten by an element-product with a 

sigmoid function， which is to control the output 
range of the attention vector.

X͂= sigmoid ( )1
E

⊙X (15) 

where E denotes the set of all e*
t  grouped across spa⁃

tial and spectral dimensions. And E is restricted by 
sigmoid function to prevent too large.

The output of the first layer in the SGCN-A 
network is

X͂ i + 1 = F DA ( ReLU ( S͂X iW i + bi ),ADA ) (16)
where F DA (⋅) represents the DAM and ADA the atten⁃
tion map. Each SGCN-A layer enhances spectral 
information extraction and utilization.

The subsequent layers are cascaded and identi⁃
cal， except without the ReLU activation function. 
These layers refine features to highlight the most 
discriminative patterns for classification.

In the final stage of SGCN-A， the Softmax 
function is adopted to transform spectral similarity 
features into a probability distribution for classifica⁃
tion， shown as

X͂ i + 1
SGCN⁃A = Softmax ( F DA ( X͂ i,ADA ) ) (17)

This network ensures that the extracted fea⁃
tures are compatible with spatial features from the 
dynamic attention-enhanced multi-level CNN. This 
alignment sets the stage for a robust and comprehen⁃
sive classification process.

2. 2 Attention⁃enhanced multi⁃level CNN　

In this innovative branch network， we intro⁃
duce A-MLCN designed for advanced spatial fea⁃
ture extraction in HSI. This network designs multi-
level convolutions by integrating DAM， which 
adaptively emphasizes critical features for superior 
representation and discrimination. The flowchart of 
the A-MLCN network is depicted in Fig.4.

To address the high dimensionality and redun⁃
dancy in HSI data， PCA is adopted for reducing the 
original HSI data I∈ RM × N × B to X ∈ RM × N × C. This 
step not only distills representative low-dimensional 
spectral features but also significantly lowers compu⁃
tational costs.

Prior to the 2D convolution operation， neigh⁃
borhood patches P ∈ RT × T are extracted from the 
HSI data. Each pixel is centered within a T × T 
square window， defining the patch category by the 
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central pixel. For boundary pixels lacking adjacent 
data， padding ensures consistent patch generation， 
as illustrated in the first step of Fig.4.

Following padding， the HSI data spatial dimen⁃
sions expand to ( M + T - 1 )×( N + T - 1 )， facili⁃
tating the generation of M × N patches for convolu⁃
tion. As a result， comprehensive local spatial infor⁃
mation can be effectively extracted.

The preprocessed patches are processed 
through a series of multi-scale kernel convolutional 
layers. In the first layer， a 2D convolutional kernel 
of size （7×7） is set for larger receptive field to cap⁃
ture relatively global spatial information. To en⁃
hance the nonlinear expressiveness and generaliza⁃
tion of the model， batch normalization［59］ and activa⁃
tion functions （such as ReLU） are interspersed be⁃
tween the convolutional layers. These components 
synergistically enable the A-MLCN network to ex⁃
tract vital spatial feature necessary for distinguishing 
various ground object categories in HSI. The output 
of each convolutional block is given by

X i + 1 = ReLU ( BN ( bi + X i ×W i + 1 ) ) (18)
The network’s layers are further augmented 

with the DAM， which dynamically emphasizes sa⁃
lient features and suppresses irrelevant information. 
Operating in parallel with each convolutional layer， 
the DAM refines feature maps at every stage. It ad⁃
justs attention weights across channels and spatial 
domains， calculated as

Y i + 1 = F DA ( X i,ADA ) (19)
The outputs from the convolutional layer and 

the DAM are multiplied to produce the enhanced 
feature map， shown as

X͂ i + 1 = X i + 1 × Y i + 1 (20)
where X͂ i + 1 represents the dynamically weighted fea⁃
tures.

The feature extraction process spans multiple 
layers， with four cascaded convolutional layers en⁃
hanced by the DAM. For the second convolutional 
layer， we begin to focus on more local information 
and employ 5×5 convolutional kernel. In the last 
two convolutional layers， the convolutional kernel 
is set as 3×3 to reduce computation cost and param ⁃
eters， speed up model training， and enhance non-

linear capabilities. This multi-scale kernel hierarchi⁃
cal approach captures both fine-grained details and 
broad spatial contexts， effectively distinguishing var⁃
ious categories within HSI data. The final convolu⁃
tional output is aggregated through fully connected 
layers， integrating spatial features for further pro⁃
cessing. Dropout layers are included to prevent over⁃
fitting and enhance generalization. The final feature 
output is given by

X͂ i + 1
A⁃MLCN = ReLU ( Dropout ( FC ( X͂ i ) ) ) (21)

where X͂ i + 1
A⁃MLCN is the output of the A-MLCN net⁃

work.
This architecture ensures that the network fo⁃

cuses on significant features from the initial layers， 
with the DAM refocusing these features throughout 
the subsequent layers. Upon completing the four-

layer multi-scale kernel convolution extraction pro⁃
cess， the spatial context features are obtained. 
These features are then fused with spectral features 
for classification， resulting in a highly effective rep⁃
resentation for distinguishing different ground ob⁃
jects in HSI.

