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Abstract: Except for the bad weather or other uncontrollable reasons, a reasonable queue of departure and arrival
flights is one of the important methods to reduce the delay on busy airports. Here focusing on the Pareto optimiza-
tion of departure flights, the take-off sequencing is taken as a single machine scheduling problem with two objective
functions, i.e. , the minimum of total weighted delayed number of departure flights and the latest delay time of de-
layed flight. And the integer programming model is established and solved by multi-objective genetic algorithm.

The simulation results show that the method can obtain the better goal, and provide a variety of options for con-
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trollers considering the scene situation, thus improving the flexibility and effectivity of flight plan.
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0 Introduction

It is estimated in the “Twelfth Five-Year
Plan” of civil aviation development that normal
rates of flights will be higher than 80%. In 2011,
China Civil Aviation scheduled flight punctuality
rate was 77. 2%, and the flight punctuality rate
become a hot issue of social concerns. The factors
impacting flight punctuality rate include airline’s
own reason, flow control, weather and other rea-
sons. The core issue for improving flights’ punc-
tuality rate is how to arrange reasonable arrival
and departure sequences of the flights. It requires
the air traffic management to minimize the delay
of the flights with actual airspace capacity limita-
tion and runway safety interval constraint condi-
tions, so as to reduce the loss for airlines and cus-
tomers and to improve flights punctuality rate!.

Collaborative decision making (CDM) sys-
tems have been used by several regional air traffic
management bureaus to reduce the delay in some
airports since 2012, e. g. Guangzhou airport.

Since current CDM system can only use simple
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rules for departure flights sequencing, the experi-
ence of controller is still indispensible. There-
fore, the flight scheduling in China is mainly di-
rected based on experiences of air traffic control-
lers with high labor intensity, especially when the
delay of flight occurring in a large area. The usual
sequence strategy involves: (1) First come first
served, i. e. scheduling the flights by departure
preparation time; (2) Scheduling the flights by
urgency of departures, i. e. scheduling by the
ticket times of the flights, earlier time earlier de-
parted.

Currently, the operating mode of runway in
some airports is one for departure and one for ar-
one runway is dedicated for take-off

Therefore, the

whole system can be regarded as separate runway

rival, i. e.

and one runway for landing.

systems for both runways. This paper focuses on
discussing optimization of take-off sequence for
the flights.

Li et al. ¥ used moving or controlled dynam-
ic ant colony algorithm optimization to study arri-

val sequencing and scheduling issues for the
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flights in dynamic environment. Chen et al.
built a mixed integer programming model for ar-
rival sequencing and scheduling issues, and raised
heuristic algorithm of priority concept. Shi et
al. "™ investigated dynamic sequencing model, op-
timization method and sorting system designing
for the flights arriving and departing the terminal
area with multi-runways. In the researches men-
tioned above, the target value of flight departure
is single. However, from perspective of airlines’
service quality, the objective function of flight de-
parture is usually multi-objects. Popular objective
is to keep the minimum of total take-off delays of
the flights. When several flights are waiting for
take-off, with the requirements of this objective
function, reasonable strategy is to keep some
flights delay and thus to enable other flights can
depart on time. But at the same time, the waiting
time for the delayed flights will be very long,
causing serious impact on the service quality once
the flight was delayed for too long time. There-
fore, scheduling the departure sequence for the
flights can be regarded as a machine scheduling
problem with two objective functions.

(1) The minimum of total number of flight
take-off delays: give a certain weight to each
flight, when it has to be delayed, and start adjus-
ting the flights with low weight. The weight can
be confirmed by referring to the numbers of pas-
sengers in the flights, i. e. , the greater the num-
ber of passengers, the higher the priority of the
weight, and vice versa.

(2) The minimum of latest time of delayed
flights: it is because that when several flights
have the conflict of delayed time, the lengths of
their delayed time needs to be compared for mak-
ing choice.

