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Abstract: For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical sys-
tems, the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems
are studied. based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi. Firstly,
the fractional action-like variational problem is established, and the fractional action-like Lagrange equations of ho-
lonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic sys-
tem are given; secondly, according to the invariance of fractional action-like Hamilton action under infinitesimal
transformations of group, the definitions and criteria of fractional action-like Noether symmetric transformations
and quasi-symmetric transformations are put forward; finally, the fractional action-like Noether theorems for both
holonomic system and nonholonomic system are established, and the relationship between the fractional action-like
Noether symmetry and the conserved quantity is given.
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0 Introduction

The fractional calculus has provided a pow-
erful mathematical tool for a great number of
problems in different fields of science and engi-
neering, and has made many break-through re-
sults in mathematical physics, classical and
quantum mechanics, control theory, nonlinear
dynamics, signal and image processing, thermo-
dynamics, bioengineering and other fields''?',
Although various fields of application of fraction-
al calculus are already well established, some
others have just started. The researches in frac-
tional variational problems and their symmetry
and conserved quantity are examples of the lat-
ter.

The study of fractional variational problems

began in the work of Riewe™". In 1996, Riewe
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first applied fractional calculus to a non-conserva-
tive mechanics modeling, and the fractional Eul-
er-Lagrange equations and the fractional Hamil-
ton equations were formed initially. Since then,
the fractional variational problems have become
one of the most popular research areas in applied
mathematics, physics, dynamics and control, and
are increasingly attracting the attention of many

scholars: Klimek™®, 1701,

je[10-11]

Agrawa Atanackov-

, Jumariet'?', Baleanu'" ', Torres

Cresson™®!, Rabeit??,

[16-18]
’

El-Nabulsit*?7,
]

Tara-

, and Zhang®?®7, et al. These scholars

sovt?
came up with a variety of fractional models and
methods from different views, and established the
corresponding fractional FEuler-Lagrange equa-
tions and fractional Hamilton equations. From

the point of view of both classical and quantum
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systems, the existence of a number of different
fractional variational problems and the need for a
more precise description of the fractional model,
in part, can be interpreted as the nonlocal nature
of fractional order differential operators and the
corresponding adjoint operators for describing the
dynamics. Another reason is that there exist
many different fractional integral operators, in-
cluding Griinwald-Letnikov, Caputo, Riesz, Rie-
mann-Liouville operators, and so on. The Rie-
mann-Liouville operator is one of the most fre-
quently used in the application of fractional calcu-
lus operators.

In order to establish a non-conservative dy-
namical system model, El-Nabulsi presented a
modeling method™”! in 2005, known as the frac-
tional action-like variational approach (also called
the El-Nabulsi's fractional model). In his meth-
od, the fractional integral about time only needs
one parameter, and the resulting fractional Euler-
Lagrange equations contain the dissipative forces
depending on time. However, there are an arbi-
trary number of fractional parameters (the order
of the derivative) in other fractional models. The
novelty of El-Nabulsi dynamics model is that the
derived Euler-Lagrange equations are similar to
the classical ones, with no fractional derivatives,
but the presence of the fractional generalized ex-
ternal force acts on the system. The fractional ac-
tion-like approach was further extended to the sit-
uation of Lagrangian depending on Riemann-Li-
ouville fractional derivatives'®’, to the multi-di-
mensional fractional action-like variational prob-

lemst?,

the fractional action-like variational
problems with holonomic constraints or nonholo-

nomic constraints or dissipative dynamic sys-

[22]

tems“*, the {fractional action-like variational

%1 and the uni-

problems with exponential law’
versal fractional action-like Euler-Lagrange equa-
tions from a generalized fractional derivative oper-

L2 Frederico and Torres studied the con-

ator
stant of motion for fractional action-like variation-
al problems, gave Noether's theorem™ for non-
conservative system under El-Nabulsi's fractional

model, and extended to the situation of Lagrang-

ian containing higher-order derivatives®!, Re-
cently, authors have obtained the Noether's theo-
rem for Birkhoffian system"? under El-Nabulsi’s
fractional model, the Noether's theorems for La-

grange systems!®*

and Hamilton systems™" based
on the extended exponentially fractional integral.

