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Abstract: This study presents a novel analytical algorithm for solving the forward position problem of a triangular
platform Stewart-type parallel robot (STPR). By introducing a virtual chain and leveraging tetrahedral geometric
principles, the proposed method derives analytical solutions for the position and orientation of the moving platform.
The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms,
providing explicit expressions for the coordinates of key moving attachment points. Furthermore, the methodology is
extended to general triangular platform STPRs with non-coplanar fixed attachments. Numerical validation through
virtual experiments confirms the accuracy of the solutions, demonstrating that the mechanism admits eight distinct
configurations for a given set of limb lengths. The results align with established kinematic principles and offer a

computationally efficient alternative to iterative analytical approaches, contributing to the advancement of precision
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control in parallel robotic systems.
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0 Introduction

The earliest parallel robot emerged in the
1930s when Gwinnett proposed a spherical parallel
mechanism for entertainment applications'’. A land-
mark theoretical study in parallel robotics was con-
ducted by Stewart in 1965 , which attracted sub-
stantial academic attention and established Stewart’s
pioneering status in this field. Since then, Stewart-
type parallel robots (STPRs) have become a pre-
dominant research focus worldwide. These robots
have gained particular prominence due to their ex-
ceptional stiffness, remarkable load-bearing capaci-
ty, and minimal error accumulation'®’. STPRs have

found extensive applications in parallel kinematic
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' medical instrumentation”™ , and six-ax-

machines'
is accelerometers'®. Furthermore, specialized con-
figurations of parallel robots can be optimally de-
signed to fulfill diverse operational requirements"” .

From a structural topology perspective,
STPRs can be classified into two primary configura-
tions: The platform-type and the in-parallel robots.
The in-parallel robot exhibits a distinct structural ad-
vantage over the platform-type configuration, as its
attachment points on both the moving and fixed plat-
forms can be spatially distributed in arbitrary three-
dimensional arrangements without being constrained
to a common plane.

The “100 Interdisciplinary Scientific Challeng-

es in the 21st Century” explicitly identifies the for-
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ward position solution problem (also known as the
direct kinematics problem) of STPRs as one of the
most fundamental challenges in mechanism science.
This problem is widely recognized as the “Mount
Everest” of parallel robotics research and remains a
critical focus for scholars. Research on forward posi-
tion solutions contributes significantly to addressing
key robotic performance metrics such as operational
accuracy and efficiency.

Current methods for solving forward position
solutions of parallel robots can be primarily catego-
rized into two classes: Numerical methods and ana-

lytical methods "

. Numerical approaches typically
employ iterative approximation techniques such as
Newton-Raphson or quasi-Newton methods. Ana-
lytical methods rely on various elimination tech-
niques to ultimately reduce the forward position so-
lutions problem to a univariate high-order polynomi-

128 However, not all in-parallel six-de-

al equation
gree-of-freedom (6-DoF) parallel robots possess an-
alytical solutions. Even for those configurations that
do admit analytical solutions, the derivation process-
es are often prohibitively complex, requiring sophis-
ticated mathematical techniques that hinder algorith-
mic generalization. Furthermore, the resulting uni-
variate polynomial equations typically remain of
high degree, necessitating numerical methods for fi-
nal resolution: A process that inevitably impacts
computational precision and stability"* .

The forward position solution algorithm pro-
posed in this work introduces a virtual kinematic
chain to the parallel robot architecture. Based on tet-
rahedral geometry principles, this approach enables
complete determination of all possible position solu-

181 reveals

tions. A comprehensive literature review
that the complex architecture of parallel robots intro-
duces strong coupling and nonlinearity in the moving
platform’ s positional dynamics, rendering their for-
ward position solutions particularly challenging to ob-
tain. Current computational approaches for these so-
lutions demonstrate limited efficiency. Shen et al."”
established a correlation between the forward kine-
matics complexity of parallel robots and their cou-
pling indices, specifically, higher coupling degrees

correspond to greater solution difficulty, while low-

er coupling degrees facilitate the solution process.

