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Abstract: To address the issues of low solving efficiency and poor decoupling accuracy in existing six-axis acceleration 
decoupling algorithms， a new decoupling algorithm is proposed along with a corresponding auto-compensation 
algorithm. Firstly， based on Kane’s method， the dynamics model of the six-axis acceleration sensing mechanism is 
formed to determine the relationship between accelerations and branch forces. Then， with the trapezoidal rule， a 
solution algorithm for the dynamics model is developed. The virtual prototype tests show that the computation of this 
algorithm is five times more efficient than that of the ADAMS core algorithm. Besides， this solution algorithm is 
applied to the “12-6” configuration and “9-3” configuration. The results show that the efficiency of the former is nearly 
3.3 times that of the latter. Finally， based on vibration theory， an auto-compensation algorithm for the solution 
algorithm is established. Virtual prototype tests indicate that with 40% noise interference， the auto-compensation 
algorithm achieves misjudgement rate and omission rate of only 4.0% and 4.5%， respectively， and the errors in the 
solving process converge.
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0 Introduction 

With the further advancement of Industry 4.0， 
manipulators have become widely used in the manu⁃
facturing industry. The control of manipulators of⁃
ten relies on feedback from end-effectors’ sensors， 
and the information measured by these sensors usu⁃
ally needs to include the position and pose of the ro⁃
bot’s end-effector［1］. Additionally， during move⁃
ment and processing， manipulators inevitably expe⁃
rience vibrations， which can reduce processing accu⁃
racy. However， feedback from end-effectors’ sen⁃
sors can effectively suppress these vibrations［2］. 
Therefore， accurately measuring the six-axis accel⁃
eration information at end-effectors is an urgent is⁃
sue that needs to be addressed in the field of manipu⁃
lators.

Traditional six-axis acceleration measurement 
methods typically use a combination of accelerome⁃
ters and gyroscopes to measure the spacecraft’s 
three-axis linear acceleration and three-axis angular 

acceleration and then integrate to obtain the pose in⁃
formation. However， gyroscopes are easily affected 
by environmental factors such as lighting and tem ⁃
perature， making this method less effective［3-7］. To 
address this， some researchers have proposed gyro⁃
scope-free six-axis acceleration measurement 
schemes. The most common gyroscope-free meth⁃
ods are the multi-inertial mass scheme and the sin⁃
gle-inertial mass scheme. The multi-inertial mass 
scheme also faces high installation precision require⁃
ments and issues such as significant lever-arm ef⁃
fects and cross-sensitivity effects， making its practi⁃
cality lower［8］. In the single-inertial mass scheme， 
the accelerometer’s structure is relatively complex， 
leading to coupling between six-axis accelerations. 
Researchers like You et al.［9］ have proposed a decou⁃
pling algorithm for six-axis accelerometer， but this 
algorithm has low solution efficiency and cannot 
meet the real-time computation requirements for ac⁃
celeration measurement. In 2017， You et al.［10］ pro⁃
posed a new decoupling algorithm which had high 
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solution efficiency， but there was an error accumula⁃
tion process in the solution process. It is crucial for 
the acceleration decoupling to establish a viable dy⁃
namic model of the system. Newton-Euler meth⁃
od［10］ suffers from insufficient accuracy due to its ne⁃
glect of relative motions， and Hamilton’s method［9］ 
appears inefficiency with 14 variables introduced. 
Kane’s method strikes a great balance between these 
approaches， demonstrating significant practical po⁃
tential for acceleration decoupling.

Based on this， this paper establishes the dy⁃
namic model of the six-axis acceleration sensing 
mechanism using Kane’s method and proposes a 
new solution algorithm based on the trapezoidal 
rule. An auto-compensation algorithm is developed 
based on vibration theory， which offers high efficien⁃
cy and accuracy， and its effectiveness and accuracy 
are validated through simulation.

1 Description of Mechanism 

Fig.1 shows the six-axis accelerometer. In this 
mechanism， the flexible spherical hinges are located 
at the midpoints of the inertial mass’s edges. When 
an external acceleration is applied to the accelerome⁃
ter， the inertial mass experiences inertial forces， 
causing relative displacement between the inertial 
mass and the pedestal， and generating axial forces 
in all the branches between the inertial mass and the 
pedestal. Using the piezoelectric ceramics arranged 
on the branches， the axial forces are measured； fur⁃
ther decoupling of the measured data allows for the 
determination of the six-axis acceleration of the ped⁃
estal.