Here the Noether theory for holonomic sys-
tems and nonholonomic systems is further studied
under the framework of fractional action-like vari-
ational approach. The definitions and criteria of
fractional action-like Noether symmetric transfor-
mations and Noether quasi-symmetric transfor-
mations are provided. The fractional action-like
Noether theorems of holonomic systems and non-
holonomic systems are derived. And the con-
served quantities led by the fractional action-like

Noether symmetries are given.

1 Fractional Action-Like Variational
Problem

Assume that the configuration of a mechani-
cal system is determined by generalized coordi-
nates q, (k = 1, -+, n), the Lagrangian of the
system is L =L(z, q. ). With the fractional ac-
tion-like variational approach for modeling of non-
conservative dynamical system presented by EIl-
Nabulsi®®, the fractional variational problem un-
der Riemann-Liouville fractional integrals can be
defined as follows.

Find the stationary points of the integral

function
,) .
S:ﬁja“f’ @ () + @ () & — o) de (1)

with the fixed boundary conditions
k=1, -, n (2)
g» =dq,/dc, I'is the Euler gamma func-

@ (@) =qras @ (D) =quy
where
tion, 0 << @ << 1, r the intrinsic time, ¢ the ob-
server time, r % ¢, and the smooth Lagrangian L
the function of C* with respect to all of its argu-
ments.

The above variational problem is called the
fractional action-like variational problem. Eq. (1)
can also be called the fractional action-like Ham-
ilton action. When ¢=1, the problem becomes

a classical variational problem of a dynamical
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system.

According to the theory of calculus of varia-
tions, the necessary condition to achieve extreme
for Eq. (1) at ¢, =q, (z) is its variation equal to 0,
that is, S =0. Therefore, one can have the fol-

lowing equation

b ad
Py J(Laqﬁ qLaqk)a—fwldf:o
a k

I J\og 9
(3)
Using the boundary conditions Eq. (2). one
has
b
| 2og =0 o=
« Iq;
IL b _J” daJL .
[aqk t—1o) Bq/z} ) ) [dz— % t—1)
JL ,
2 (a—1) t—1o) rz}?qkdr:
_(fTdoL ey 9L oy a2
Ja [d‘[ % (t—o +OQk(l ) (t—1) }&ﬂd‘r

€H)
Substituting Eq. (4) into Eq. (3), it becomes

1 Y[WL_dim)“*TVA*

M Jo[\9g.  deag,
1—a ;7L (t—17)°“ 2}5(“(11':0 (5)
Iqk

Since the variations g, (k=1,**,n) are in-
dependent of each other for a holonomic system,
therefore, by the fundamental lemma™ of the

calculus of variations, one obtains

(3;—&%)(z—ﬂ“—(l—@%(z—f)”:o
(6)
From Eq. (6), one gets
iallfallzflfa% =1, =, n
dr 9g,  dq  t—r 9
7

Eq. (7) are the fractional action-like Lagrange
equations of the holonomic system®’.

Assume that the motion of the system is
subjected to g bilateral ideal nonholonomic con-
straints of Chetaev type

Sty g5 @) =0 B=1s".g (8)
The restriction of constraints Eq. (8) exerted on

the virtual displacements is
s, — _
(,)qﬁ8Q/*O ‘8*1, g (9)

From Eq. (5) and the conditions Eq. (9), by

using the Lagrange multiplier method, one can

obtain
daL L _ 1—adL dfs
dr 9, 9q, t— 7 A, #q,
kzla e N (10)

where A, are the constraint multipliers. Eq. (10)
can be called the fractional action-like differential
equations of motion with multipliers for the non-
holonomic system.

Before integrating the equations of motion,
by using Egs. (8, 10), one can find A, as the func-
tion of z, q and 4. Therefore, Egs. (10) can be

written in the form

d IL JL 1—qa JL
- — =—— — 1A
dr 9q,  Iqu t—r aqk+ g
E=1, =+, n (1)
where
af.
Ay =A, (2, q, q):/\plé 12
a4,

Egs. (11) are called the equations of motion
of the holonomic system corresponding to the
nonholonomic system, or the equations of motion
of the corresponding holonomic system for short.

If the initial conditions satisfy the equations
of nonholonomic constraints Eq. (8), the motion
of the corresponding holonomic system Eq. (12)
will give the solution of the nonholonomic system
Egs. (8, 10).