Liet al.'®®

presented a synthesized 6-DoF parallel
mechanism with analytical forward position solu-
tions. This paper conducts an in-depth investigation
of its forward position solutions by exploiting the
mechanism’s  inherent  geometric  constraints,
through which the complete analytical expressions

for the position solutions are rigorously derived.

1 Structural Model

The structural model of the triangular platform
STPR is illustrated in Fig.1. It consists of a moving
platform, a fixed platform, six driving limbs, and
attachment points. The moving and fixed platforms
are similar triangular platforms. A triple compound
hinge is mounted at one vertex of the moving plat-
form, while a double compound hinge is mounted at
one vertex of the fixed platform. The remaining at-
tachment points are distributed along the edges of
the triangular platforms and connected to the plat-
forms via the driving limbs. The moving platform is
an isosceles right triangle with a hypotenuse of
length 2n, whereas the fixed platform is an isosceles

right triangle with a hypotenuse of length 4.

Fig.1 Structural model of the triangular platform STPR

As illustrated in Fig.2, a double-compound
hinge is proposed to mitigate kinematic coupling ef-
fects. The hinge comprises two concentrically nest-
ed joint assemblies:

(1) Outermost joint assembly. Structural ele-
ments include primary cylindrical housing, radial
fork, and Type- [ U-link.

(2) Innermost joint assembly. Structural ele-
ments include tertiary cylindrical housing and central
fork.

All assemblies feature three orthogonal revo-
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Primary cylindrical
housing

Type- | U-];ink\\

Fig.2 Double-compound hinge

lute axes that concurrently intersect at a fixed spatial
point.

As illustrated in Fig.3, a tripleccompound
hinge is proposed to mitigate kinematic coupling ef-
fects. The hinge comprises three concentrically nest-
ed joint assemblies:

(1) Outermost joint assembly. Structural ele-
ments include primary cylindrical housing, radial
fork, and Type-1 U-link.

(2) Intermediate joint assembly. Structural ele-
ments include secondary cylindrical housing, axial
fork, and Type-II U-link.

(3) Innermost joint assembly. Structural ele-
ments include tertiary cylindrical housing and central
fork.

All assemblies feature three orthogonal revo-
lute axes that concurrently intersect at a fixed spatial

point.

Primary cylindrical housing
1

\
Tertiary cylindrical housing { \\\\ Central fork

Fig.3 Triple-compound hinge
2 Positive Solution Algorithm

In spatial geometry, tetrahedron positioning
can be achieved through distance constraints: Given
the coordinates of three vertices, the spatial position
of the fourth vertex can be uniquely determined by
establishing equation systems using explicit pairwise
distance relationships. Specifically, the fourth ver-
tex coordinates are constrained by three distance

equations, and solving this equation system yields

either a unique solution or symmetric solutions.
This fundamental principle can be extended to the
kinematic analysis of parallel robots. When provided
with the robot’ s structural parameters and the limb
lengths, which are functionally equivalent to tetrahe-
dral edge length constraints, the spatial positions of
moving attachment points (geometrically analogous
to the fourth vertex of a tetrahedron) can be precise-
ly determined through analytical solutions.

Therefore, this paper proposes a novel and effi-
cient forward kinematics solution method. Based on
the tetrahedral principle, only a virtual limb needs
to be introduced to obtain all analytical-form posi-
tion solutions of the parallel robot. The solution pro-

cedure is illustrated in Fig.4.

K Extract the 1st Extract the 1st plane

Add Eertual » tetrahedron to solve to solve the length of
chaim, the coordinates of B, the virtual chain
Extract the 3rd Extract the 2nd

tetrahedron to solve
the coordinates of B

tetrahedron to solve
the coordinates of B,|

Fig.4 Flow chart of forward kinematics solution algorithm

2.1 Triangular platform STPR

The fixed coordinate frame o-xyz is established
on the fixed platform, with its origin located at the
midpoint of the centerline along the hypotenuse of
the platform. Similarly, the moving coordinate
frame g-muv is defined on the moving platform,
originating at the midpoint of its hypotenuse center-

line, as illustrated in Fig.5.