In research of multi-objective issues, Smiths
first raised the Pareto optimization strategy'™,
and looked for more balanced solution among effi-
cient solutions. Setting double objective issues as
f and g, the efficient solution of the Pareto opti-
mization is defined as: no feasible solution can
meet the following conditions: f(x')<{f(x) and

g(x)<<g(n). The Pareto optimization can find as

many efficient solutions as possible on the basis of
meeting the above conditions, and easily select
the applicable solution in most situations. This
paper uses the Pareto optimization to find the so-
lution.

When f and g are the minimizing optimiza-
tion objectives, according to the above definition,
the efficient solution area is shown by the bold
line in Fig. 1. But the real efficient solution is un-
known in actual application of the algorithm.
Hence, one can only solve the approximation area
E(P) (shown in the dotted line in Fig. 1) of the

efficient solutions as an alternative objective.

E(P):approximation of effective solutions

Feasible solution area

P: effective solutions

f

Fig. 1 Approximation of effective solutions

1 Mathematic Models

1.1 Departure process

Taking the flights” departure process as an
example (Fig 2), the flight receives instructions
of being ready for take-off from control tower—
taxis from apron to runway —start take-off
enter into complete route of airport’s airspace sec-
tor—start departure from the appointed place.
For air traffic controller who faces the complex
decision in the limitation of capacity of runway,
the input data include all basic information of de-
parture flights, such as ticket time, the impor-
tance of flight, time required for take off, and the
output is the sequence of departing flights. Then
the number and delay time of delayed flights are

known.
1.2 Model introduction

From the perspective of scheduling theory,
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one can regard the time when the flight receives
take-off instruction to be ready for entering the
runway as the release time, and the departure
time on the flight ticket as due time. If the actual
take-off time of the flight is later than the due
time, the flight will be delayed, which should be

avoided as much as possible in actual situation.
From the start to the end of take-offs after finish-
ing the waiting time on the runaway, such period
can be regarded as the processing time, and the
detailed value can be calculated by statistics data or

overall consideration of flying distance and speed.
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Decision-making
Departure process | process parameter Departure process |
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| |
| interval |
| [
I b
I [
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| Starting time |» --------- »=| Actual starting time

| Enter complete route | i

Departure from appointed
place

—

| Enter complete route |

!

Departure from appointed
place

|

|

|

|

4

|

|

|

1

|

|

| :
| Starting time I‘ _____ Lo

| :

|

|

|

|

|

|

|

|

|

|

|

|

|

Fig. 2 Process of flight’s departure

It is assumed that there are n arrived flights
waiting for take-off, and only one flight can take
off from the runway at the same time; earliest
time, due time and latest time for each flight are
different and can be confirmed when the time
is 0.

(1) Definition of symbols

j Flight's serial number, j=1,,n
i The ith location in the take-off sequence,

i=1,.n
(2) Constants
r; Earliest time the flight j can take off
d; Due time for flight j
Weight of flight j
p; Time required for the flight j to take off
M A big integer

(3) Decision variables

S, Actual start take-off time for the ith se-
quence flight

L; Delay time of the ith sequence flight, if
no delay, L;=0

x; ;=1 means the {light j is arranged to
take off at sequence 1.

U; U; =1 means flight arranged for se-
quence 7 is delayed

(4) Objective function and constraints

This paper is to solve the so-called Pareto op-
timization objectives, and the two objective func-
tions are as follows

f:mini (U, iw,x,,)
i=1

i=1

The minimum of total flight weighted number of
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delay

n n
f:mln g (UI é ij”>
i=1 =1

The minimum of the longest delay time of the de-
layed flights
g=m1n< r[rlzelle;>

Constraint conditions

EIU:1 i=1,.n (D
=
Dlay =1 j=1.=un 2
=1

S,‘ - erl‘,'j > 0 l‘zlv"'vn (3)
=1

St =S = D pay, =0 i=1,mn (4

i=1

S,+2(P,*d/)1'[]fM.UI,<O i=1,yn

j=1

5

Si+ D (p—dDay; — L <0 i= 1,0 (6)
ji=1

L, >0 7

Constraints (1), (2) ensure the correspond-

ing relationship between flight j and sequence i,
constraints (3), (4) ensure the starting take-off
time for the flight arranged at sequence 7 is later
than the earliest take-off time and the actual end-
ing take-off time of previous flight, and con-
straint (5) ensures U; =1 if the actual take-off
time of the flight at sequence i, or U;=0. Con-
straints (6) and (7) ensure L; =0 if there is no
delay, or L;=0 should be equal to the difference
between the actual take-off time and the latest
take-off time of the flight at sequence i. Solve the
above model and get x;, as well as a sequence &