Fig.4　Flowchart of attention-enhanced multi-level CNN
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2. 3 Self⁃attention feature fusion network　

In the SGCCN framework， the feature fusion 
and classification network constitute a pivotal com ⁃
ponent for effective HSI classification. This section 
delves into the fusion strategies employed in our 
model to integrate spectral and spatial features ex⁃
tracted from the SGCN-A and A-MLCN branches， 
as depicted in Fig.5. The goal of these strategies is 
to enhance the model’s classification capabilities.

An advanced feature fusion strategy that lever⁃
ages multi-level integration to augment the model’s 
discriminative power is introduced. This fusion net⁃
work utilizes a self-attention mechanism to adjust 
the importance of features from the two branches. 
This ensures that the resulting feature representation 
captures the most class-discriminatory information.

Y= A SAV= Softmax (QK T )V (22) 
where A SA is the attention matrix， and the queries， 
keys and values Q，K，V are computed from the 
branch features X͂ i + 1

SGCN⁃A， X͂ i + 1
A⁃MLCN by the self-attention 

module.
To further enhance the integration of spectral 

and spatial features， a novel modular approach is in⁃
corporated within the fusion network. This allows 
the model to adaptively adjust the fusion ratio based 
on the distinctiveness and relevance of the features. 
This adaptive fusion method not only enhances the 
model’s sensitivity to diverse data features but also 
bolsters its robustness when tackling complex classi⁃
fication tasks.

Y i + 1
C = Y͂SGCN⁃A ⊕Y͂A⁃MLCN (23) 

where Y͂SGCN⁃A represents the spectral similarity fea⁃

tures from SGCN-A and self-attention and Y͂A⁃MLCN 
represents the spatial context features from A-

MLCN and self-attention. The operator ⊕ repre⁃
sents features fusion module.

Following feature fusion， we implement a hier⁃
archical classifier that refines the integrated features 
for precise classification. This classifier employs a 
series of fully connected layers and non-linear activa⁃
tion functions to learn complex relationships be⁃
tween features. It also uses techniques such as drop⁃
out and regularization to prevent overfitting， ensur⁃
ing the model’s generalizability.

Lastly， to further improve classification perfor⁃
mance， we introduce an optimization strategy based 
on gradient clipping. This technique constrains the 
growth of gradients during training， helping to 
maintain training stability. It also prevents gradient 
explosion， which is particularly important for deep 
learning models. The combination of these methods 
results in a robust and highly effective classification 
framework for HSI data.

3 Experiments 

In this chapter， the classification performance 
of the proposed HSI classification method SGCCN 
is analyzed on the three HSI data sets. First， the 
three HSI data sets for following experiments are de⁃
scribed briefly. Then， analysis of several main pa⁃
rameters for the proposed SGCCN are conducted. 
Additionally， ablation study is carried to analyze the 
effectiveness of three modules in the SGCCN. 
Next， comparison experiments including experi⁃
ments under different training samples is conducted 
for our proposed method and various state-of-the-

art classification methods to verify the superiority. 
Finally， computational costs of each method are 
compared and analyzed.

3. 1 Data description　

To assess the effectiveness of the classification 
model， experiments were conducted on three sets of 
HSI data sets， i.e.， Indian Pines， University of Pa⁃
via and Salinas.

（1） Indian Pines： The HSI data set was ob⁃
tained in 1992， and the shooting system was 

Fig.5　Flowchart of self-attention feature fusion network
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AVIRIS， which imaged an Indian pine forest in 
northwest Indiana， USA. The data set dimensions 
are 145×145×220， including 220 spectral seg⁃
ments， the spatial resolution is 20 m， and the spec⁃
tral resolution ranges from 400 nm to 2 500 nm. 
Twenty water absorption bands （104—108， 150—
163 and 220） were eliminated. Due to the sensor’s 
low spatial resolution and the high altitude of the im ⁃
aging area， the HSI data exhibit low spatial resolu⁃
tion. This leads to an increased likelihood of mixed 
pixels and higher classification difficulty. The real 
images of this data set include 16 different catego⁃
ries of ground objects， about 66% are crops and 
farmland， and the rest are vegetation. The image 
and detailed category of the HSI are depicted in 
Fig.6 and the Table 1.

（2） University of Pavia： The HSI data set was 
obtained by ROSIS in 2003， and it contained imag⁃
es of the university and surrounding Italian urban ar⁃
eas. Its spatial resolution is high， but its spectral res⁃
olution is low， and it contains a variety of ground 
objects. The data set size is 610×310×115， with 
115 bands， a spatial resolution of 1.3 m， and a spec⁃
tral resolution of 430—860 nm. Twelve bands con⁃
taining water absorption and noise were eliminated 
from the raw data， leaving 103 bands for classifica⁃
tion experiments. The HSI includes nine categories 
of ground objects， including asphalt roads， trees， 
Meadows， gravel， etc. The category information 
for this data set is displayed in Fig.7 and Table 2.