5
(b) Robot adding a virtual limb
Fig.5 Sketch of the triangular platform STPR

(a) Initial robot

The centers of the fixed attachment points are
denoted as A;—A;, the centers of the moving at-
tachment points are denoted as B,—B;, and the
lengths of the six driving limbs are denoted as /,—/;.

The coordinates of B,, Bs;, and B, are denoted as
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(z,y,2)", (u,v,w)", and (r,s,0)", respectively. 12— [?
r=———n
Since attachment points A,, A;, and B; can be dn
. .. —20i+ 1+
arbitrarily positioned on edges A,A;, A,A,, B.Bs, y=—t Ty (4)
. 4dn
respectively, the lengths of A,A,, A,A;, and B,B, 17
T 0,
can be respectively denoted as =
22 n

|A1A2|_ |A2A3|_ |B:aB4‘_
— A1, — Az, -
| A2 A | A, A, | B.B; |

/13

In the subsequent analysis, for computational
convenience, the moving and fixed platforms are
modeled as isosceles right triangles with hypotenuse
lengths of 2n and 4n, respectively. Additionally,
A= A= A;=0.5, indicating that the three attach-
ment points A,, A; and B; are located at the mid-
points of their respective edges.

The coordinates of the five fixed attachment
points in o-xryz are

—n —2n 0 2n
(ALALALALAD)= 0 —n —n —n
0 0 0 0

—~ O 3 O

1)
Extract the 1st tetrahedron B,-A,-A,-A; from
Fig.5(b), as shown in Fig.6.

Fig.6 Schematic diagram of tetrahedron 1

There exists a system of constraint equations,

shown as
HAI — B, HZZI
|A,— B,|=1, (2)
HA:%*BZ Hzla

where | * || denotes the paradigm of the vector.
Substitute Eq.(1) into Eq.(2) and expand as
(xt+n)y+y +22=1
(1+2n)2+(y+n)2+222122 (3)
IZ+(y+n)2+22:Z32
Solving Eq.(3) yields the coordinates of B,

shown as

where b,=

Jo— U B — = L A+ — 2.
Plane 1 (A, BB, B;) is

Fig.5(b), as shown in Fig.7.

extracted from

Fig.7 Schematic diagram of plane 1

There
AB;B,A,, it is shown as

exists a relational equation. For

1 . )
i+ —n"— [}
cosf=—2 (5)
\/5[471

And for AB;B,A,,it is shown as
cos = Ltem =4 (6)
232 lin
By associating Eq.(5) with Eq.(6), the length
of the virtual limb A ,B; can be solved as
L=yn*— [} + 20 (7)
The 2nd tetrahedron(B;-B,-A;-A,) is extracted
from Fig.5(b), as shown in Fig.8.

Fig.8 Schematic diagram of tetrahedron 2

There exists a system of constraint equations,
shown as
| B;—B.|=V2n
| Bs— As|=1( 8)
IBs— A =1
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Substitute Eq.(1) into Eq.(8) and expand as
(u—2) +(v—y) +(w—2) =20
Wt (v—n) +w="1 (9)
(u—2n) 4 (v+n) +w'=10

Solving Eq.(9) yields the coordinates of Bs,

shown as
7])]('] +d] iDg
u— —
D,
bie,+d,+ D.
gt e (10)
D,
bziDiz(nixiy)
w = —
D]Z

where D\=4n* ( (—n+a+y)*+22%) 5 by=n(n—
x—y) 5 o= (n—y) +L’ (nty) +2n (—52"+
2ny+2*+y) s di=n (=1 2n (3nty+ax));
=60 —Lrx+4n’+ [ (— 2n+x) — 2n(2*+ ") sd,=
n* (=440 +2n (—nty+tax); by=—12n'"—
8n’x—n (I — 1) (x—y) +n’* (307 + 17+ 4 (27 +
y*+2%)); and D, is an analytic equation on x, y, 2,
n, L, and /;.

The 3rd tetrahedron (B, B,~Bs;-A,) is extracted
- E,+n*p —np, T D,

D

from Fig.5(b), as shown in Fig.9.

