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Abstract;: A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers. The

preconditioned system in a conservation form is obtained by multiplying a preconditioning matrix of the type of

Weiss and Smith to the time derivative of the Euler equations, which are discretized using a gridless technique

wherein the physical domain is distributed by clouds of points. The implementation of the preconditioned gridless

method is mainly based on the frame of the traditional gridless method without preconditioning, which may fail to

converge for low Mach number simulations. Therefore, the modifications corresponding to the affected terms of

preconditioning are mainly addressed. The numerical results show that the preconditioned gridless method still

functions for compressible transonic flow simulations and additionally, for nearly incompressible flow simulations

at low Mach numbers as well. The paper ends with the nearly incompressible flow over a multi-element airfoil,

which demonstrates the ability of the method presented for treating flows over complicated geometries.
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0 Introduction

In the past few decades, computational fluid
dynamics (CFD) has gained sustained develop-
ment and has become an important tool in modern
aircraft design. The computational domain used
in CFD is discretized by cells of grid or mesh,
particularly for existing commercial CFD soft-
ware. The corresponding methods can be named
as "grid method”, which requires a grid generation
step before flow simulations. For a complicated
geometry like a full modern aircraft, to generate a
suitable grid is still of great challenge due to the
connectivity limitation of the grid, particularly to
cope with some geometric details like small gaps
between multi-bodies. Hence, the idea of being
free of grids has drawn attention. To eliminate
completely the limitation of the grid connectivity
with point based discretization, a class of meth-
ods, namely "gridless or grid-free method”, was

developed, which behaves naturally and more
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flexibly to cope with the flow past any complicat-
ed geometry due to the following facts. The spa-
tial derivative approximation at any given point by
gridless methods depends only on the information
of its surrounding points which do not need to
form a mesh. The point distribution in the com-
putational domain can be made by using any ex-
isting means like the ones used in existing struc-
tured or unstructured grid generators. The inter-
esting features motivated many researchers to
study this issue and various grid-free approa-
ches'™'® have been proposed. In aerodynamics,
the most notable work was done by Batinat , who
developed an explicit solver based on the centered
scheme with artificial dissipation for solving com-
pressible flows with shocks. An implicit solver
was later developed by Morinishi"! using " mid-
point upwind” and weighted least-squares. Most
of above gridless methods are usually developed

for compressible flows and can not be extended
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directly for solving nearly incompressible flows at oE = ( f - + %p(uz 1) )
low Mach numbers. 4

Here a further extension of traditional grid- pH =pE +p (6)

less method will be considered to develop a pre-
conditioned gridless method for solving Euler
equations at low Mach numbers. A precondition-
ing matrix of the type of Weiss and Smith is se-
lected. The preconditioned system in conserva-
tion form is then obtained by multiplying precon-
ditioning matrix to the time derivative of the Eul-
er equations, which are discretized using a grid-
less technique wherein the physical domain is dis-
tributed by clouds of points. The implementation
of the preconditioned gridless method is mainly
based on the frame of the traditional gridless
method without preconditioning, therefore the
only modifications corresponding to the affect
terms of preconditioning are mainly discussed.
The resulting preconditioned gridless method is
tested and analyzed by both compressible transon-
ic flows and nearly incompressible flows at low
Mach numbers over airfoils or multi-element air-
foils. The numerical results show that the pre-
conditioned gridless method still functions for
compressible transonic flow simulations and addi-
tionally, for nearly incompressible flow simula-

tions at low Mach numbers as well.

1 Governing Equations

The Euler equations governing inviscid flows

[10]

can be expressed in a dimensionless''” conserva-

tive form as

i e))
at dy

where W is the vector of conservative variables. E

and F are the convective flux terms. They are de-

fined as
W=Lo:oupv:pE 1" (2
E=[pu,ou’ + psouv,ouH]" (3
F:[pv,puv,pvz+]),va]T 4)

where p, p, E and H denote the density, pres-
sure, total energy per unit mass, and total en-
thalpy per unit mass respectively. u and v are the
Cartesian components of the velocity vector.

These quantities for a perfect gas satisfy

where ¥ is the ratio of specific heats of the fluid

and typically taken as y=1. 4 for air.

2 Basic Gridless Method Without
Preconditioning

In the gridless method, scattered points are
distributed in the physical domain of the problem
to be solved. For each point, several points a-
round it are chosen to form a cloud of points'™*.
Fig. 1 shows a typical cloud of points C (i), in
which point 7 is named the center and the other

points are called the satellites.