discribing the original issue.
1.3 Explanation

On the basis of the above model, if any new
situation comes out, the air traffic controller only
needs to update the above estimate value and in-
put parameters according to the latest situation,
thus providing intuitive and timely initial plan for
further decision. For example, after the bad
weather occurs, all flights cannot depart from the
airport. When the weather permits, the informa-
tion of flights will be renewed, that is, the earliest

time the flight, due time, etc. After all input da-

ta replacement, the new solution will be calculat-
ed by the model. For a specific flight, the expec-
ted departing time can be estimated and an-
nounced to customers, the good service quality

will be accepted by customers.

2 Multi-objective Optimization

According to the scheduling theory, when
earliest take-off time of all flights is 0, the mini-
mum number of total delayed departure flights
can obtain the optimal solution within polynomial
time, and the minimum of the longest delayed
time is NP-complete™™. If the earliest take-off
time of all flights are different, the above two is-
sues are all NP-hard issuel™.

As both the objective functions f and g in
this paper are NP-hard, it is difficult for tradi-
tional method of operational research to gain sat-
isfied results. So currently when solving the issue
with single machine and two objectives, the most
commonly used method is artificial intelligence,
including genetic algorithm™), Tabu search, sim-
ulated annealing, etc.

Genetic algorithm is one useful tool to realize
the simulation of biological system evolution
process via crossover and mutation between chro-

mosomes and the evalution via searching space

1) o as to find the overall

multiple solutions-
optimal solution for the issue. This method has
the impliciting concurrency and overall solution

space searching capacity.
2.1 Coding

The solution for the issue can be expressed
by sequence number of each flight, and the inte-
ger coding is expressed in Fig. 3, where 7; repre-
sents that the flight 7 is scheduled at the location
i
rigeri; in

LR
|Coding numbering‘

S =

Flight 1 | Flight 3 | Flight 4 | Flight 5 | Flight 2

Fig. 3 Chromosome coding
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2.2 Fitness value

Fitness value is used to decide the perform-
ance of the solution for the population during the
interative process of the algorithm. There are two
methods. One is to consider both two objective
functions f and g. In order to find out E(P) to
form the appropriate area of the effective solu-
tion, it needs to share fitness value informa-
tion'?** between these two objective functions.
Firstly calculate the Euclidean distance between
objective space (0,1) after standardization of two
solutions 7, and ;. secondly calculate the niche
count for solution & E(P), based on which, cal-
culate the final fitness value. The other is to
search along the boundary space of current known
effective solution area without consideration of
sharing fitted value information™, and adopt
crowding distance as the evaluation to describe
the distance between the points on the boundary
and other neighboring points, bigger value means
more uniform distribution of the solution, the
more possibility it should be selected.

Step 1

according to objective functions f and g respec-

Sort the current R effective solutions

tively and set them as f,, fy, s fx and g1, g5
.=+, gr» corresponding to the points of the bound-
ary j=1,,R.

Step 2 Set yi. ;1 and yp4.,) respectively repre-
sent sorting of current R effective solutions =
according to objective functions f and g, if
cd Cyr, ) =00, cdy (yrrg) = oy edy (ypro ) = 00
and cd, Cyig,,1) =o°, for others’ k=2,--,R—1,
there will be
St — S e )

Cdf(y[k./] - f‘max . fmin

od, (Yo = f(y[kﬂ.gja)x : ffni’k 1.e1)
g g

od y Cye ) = ASE lfcj)x : ;Eﬁiuﬂ.ﬂ )

cd , (Yipg = f(y[/«ﬂg,gnjm)x : fii:;,ﬂ.d )

where f™*, g™ and f™", g™ are the maximum
values and minimum values of the objective func-
tions f and g respectively.