Fig.9 Schematic diagram of tetrahedron 3

There exists a system of constraint equations,

shown as
H B,— A, H:Z4
| B.— B.,|=2n (11)
|B,—B;|=+2n

Substitute Eq.(1) into Eq.(11) and expand as
(r— 2n)2+(.¥+n)2+ =1

(r—2) +(s—y) +(1—2)" =4’

(r—u) +(s—v) +(t—w) =20
Solving Eq.(12) yields the coordinates of B,

(12)

shown as

(—2nw + wx + 2nz — uz)

N

_E2+H4p3+n3p4+n2p5i54
Ijiﬂ

Z‘_E3+n3p6+n2p7+n4pg+npgiﬁ4(nu+ 2nv — nx — vxr — 2ny + uy)

where D, =2 («*y*+w’ (2*+y") +n* ( (ut20—x—
2y)*+5(w—=2)%) — 2uwxz+u’s"— 2vy(ur+wz) +
V(242" +2n( —2vx+u’y—w(22—y) +w(w—
z) To(a*+2xy—wz+2") —u(v(x—2y) +y(a+
2y) +2: (—wtz2) ) ) ; pi=—w (9’ + 9w+
2u(9v—8x—13y) —2v (5x+4y) + (x+2y) (7Tx+
4y) ) +z (9u*—8v*+ 25w’ +2u (Tv—8x—11y) +
Tx (x+2y) +v( —6x+8y) ) —23w’+72°; p=
(w—2) (Yvw+5w(2x+y) +7z( —3v—2x+y) +
u( —18w+222); D,, E,, E,, E, are analytic equa-
tions with respect to u, v, w, x, vy, 2, 4, and n;
and pi, p2, pus pPss Ps» pPrs Py are analytic equations
with respect to u, v, w, x, vy, 2, and n.

The fixed coordinate frame and the moving

platform are extracted from Fig.5, as shown in
Fig.10.

Fig.10 Partial schematic diagram of moving platform

The coordinates of g in the fixed coordinate
frame can be found from the positional relationship
between B,, B,, and B; on the moving platform,

shown as
1

1
=—(B,+B,)+—B,
g= (B.+B)+ B

Within the moving coordinate frame, B;is posi-

(14)
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tioned at the terminus of the m-axis, B; lies at the
extremity of the u-axis, and point g coincides with
the frame origin. The coordinates of B;, Bs, and g
in the fixed coordinate frame owyz are B;=

ut+r v+s wHr)
2 7 2 7 2

, 88— (1'1, Vis 21) , B;=

T .
(u,v,w) , and the corresponding vectors for the m-
axis, w-axis, and v-axis of the moving platform’ s

coordinate frame gmuv are denoted as a=

T

. .
(anana.) , B=(8.,8,,8.) sandy=(y.. 7, 7.) .

Then, a, B, and y are obtained after express-
ing them in terms of the coordinates of the points

B;, Bs, and g, shown as

a=B;—g (15)
y=aXp (17)

So, the rotation matrix R of gmuv with re-

spect to o—ryz can be expressed as

a, B. .
R=[a B yl=|a, B, 7, (18)
a. B. v

2.2 General triangular platform STPR

In the following content, the proposed method
is extended to the general triangular platform
STPRs where the fixed attachment points on the

fixed platform are non-coplanar, as shown in Fig.11.

(a) Initial robot

(b) Robot adding a virtual limb

Fig.11 Sketch of the general triangular platform STPR
The coordinates of the five fixed attachment

points in o-xyz are

(A AL ALALA)=

—n  —2n 0 2n 0
0 —n —n —n n (19)
0 —01dn —03n —04n —0.2n

Extract the 1st tetrahedron B,-A,-A,-A, from
Fig.11(b), substitute Eq.(19) into Eq.(2) and ex-

pand as
(x+n)+y+22=10

(z+20) +(y+n) +(240.1n)" =2 (20)
IZ+(y+71)2+(z+O.3n)2:l§

Plane 1 A, BsB, B, is
Fig.11(b), and the length of the virtual limb A,B; ,
i.e. /;, can be solved by Eq.(7).