（3） Salinas： The HSI data set was imaged in 
Salinas Valley， California， USA. The HSI and In⁃
dian Pines were also collected in 1998 using the 
AVIRIS imaging spectrometer， which had a high 
spatial resolution and a relatively uniform distribu⁃
tion of ground objects. The data set size is 512×

Fig.6　Indian pine data set category and ground-truth map

Table 1　Number of training and test samples on Indian 
Pines data set

Class
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Total

Name
Alfalfa

Corn⁃notill
Corn⁃mintill

Corn
Grass⁃pasture

Grass⁃trees
Grass⁃pasture⁃mowed

Hay⁃windrowed
Oats

Soybean⁃notill
Soybean⁃mintill
Soybean⁃clean

Wheat
Woods

Buildings⁃grass⁃trees⁃drives
Stone⁃steel⁃towers

Training
5

143
83
24
48
73
3

48
2

97
246
59
21

127
39
9

1 027

Test
41

1 285
747
213
434
657
25

430
18

874
2 209
534
184

1 138
347
84

9 222

Total
46

1 428
830
237
483
730
28

478
20

972
2 455
593
205

1 265
386
93

10 249

Fig.7　University of Pavia data set category and ground-

truth map

Table 2　Number of training and test samples on Univer⁃
sity of Pavia data set

Class
1
2
3
4
5
6
7
8
9

Total

Name
Asphalt

Meadows
Gravel
Trees

Painted metal sheets
Bare soil
Bitumen

Self⁃blocking bricks
Shadows

Training
66

186
21
31
13
50
13
37
9

426

Test
6 565

18 463
2 078
3 033
1 332
4 979
1 317
3 645
938

42 350

Total
6 631

18 649
2 099
3 064
1 345
5 029
1 330
3 682
947

42 776
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217×224， comprising 224 original bands， with a 
spatial resolution of 3.7 m and a spectral range of 
400—2 500 nm. Twenty water absorption bands 
（108—112， 154—167， and 224） were eliminated， 
leaving 204 bands for classification experiments. 
The HSI contains 16 categories， including crops， 
farmland， vegetation， etc. Detailed category and 
ground truth map of this HSI is presented in Fig. 8 
and Table 3.

3. 2 Experiments setup　

A series of experiments were conducted to test 
and evaluate the classification performance of the 
proposed method and comparison methods. All ex⁃
periments were implemented on a computer with a 
2.50 GHz Intel Core i5-12400F CPU with 16 GB of 

RAM and an NVDIA GeForce RTX 3060 GPU. 
The operating system used was Windows 10， and 
the experiments were conducted using the PyTorch 
1.3.0 deep-learning framework and a Python 3.9 
compiler. Moreover， the maximum number of ep⁃
ochs in training phase is set to 100 for Indian Pines 
and Salinas， and 150 for University of Pavia. The 
batch size is set to 128 in the training phase. For the 
three data sets， samples are spilled randomly into 
training set and test set. For Indian Pines 10% of 
the samples are used for training. While 1% of the 
samples are selected randomly for training in the 
case of Salinas and University of Pavia. The de⁃
tailed number of training and test samples for each 
class are listed in Tables 1—3. In following experi⁃
ments， we employ accuracy of each class， overall 
accuracy （OA）， average accuracy （AA）， and kap⁃
pa coefficients as the evaluation metric to quantita⁃
tively evaluate the performance of all methods. We 
make the average of the results obtained from 20 dif⁃
ferent random training sample experiments as the fi⁃
nal experiment results.

3. 3 Ablation study　

Ablation experiments were conducted on three 
HSI datasets in this section to evaluate the perfor⁃
mance of each feature extraction branch in the pro⁃
posed SGCCN. The experiments also assessed their 
performance after incorporating the dynamic atten⁃
tion module. The mean classification results with 
standard variance （in percentage）， including the ac⁃
curacy of each class， OA， AA， and kappa coeffi⁃
cient， are presented in Tables 4—6. The best one is 
shown in bold.

Analysis of individual data sets reveals that the 
classification OA for the spectral band graph convo⁃
lutional network （SGCN） exceeds 80%. For sever⁃
al classes in the Pavia and Salinas data sets， the ac⁃
curacy approaches 100%. This highlights the effica⁃
cy of the newly designed and lightweight SGCN in 
capturing spectral similarity features beneficial for 
classification. Although the SGCN performs not 
well on the Indian Pines data set， which is due to 
the low spatial resolution and uneven sample distri⁃
bution on the data set. Furthermore， the SGCN 
model exhibits minimal variance， indicating a high 

Table 3　Number of training and test samples on Salinas 
data set

Class
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Total

Name
Brocoli_green_weeds_1
Brocoli_green_weeds_2

Fallow
Fallow_rough_plow

Fallow_smooth
Stubble
Celery

Grapes_untrained
Soil_vinyard_develop

Corn_senesced_green_weeds
Lettuce_romaine_4wk
Lettuce_romaine_5wk
Lettuce_romaine_6wk
Lettuce_romaine_7wk

Vineyard_untrained
Vineyard_vertical_trellis

Training
20
37
20
14
27
40
36

113
62
33
11
19
9

11
73
18

543

Test
1 989
3 689
1 956
1 380
2 651
3 919
3 543

11 158
6 141
3 245
1 057
1 908
907

1 059
7 195
1 789

53 586

Total
2 009
3 726
1 976
1 394
2 678
3 959
3 579

11 271
6 203
3 278
1 068
1 927
916

1 070
7 268
1 807

54 129

Fig.8　Salinas data set category and ground-truth map
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degree of stability of our model.
Results indicate that the multi-level convolu⁃

tional network （MLCN） branch attains superior 
classification performance， exemplified by the 
98.11% OA achieved on the Salinas data set. The 
main reason is that the MLCN branch consists four 
feature extraction blocks， which can extract and 
strength spatial context features between samples 
step by step. Additionally， the incorporation of 
DAM enables the MLCN branch to focus on valu⁃
able features， leading to improved accuracy in spe⁃
cific categories. 