Step 3 After the above results are calculat-

ed, the final crowding distance will be

cd () = f(r) + g(x)
where c¢d(x,) is taken as the fitness value of the
solution. But for single objective issue, it can di-

rectly adopt the f or g value as the fitness value.
2.3 Population initialization and crossover

According to the above coding principle, ran-
domly generating a set of 1 to n arrangement to
form the initial solutions, repeating this process,
and the initial solution set with numbers of P can
be obtained.

Crossover operator will form matching li-
brary of crossover operation via the parity individ-
uals in father generation. Identify a crossover lo-
cation according to crossover probability P, (0<C
P.<1), and then change the gene string after
that location. This article uses one-point cross-
over to replace the coding after the crossover
point. In order to ensure the feasibility of the so-
lution, coding after the crossover point in father
generation one will be sorted by sequence in fa-
ther generation two, similarly, coding in father
generation two will be sorted by sequence in fa-
ther generation one. In Fig. 4, {1,2,4} in the Fa-
ther generation 1 are sorted as {4,2,1} per se-
quence in the Father generation 2, similarly, {5,
1,3} in the Father generation two are changed to
be {5,3,1}.

Crossover point 1

Father .
generation 1 Offspring 1
sl filo [ fobels L3l o2 ] 1]
Crosgover
Lelafslofa] | [elzfs[a]r]

Father generation 2 Offspring 2

Fig. 4 Crossover
2.4 Mutation

Mutation operator is used to prevent the pop-
ulation from early convergence to local optimal
solution, and converse the code to other value af-
ter selecting mutation location. Moreover, in or-
der to keep the feasibility of the solution, it needs
to converse the code at original location to the

code at mutation location with the probability val-
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ue of P, (0<<P,< 1) (Fig.5).

Mutation

5

el fslafa] —=[e]i]s]2]5]

Father generation Offspring

Fig.5 Mutation

2.5 Selection and termination conditions

Combine the definition of fitness value and
use the probability of fitness value for individuals
to decide whether it participates in crossover or
mutation processes, and select the probability P,
(0<<P,<<1). Each time select the effective solu-
tion boundary after combining the father genera-
tion and offspring sets, if the number of current
effective solution is less than P, then calculate all
crowding distance of all current effective solutions
successively, and list them in a descending order
per the distance. Select successively until the cur-
rent population quantity reaches P.

The termination conditions are as follows:
(1) Iterations are completed; (2) No change hap-
pens in fitted values between continuous several

generations.

3 Numerical Examples Validation

The following is to validate the function of
genetic algorithm for multi-objective optimization
issue when the number of take-off flight is m =
40, 80, 100 respectively.

flight j take-off time meets the average distribu-

Given time p;, the

tion of [1,100], the weight w; is the average dis-
tribution of [1,5], and the earliest take-off time
r; meets the average distribution of [ 1, MS].
Time window (d; —r;) meets the average distri-
bution between [ (1—T—R/2) XMS,(1—T+R/
2) XMS], where MS is the sum of p; for all the
flights, and the value ranges of T and R are 0. 2,
0.4, 0.6 and 0.4, 0.6, 0.8, respectively. Pa-
rameters for the genetic algorithm are as follows:
population size P = 100, selection probability
P.=0.1, crossover probability P. =0. 6, muta-
tion probability P, =0. 1. Five cases for each pa-

rameter group are calculated .

In order to evaluate multi-objective genetic
algorithm, (The optimal value obtained from sin-
gle objective genetic algorithm sums f and g is al-
so added into the effective solution boundary) this
paper compares the results sorting by first come
first serve (FCFS), departure urgency (smaller
A=d; — r;, more urgency) with (f,, g,). In
Fig. 2, |E(P) |, is the average value for num-
bers of effective solutions in E(P), and bigger
value means more solutions. The results show
that most of the calculations can find out 5—38 ef-
fective solutions to select based on site conditions
(Table 1). (fie— fuin) /fmin shows the difference
between average value of current effective solu-
tions at objective value f and single object opti-
mal solution obtained from genetic algorithm
S min» and the smaller distance indicates the better
result of the effective solution if taking f as the
standard. In addition, the definition of (g, —
Zumin) /&min 18 similar. [/ frcrs shows the com-
parison between the average value of the effective
solution at objective value f and the result from
FCFS. Comparing with the single objective by the
genetic algorithm, the results show that the aver-
age performance of the proposed algorithm is
more stable, which is better than the traditional
heuristic method.