Example 1 Consider a system whose config-
uration is determined by two generalized coordi-

nates q;» ¢q,. The Lagrangian of the system is
L=1 G+ (13)

and its motion is subject to a nonholonomic con-
([36)

strain

f=&q + brq, — bg, +7=0
From Egs. (10), one has
L8 s —— 1% e

t—rt

b = const (14)

.q‘l -
(15)

where the first term of the right side of each
equation of Egs. (15) can be viewed as a general-
ized external force acting on the system, and the
second one is the force corresponding to the non-
holonomic constraint Eq. (14). From Egs. (14,

15), one can find the multiplier
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1 1— .
_ ,)— 1
A 1o [t +0cg>) } (16)

Then Egs. (15) can be written as

e 1 _1*0([51‘(5[(11_(12)}

? 1+ 1—c| 1+07
PO br 1*0([])‘!‘(21 _(Iz} an
e RS

Eqs. (17) are the fractional action-like differenti-
al equations of motion of the holonomic system
corresponding to the nonholonomic
Egs. (14, 15). If « = 1, Egs.

equations of motion in classic situation

system

(17) give the
[36]

2 Variation of Fractional Action-Like
Hamilton Action

Introduce the infinitesimal transformations of
r-parameters finite transformation group
T =t+ Ars ¢ (©) =q. (v) + Ag,
k=1, =, n (18
or their expansion formulae
=t +¢&& (z: ¢, @)
q: (0) =q, (v) +&,51 (x5 q5 @) k=1, =, n
a9y
wheree, (6 =1,+*+,7r) are the infinitesimal param-
eters, and &), &, the generators or generating
functions for the infinitesimal transformations.
The difference of the fractional action-like
Hamilton action Eq. (1) before and after transfor-
mation is
SH—S =

1 {J L[Ts(]ﬁ (T) 9(1% (T) :I (t— 1) ujld‘[*

')
J’L [t.q: (2) +qx (2) ] (¢t — 1) Mde (20)

where y is the given curve and ¥ a neighbor curve.
Denoting the main linear part of Eq. (20) fore,,
i. e. , the part accurate to the first-order infinitesi-

mal, as AS, one has

1 [rraL aL oL
AS—F(a)J [?A—ﬁ— Bau + G +
L(d% “Af”o:—n “ldr  (21)

For an arbitrary function F, the relation be-
tween the non-isochronous variation A and the

isochronous variation ¢ is*

AF =6F + FAr (22)

Therefore one has

QAT

d )
de e T dr

qu :A([/c _thT’ Aqk :d
T

(23)
From Eq. (23), Eq. (21) can be expressed as

1 H d [(LAT‘F 6qk) (z—wﬂ}L

T Julde
9L_i(7L_1—a% L
<<7Qk draq, t—< 96‘1&) (t—1) (?qk}dz-

(24)
From Egs. (19, 23), Eq. (24) can be further ex-

pressed as

JL e
F(a)j { [ (Ea 7£5) >(f T) }+

711 1— aaL)
It —r dq,

JL d - —
<rq}e 7d E—@é) =) “ ! } dr
(25)

Eqgs. (21, 25) are basic formulae for the variation

of fractional action-like Hamilton action.

3 Fractional Action-Like Symmetric

Transformation

In this section, one establishes the defini-
tions and criteria of fractional action-like Noether
symmetric transformations and quasi-symmetric
transformations.

Definition 1 If the fractional action-like
Hamilton action Eq. (1) is an invariant of the in-
finitesimal transformations of the group in
Eq. (18), that is, for each of the infinitesimal
transformations, the formula

AS =0 (26)
holds, the infinitesimal transformations are called
the fractional action-like Noether symmetric
transformations.

From Definition 1 and Eq. (21), one can ob-
tain the following criterion.

Criterion 1  For the infinitesimal transfor-
mations of the group in Eq. (18), if the condition

%ArJraLAHr@AHrL( “ar) = 0

27
is satisfied, the infinitesimal transformations are
the fractional action-like Noether symmetric

transformations.

Condition Eq. (27) can also be expressed as
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J c I Lo b .
et + 7Lsk+ L oG —adD + [ Lira @ a@le—o )=
L&+ =) =0 L["d SeEaq @) de G
g ’ I
=1, .7 (28) The left-hand of Eq. (32) is a first-order infinites-
When r=1, Eq. (28) may be called the fractional imal under the transformations (Eq. (18)).

action-like Noether identity.

From Definition 1 and Eq. (25), one can ob-
tain the criterion as follows.