Furthermore， the SGCCN combined self-atten⁃

tion feature fusion network to fuse features from 
SGCN-A and A-MLCN achieves the highest classi⁃
fication accuracy for all three data sets. Notably， the 
accuracy for Alfalfa and Corn in the Indian data set 
improves about 5% and reaches 100% and increas⁃
es nearly 50% on Gravel in Pavia data set. The ma⁃
jor reason is that the two types of networks capture 
spectral and spatial information from different di⁃
mension to achieve full utilization of HSI feature in⁃
formation. In conclusion， the combination of these 
two networks， leveraging the strengths of different 
feature categories， leads to improved classification 
accuracy.

Table 4　Overall accuracy, average accuracy and kappa coefficients of ablation experiments on Indian Pines %

Class
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

OA
AA

Kappa

SGCN
11.11±0.07
64.93±0.03
52.21±0.01
21.46±0.04
86.59±0.02
94.93±0.02
69.23±0.03
99.05±0.01
44.44±0.09
63.76±0.03
80.40±0.02
63.97±0.03
90.27±0.03
91.85±0.02
58.08±0.03
82.14±0.02
74.63±0.01
67.15±0.01
70.88±0.01

SGCN⁃A
10.67±0.05
68.67±0.04
55.70±0.02
18.72±0.03
84.32±0.03
92.64±0.01
53.85±0.06
99.76±0.01
22.22±0.10
63.99±0.04
81.76±0.02
62.10±0.03
75.68±0.08
91.42±0.02
55.39±0.02
90.48±0.01
74.91±0.01
64.10±0.02
71.20±0.01

MLCN
95.12±5.78
94.79±0.89
99.73±1.78
94.84±1.93
97.01±0.87

100±0

100±0

100±0

83.33±13.56
97.83±0.76
99.05±0.29
93.26±1.67

100±0

100±0

98.85±3.02
91.67±3.88
97.99±0.46
96.59±1.52
97.71±0.53

A⁃MLCN
100±0

92.76±1.17
100±0

98.12±2.33
98.62±0.66

100±0

100±0

100±0

100±0

99.31±0.98

99.95±1.27

94.19±1.85
98.38±2.22
99.82±0.46
97.12±2.36
90.48±2.83
98.22±0.51
98.04±0.91
97.97±0.58

SGCCN
100±0

99.68±0.52

99.20±0.28
100±0

98.85±0.57

99.39±0.18
100±0

100±0

100±0

98.86±0.35
97.47±0.20
99.43±0.73

99.46±1.23
99.82±0.07
99.14±0.09

96.43±1.31

98.94±0.10

99.13±1.37

98.78±0.12

Table 5　Overall accuracy, average accuracy and kappa coefficients of ablation experiments on University of Pavia   %

Class
1
2
3
4
5
6
7
8
9

OA
AA

Kappa

SGCN
86.34±0.03
93.81±0.01
45.18±0.05
76.91±0.01
98.66±0.01
74.48±0.03
42.22±0.05
68.71±0.06
94.11±0.02
83.18±0.01
75.60±0.01
77.47±0.01

SGCN⁃A
88.69±0.01
93.67±0.01
45.66±0.06
77.73±0.03
98.28±0.01
72.55±0.03
41.61±0.06
67.09±0.05
92.18±0.02
83.13±0.01
75.27±0.01
77.36±0.01

MLCN
84.66±2.02
99.66±0.24

67.42±12.03
87.08±5.42
90.54±2.40

100±0
61.12±10.54
68.12±8.25

39.70±11.28
89.37±1.14
77.59±2.67
85.87±1.52

A⁃MLCN
86.38±3.24
99.87±0.34

56.11±12.26
82.56±2.99
94.52±2.40
98.23±1.74

55.35±16.40
94.21±5.76
60.51±6.43
91.29±1.69
80.86±3.99
88.38±2.27

SGCCN
99.75±0.89
99.94±0.09
99.51±2.87
96.83±0.83

100±0
99.86±0.08
95.49±2.44
97.54±0.57
85.85±5.70
98.95±0.22
97.89±0.67
98.61±0.29
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3. 4 Comparison with state⁃of⁃the⁃art methods

A comparative analysis was conducted to evalu⁃
ate our proposed SGCCN model against several state-

of-the-art methods， including the 2DCNN［30］， the 
3DCNN［60］， the HybridSN［34］， the MiniGCN［44］， the 
MDGCN［45］， the CNN-enhanced GCN （CEGCN）［47］ 
and the HybridFormer［61］. Here， MiniGCN， 
MDGCN and CEGCN are the representative classi⁃
fication methods based on GCN and HybridFormer 
is the latest model based on attention mechanism. 
All the compared methods are designed for HSI 
classification under limited training sample situation. 
For fair comparisons and the best performance， the 
parameter settings of compared methods remained 
consistent with those detailed in the original papers. 
The division of the training and testing sets for all 
classification methods in the subsequent experiments 
are configured identically as listed in Tables 1—3. 
The accuracy of each class， OA， AA， and Kappa 
are employed to evaluate the classification perfor⁃
mance of each method. Comprehensive results， in⁃
cluding mean values and standard variance， for all 
methods on Indian Pines， University of Pavia， and 
Salinas data sets are presented in Tables 7—9 （The 
best one is shown in bold）. Classification maps for 
these data sets are also shown in Figs. 9—11.