2 Dynamic Analysis 

The core component of a six-axis accelerome⁃

ter is the sensing mechanism. The inputs of the sens⁃
ing mechanism consist of six independent compo⁃
nents of the pedestal’s acceleration， while the out⁃
puts comprise the axial forces in 12 branches. Each 
input affects all outputs， making the accelerometer a 
nonlinear and strongly coupled system with multiple 
inputs and outputs. The process of deriving outputs 
from inputs by constructing the system’s dynamic 
equations is known as “forward dynamics solution” 
while deriving inputs from outputs is referred to as 

“ inverse dynamics solution” or “decoupling”.
According to Ref.［10］， in the inverse dynamics 

analysis of the mechanism， the relative displace⁃
ment between the inertial mass and the pedestal can 
be neglected. Coordinate systems ｛O｝ and ｛Q｝ are 
established on the ground and the inertial mass， re⁃
spectively， with the origins of both coordinate sys⁃
tems initially coinciding with the geometrical centre 
of the inertial mass. The schematic diagram of the 
sensing mechanism and the positions of the coordi⁃
nate systems are shown in Fig.2.

Common methods for establishing a dynamic 
model include the Newton-Euler method， the sec⁃
ond Lagrange equation method， Kane’s method 
and Hamilton’s method. Among these， Kane’s 
method has the least computational effort and high⁃
est efficiency， making it suitable for dynamic analy⁃
sis of closed-loop mechanisms. The expression for 
Kane’s equation is

Kj + K *
j = 0        j = 1,2,3,4,5,6 (1)

where Kj and K *
j  represent the generalized active 

force and generalized inertial force corresponding to 
the jth generalized velocity， respectively.

Upon analysis， the inertial mass of the sensing 
mechanism is acted upon branch forces and gravity. 

Fig.1　Six-axis accelerometer

Fig.2　Schematic diagram of six-axis acceleration sensing 
mechanism
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Using simplification of the space force system， all 
external forces can be reduced to a resultant force 
and a resultant moment placed on the inertial mass. 
Therefore， the generalized form of Kane’s equa⁃
tions can be applied.

RC ⋅ vCj + LC ⋅ ωCj + R *
C ⋅ vCj + L *

C ⋅ ωCj = 0 (2)
where RC， LC， R *

C， and L *
C represent the resultant 

force， resultant moment， inertial force， and inertial 
moment， respectively， placed on the geometrical 
centre of the inertial mass； and vCj and ωCj the partial 
linear velocity and partial angular velocity corre⁃
sponding to the jth generalized velocity， respectively.

In the coordinate system ｛O｝， the linear veloci⁃
ty and angular velocity of the inertial mass’s geo⁃
metrical centre are given

ì
í
î

vC = ( ẋ,ẏ,ż )T = ẋi + ẏj + żk

ωC = ωx i + ωy j + ωz k
(3)

where ẋ，ẏ，ż，ωx，ωy， and ωz denote the linear veloc⁃
ities and angular velocities of the inertial mass in co⁃
ordinate system ｛O｝. Taking these six quantities as 
the generalized velocities for the system， the corre⁃
sponding partial linear velocities and partial angular 
velocities are listed in Table 1.

Except for gravity， the direction of the branch 
forces placed on the inertial mass remains un⁃
changed in the coordinate system ｛Q｝. Therefore， 
the simplified resultant force and resultant moment 
can be expressed as
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i = 1
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fi e i + Mg ( )0,0,-1 =

∑
i = 1
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fi R 3 × 3 e'i + Mg ( )0,0,-1

LC = ∑
j = 1

6 ( )b j × ∑
i = 2j - 1

2j

f i e i =

∑
j = 1

6 ( )R 3 × 3 b'j × ∑
i = 2j - 1

2j

f i R 3 × 3 e'i

(4)

where R 3 × 3 denotes the rotation matrix describing 
the relative rotation between the two coordinate sys⁃
tems； M the inertial mass； fi the force exerted by 
the ith branch on the mass；e i the direction vector of 
the ith branch in ｛O｝；e'i the direction vector of the 

ith branch in ｛Q｝； and b j the position vector of the 
jth moving spherical hinge in ｛O｝， and
( e'1 —e'12 ) =

( )-1 0 0 0 1 0 1 0 0 0 -1 0
0 0 -1 0 0 -1 0 0 1 0 0 1
0 1 0 1 0 0 0 -1 0 -1 0 0

(5)

( b'1 —b'6 ) = ( )-1 0 1 1 0 -1
0 -1 -1 0 1 1
1 1 0 -1 -1 0

    (6)