Criterion 2 For the infinitesimal transfor-

mations of the group in Eq. (19), if the condi-

tions
d aL 2 4 . a1
CT‘['|:<LS() + 24 (& q:55) ) (t 7) }+
(714 7i aIJ 1 a (714 s a0 . a1l
(aqk PR T qu) & —a&) t—0 " =0

(29)

are satisfied, the infinitesimal transformations are

g=1,.r

the fractional action-like Noether symmetric
transformations.

Subsequently, one establishes the definition
and criteria of the fractional action-like Noether
quasi-symmetry transformations.

Suppose that L' is another Lagrangian, if the in-
finitesimal transformations (Eq. (18)) accurate to the

first-order infinitesimal satisfy the condition

F(l) JL[‘DQ;«(T) (o) ]t —1) “lde =
1 w1
?JL (2o (@) s o (0) ]t —7)* 'dz

(30)
this invariance is called the quasi-invariance of the
fractional action-like Hamilton action Eq. (1) un-
der the infinitesimal transformations of the group
in Eq. (18).
by Eq. (30) satisfly the same differential equations

The functions L' and L determined
of motion. Hence the transformations are called
the fractional action-like Noether quasi-symmetric
transformations, and one has

L/ I:Z'a(]k () 7qk () ]:
Lzeqi(0) i () ]+d%G<r,qk ) t—o) '

3D
Substituting Eq. (31) into Eq. (30), one has

1

'@ {J Liz.q: (D) ?qk(f):l(tiz‘) “dr —

Therefore, the right-hand should be an infinitesi-
mal of the same-order. G can be replaced by AG,
and thus

AG(75q: (7)) =AG(z5q: (7) @i (7))

Hence, one has

(33)
Definition 2 If the fractional action-like
Hamilton action Eq. (1) is a quasi-invariant under
the infinitesimal transformations of group (18),
1. e. for each of the infinitesimal transformations,

the formula

1
ING))

holds, where G = G(z,

transformations are called the fractional action-

AS =— j *(AG) dr 3D

q.q) , the infinitesimal
like Noether quasi-symmetric transformations.
From Definition 2 and Eq. (25), one can get

the following criterion.

For the infinitesimal transfor-

—far) =

(35

Criterion 3
mations of group (18), if the condition

dJ
dL IL Aq;Jr L

i+ L(

— = _ 1—a
dr(AG) (t—1o)

is satisfied, the infinitesimal transformations are
the fractional action-like Noether quasi-symmetric
transformations.

Condition Eq. (35) can also be expressed as

aL JL HL Qs ) o
0 -

5 + 5»+
dr J

_(JG (t_f>]7a 6:19“‘,7’ (36)
When r =1, Eq. (36) may be

(5“ qké6>+L('

0

where AG = ¢,G°.
called the
Noether identity.

fractional action-like generalized
From Definition 2 and Eq. (25), one can sug-
gest the criterion as follows
Criterion 4 For the infinitesimal transfor-
mations of the group in Eq. (19), if the condi-
tions

(e

(6~ ) <r—7>ﬂ+
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(L_doL_l-sil
t— 1t I
— G (37)

are satisfied, the infinitesimal transformations are

— “ _ a1 _
g, dr 9g, ) &G — &) t—o)

o=1,ur

the fractional action-like Noether quasi-symmetric
transformations.
By using Criterions 1, 2, one can determine

Noether

Likewise, by using Criterions 3, 4, one can de-

the fractional action-like symmetry.

fine the fractional action-like Noether quasi-sym-

metry.

Action-Like Noether
Theorem of Holonomic System

4 Fractional

The conserved quantity of a holonomic sys-
tem under the El-Nabulsi’s fractional model is
firstly defined.

Definition 3 A function I(z, q, ¢) is said to
be a conserved quantity of a holonomic system
under El-Nabulsi's fractional model if

d
dr

is along all the solution curves of the fractional

action-like Lagrange equations. (7).

For a holonomic system, if one can find a
fractional action-like Noether symmetric transfor-
mation or a Noether quasi-symmetric transforma-
tion, one can find a corresponding conserved
quantity. Here is the obtained theorem.