The 2nd tetrahedron B;-B,A:-A,, extracted
from Fig.11(b) , substitutes Eq.(19) into Eq.(8)

and can be expanded as

extracted from

2 2 2

(u—z2) +(v—y) +H(w—2z) =22
W (v—n) +(w+0.2n) =1 (21)

(u—2n)" +(v+n) +(wt04dn) =1
The 3rd tetrahedron B, B, B:-A,, extracted
from Fig.11(b) , substitutes Eq.(19) into Eq.(11)

and can be expanded as
(r—20)"+(s+n) +(1+04n) =12
(r—2) +(s—y) +(t—2)=dn* (22)
(r—u) +(s—v) +(1—w) =20’

3 Algorithm Validation

The pose of the moving platform is defined by
the Cartesian coordinates of its centroid (point g) in
the fixed reference frame, along with its orientation
represented by ZYX Euler angles [a, £, y], where
a, B, and y correspond to rotations about the local
X-, Y-, and Z-axes, respectively.

A virtual prototype of the triangular Stewart-
type parallel mechanism is developed, as illustrated
in Fig.12. The moving platform has a hypotenuse
measuring 30 mm in length. For any specified set of
six driving limb lengths, the simulation enables si-
multaneous measurement of both the position of the
platform centroid and the orientation Euler angles.

Following the methodology described in Sec-
tion 2, the coordinates of centroid g and the orienta-
tion Euler angles of the moving platform can be
computationally determined and validated against
simulation-measured data (Figs.13 and 14). The
comparative analysis demonstrates excellent agree-
ment between the calculated and simulated values,

confirming the accuracy of the algorithm.
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X: 1422 6 mm
Y: -4.349 5 mm
Z:-20.398 4 mry

Fig.12 Virtual prototype of the triangular platform STPR

Calculation of g
Measurement of g

Z/ mm

Fig.13 Verification examples of position coordinates of the

gpoint
n‘/
st
o or
= Y,
_5 L 5
R e T
-10 ---- Measured Euler angles 80 ~
Calculated Euler angles 76 N
72 Q
68
40150 10 7o
a/()
Fig.14 Verification examples of Euler angles of the moving

platform

Using the same method, a virtual prototype of
the general triangular-platform STPR is shown in
Fig.15, and verification examples of position coordi-
nates for point g and Euler angles for the moving

platform are shown in Figs.16 and 17.

4 Multiple Solutions

The presence of “ 4" signs in Eqs. (4,10, 13)
indicates that multiple sets of forward position solu-
tions exist for a given set of input limb lengths in the

parallel robot. Therefore, the triangular platform

X:2.121 891 99 mm
Y: 4.620 435 96 mm
Z:-24.273 168 12 mm

~

Fig.15 Virtual prototype of the general triangular platform
STPR
----- Calculation of g

-23.0}+ Measurement of g
-nst (

g 240 T/

ey _24.5

N

-25.0
-25.5

5

4
3 g1
Fig.16  Verification examples of position coordinates of the

gpoint of the general triangular platform STPR

P Measured Euler angle\~
Calculated Euler angle \3
2
-10f \ d
=15
120
e 84
“ry 150 80 1O

Fig.17 Verification examples of Euler angles of the moving

platform of the general triangular platform STPR

STPR and the general triangular platform STPR
generally possess eight distinct forward position so-
lution configurations, as detailed in Tables 1 and 2.
The corresponding schematic diagrams of these
mechanisms are presented in Tables 3 and 4, re-
spectively. Notably, the eight solution sets of the tri-
angular-platform STPR form four symmetric pairs
about the XOY plane, with each pair distributed bi-

laterally across this reference plane.
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Table 1 Solution multiplicity of forward position solutions for triangular platform STPR

Group B, (x,y,2) B, (u, v, w) B,(r,s, t)

1 (1.554 8, —22.6433, —2.386 7)
(—13.1215, —7.508 8, —0.029 7)