Compared with other competitor methods， our 
proposed SGCCN achieves the best classification 

performance. The SGCCN achieves OA and AA 
scores of approximately 99% on the Indian Pines da⁃
ta set. In particular， SGCCN achieves the highest 
classification accuracy of 98.95% and 99.72% with 
only 1% training samples for the University of Pa⁃
via and Salinas data sets. These results demonstrate 
that SGCCN outperforms other methods. What 
stands out in this result is that the SGCCN achieves 
the highest accuracy in most categories across the 
three data sets. Especially， SGCCN achieves 100% 
accuracy in the Corn category for Indian Pines and 
in Fallow， Celery， Vineyard_untrained and Vine⁃
yard_vertical_trellis categories for Salinas. This can 
be attributed to the design of our proposed 
SGCCN， which incorporates an SGCN-A based on 
spectral band graph structure construction to extract 
spectral similarity features. This allows for the exca⁃
vation of intrinsic connections between the spectrum 
of HSI， leading to enhanced computational efficien⁃
cy. Then， the joint application of SGCN-A and A-

MLCN allows the model to extract more unseen 
complementary spectral-spatial relations， facilitat⁃
ing the identification of challenging categories. Addi⁃
tionally， the SGCCN outperforms other spatial-
based GCN methods and the joint CNN HybridSN 
method. The major reason is that the SGCN-A 
treats each band frame of HSI as a vertex to con⁃

Table 6　Overall accuracy, average accuracy and kappa coefficients of ablation experiments on Salinas %
Class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

OA
AA

Kappa

SGCN
99.90±0.01
98.45±0.01
97.79±0.02
80.15±0.03
96.03±0.02
99.64±0.01
99.60±0.01
87.24±0.02
99.70±0.01
96.01±0.01
93.19±0.02
84.31±0.03
88.09±0.06
92.73±0.04
51.33±0.04
98.43±0.01
88.48±0.01
91.42±0.01
87.13±0.01

SGCN⁃A
99.25±0.01
99.57±0.01
96.82±0.01
79.08±0.04
96.64±0.02
99.67±0.01
99.75±0.01
86.63±0.02
99.59±0.01
95.74±0.01
92.24±0.01
91.32±0.02
93.38±0.10
79.13±0.04
54.46±0.05
98.88±0.01
88.84±0.01
91.38±0.01
87.54±0.01

MLCN
99.95±1.48

100±0
98.67±0.75
94.13±2.42
99.13±0.78

100±0
100±0

97.17±0.94
100±0
100±0

86.66±3.78
98.32±2.57
90.96±5.83
99.43±1.51

95.73±10.67
100±0

98.11±1.60
97.51±1.13
97.89±1.79

A⁃MLCN
99.75±2.48

100±0
99.49±1.56
97.61±1.64
87.74±2.72
99.44±0.18
99.10±0.85
96.07±1.25

100±0
96.52±1.01
99.24±3.28
97.12±3.22
93.16±2.00
92.82±1.75
99.19±6.07

100±0
97.69±0.85
97.33±0.60
97.43±0.95

SGCCN
99.90±0.01

100±0
100±0

98.78±0.07
99.77±1.11

100±0
100±0

99.08±0.17
99.98±0.01
99.57±0.01
99.91±0.34
99.90±3.44
99.89±0.35
99.90±0.44

100±0
100±0

99.72±0.18
99.53±0.23
99.69±0.20
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Table 8　Classification results of different methods on University of Pavia %
Class

1
2
3
4
5
6
7
8
9

OA
AA

Kappa

2DCNN
91.30±0.12
93.71±0.04
61.92±0.36
89.28±0.06

100±0
81.29±0.12
81.89±0.31
72.65±0.24
96.80±0.18
88.26±0.04
83.92±0.05
84.28±0.05

3DCNN
89.59±1.19
91.97±0.89
75.88±3.84
94.55±2.00
96.91±1.21
84.12±3.54
82.69±3.04
84.42±1.86
91.55±1.76
87.51±0.82
85.51±1.28
83.63±1.02

HybridSN
95.27±3.94
99.29±1.38
91.77±5.32
85.38±4.74
97.35±2.68
95.17±6.24
97.96±4.85
87.54±3.29
77.74±9.89
95.13±0.91
91.62±1.41
93.53±1.22

MiniGCN
96.99±0.01
94.50±0.01
84.27±0.03
85.89±0.01
99.73±0.01
92.04±0.01
74.61±0.04
69.78±0.03
94.70±0.01
90.21±0.01
88.06±0.01
86.77±0.01