Fig. 1 Cloud of points

The spatial derivatives of any quantities in
the gridless method are evaluated with linear
combinations of certain coefficients and the quan-
tities in the cloud of points. The first order deriv-
atives of function f at point i can be estimated by

the following linear combination forms-'"

2/ 2f “
;71 Za:ksz7 (7 :Zﬁikfik D
k=1
where M; denotes the total number of the satel-
lites in the cloud C(i), and f, the value at the
midpoint between point ¢ and point k.. The coeffi-
cients a; and B; can be obtained using weighted
least-squares curve fitting®?**1,  The weight
functions used in this study are given by
L2
we = () (8
Tk
where r, is the relative distance defined with
ry — (fl‘kilvz)Z‘F(ykiyl)z (9)

and 7; is set with the distance between the central

point to the nearest point in its cloud of points.
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In cloud C(2), the flux terms of Eq. (1) can

be rewritten as
0 = (10)

If Eq. (7) is applied to the convective flux of

JE | IF

the Euler equations, it can be further written as

M M
Qr:E(az’kEik +Bi/«Fi/:):EGi/z (1D
r=1 k=1

where the flux term G at the midpoint is defined
as
oU
Gk +pp— "V (12)
U + Bp
eHU
and U is defined as
U=qu—+ pv 13
The numerical flux G, at the midpoint be-
tween point 7 and k£ can be calculated from the
conservative variables at the midpoint. By using
central difference method, the conservative varia-

bles at the midpoint can be obtained as follows
W =L W, +W,) (14)

With the conservative variables W, , the nu-
merical flux G, can be calculated. To make the
computation stable, the artificial dissipative term
D is added. The semi-discretization form of the
Euler equations for cloud C (i) then can be ex-
pressed as

IW
Jdt

=—(Q;—D) (15

The construction of the artificial dissipative

terms is given by
M

D= > el (W, —W,) —
k=1

M

D kel (VW — VW) (16)
k=1

) (€3]

where ¢¥ and ¢V are the adaptive coefficients. A
is the spectral radius of the Jacobian matrix A=

IG/IwW

A=|U |[+cva’ +F an
and c:m is the speed of sound. The de-
tailed description of the construction of the dissi-

pative term can be found in Ref. [14].

In order to obtain the steady solution, an ex-

plicit four-stage Runge-Kutta time integration

scheme is adopted

WI(_()) :Will
ng) :WEO) o 7],,1At{ (Q?/u*l) _ DE/N*I) ) (18)
WIIH»I :Wf/l)

where the superscripts n and n+1 denote the cur-
rent and the next new time level, respectively and
m=1,2,3,4 is the internal step. The coefficients
7. can be found in Ref. [14]. To accelerate the
convergence, At; is taken as the maximum per-
missible local time stept'"

At;_‘(/i (19)

7 A'VI’
DIAAD
k=1

In the case of an inviscid flow, the fluid slips
over the wall surface. In other words, the normal
component of the velocity vanishes at the solid
boundary. Therefore, the appropriate boundary
condition is to require the flow to be tangential to
the surface

V.,en=0 (20)
where V,, and n are the velocity and unit normal
vector at the surface, respectively.

In the far field, one-dimensional characteris-
tic analysis based on Riemann invariants is used
to determine the values of the flow variables on
the outer boundaries of the computational do-
main. The details of the implementation of the

boundary conditions can be found in Ref. [14].

3 Preconditioned Gridless Method

The preconditioned system is obtained by
multiplying the time derivative in Eq. (1) by a
matrix I'

W OE  OF _
dt dx  dy

r 0 2D

where I' represents the preconditioning matrix
based on the conservative variables. In a strict
sense, Eqg. (21) is not conservative for the time-
dependent flows. As pointed out in Ref. [157,
however, it is still conservative in the steady
state. Thus, it is not a problem to employ
Eq. (21) for steady calculations.

The choice of the preconditioning matrix for

low Mach number flows is not unique'*?". A
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well-known and widely used preconditioning ma-
trix is introduced by Weiss and Smitht* 1, This
paper uses the following preconditioning matrix

and it can be written as

1 0 0 0
0O 1 0 O
r=ijo o 1 o]+t
0O 0 0 l
o
s —u — v 1
o I — 2 _ ;
Y 91<i71> u u 'ULII, u (22)
c o IIv — uv — 2t v
nH —uH —vH
where
M=+ o) (23)

o =min[ max(Ma® ,Ma?® ) ,1] 24)
where Ma and Ma.. represent the local and the
freestream Mach number, respectively.