Theorem 1 For the holonomic system
Eq. (7), if the infinitesimal transformations of
group Eq. (19) are the fractional action-like
Noether symmetric transformations under Defini-
tion 1, the system has r linear and independent
conserved quantities, that is

P e @ aE) [t =
ady

c=1, =, r (39)
Proof Since the infinitesimal transforma-
tions of group are the fractional action-like

Noether symmetric transformations of the sys-

tem. By Definition 1, one has AS =0, namely
1 b i a % £ _ a1
[erl g (e S@—aen ) a0 |+

I'(e)
(%_ d (9L_1_0(%

I dj'@ t—t I

)(éz—qksm (t—

D! }dr:O (40)

Substituting Eq. (7) into Eq. (40), and con-

sidering the independence of parameters ¢,, one
has

d%[(bsz + 9L

Iq,

& =) ) o “*l}zo
41
Integrating it, Eq. (39) is obtained, and then
it ends.
For the

Eq. (7), if the infinitesimal transformations of

Theorem 2 holonomic system
the group in Eq. (19) are the {ractional action-like
Noether quasi-symmetric transformations under
Definition 2, the system exists r linear independ-
ent conservation quantities, such as

= La+ o
((Ik

<sz—qkss>}<r—f>rl L=

42)

Theorems 1, 2 can be called the fractional

c=1, **, r

action-like Noether theorem for the holonomic
system. According to the Noether theorem, for
the holonomic system under El-Nabulsi's frac-
tional model, if one can find a fractional action-
like Noether symmetric transformation or a quasi-
symmetric transformation, one can get a con-
served quantity of the system.

Example 2 The Lagrangian of the planar

Kepler problem is
L= 2 @) +p g +ab)

ai+q¢ #0 (43)
Here one tries to study the fractional action-like
Noether symmetries and conserved quantities of
the system.
First, one finds the fractional action-like
Noether quasi-symmetric transformations. Frac-
tional action-like generalized Noether identity
Eq. (36) gives

—p g g @ s F ) T G —aéo T+
0 G —ai) H LB+ =)= ~Gu—o
44D
Eq. (44) has the following solutions
&=0,86=—q.6=q.G =0 5
E=G—0 8= -0 8= -
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G == Gl —p i g (16)

The generator Eq. (45) is corresponding to a frac-
tional action-like Noether symmetric transforma-
tion of the system, and the generator Eq. (46) is
corresponding to a fractional action-like Noether
quasi-symmetric transformation of the system.
From the generator Eq. (45), according to
Theorem 1, one has
I'=(q1q: — q1q>) (t — 1) ' =const (47)
Eq. (47) is a conserved quantity led by the frac-
tional action-like Noether symmetry Eq. (45) of
the system. Whena =1, Eq. (47) gives
I=q,q, — ¢1q, =const (48)
This is the conserved quantity of a classical Kep-
ler problem™*,
From the generator Eq. (46), according to
Theorem 2, one obtains
I* =0 (49)
Therefore, the infinitesimal transformation corre-

sponding to the generator Eq. (46) is trivial.

Action-Like Noether

Theorem of Nonholonomic System

5 Fractional

The definition of

Noether quasi-symmetric transformations of the

fractional action-like
nonholonomic system is firstly given.
Notice that
0qr = Aqr — 4 At =€, (&, — 4,E%) (50)
Substituting Eq. (50) into Eq. (9), and consider-
ing the independence of ¢,, one has

df .
7{lﬂ(g?_qug):o B=1l,,gs0=1,,r
qr

O

GD
This is the restriction of nonholonomic con-
straints exerted on the generating function of in-
finitesimal transformations, called the Appell-
Chetaev conditions. Thus one has
Definition 4 For the nonholonomic system
Egs. (8, 10), if the infinitesimal transformations
of the group in Eq. (19) are the fractional action-
like Noether quasi-symmetric transformations,
satisfying the Appell-Chetaev conditions Eq.
(51), the transformations are called the fractional

action-like Noether quasi-symmetric transforma-

tions of the nonholonomic system.

Secondly, one gives the definition of a con-
served quantity of a nonholonomic system under
El-Nabulsi's fractional model.

Definition 5 A function I(z, q, ¢) is said to
be a conserved quantity of a nonholonomic system

under El-Nabulsi’s fractional model if
dim, g, =0 (52)
T

is along all the solution curves of the fractional
action-like differential equations of motion of the
nonholonomic system Eqgs. (8, 10).

Finally, one establishes the fractional action-
like Noether theorem of the nonholonomic sys-
tem.

