
Nov. 2025 Vol. 42 No. STransactions of Nanjing University of Aeronautics and Astronautics

Research on Forward Position Solutions of Triangular 
Platform Stewart‑Type Parallel Robot

LI Sa1， YOU Jingjing1，2*， WEN Wanghu1， HUANG Ningning1， LI Chenggang3

1. College of Mechanical and Electronic Engineering， Nanjing Forestry University，Nanjing 210037， P. R. China；
2. State Key Laboratory of Mechanical Transmission for Advanced Equipment， Chongqing University， 

Chongqing 400044， P. R. China；
3. School of Mechanical and Electrical Engineering， Nanjing University of Aeronautics and Astronautics， 

Nanjing 210016， P. R. China

（Received 20 June 2025； revised 30 August 2025； accepted 10 September 2025）

Abstract: This study presents a novel analytical algorithm for solving the forward position problem of a triangular 
platform Stewart-type parallel robot （STPR）. By introducing a virtual chain and leveraging tetrahedral geometric 
principles， the proposed method derives analytical solutions for the position and orientation of the moving platform. 
The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms， 
providing explicit expressions for the coordinates of key moving attachment points. Furthermore， the methodology is 
extended to general triangular platform STPRs with non-coplanar fixed attachments. Numerical validation through 
virtual experiments confirms the accuracy of the solutions， demonstrating that the mechanism admits eight distinct 
configurations for a given set of limb lengths. The results align with established kinematic principles and offer a 
computationally efficient alternative to iterative analytical approaches， contributing to the advancement of precision 
control in parallel robotic systems.
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0 Introduction 

The earliest parallel robot emerged in the 
1930s when Gwinnett proposed a spherical parallel 
mechanism for entertainment applications［1］. A land‑
mark theoretical study in parallel robotics was con‑
ducted by Stewart in 1965［2］， which attracted sub‑
stantial academic attention and established Stewart’s 
pioneering status in this field. Since then， Stewart-
type parallel robots （STPRs） have become a pre‑
dominant research focus worldwide. These robots 
have gained particular prominence due to their ex‑
ceptional stiffness， remarkable load-bearing capaci‑
ty， and minimal error accumulation［3］. STPRs have 
found extensive applications in parallel kinematic 

machines［4］， medical instrumentation［5］， and six-ax‑
is accelerometers［6］. Furthermore， specialized con‑
figurations of parallel robots can be optimally de‑
signed to fulfill diverse operational requirements［7-9］.

From a structural topology perspective， 
STPRs can be classified into two primary configura‑
tions： The platform-type and the in-parallel robots. 
The in-parallel robot exhibits a distinct structural ad‑
vantage over the platform-type configuration， as its 
attachment points on both the moving and fixed plat‑
forms can be spatially distributed in arbitrary three-

dimensional arrangements without being constrained 
to a common plane.

The “100 Interdisciplinary Scientific Challeng‑
es in the 21st Century” explicitly identifies the for‑
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ward position solution problem （also known as the 
direct kinematics problem） of STPRs as one of the 
most fundamental challenges in mechanism science. 
This problem is widely recognized as the “Mount 
Everest” of parallel robotics research and remains a 
critical focus for scholars. Research on forward posi‑
tion solutions contributes significantly to addressing 
key robotic performance metrics such as operational 
accuracy and efficiency.

Current methods for solving forward position 
solutions of parallel robots can be primarily catego‑
rized into two classes： Numerical methods and ana‑
lytical methods［10-11］. Numerical approaches typically 
employ iterative approximation techniques such as 
Newton-Raphson or quasi-Newton methods. Ana‑
lytical methods rely on various elimination tech‑
niques to ultimately reduce the forward position so‑
lutions problem to a univariate high-order polynomi‑
al equation［12-13］. However， not all in-parallel six-de‑
gree-of-freedom （6-DoF） parallel robots possess an‑
alytical solutions. Even for those configurations that 
do admit analytical solutions， the derivation process‑
es are often prohibitively complex， requiring sophis‑
ticated mathematical techniques that hinder algorith‑
mic generalization. Furthermore， the resulting uni‑
variate polynomial equations typically remain of 
high degree， necessitating numerical methods for fi‑
nal resolution： A process that inevitably impacts 
computational precision and stability［14-15］.