Fig. 6 shows the effective solution boundaries

in a group of examples under different m,T,R.

4 Conclusions

The frequent flight delay in busy airports is
literally unpleasant. This paper models a take-off
scheduling problem as a single machine schedu-
ling problem with two objective functions (the
minimum of total amount of delayed flights with
weight and the minimum of latest delay time).
Each flight is with different preparation time,
take-off time and departure time. In order to put
the Perato optimization solution into practice, the
multi-objective genetic algorithm is used to calcu-
late the effective solutions set, and the calculation
results of experimental case show that the method
can gain a better objective value in comparison

with the traditional heuristic method and also can
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Table 1 Performance comparison of the proposed algorithms
Number of T r EP) L (o™ Soin) [ (Qavg— &min)/ S/ Fo) fo Gave/ Gave/
flights J i Zmin Srces 8FCrs ga
0.4 5.6 1.55 1. 54 0.45 0.82 0. 84 0. 84
0.2 0.6 5.5 1.79 1.91 0. 86 0.82 0.82 0.67
0.8 6.8 1.91 0. 60 0.56 1. 11 0.88 0.71
0.4 7.8 0. 87 0. 54 0.48 1.27 1. 04 0.70
40 0.4 0.6 8.4 0. 96 0.47 0.53 0.93 0. 90 0.59
0.8 5.5 1.43 0.41 0.72 1.01 0.97 0.71
0.4 4.1 0.83 0. 54 0. 84 1. 11 0.87 0. 60
0.6 0.6 7.4 1.31 0. 89 0.59 0.84 0.95 0. 84
0.8 5.2 1.41 0.55 0.51 0.93 0.92 0. 87
0.4 8.6 1.93 1.12 0.79 0.97 0.96 0.61
0.2 0.6 6.8 1.15 1. 47 0.50 0.70 1.03 0.72
0.8 7.5 1.15 1.22 0.90 1.08 1.05 0.62
8.4 1.97 0.51 0.88 1. 07 0. 81 0.76
80 0.4 0.6 4.9 1.28 1. 98 0.90 0.94 0.89 0.56
0.8 7.6 1.77 1. 25 0.79 0.89 0.88 0. 94
0.4 5.2 1. 19 1.02 0.52 0.98 1.04 0.95
0.6 0.6 5.2 1.31 1. 66 0.79 0. 85 0. 84 0.72
0.8 5.3 1.53 1.77 0.53 0.89 0. 94 0. 67
0.4 8.9 2.20 1. 88 0.73 1.03 0.89 0.77
0.2 0.6 7.4 1. 89 0.75 0.49 1.13 1. 00 0.83
0.8 6.0 1.61 0. 44 0.62 1.12 0. 81 0.69
0.4 8.2 1.23 1.57 0.58 1.26 1.04 0.72
100 0.4 0.6 6.2 1. 49 1.55 0.78 1. 15 0.89 0.95
0.8 4.1 1.04 1. 45 0.93 0.85 1.04 0.76
0.4 5.9 1. 11 0.71 0.59 1.05 1.04 0.97
0.6 0.6 8.0 1. 60 1. 50 0.74 1.00 0.94 0.96
0.8 6.1 1. 50 1.03 0.79 1. 06 0.99 0.77

50, - 120
400 500 600 700 800 900 600
4

(a) Approximation of effective solutions

when m=40 when m=80

Fig. 6

provide a relatively intuitive decision support for
the controller, who can select the one that mostly
meets the actual situation from the effective solu-
tions set, thus effectively reducing the delay issue
of flight caused by unreasonable departure flight's
sequence and improving the level of aviation serv-

ice.

1 000

(b) Approximation of effective solutions

160
1 000

1 400 1 800 1 500 2 000 2500

g

(c) Approximation of effective solutions
when m=100

Result of effective solutions
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