MDGCN
59.37±0.06
78.61±0.03
77.48±0.02
73.47±0.03
95.67±0.02
80.76±0.02
78.92±0.04
43.78±0.06
67.94±0.03
72.77±0.03
72.89±0.02
65.36±0.03

CEGCN
96.41±0.02
95.95±0.08
89.43±0.07
94.56±0.01
98.01±0.02
92.06±0.06
90.51±0.09
94.87±0.03
84.17±0.11
94.68±0.03
92.89±0.12
93.01±0.04

HybridFormer
98.67±1.49
98.85±0.11

94.21±25.86
96.93±1.01
99.72±0.04
99.49±0.19
98.51±7.63
95.79±7.28
98.11±0.48
97.91±0.87
97.82±0.73
97.24±1.49

SGCCN
99.75±0.89
99.94±0.09
99.51±2.87
96.83±0.83

100±0
99.86±0.08
95.49±2.44
97.54±0.57
85.85±5.70
98.95±0.22
97.89±0.67
98.61±0.29

Table 9　Classification results of different methods on Salinas %
Class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

OA
AA

Kappa

2DCNN
99.92±0.02
99.96±0.02
99.21±0.01
98.25±0.17
97.50±0.04

100±0
99.77±0.01
84.52±0.17
99.30±0.01
96.54±0.06
98.33±0.15
99.04±0.06
92.20±1.42
93.60±0.13
77.81±0.22
99.41±0.03
92.92±0.03
95.94±0.08
92.13±0.04

3DCNN
96.73±0.47
99.05±0.31
97.47±0.89
98.58±1.12
98.66±0.97
98.26±1.07
98.47±0.75
86.77±5.37
98.99±0.30
93.15±2.36
94.30±0.92
97.73±1.46
97.30±1.89
96.89±2.67
78.33±7.78
76.45±1.65
91.48±1.78
93.67±0.90
90.53±1.96

HybridSN
99.97±0.05

100±0
99.97±0.08
96.38±2.72
98.12±1.35
99.68±0.94
99.96±0.08
98.80±1.32
99.99±0.03
99.16±0.51
96.77±2.43
97.86±3.34
98.53±1.30
99.11±1.07
96.32±5.28
99.94±0017
98.81±0.76
98.79±0.51
98.67±0.85

MiniGCN
99.80±0.01
99.79±0.01
99.33±0.01
97.60±0.01
88.66±0.04
99.95±0.01
99.21±0.01
78.08±0.01
99.49±0.01
88.29±0.02
82.50±0.04
96.67±0.01
93.61±0.01
99.51±0.01
71.57±0.04
99.29±0.01
89.54±0.01
93.33±0.01
88.36±0.01

MDGCN
88.83±0.09
95.83±0.02
92.70±0.08
94.35±0.03
63.67±0.10
93.08±0.08
80.73±0.10
69.21±0.24
88.74±0.05
88.98±0.12
87.28±0.08
92.30±0.05
77.77±0.01
80.48±0.02
81.86±0.06
96.45±0.06
83.08±0.07
85.77±0.05
81.30±0.07

CEGCN
92.89±0.09
94.77±0.06
93.93±0.06
94.18±0.02
86.89±0.07
96.42±0.03
94.32±0.03
78.26±0.15
88.69±0.08
97.49±0.01
81.55±0.21
98.54±0.02
83.71±0.18
86.93±0.06
74.66±0.15
91.54±0.04
87.11±0.03
89.67±0.02
85.70±0.03

SGCCN
99.90±0.01

100±0
100±0

98.78±0.07
99.77±1.11

100±0
100±0

99.08±0.17
99.98±0.01
99.57±0.01
99.91±0.34
99.90±3.44
99.89±0.35
99.90±0.44

100±0
100±0

99.72±0.18
99.53±0.23
99.69±0.20

Table 7　Classification results of different methods on Indian Pines %
Class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

OA
AA

Kappa

2DCNN
49.12±1.56
68.97±0.53
67.78±0.38
53.37±0.90
93.57±0.31
97.20±0.30
76.19±1.2

95.76±0.01
90.91±6.49
70.02±0.25
76.97±0.24
68.10±1.47
99.46±0.16
94.62±0.12
82.72±0.59
97.11±0.02
79.63±0.17
77.49±0.35
76.75±0.19

3DCNN
75.99±12.19
88.10±2.62
78.34±7.18
78.51±7.38
89.16±2.95
97.10±1.36

68.38±20.96
96.93±1.45

64.36±19.49
81.13±5.84
87.56±3.22
80.52±6.13
98.52±1.44
96.42±0.69
73.42±2.28

89.01±14.73
86.60±2.70
81.08±4.29
84.70±3.13

HybridSN
96.10±3.48
94.79±1.21
98.86±1.28
93.99±4.04
97.68±1.5

98.69±0.59
100±0

99.95±0.09
83.89±13.02
98.80±0.90
99.32±0.65
93.48±3.60
99.24±0.69
99.70±0.21
98.56±1.58
93.45±4.77
97.97±0.41
96.65±1.00
97.68±0.47