The inertial force and the inertial moment are
R *

C = -MaC (7)
L *

C = -( I3 × 3 ω̇ - ω × I3 × 3 ω ) (8)
where I3 × 3 represents the rotational inertia of the in⁃
ertial mass in ｛O｝； aC the linear acceleration at the 
geometrical centre of the inertial mass， and
I3 × 3 = R 3 × 3 I '3 × 3 RT
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Combining Table 1 and substituting Eqs.（4—
9） into Eq.（2）， the dynamic equation is obtained as 
follows
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D 1 ⋅ i - MaC ⋅ i = 0
D 1 ⋅ j - MaC ⋅ j = 0
D 1 ⋅ k - MaC ⋅ k = 0
D 2 ⋅ i + D 3 ⋅ i = 0
D 2 ⋅ j + D 3 ⋅ j = 0
D 2 ⋅ k + D 3 ⋅ k = 0

(10)

where

D 1 = ∑
i = 1

12

fi R 3 × 3 e 'i + Mg ( 0,0,-1) T (11)

D 2 = ∑
j = 1

6 ( )R 3 × 3 b 'j × ∑
i = 2j - 1

2j

f i R 3 × 3 e 'i (12)

D 3 = -R 3 × 3 I '3 × 3 RT
3 × 3 ω̇ - ω × R 3 × 3 I '3 × 3 RT

3 × 3 ω

(13)

3 Dynamic Solution 

3. 1 Solution algorithm　

Considering that quaternions are used to de⁃
scribe the rotation of three-dimensional objects， and 
the rotation matrix is a 4×4 matrix formed by qua⁃

Table 1　Analytical equations of partial velocities

vC1

i

vC2

j

vC3

k

vC4

0
vC5

0
vC6

0
ωC1

0
ωC2

0
ωC3

0
ωC4

i

ωC5

j

ωC6

k
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ternions， other vectors also need to be extended. 
The dynamic equation is expanded and simplified as 
follows
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(14)
where E 'i， B 'j， W， I， J， and K are extended vectors 
of e 'i， b 'j， ω， i， j， and k in four-dimensional space； 
and R 4 × 4 is the extension of R 3 × 3.

Eq.（14） describes the relationship between ac⁃
celerations and branch forces， where only W  and 
R 4 × 4 are unknowns. Solving for these two un⁃
knowns will yield the decoupling equations for six-

axis acceleration.
Define an arbitrary four-dimensional vector S， 

along with its pre-matrix and post-matrix
S = ( s1,s2,s3,s0 ) T (15)

S
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The quaternion vector Λ is four-dimensional. 
Thus， according to Ref.［10］， the relationship be⁃
tween the four-dimensional rotation matrix R 4 × 4 and 
the quaternion vector Λ is given by

R 4 × 4 = (Λ
- ) T

Λ
+

(18)

Besides， the pre- and post-matrix satisfy the 
following properties

S
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Eqs.（19—21） is defined as “property 1” “prop⁃
erty 2” and “property 3”， respectively. In the case 
of three dimensions， the derivative of R 3 × 3 is repre⁃
sented as

Ṙ 3 × 3 = ω̂R 3 × 3 (22)
where ω̂ is the anti-symmetric matrix of vector ω. 
Expanding the Eq.（22） into four-dimensional space， 
it is written as

Ṙ 4 × 4 = ŴR 4 × 4 (23)
where Ŵ  can be presented as

Ŵ = W
+

- W
-

2 (24)

Substituting Eqs.（18， 24） into Eq.（23）， it is 
written as

2 ( Λ̇
- ) T

Λ
+

+ 2 (Λ
- ) T

Λ̇
+

= W
+ (Λ

- ) T

Λ
+

- W
- (Λ

- ) T

Λ
+

(25)
Eq.（25） with property 1， property 2 and prop⁃

erty 3 is simplified as 

2 ( Λ̇
- ) T

Λ
-

+ 2 Λ̇
+ (Λ

+ ) T

= W
+

- W
-

(26)

Eq.（26） with property 2 is simplified as

Λ̇ = 1
2 Λ

+
W ' (27)

The angular velocity projected in the inertial 
mass coordinate ω' is defined as auxiliary angular 
velocity and it is expanded to a four-dimensional vec⁃
tor W '. The relationship between W  and W ' is

W = R 4 × 4W ' (28)
Differentiating both sides of Eq.（28） gives

Ẇ = ŴR 4 × 4W '+ R 4 × 4Ẇ '= R 4 × 4Ẇ ' (29)
Substituting Eq.（29） into Eq.（14） obtains