The difficulty in solving the flows at a low
Mach number of the traditional gridless method
without preconditioning is associated with the
large disparity in the magnitudes of eigenval-

151 The application of preconditioning chan-

ues
ges the eigenvalues of the system and scales them
to the same order of magnitude. Using the grid-
less method to discretize the spatial derivatives as
suggested in Eq. (7), Eq. (21) can be further re-
written as

W
at |,

M.
+I' DG, =0 (25)

k=1

In Eq. (25), the flux terms can be computed
using the traditional gridless method described in
Section 1 and then multiplied by I'' directly.
The Jacobian matrix for the system after precon-
ditioning now becomes I' '9G/9dW, which has the

spectral radius as

A’:%(l—h;) U |+

SV A = U g+ &+ (& ) (26)

To make the computation stable, a new arti-
ficial dissipative term D’; should be added and
takes the form as

M
D= >\l (W, —W,) —

k=1

M

DIl (VEW, — VW) (2D)
k=1
Compared with Eq. (16), adaptive coeffi-

(2) )

cients, ¢ and ¢V are now multiplied by a modi-

fied spectral radius A" defined in Eq. (26). There-

fore, Eq. (25) can be rewritten as

IW
dat

M
+I'>)G, —D', =0 (28)
i k=1

An explicit four-stage Runge-Kutta time in-
tegration scheme like Eq. (18) is also used for
this resulting semi-discretization Eq. (28) to have
a steady solution. The boundary conditions
should also be changed to suit the preconditioned
system. The use of characteristics-based bounda-
ry conditions requires information of the eigenval-
ues of the Jacobian matrix. Once the time-de-
pendent equations are changed, the characteristics
of the system are changed correspondingly.
Hence, it is necessary to modify the far-field
boundary conditions for the preconditioned sys-
tem. Accurate characteristic boundary conditions
for the preconditioned system can be found in
Ref. [22]. As for incompressible flows, a simpli-
fied boundary condition is proposed by Turkelt?*
and adopted in this paper, which reads

Inflow .

Uy = U sV = Ve

O == Pv= Pin 29

Outflow:

Up = Uing s Up = Uiny

06 = Pint s Ps = Peo (30)
where the subscript "6” denotes the variables to be
computed at the boundary, ”"int” the variables
from the interior of the flowfield, and "=o" the

freestream variables.

4 Numerical Results

The gridless method and preconditioned grid-
less method described above have been implemen-
ted and tested with different flow conditions. In
this section one presents results obtained for the
following test cases: transonic flows over NA-
CA0012 airfoil, flows over airfoils at low Mach
numbers, and nearly incompressible flow over a

multi-element airfoil. The first result will show
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the performance and accuracy of the present
methods for computing transonic flows and the
gridless method with preconditioning does not ad-
versely affect the calculations of this type. The
second case will demonstrate the preconditioned
gridless method for solving the flows at low Mach
numbers. And in the final case, the ability of
present preconditioned gridless method is demon-
strated for treating nearly incompressible flows

over complex geometries.
4.1 Transonic flows over NACA0012 airfoil

In order to demonstrate the accuracy and per-
formance of the present method for solving tran-
sonic flow, numerical results are presented for
the calculation of two-dimensional flow around an
NACAO0012 airfoil. The clouds of 3 808 points

used for this case are shown in Fig. 2. In accord-

ance with Ref. [24], the angle of attack is set to
0° and Mach number to 0. 8.

Fig. 2 Point distribution around NACA0012 airfoil

The surface pressure coefficients of the NA-
CA0012 airfoil are shown in Fig. 3. It is shown
the reasonable agreement of the predictions ob-
tained by the gridless method, preconditioned
gridless method and finite volume method
(FVM)O™ in view of the strength or location of

the captured shock.
4.2 Flows over airfoils at low Mach numbers

The performance of the preconditioned grid-
less method has been tested firstly for the flows
over the symmetric NACA 0012 airfoil at low

Mach numbers. Four low Mach numbers of 0. 3,

Present
Gridless method
FVM®™!