MiniGCN
71.66±0.06
84.92±0.03
75.98±0.03
76.51±0.05
88.88±0.03
90.26±0.02
85.44±0.05
95.10±0.01
79.00±0.11
83.30±0.03
86.17±0.02
87.64±0.02
84.75±0.05
96.28±0.01
80.56±0.02
93.60±0.04
86.48±0.01
85.06±0.01
84.56±0.01

MDGCN
93.75±0

92.63±0.01
93.12±0.01
96.14±0.01
96.03±0.01
97.43±0.01
69.23±0.01
97.99±0.01

100±0
84.39±0.01
94.93±0.01
90.05±0.02

100±0
99.35±0.01
98.88±0.01
98.41±0.01
94.34±0.01
93.90±0.01
93.51±0.01

CEGCN
50.69±0.42
90.06±0.08
98.21±0.02
82.82±0.14
98.55±0.01
97.28±0.02
27.87±0.35
89.76±0.15

0±0
97.52±0.02
92.79±0.03
98.33±0.02
77.65±0.34
92.23±0.14
77.75±37

97.83±0.03
92.40±0.03
79.33±0.08
91.36±0.04

HybridFormer
97.21±11.35
97.31±6.18
98.24±0.97
96.98±1.67
97.84±1.81
99.19±0.46
98.42±9.86
99.65±0.34
95.71±7.91
96.04±13.8
98.32±2.97
96.91±0.72
99.39±0.62
99.70±0.04
98.67±0.55
95.52±0.56
98.12±1.41
98.04±0.56
97.86±1.82

SGCCN
100±0

99.68±0.52
99.20±0.28

100±0
98.85±0.57
99.39±0.18

100±0
100±0
100±0

98.86±0.35
97.47±0.20
99.43±0.73
99.46±1.23
99.82±0.07
99.14±0.09
96.43±1.31
98.94±0.10
99.13±1.37
98.78±0.12
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struct HSI graph data. This approach extracts spec⁃
tral features while preserving pixel-level， fine-

grained spatial-spectral information. While subgraph 
represents local region information or superpixel 
graph ignores detailed spatial information， resulting 
less effective in capturing detailed features on com ⁃
plex distribution data sets. Despite HybridSN also 
adopts the hybrid CNN， the ability in modeling 
channel spectral relations between any vertex of 
SGCN-A outperforms CNNs that can only extract 
information in a local region. Furthermore， the accu⁃
racy for each category， OA， AA and Kappa of the 
SGCCN exhibit relatively small variance， indicating 
a high degree of stability in the classification out⁃
comes. This verifies the efficiency and superiority of 
our classification network.

Upon inspecting the classification maps of each 
classification method on the three data sets， as pre⁃
sented in Figs.9—11. It is evident that the classifica⁃
tion maps of 2DCNN， 3DCNN， and MiniGCN 
contain pepper noise. In contrast， the maps obtained 

by MDGCN and CEGCN show jagged boundaries 
and large areas of window-level misclassifications. 
Although HybridSN and HybridFormer acquire rela⁃
tively accurate classification maps， they still have 
classification errors in the boundary area. The classi⁃
fication maps demonstrate the superior performance 
of SGCCN， characterized by smoother boundaries 
and accurate pixel-level maps. This could be attrib⁃
uted to the effective feature fusion network， which 
introduces an attention mechanism to adjust weights 
for more valuable information. It also employs multi⁃
ple fusion processes to combine complex relational 
features from diverse layers.

In summary， the proposed SGCCN integrates 
global spectral features and local spatial features de⁃
rived from SGCN-A and A-MLCN. By emphasiz⁃
ing fused features through attention modules， 
SGCCN demonstrates superior classification perfor⁃
mance. It also shows greater robustness across vari⁃
ous HSI data sets compared with other advanced 
classification methods.

Fig.9　Ground truth and classification maps acquired by different methods on Indian Pines

Fig.10　Ground truth and classification maps acquired by different methods on University of Pavia

Fig.11　Ground truth and classification maps acquired by different methods on Salinas
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3. 5 Effect of the training sample rate　

To analyze the impact of the training sample 
rate， experiments are conducted for various classifi⁃
cation methods on the three data sets， and the results 
are shown in Fig. 12. Notably， the abscissas of （b） 
and （c） in Fig.12 adopt a non-arithmetic progression 
distribution. This is because in the key low-propor⁃
tion interval with scarce training samples， model per⁃
formance fluctuates significantly. Dense sampling in 
this interval can accurately capture performance vari⁃
ations. As the number of training samples increases， 
model performance gradually stabilizes. A larger 
step size is therefore adopted to reduce redundant ex⁃
perimental points， optimizing data presentation effi⁃
ciency while ensuring the integrity of the perfor⁃
mance trend. In the following experiments， the se⁃
lected training samples per class range from 2% to 
12% in steps of 1% for the Indian Pines data set. 
For the Pavia and Salinas data sets， the training 
samples per class are set as 0.1%， 0.2%， 0.3%， 
0.4%， 0.5%， 0.8%， 1%， 1.25% and 1.5%.