Theorem 3 For the nonholonomic system
Eqgs. (8, 10), if the infinitesimal transformations
of the group in Eq. (19) are the Noether quasi-

symmetric transformations under Definition 4.,

the system has r linear independent conserved

quantities
. 1 9L o 1
I° = <L$0 + 2 (& — q:65) ) G—7) "+ G =
9qr
o= br (53)
Proof  Since the infinitesimal transforma-

tions of group are the fractional action-like
Noether quasi-symmetric transformations of the

system, by Definition 2, one has

*bh
AS—=— 1 JimG)df (34)

F(a) a d‘[
Eq. (34) can also be written as
1 b d ;}L ' )
I'(a) | (L&5 + o — &9 oyl
I'(a) Jusa{d‘[[( goJraqk (& q“g:t))(t o+

G } (3147291471—01(7[,
dq,  drdq, t—1t Iqs

)(&—M%)-

(t—7o)! }dr:O (54)

Since the infinitesimal transformations satisfy the

Appell-Chetaev conditions Eq. (51), one has

L[
F(a) JUEJ/‘{Q (,)qk (S; qu())dz-_o (55)

Adding Eq. (55) and Eq. (54) together, one

gets

b (’)
1 Jsg{i[(LﬁJﬁ 'P(fi_ékgﬁ))(t—r)rlJr

I'(a) dr Iqy

o }+<(7L_d(7L_1—a(7L+A ﬂ)

Igp  dr g t—7ag A,
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& — q.87) (t—r)‘ﬂ}dr:O (56)

Substituting Eq. (10) into Eq. (56), and consid-
ering the independence of ¢,, one obtains
d%[(LS% +%<s¢ g @ +G"}:O
c=1,,r 57
Integrating it, one obtains Eq. (53), and the the-
orem is thus proved.

Theorem 3 can be called the fractional action-
like Noether theorem of the nonholonomic sys-
tem. By the theorem, one can find a conserved
quantity from a known Noether symmetry.

If the nonholonomic constraints do not exist,
then Theorem 3 degenerates to Theorem 2, and if
at the same time G° = 0 is satisfied, Theorem 3
degenerates to Theorem 1.

Example 3 Let us study the fractional ac-
tion-like Noether symmetries and the conserved
quantities of the nonholonomic system discussed
in Example 1.

First, one tries to find the fractional action-
like Noether quasi-symmetric transformations
satisfying the Appell-Chetaev conditions. The
fractional action-like generalized Noether identity
Eq. (36) gives

a G —né)+ g G —gpE)+

1 .2 .3 p 1_ - —
5 @+ <Eo+17:50>:*(1(t*r)1 «

(58)

and the Appell-Chetaev conditions Eq. (51) give
& —aé& ‘5—171'(52*('1250):0 59

Eqgs. (58, 59) have the following solutions
f=G—o'"a=at—D" 8=t

G' :—%@Hq%) (60)
E£=0,8=—br t—0) ", E=0t—0) "
G* =bq, —<1—a>j’”q%:%df (61)

The generators Eqgs. (60, 61) are both corre-
sponding to the fractional action-like Noether
quasi-symmetric transformation of the nonholo-
nomic system. By Theorem 3, the conserved
quantity Eq. (53) gives
I'=0 (62)
P =—brg, +q, +bg) — (1 —

a)J mdr:const (63)

t—rt
Therefore, the infinitesimal transformation corre-
sponding to the generator Eq. (60) is trivial. And
when ¢ =1, the conserved quantity Eq. (63) gives
I=—0bcg, + 4. +bg, = const (64)

This is a classical conserved quantity™®.

6 Conclusions

In recent decades, the fractional calculus has
been successfully used in various fields of science
and engineering. It has also been used in dynam-
ics modeling for a non-conservative or dissipative
system and so on, where some complex problems
can be solved difficultly with integer order deriva-
tives. Here the fractional action-like variational
problem is further studied, based upon the frac-
tional modeling presented by EI-Nabulsi. The
fractional action-like differential equations of mo-
tion for both holonomic and nonholonomic sys-
tems are established. The definitions and criteria
of both fractional action-like Noether symmetric
transformations and Noether quasi-symmetric
transformations are given, and the fractional ac-
tion-like Noether theorems of the systems are es-
tablished. The presented methods and its results
are of universal significance. They can be further
applied to various types of constrained mechanical
systems. It is noteworthy that classical Noether
theory for the circumstance of integer order is a

special case of this paper.
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