Ẇ '= -( I '4 × 4 )-1∑
j = 1

6 ( )B 'j × ∑
i = 2j - 1

2j

f i E 'i = V   (30)

Using the trapezoidal rule to solve Eqs.（27， 
30）， we have

W '( )N = W '( )N - 1 + h
2 (V ( )N - 1 + V ( )N ) (31)

Λ( )N = Λ( )N - 1 + h
4 Λ

+

( )N - 1 W '( )N - 1 + h
4 Λ

+

( )N W '( )N

   (32)
For Eq.（32）， lefting multiply both sides with 
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( Λ
+

( )N )T， and simplifying this equation with property 
2 obtains

(Λ
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( )N ) T

Λ( )N - h
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μ( )N - 1 (33)

where
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Exchanging the right side’s order of Eq.（33） 
and simplifying the equation obtains
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where operator “+” denotes the matrix generalized 
inverse.

Substituting Λ into Eq.（18） gets the rotation 
matrix R 4 × 4； substituting R 4 × 4 and W ' into Eq.（28） 
gets W； and substituting R 4 × 4 and W  into Eq.（14） 
obtains the final solution algorithm.

According to the process， a flow chart is made 
to illustrate the procedure of the solution algorithm， 
as shown in Fig.3.

3. 2 Virtual prototype verification　

A virtual prototype is created， as shown in 
Fig.4. The inertial mass is a solid cube of which the 
side length is 40 mm， and the mass is 0.5 kg. The 
pedestal is a cubic enclosure of which the inner side 
length is 86 mm， and the outer side length is 90 
mm. To improve simulation efficiency， the elastic 
limbs connecting the two components are simplified 
to springs with stiffness of 5 × 105 N/m. The funda⁃
mental excitements placed on the pedestal are
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The branch force data are measured through 
virtual prototype experiments， and acceleration data 
are obtained using the decoupling algorithm. A com⁃
parison between the efficiency of this solution algo⁃
rithm and that of ADAMS is shown in Table 2. The 
result indicates that this solution algorithm is nearly 
five times faster than ADAMS.

Besides， these results are compared with the 
acceleration data measured in the virtual prototype 
experiments to determine the error rate of the decou⁃
pling algorithm. A comparison with the errors re⁃
ported in Refs.［11-12］ is shown in Table 3. The re⁃
sults indicate that the decoupling algorithm pro⁃
posed in this paper performs better. However， this 
procedure may introduce small errors that may prop⁃
agate throughout the data collection process.

Fig.3　An open-loop process

Fig.4　Virtual machine

Table 2　Solution efficiency of two algorithms

Running time

τ/s

Algorithm used in
ADAMS software

10.53

Algorithm proposed in
this paper

1.99
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4 Auto⁃compensation 

4. 1 Auto⁃compensation strategy　

There are truncation errors in the recursive pro⁃
cess of the decoupling equations. Additionally， as 
observed in Fig.3， the recursive process for the de⁃
coupling equations is an open-loop process， and the 
error continuously accumulates throughout the recur⁃
sive process. Therefore， an error auto-compensa⁃
tion algorithm is established to monitor and control 
the data during the decoupling process.

According to the vibration theory， vibrations 
are characterized by their periodic and continuous na⁃
ture. Thus， when the dynamic equations are taken 
as its absolute value， the minimum value of the 
function is zero， which means

W = ( 0,0,0,0 ) T (40)

Λ = ( 0,0,0,1) T (41)
where Eq.（40） corresponds to the case 〈1〉， here 
the angular velocity is zero， and Eq.（41） corre⁃
sponds to the case 〈2〉， here the rotation angle is ze⁃
ro. Based on these two values， two observed fea⁃
ture values are established as

G 1 ( )N = ||W '||2
2 (42)

G 2 ( )N = ∑
i = 1

3

q2
i + ( q0 - 1)

2
(43)

These two values are theoretically greater than 
or equal to zero. When the object’s motion state cor⁃
responds to case 〈1〉， Eq.（42） equals zero， and when 
the motion state corresponds to case 〈2〉， Eq.（43） 
equals zero. However， due to the existence of er⁃
rors， these two values probably do not equal zero in 
these cases. Therefore， a criterion is needed to de⁃
termine which values should be compensated during 
the recursion process. The judgement criterion is
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G j ( )N < G j ( )1

G j ( )N < G j ( )N - 1

G j ( )N < G j ( )N + 1

        j = 1,2 (44)

The first equation indicates that the observed 
feature value is less than the set threshold， while 
the second and third equations indicate that the ob⁃
served feature value is a local minimum of the func⁃
tion. If any judgement criteria is met， the compensa⁃
tion algorithm will adjust the value at that point to 
zero. To prevent a high misjudgement rate from an 
excessively large threshold or a high omission rate 
from an excessively small threshold， it is crucial to 
select an appropriate threshold. Here， the threshold 
is set to the first iterative value during the iteration 
process. This is because the first iterative value is 
close to zero. But due to the presence of iterative er⁃
rors， this value will be greater than zero. The proce⁃
dure of the decoupling algorithm with auto-compen⁃
sation is shown in Fig.5.