The forward position solution algorithm pro‑
posed in this work introduces a virtual kinematic 
chain to the parallel robot architecture. Based on tet‑
rahedral geometry principles， this approach enables 
complete determination of all possible position solu‑
tions. A comprehensive literature review［16］ reveals 
that the complex architecture of parallel robots intro‑
duces strong coupling and nonlinearity in the moving 
platform’s positional dynamics， rendering their for‑
ward position solutions particularly challenging to ob‑
tain. Current computational approaches for these so‑
lutions demonstrate limited efficiency. Shen et al.［17］ 
established a correlation between the forward kine‑
matics complexity of parallel robots and their cou‑
pling indices，specifically， higher coupling degrees 
correspond to greater solution difficulty， while low‑

er coupling degrees facilitate the solution process.
Li et al.［18］ presented a synthesized 6-DoF parallel 
mechanism with analytical forward position solu‑
tions. This paper conducts an in-depth investigation 
of its forward position solutions by exploiting the 
mechanism’s inherent geometric constraints， 
through which the complete analytical expressions 
for the position solutions are rigorously derived.

1 Structural Model 

The structural model of the triangular platform 
STPR is illustrated in Fig.1. It consists of a moving 
platform， a fixed platform， six driving limbs， and 
attachment points. The moving and fixed platforms 
are similar triangular platforms. A triple compound 
hinge is mounted at one vertex of the moving plat‑
form， while a double compound hinge is mounted at 
one vertex of the fixed platform. The remaining at‑
tachment points are distributed along the edges of 
the triangular platforms and connected to the plat‑
forms via the driving limbs. The moving platform is 
an isosceles right triangle with a hypotenuse of 
length 2n， whereas the fixed platform is an isosceles 
right triangle with a hypotenuse of length 4n.

As illustrated in Fig.2， a double‑compound 
hinge is proposed to mitigate kinematic coupling ef‑
fects. The hinge comprises two concentrically nest‑
ed joint assemblies：

（1）Outermost joint assembly. Structural ele‑
ments include primary cylindrical housing， radial 
fork， and Type-Ⅰ U-link.

（2）Innermost joint assembly. Structural ele‑
ments include tertiary cylindrical housing and central 
fork.

All assemblies feature three orthogonal revo‑

Fig.1　Structural model of the triangular platform STPR
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lute axes that concurrently intersect at a fixed spatial 
point.

As illustrated in Fig.3， a triple-compound 
hinge is proposed to mitigate kinematic coupling ef‑
fects. The hinge comprises three concentrically nest‑
ed joint assemblies：

（1）Outermost joint assembly. Structural ele‑
ments include primary cylindrical housing， radial 
fork， and Type-Ⅰ U-link.

（2）Intermediate joint assembly. Structural ele‑
ments include secondary cylindrical housing， axial 
fork， and Type-Ⅱ U-link.

（3）Innermost joint assembly. Structural ele‑
ments include tertiary cylindrical housing and central 
fork.

All assemblies feature three orthogonal revo‑
lute axes that concurrently intersect at a fixed spatial 
point.

2 Positive Solution Algorithm 

In spatial geometry， tetrahedron positioning 
can be achieved through distance constraints： Given 
the coordinates of three vertices， the spatial position 
of the fourth vertex can be uniquely determined by 
establishing equation systems using explicit pairwise 
distance relationships. Specifically， the fourth ver‑
tex coordinates are constrained by three distance 
equations， and solving this equation system yields 

either a unique solution or symmetric solutions. 
This fundamental principle can be extended to the 
kinematic analysis of parallel robots. When provided 
with the robot’s structural parameters and the limb 
lengths， which are functionally equivalent to tetrahe‑
dral edge length constraints， the spatial positions of 
moving attachment points （geometrically analogous 
to the fourth vertex of a tetrahedron） can be precise‑
ly determined through analytical solutions.

Therefore， this paper proposes a novel and effi‑
cient forward kinematics solution method. Based on 
the tetrahedral principle， only a virtual limb needs 
to be introduced to obtain all analytical-form posi‑
tion solutions of the parallel robot. The solution pro‑
cedure is illustrated in Fig.4.

2. 1 Triangular platform STPR　

The fixed coordinate frame o-xyz is established 
on the fixed platform， with its origin located at the 
midpoint of the centerline along the hypotenuse of 
the platform. Similarly， the moving coordinate 
frame g-muv is defined on the moving platform， 
originating at the midpoint of its hypotenuse center‑
line， as illustrated in Fig.5.