As is evident， the proposed SGCCN consis⁃
tently achieves the highest classification accuracy on 
all three data sets， particularly in scenarios with few⁃
er training samples. The SGCCN achieves an accu⁃
racy of 90% with only 2% training samples on the 
Indian Pines data set. It surpasses other methods by 
more than 10% with only 0.1% training samples on 
the University of Pavia data set. On the Salinas data 
set， SGCCN consistently outperforms most meth⁃
ods by at least 5% in OA under varying training 
sample rates. The main reason is that SGCCN em ⁃
ploys a dual-branch feature extraction network. It 
extracts spectral similarity of any band and local con⁃
text information for every neighboring patch， which 
comprehensively utilizes global and local feature in⁃
formation of the HSI. Although HybridSN and Hy⁃
bridFormer achieve relatively high accuracy with 
more training samples， the limitation of CNNs in 
extracting information only from local regions re⁃
stricts their performance. This issue is particularly 
evident in complex data sets， such as Pavia， and in 
small-sample scenarios. In summary， experimental 
results validate the superior learning ability of our 
proposed SGCCN method. Its classification perfor⁃

mance is particularly strong under conditions of lim ⁃
ited training samples.

3. 6 Comparison of training time and test time　

To further assess the performance of this pro⁃
posed SGCCN model， the training time and test 
time of different methods on the three HSI data sets 
are compared in Table 10. All experiments are con⁃
ducted on the same computer.

As evident from the table， our novel SGCCN 
requires less computational time than other GCN-

based classification methods. This is mainly due to 
that we construct a graph from the channel dimen⁃
sion and design an efficient channel graph convolu⁃
tional network. Additionally， the feature extraction 
network with dynamic attention module yields fewer 

Fig.12　OA under different training sample rates on three 
data sets
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parameters to compute， which improves computa⁃
tional efficiency and classification accuracy. The lon⁃
ger training time compared with CNN-based meth⁃
ods is attributed to SGCCN creating neighboring 
patches for each pixel to extract local context fea⁃
tures. It also incorporates an additional spectral simi⁃
larity feature extraction branch， which adds to the 
computational cost. In addition， CNN-based meth⁃
ods are not always the fastest on different data sets. 
On the Indian Pines and Salinas data sets， the 
SGCCN outperforms the 3DCNN， which indicates 
higher classification ability and robustness on vari⁃
ous data sets. Considering the complexity and classi⁃
fication accuracy of networks， all these results dem ⁃
onstrate that the proposed SGCCN performs rela⁃
tively better and costs less computational time.

4 Conclusions 

We propose an innovative HSI classification 
method and the SGCCN model， which combines 
the advantages of spectral band graph convolutional 
networks with attention and attention-enhanced 
multi-level CNN. The model also incorporates a 
self-attention feature fusion network to effectively 
extract both spectral and spatial features of the HSI. 
Our model constructs a novel spectral band graph 
structure by treating each band of the HSI as a ver⁃
tex of the graph， which significantly improves com ⁃
putational efficiency. The SGCN-A enhances the 
expressive ability of features by lightweight spectral 
band graph convolutions. At the same time， the A-

MLCN branch in the model focuses on local spatial 
information to supplement the spectral features. It 
enhances classification accuracy through a multi-lev⁃
el convolutional network. The dynamic attention al⁃

so plays a huge role in extracting key features.
After a series of experimental verifications， 

SGCCN has achieved excellent classification results 
on multiple standard HSI data sets， surpassing vari⁃
ous existing advanced methods. Especially when the 
number of samples is limited， SGCCN exhibits ex⁃
cellent learning ability and robustness. Further⁃
more， our model reduces the computational time re⁃
quired for training and testing. It maintains high clas⁃
sification accuracy， demonstrating its potential and 
efficiency in practical applications.

In future research， we plan to further explore 
and optimize the SGCCN model from the improve⁃
ment of feature fusion and model generalization abili⁃
ty. We will research more advanced feature fusion 
technology to more effectively integrate features 
from different network branches and further improve 
classification accuracy. Introducing more types of at⁃
tention mechanisms and regularization techniques is 
another direction to improve the model’s generaliza⁃
tion ability on unseen data. This allows the model to 
adapt to more diverse HSI data sets. Through these 
future research directions， we expect that the 
SGCCN model will not only achieve greater break⁃
throughs in the field of HSI classification.
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基于谱段图卷积与注意力增强卷积联合网络的高光谱

图像分类方法

徐陈捷， 李 丹， 孔繁锵
（南京航空航天大学航天学院，南京  211106，中国）

摘要：高光谱图像（HSI）分类对于众多遥感应用至关重要。传统的深度学习方法可能会丢失像元间上下文信息，

从而导致分类效果不佳。本文介绍了谱段图卷积与注意力增强卷积联合网络（SGCCN），这是一种利用谱段图

卷积来捕获高光谱图像的长程全局特征利用注意力增强多级卷积的局部感知来获取局部空间特征并采用动态

注意力机制来增强特征提取的新方法。SGCCN 通过自注意力融合网络集成光谱和空间特征，显著提高了分类

精度和效率。通过实验证明了本文方法在处理与高光谱图像分类任务中的有效性。

关键词：高光谱图像分类；谱段图卷积；注意力增强卷积；动态注意力；特征提取；特征融合
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