4. 2 Virtual prototype verification　

The same virtual prototype mentioned before is 
established to validate the effectiveness of the algo⁃
rithm. The misjudgement rate and omission rate dur⁃
ing the iteration process are shown in Table 4.

Table 3　Error ratio of the virtual machine experiment

Time/s
10
20
30
40
50
60

9⁃limb type/%
3.02
4.32
7.98

12.06
19.98
28.43

12⁃limb type(in this paper)/%
3.01
3.92
5.01
6.78
7.74
8.42

Fig.5　A semi-closed process

Table 4　Misjudgement rate and omission rate %

Noise
5

10
15
20
25
30
35
40

Misjudgement rate
0

0.5
1.0
1.5
2.0
2.0
3.0
4.0

Omission rate
0

1.0
2.0
2.5
2.5
3.5
4.0
4.5
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The results show that an increase in noise level 
positively affects both indicators， with higher noise 
leading to higher values for these indicators. Howev⁃
er， even under significant noise interference， such 
as 40% noise， the algorithm maintains a low mis⁃
judgement rate and omission rate.

A comparison of error accumulations between 
the solution algorithm with auto-compensation and 
the one without it is made， as shown in Fig. 6 and 
Fig.7.

The result shows that with auto-compensation， 
the peaks of x-axis， y-axis， and z-axis linear acceler⁃
ations are 12.293 6，9.958 1， and 1.522 2 mm/s2， 
and the peaks of three axis angular accelerations are 
0.008 7，0.011 1， and 0.005 0 rad/s2， respectively. 
After compensation， the error converges， while the 
error without compensation diverges， indicating the 
decoupling algorithm with auto-compensation is ef⁃
fective.

Fig.7　Error accumulations on angular accelerations

Fig.6　Error accumulations on linear accelerations
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5 Conclusions 

（1） Based on Kane’s method， the dynamic 
model is established. Kane’s method is well suited 
for acceleration decoupling processes due to several 
advantages， including introducing small amounts of 
variables and equations and employing low-order dif⁃
ferential equations and the needlessness of force 
analysis.

（2） With the trapezoidal rule， the dynamic 
equations are solved， and virtual prototype experi⁃
ments are conducted. The results show that the solu⁃
tion efficiency of this algorithm is approximately five 
times higher than that of the ADAMS core algo⁃
rithm. Additionally， when the algorithm is applied 
to the “12-6” configuration and the “9-3” configura⁃
tion， the solution efficiency of the former is about 
3.3 times that of the latter.

（3） Based on the vibration theory， an auto-

compensation algorithm is proposed and tested 
through simulations. The results indicate that with 
increasing noise interference， the misjudgement rate 
and the omission rate also increase. Under 40% 
noise interference， these two indices are only 4.0% 
and 4.5%， respectively. Moreover， during the re⁃
cursive solving process of the six accelerations， the 
solving errors converge.
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六轴加速度感知机构解耦算法

张缘为， 尤晶晶， 张显著， 史浩飞
（南京林业大学机械电子工程学院, 南京  210037, 中国）

摘要：针对现有的六轴加速度解耦算法求解低效、精度不高的问题，提出了一种新的解耦算法及误差自补偿算

法。首先，基于凯恩方法建立了六轴加速度传感器的动力学模型，并确定了支链力与加速度之间的关系。然后，

根据梯形公式构建了动力学方程的求解算法。虚拟样机实验表明，该算法的计算效率比 ADAMS 核心算法

高 5 倍。此外，将算法分别应用于“12⁃6”构型和“9⁃3”构型上，前者的计算效率约为后者的 3.3 倍。最后，基于振

动理论构建了一种适用于该求解算法的自补偿算法。虚拟样机实验表明，在 40% 的噪声影响下，该自补偿算法

的误判率和漏判率分别为 4.0% 和 4.5%，同时误差收敛。

关键词：六轴加速度感知机构；凯恩方法；梯形公式；自补偿
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