The centers of the fixed attachment points are 
denoted as A1—A5， the centers of the moving at‑
tachment points are denoted as B2—B5， and the 
lengths of the six driving limbs are denoted as l1—l6. 
The coordinates of B2， B5， and B4 are denoted as 

Fig.2　Double-compound hinge

Fig.3　Triple-compound hinge

Fig.4　Flow chart of forward kinematics solution algorithm

Fig.5　Sketch of the triangular platform STPR
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（x，y，z）T， （u，v，w）T， and （r，s，t）T， respectively.
Since attachment points A1， A3， and B3 can be 

arbitrarily positioned on edges A2A5， A2A4， B4B5， 
respectively， the lengths of A1A2， A2A3， and B3B4 
can be respectively denoted as

|| A 1A 2

|| A 2A 5
= λ1 ,

|| A 2A 3

|| A 2A 4
= λ2 ,

|| B 3B 4

|| B 4B 5
= λ3

In the subsequent analysis， for computational 
convenience， the moving and fixed platforms are 
modeled as isosceles right triangles with hypotenuse 
lengths of 2n and 4n， respectively. Additionally， 
λ1= λ2= λ3=0.5， indicating that the three attach‑
ment points A1， A3 and B3 are located at the mid‑
points of their respective edges.

The coordinates of the five fixed attachment 
points in o-xyz are

( A 1,A 2,A 3,A 4,A 5 ) = ( )-n -2n 0 2n 0
0 -n -n -n n
0 0 0 0 0

(1)
Extract the 1st tetrahedron B2-A1-A2-A3 from 

Fig.5（b）， as shown in Fig.6.

There exists a system of constraint equations，
shown as

ì

í

î

ïïïï

ïïïï

 A 1 - B 2 = l1

 A 2 - B 2 = l2

 A 3 - B 2 = l3

(2)

where  •  denotes the paradigm of the vector.
Substitute Eq.（1） into Eq.（2） and expand as

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

( x + n )2 + y 2 + z2 = l 2
1

( )x + 2n
2 + ( )y + n

2
+ z2 = l 2

2

x2 + ( )y + n
2
+ z2 = l 2

3

(3)

Solving Eq.（3） yields the coordinates of B2，

shown as

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

x = l 2
2 - l 2

3

4n
- n

y = -2l 2
1 + l 2

2 + l 2
3

4n
- n

z = ± b̄2

2 2 n

(4)

where b̄2=

2l 2
1 - l 2

1 + l 2
2 + l 2

3 - l 4
2 - l 4

3 + 4n2( )l 2
2 + l 2

3 - 2n2 .
Plane 1 （A4-B5-B4-B3） is extracted from 

Fig.5（b）， as shown in Fig.7.

There exists a relational equation. For 
ΔB 3B 4A 4， it is shown as

cos θ =
l 2

4 + 1
2 n2 - l 2

5

2 l4 n
(5)

And for ΔB 5B 4A 4，it is shown as

cos θ = l 2
4 + 2n2 - l 2

7

2 2 l4 n
(6)

By associating Eq.（5） with Eq.（6）， the length 
of the virtual limb A4B5 can be solved as

l7 = n2 - l 2
4 + 2l 2

5 (7)
The 2nd tetrahedron（B5-B2-A5-A4） is extracted 

from Fig.5（b）， as shown in Fig.8.

There exists a system of constraint equations，
shown as

ì

í

î

ïïïï

ï
ïï
ï

 B 5 - B 2 = 2 n
 B 5 - A 5 = l6

 B 5 - A 4 = l7

(8)

Fig.6　Schematic diagram of tetrahedron 1

Fig.7　Schematic diagram of plane 1

Fig.8　Schematic diagram of tetrahedron 2
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Substitute Eq.（1） into Eq.（8） and expand as
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

( )u - x
2 + ( )v - y

2
+ ( )w - z

2 = 2n2

u2 + ( )v - n
2 + w 2 = l 2

6

( )u - 2n
2 + ( )v + n

2 + w 2 = l 2
7

(9)

Solving Eq.（9） yields the coordinates of B5，

shown as
ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

u = -b1 c1 + d 1 ± D̄ 2

D̄ 1

v = b1 c2 + d 2 ± D̄ 2

D̄ 1

w = b2 ± D̄ 2 ( n - x - y )
D̄ 1 z

(10)

where D̄ 1=4n2（（-n+x+y）2+2z2）； b1=n（n-
x-y）； c1=l7

2（n-y）+l6
2（n+y）+2n（-5n2+

2ny+x2+y2）； d1=nz2（l6
2-l7

2+2n（3n+y+x））； 
c2=6n3-l7

2x+4n2+l6
2（-2n+x）-2n（x2+y2）；d2=

nz2（-l6
2+l7

2）+2n（-n+y+x）； b2=-12n4z2-
8n3xz2-nz2（l6

2-l7
2）（x-y）+n2z2（3l6

2+l7
2+4（x2+

y2+z2））； and D̄ 2 is an analytic equation on x， y， z， 
n， l6， and l7.