Fig. 3 Surface pressure coefficients

0.1, 0.01 and 0. 001 with the same zero angle of
attack and CFL=6 are selected for the numerical
simulation. Convergence histories for both grid-
less method and preconditioned gridless method

are shown in Figs. 4,5, respectively.

log10 (residual)

Ma=0.3
Ma=0.1
Ma=0.01
Ma=0.001

Fig. 4 Convergence histories without preconditioning

log10 (residual)

4 6

Iteration / 10’

Fig.5 Convergence histories with preconditioning
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Here it can be observed that the convergence
of gridless method without preconditioning be-
comes difficulty as the Mach number becomes
smaller. However, the preconditioned gridless
method can be converged for all testing Mach
numbers. Predicted Mach contours for the typical
case of Ma=0. 001, angle of attack 0° and CFL=
6 are shown in Fig. 6. It can be noted that the
symmetry of Mach contours is well captured in
agreement with the physical symmetry flow field
of the flows over the symmetric NACA 0012 air-
foil with zero angle of attack. The corresponding
distribution of surface pressure coefficient is com-
Jin Fig. 7. As

seen from Fig. 7, the agreement between the cal-

pared with the experimental data®

culation and experiment is quite good.

Fig. 6 Mach contours

Present

Exprimental data””

Fig. 7 Distribution of surface pressure coefficient

The computations of the flows over an un-

symmetric RAE2822 airfoil at low Mach number

are also carried out by the present preconditioned
gridless method. Here the case of Mach number
0. 01 and angle of attack 1. 89° is presented as
shown in Figs. 8—11. Fig. 8 illustrates the clouds
of points distributed in the computational do-
main. The convergence history of the present
preconditioned gridless method in Fig. 9 is plot-
ted along with that of gridless method without
preconditioning for having a possible comparison.
It can be learned from the corresponding Mach
contours in Fig. 10 that the captured flow filed is
now unsymmetric, which reflects the physical

unsymmetric

RAE2822 airfoil. As seen from Fig. 11, agree-

feature of the flows over an

ment between present calculations and other re-
sults appeared in open literature like Puoti's cal-

[26]

culations™® or the experiment™” is quite good in

view of peak of leading edge suction and pressure

distributions.

Fig. 8 Points around RAE2822 airfoil

Present
Gridless method

(residual)

=

=
)

2

Fig.9 Comparison of convergence history
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Fig. 10 Mach contours around RAE2822 airfoil

Present

Numerical result (Puoti“®)

Experimental data™”

Fig. 11 Comparison of surface C, distribution

4.3 Nearly incompressible flow over a multi-
element airfoil
As compared with the single-element airfoil

like NACA 0012 or RAE2822 mentioned above,

multi-element airfoils have relatively complicated

geometry and are widely used as the techniques of

high lift systems related to the landing or take-off
of a real aircraft. It can be noted that the flows
during the landing or take-off are nearly incom-
pressible. Therefore, the simulation of nearly in-
compressible flow over a multi-element airfoil is
conducted here to demonstrate the ability of the
method developed in this paper.

The clouds of 5 865 points used for this case
are shown in Fig. 12. Here it can be learned that
this multi-element airfoil consists of slat, main,
and flap parts. To compare the results with the
available results appeared in open literatures, the
case of Mach number Ma=0. 197 and angle of at-

tack 4. 01° is selected and computed with CFL =

idless Method for Sc

6. Fig. 13 shows the better convergence history of
this calculation, along with plotting failing con-
vergence history of gridless method without pre-
conditioning. The Mach contours and the corre-
sponding surface pressure coefficient are shown in
Figs. 14, 15, respectively. A reasonable agree-
ment between calculations and experimental da-
ta?®! of the surface pressure coefficient is achieved

particularly on the surface of the main part of this

Fig. 12 Point distribution around multi-element airfoil

Present
Gridless method

log10 (residual)

4 6
Iteration / 10°

Convergence histories

Fig. 14 Mach contours
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Present

28]

Experimental data

Fig. 15 Surface C, distribution

multi-element airfoil.

5 Conclusions

The preconditioned gridless method for sol-
ving Euler equations has been developed based on
the gridless method without preconditioning,
which may fail to converge for low Mach number
simulations. The preconditioned gridless method
still adapts to compressible transonic flow simula-
tions and additionally, for nearly incompressible
flow simulations at low Mach numbers as well.
The numerical results have shown the perform-
ance and the accuracy of the preconditioned grid-
less method, which demonstrates the ability for

treating nearly incompressible flows over complex

geometries,
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