2 (5.8133, 1.8723, —1.8917)
) (—15.616 6, —6.6504, —21.078 2)
3 (7.362 3, 3.421 2, —4.630 2)
(0.759 9, 6.372 6, —24.572 6)
4 (13.989 1, —10.209 0, —24.3709)
5 (1.554 8, —22.643 3, 2.386 7)
(—13.1215, —7.508 8, 0.029 7)
6 (5.813 3, 1.872 3, 1.8917)
(—15.616 6, —6.650 4, 21.078 2)
7 (7.362 3, 3.421 2, 4.630 2)
(0.759 9, 6.372 6, 24.572 6)
8 (13.989 1, —10.209 0, 24.3709)
Table 2 Solution multiplicity of forward position solutions for the general triangular platform STPR
Group B,(x,y, 2 B (u, v, w) B,(r,s, 0
1 (1.3600, —17.6919, —4.217 3)
(—9.8795, —1.703 0, 4.024 92)
2 (10.777 4, 2.2759, 6.756 44)
(—10.422 1, —11.718 3, 22.717 1)
3 (3.5770, —3.9825, —2.6636)
(—1.107 3, 5.921 6, 15.501 4)
4 (17.887 1, —3.3299, 17.404 7)
5 (1.4953, —18.9229, —7.668 6)
(—11.2588, —2.1736, —5.062 4)
6 (8.636 7, 4.1354, —8.8529)
(—15.2828, —1.997 0, —25.889 7)
7 (6.471 3, 1.640 0, —5.554 2)
(0.748 1, 11.662 3, —23.3530)
8 (14.6107, —3.809 6, —27.648 0)

Table 3 Schematic diagrams of mechanism configuration for the triangular platform STPR

Solutions 1 and 5 Solutions 2 and 6 Solutions 3 and 7 Solutions 4 and 8

Table 4 Schematic diagrams of mechanism configuration for the general triangular platform STPR

Solution 1 Solution 2 Solution 3 Solution 4
Solution 5 olution 6 Solution 7 Solution 8
5 Conclusions platform’s position and orientation.
(2) The algorithm is generalized to accommo-
(1) This study proposes a novel analytical al- date non-coplanar fixed attachment points, extend-
gorithm for the forward position solution of a trian~  ing its applicability to a broader class of triangular

gular platform STPR. The method introduces a vir- platform STPRs.
tual chain and employs tetrahedral geometry princi- (3) Numerical validation using virtual proto-

ples to derive explicit expressions for the moving types confirms the accuracy of the derived solu-
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tions, with the mechanism exhibiting eight distinct
forward position configurations for a given set of
limb lengths. These results are consistent with theo-
retical expectations.

(4) The study contributes to the field by pro-
viding a computationally efficient and geometrically
intuitive approach to the forward kinematics prob-
lem, offering potential benefits for real-time control

and precision applications in parallel robotics.
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=ATFE Stewart D H BN I ANV E ERAR

F R, Laa,BEEL, ZTT FARRA
(LR MOl KA P 7 TR 24 e, 1 & 210037, WVE 5 2. 5 5K 24 o i e & MU AL 8l & [ B S0 e %, R
400044, v 5 3. B EILAS AR R 2L B, B AT 210016, )

WEAIRBET A TRKM=A-F S K Stewart & F+ B AL % A (Stewart-type parallel robot, STPR) 4% & iE i
)RR 4G A R AR AT I ok, B ad Bl N — A R A4k OB N W @R UAT R B L 5 R AL AT R RS F S e K AR
ZHERARWBRTHBENMEDFZ T REAAGEREPIE, KRR T XEHRILFOEXARKX, #—F
MR AR, BZFT ETHES BATHEREELEEREG] L AT &KX Stewart B G RALH . 45 A 555 E
TAS R EMM, S RANMELE XEREFHFTAENARR GBI, FRAERFEEZREHF
ik, HFEMBEARARBET — A LS 2009 AT R ok R E AR AT TRk E L,

KEEWR RN EA AL E EM ;w9 @K T