The 3rd tetrahedron （B2-B4-B5-A4） is extracted 

from Fig.5（b）， as shown in Fig.9.

There exists a system of constraint equations，
shown as

ì

í

î

ïïïï

ï
ïï
ï

 B 4 - A 4 = l4

 B 4 - B 2 = 2n

 B 4 - B 5 = 2 n

(11)

Substitute Eq.（1） into Eq.（11） and expand as
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

( )r - 2n
2 + ( )s + n

2 + t 2 = l 2
4

( )r - x
2 + ( )s - y

2
+ ( )t - z

2 = 4n2

( )r - u
2 + ( )s - v

2 + ( )t - w
2 = 2n2

(12)

Solving Eq.（12） yields the coordinates of B4，

shown as
ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

r = E 1 + n2 p1 - np2 ∓ D̄ 4

D̄ 3

s = E 2 + n4 p3 + n3 p4 + n2 p5 ± D̄ 4 (-2nw + wx + 2nz - uz )
D̄ 3

t = E 3 + n3 p6 + n2 p7 + n4 p8 + np9 ± D̄ 4 ( nu + 2nv - nx - vx - 2ny + uy )
D̄ 3

(13)

where D̄ 3=2（u2y2+w2（x2+y2）+n2（（u+2v-x-
2y）2+5（w-z）2）-2uwxz+u2z2-2vy（ux+wz）+ 
v2（x2+z2）+2n（-2v2x+u2y-w（2x-y）+w（w-
z）+v（x2+2xy-wz+z2）-u（v（x-2y）+y（x+
2y） +2z（-w+z）））； p3=-w （9u2+9w2+
2u（9v-8x-13y）-2v（5x+4y）+（x+2y）（7x+
4y））+z（9u2-8v2+25w2+2u（7v-8x-11y）+ 
7x（x+2y）+v（ -6x+8y））-23wz2+7z3； p8=
（w-z）（9vw+5w（2x+y）+7z（-3v-2x+y）+ 
u（-18w+22z）； D̄ 4， E1， E2， E3 are analytic equa‑
tions with respect to u， v， w， x， y， z， l4， and n； 
and p1， p2， p4， p5， p6， p7， p9 are analytic equations 
with respect to u， v， w， x， y， z， and n.

The fixed coordinate frame and the moving 
platform are extracted from Fig.5， as shown in 
Fig.10.

The coordinates of g in the fixed coordinate 
frame can be found from the positional relationship 
between B2， B4， and B5 on the moving platform， 
shown as

g= 1
4 ( B 2 + B 4 )+ 1

2 B 5 (14)

Within the moving coordinate frame， B3 is posi‑

Fig.9　Schematic diagram of tetrahedron 3

Fig.10　Partial schematic diagram of moving platform
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tioned at the terminus of the m-axis， B5 lies at the 
extremity of the u-axis， and point g coincides with 
the frame origin. The coordinates of B3， B5， and g 
in the fixed coordinate frame o-xyz are B 3 =

( u + r
2 ，

v + s
2 ，

w + t
2 ) T

， g=（x1， y1， z1）， B 5 =

( u，v，w ) T
， and the corresponding vectors for the m-

axis， u-axis， and v-axis of the moving platform’s 
coordinate frame g-muv are denoted as α=

( αx，αy，αz )
T
， β=( βx，βy，βz )

T
， and γ=( γx，γy，γz )

T
.

Then， α， β， and γ are obtained after express‑
ing them in terms of the coordinates of the points 
B3， B5， and g， shown as

α= B 3 - g (15)
β= B 5 - g (16)
γ= α× β (17)

So， the rotation matrix R of g-muv with re‑
spect to o-xyz can be expressed as

R= [ α β γ ] =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú
úú
ú

ú

ú

úαx βx γx

αy βy γy

αz βz γz

(18)

2. 2 General triangular platform STPR　

In the following content， the proposed method 
is extended to the general triangular platform 
STPRs where the fixed attachment points on the 
fixed platform are non-coplanar， as shown in Fig.11.

The coordinates of the five fixed attachment 
points in o-xyz are
( A 1,A 2,A 3,A 4,A 5 ) =

( )-n -2n 0 2n 0
0 -n -n -n n
0 -0.1n -0.3n -0.4n -0.2n

(19)

Extract the 1st tetrahedron B2-A1-A2-A3 from 
Fig.11（b）， substitute Eq.（19） into Eq.（2） and ex‑

pand as
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

( x + n )2 + y 2 + z2 = l 2
1

( )x + 2n
2 + ( )y + n

2
+ ( )z + 0.1n

2 = l 2
2

x2 + ( )y + n
2
+ ( )z + 0.3n

2 = l 2
3

(20)

Plane 1 A4-B5-B4-B3 is extracted from 
Fig.11（b）， and the length of the virtual limb A4B5 ，
i.e. l7， can be solved by Eq.（7）.

The 2nd tetrahedron B5-B2-A5-A4， extracted 
from Fig.11（b）， substitutes Eq.（19） into Eq.（8） 
and can be expanded as

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

( )u - x
2 + ( )v - y

2
+ ( )w - z

2 = 2n2

u2 + ( )v - n
2 + ( )w + 0.2n

2 = l 2
6

( )u - 2n
2 + ( )v + n

2 + ( )w + 0.4n
2 = l 2

7

(21)

The 3rd tetrahedron B2-B4-B5-A4， extracted 
from Fig.11（b）， substitutes Eq.（19） into Eq.（11） 
and can be expanded as

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

( )r - 2n
2 + ( )s + n

2 + ( )t + 0.4n
2 = l 2

4

( )r - x
2 + ( )s - y

2
+ ( )t - z

2 = 4n2

( )r - u
2 + ( )s - v

2 + ( )t - w
2 = 2n2

(22)

3 Algorithm Validation 

The pose of the moving platform is defined by 
the Cartesian coordinates of its centroid （point g） in 
the fixed reference frame， along with its orientation 
represented by ZYX Euler angles ［α， β， γ］， where 
α， β， and γ correspond to rotations about the local 
X-， Y-， and Z-axes， respectively.

A virtual prototype of the triangular Stewart-
type parallel mechanism is developed， as illustrated 
in Fig.12. The moving platform has a hypotenuse 
measuring 30 mm in length. For any specified set of 
six driving limb lengths， the simulation enables si‑
multaneous measurement of both the position of the 
platform centroid and the orientation Euler angles.

Following the methodology described in Sec‑
tion 2， the coordinates of centroid g and the orienta‑
tion Euler angles of the moving platform can be 
computationally determined and validated against 
simulation-measured data （Figs.13 and 14）. The 
comparative analysis demonstrates excellent agree‑
ment between the calculated and simulated values， 
confirming the accuracy of the algorithm.

Fig.11　Sketch of the general triangular platform STPR

136



No. S LI Sa, et al. Research on Forward Position Solutions of Triangular Platform Stewart-Type Parallel Robot

Using the same method， a virtual prototype of 
the general triangular-platform STPR is shown in 
Fig.15， and verification examples of position coordi‑
nates for point g and Euler angles for the moving 
platform are shown in Figs.16 and 17.

4 Multiple Solutions 

The presence of “±” signs in Eqs.（4，10，13） 
indicates that multiple sets of forward position solu‑
tions exist for a given set of input limb lengths in the 
parallel robot. Therefore， the triangular platform 

STPR and the general triangular platform STPR 
generally possess eight distinct forward position so‑
lution configurations， as detailed in Tables 1 and 2. 
The corresponding schematic diagrams of these 
mechanisms are presented in Tables 3 and 4， re‑
spectively. Notably， the eight solution sets of the tri‑
angular-platform STPR form four symmetric pairs 
about the XOY plane， with each pair distributed bi‑
laterally across this reference plane.

Fig.12　Virtual prototype of the triangular platform STPR

Fig.13　Verification examples of position coordinates of the 
g‑point

Fig.14　Verification examples of Euler angles of the moving 
platform

Fig.15　Virtual prototype of the general triangular platform 
STPR

Fig.16　Verification examples of position coordinates of the 
g‑point of the general triangular platform STPR

Fig.17　Verification examples of Euler angles of the moving 
platform of the general triangular platform STPR
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5 Conclusions 

（1） This study proposes a novel analytical al‑
gorithm for the forward position solution of a trian‑
gular platform STPR. The method introduces a vir‑
tual chain and employs tetrahedral geometry princi‑
ples to derive explicit expressions for the moving 

platform’s position and orientation.
（2） The algorithm is generalized to accommo‑

date non-coplanar fixed attachment points， extend‑
ing its applicability to a broader class of triangular 
platform STPRs.

（3） Numerical validation using virtual proto‑
types confirms the accuracy of the derived solu‑

Table 3　Schematic diagrams of mechanism configuration for the triangular platform STPR

Solutions 1 and 5 Solutions 2 and 6 Solutions 3 and 7 Solutions 4 and 8

Table 4　Schematic diagrams of mechanism configuration for the general triangular platform STPR

Solution 1

Solution 5

Solution 2

Solution 6

Solution 3

Solution 7

Solution 4

Solution 8

Table 1　Solution multiplicity of forward position solutions for triangular platform STPR

Group
1
2
3
4
5
6
7
8

B2 (x, y, z)

(−15.616 6, -6.650 4, -21.078 2)

(−15.616 6, -6.650 4, 21.078 2)

B5 (u, v, w)

(-13.121 5, -7.508 8, -0.029 7)

(0.759 9, 6.372 6, -24.572 6)

(-13.121 5, -7.508 8, 0.029 7)

(0.759 9, 6.372 6, 24.572 6)

B4 (r, s, t)
(1.554 8, -22.643 3, -2.386 7)

(5.813 3, 1.872 3, -1.891 7)
(7.362 3, 3.421 2, -4.630 2)

(13.989 1, -10.209 0, -24.370 9)
(1.554 8, -22.643 3, 2.386 7)

(5.813 3, 1.872 3, 1.891 7)
(7.362 3, 3.421 2, 4.630 2)

(13.989 1, -10.209 0, 24.370 9)

Table 2　Solution multiplicity of forward position solutions for the general triangular platform STPR

Group
1
2
3
4
5
6
7
8

B2 (x, y, z)

(-10.422 1, -11.718 3, 22.717 1)

(-15.282 8, -1.997 0, -25.889 7)

B5 (u, v, w)

(-9.879 5, -1.703 0, 4.024 92)

(-1.107 3, 5.921 6, 15.501 4)

(-11.258 8, -2.173 6, -5.062 4)

(0.748 1, 11.662 3, -23.353 0)

B4 (r, s, t)
(1.360 0, -17.691 9, -4.217 3)

(10.777 4, 2.275 9, 6.756 44)
(3.577 0, -3.982 5, -2.663 6)
(17.887 1, -3.329 9, 17.404 7)

(1.495 3, -18.922 9, -7.668 6)
(8.636 7, 4.135 4, -8.852 9)
(6.471 3, 1.640 0, -5.554 2)

(14.610 7, -3.809 6, -27.648 0)
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tions， with the mechanism exhibiting eight distinct 
forward position configurations for a given set of 
limb lengths. These results are consistent with theo‑
retical expectations.

（4） The study contributes to the field by pro‑
viding a computationally efficient and geometrically 
intuitive approach to the forward kinematics prob‑
lem， offering potential benefits for real-time control 
and precision applications in parallel robotics.
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三角平台式 Stewart型并联机器人的位置正解研究

李 飒 1， 尤晶晶 1，2， 闻王虎 1， 黄宁宁 1， 李成刚 3

（1.南京林业大学机械电子工程学院，南京  210037, 中国； 2.重庆大学高端装备机械传动全国重点实验室，重庆  
400044, 中国； 3.南京航空航天大学机电学院，南京  210016, 中国）

摘要：本文提出了一种用于求解三角平台式 Stewart 型并联机器人（Stewart‑type parallel robot， STPR）位置正解

问题的新型解析算法。通过引入一条虚拟链并运用四面体几何原理，该方法能够解析求解动平台的位姿参数。

该算法系统地解决了并联机构运动学方程固有的非线性问题，求解出了关键动铰点坐标的显式表达式。进一步

研究表明，该方法可推广应用于静铰点非共面布置的广义三角平台式 Stewart 型并联机构。虚拟仿真实验验证

了本文算法的正确性，并且该机构在给定支链长度条件下存在八组不同的位形构型。研究结果符合经典运动学

理论，为并联机器人系统提供了一种计算高效的解析求解新方法，对提升精密控制性能具有重要理论意义。

关键词：并联机器人；位置正解；四面体；解析解
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