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Abstract: To overcome the shortcoming that the traditional minimum error threshold method can obtain satisfacto-
ry image segmentation results only when the object and background of the image strictly obey a certain type of
probability distribution, one proposes the regularized minimum error threshold method and treats the traditional
minimum error threshold method as its special case. Then one constructs the discrete probability distribution by
using the separation between segmentation threshold and the average gray-scale values of the object and background
of the image so as to compute the information energy of the probability distribution. The impact of the regularized
parameter selection on the optimal segmentation threshold of the regularized minimum error threshold method is
investigated. To verify the effectiveness of the proposed regularized minimum error threshold method, one selects
typical grey-scale images and performs segmentation tests. The segmentation results obtained by the regularized
minimum error threshold method are compared with those obtained with the traditional minimum error threshold
method. The segmentation results and their analysis show that the regularized minimum error threshold method is
feasible and produces more satisfactory segmentation results than the minimum error threshold method. It does not
exert much impact on object acquisition in case of the addition of a certain noise to an image. Therefore, the meth-
od can meet the requirements for extracting a real object in the noisy environment.
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0 Introduction

It is difficult for computer vision to analyze,
understand and segment an image. Among the
many image segmentation methods, the threshold
segmentation method is extensively studied and
applied due to its simplicity, rapidity, effective-
ness, stability and ease of understanding'. The
minimum error threshold method™ is applied the
most extensively among image segmentation
methods because of its firm support by the proba-
bility theory. Kittler and Illingworth, the propo-
nents of the method, obtained the threshold seg-
mentation criteria with the Bayesian error theory
and some reasonable mathematical treatments on

the assumption that the gray scale distributions of
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ideal objects and backgrounds obey the mixed
normal distribution. Many scholars at home and
abroad studied the minimum error threshold
method®?, for instance, the fast iteration algo-
rithm™!, the robust minimum error threshold
method™, the Poisson distribution minimum er-
ror threshold method™ , the Rayleigh distribution
minimum error threshold method"™, the general-

B and so

ized minimum error threshold method
on. In order to enhance the noise resistance of the
minimum error threshold method, they proposed
the 2D histogram minimum error threshold meth-

10121 " To reveal the

od™ and its fast algorithm"
theoretical foundation of the method more clear-
ly, Refs. [13-14] used informational divergence to

give a reasonable explanation to the minimum er-
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ror threshold segmentation method, thereby lay-
ing a firm theoretical foundation for using the
method better. Since the minimum error thresh-
old method is derived from pattern matching, the
distribution of the gray scales of the object and
background of its hypothetical image strictly
obeys the mixed normal distribution, the Poisson
distribution, the Rayleigh distribution, etc.
However, because of the acquisition environment
and transmission interference of an actual image,
the distribution of its gray scales cannot strictly
obey the mixed normal distribution, the Poisson
distribution, the Rayleigh distribution, etc. The
thresholds segmented with the minimum error
threshold method are not necessarily the ideal
ones required by image segmentation, causing se-
vere segmentation errors. To reduce the image
segmentation error rate of the minimum error
threshold segmentation method, a regularized
minimum error threshold method is proposed so
as to enhance its segmentation performance,

while treating the traditional minimum error

threshold method as the former's special case.

1 Minimum Error Threshold Meth-
od

Use f(x,y) to denote the gray value of an
arbitrary pixel located at (x,y) of a digital image
whose size is M X N. The one-dimensional (1D)
histogram of the image hA (i) denotes the frequency
number at which all the gray-scale values of the
image appear. Therefore, one can use the 1D his-
togram to describe the image's probability distri-
bution.

Assume that the ideal distribution of gray

scales is a mixed normal distribution p(g) =

1
EP,»,D(;;‘ | i) . Here P, is the prior probability of
i=0

a sub-distribution. The two sub-distributions

pCg | 0)and p(g| 1) of p(g) obey the normal dis-
1 (g —p)?
exp<f7#)

2
20;

plg | )=

tribution
27 o;

whose mean value is p; and whose standard devi-
ation is ¢; . The estimations of various parame-
ters are given below; if the gray level ¢ is used as
the segmentation value, then

t L—1
Po(t) = > h(i)s P = D h(D)

i=0 i=rt+1

t L—1
DIhii DI

_i=0 =il
ﬂ()(f) _7P0(l‘,) ’ ;ll(l‘) 7P] )
N ) (D)
DG e (DR
o0 (1) = P, ()
L1
DG (D) R (D
2 _i=ttl
o1 () = P (1)
For the threshold valuet € {0,1,+-,L—1} ,

Kittler and Illingworth™’ gave the following ex-
pression based on the minimum segmentation

error

J( =142 [m(z)ln(f; &)+ Ponm(35) }
0 1

(2)

The criterion for selecting the best segmenta-

tion threshold value is z=¢" that minimizes J (1),
namely

t* =arg min J(1) (3)

0<<t<<L—1
To have a profound understanding of the
minimum error threshold method, Refs. [13-14 ]
minimize the informational divergence between
the actual distribution A(/) and the hypothetical
distribution p(/) and derive the expression again,
further clarifying the mathematical mechanism of
the method.
The divergence of the parametrical @ between
the two discrete probability distributions P =
(pl ’pX’".’/)n) and Q: ((Il s (2t

lows

©,q,) 1is as fol-

_ 1 N
dq(P,Q)—a(lia);[apz+

A—a)g — pigi ] a € R €

The divergence of the parametrical ¢ has the
following characteristics:

(1) d,(P,Q) is concerned with P, Q and is

a concave function;
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(2)d,(P,Q) = 0; when and only when P =
Q, d,(P,Q) =0;
(3) The divergences of KL and y* are the

special cases of ¢ -type divergence, namely

. - b
1 Q= > pin(Z
imd, (P.Q) ;p n(qi) 5)

a>1

h(i)

0<lt<{L—1

which is the famous KL divergence. Also

;gi)“ (6)

| o
limd,(P,Q) = :
imd, (P.Q) =2, ==

which is the classic y* divergence.
The minimum error threshold method can be

explained with the KL divergence as

. (=, S h(i) _
¢’ =arg min {Z;h(l)ln<Po(t)p(i ) +121h(1)1n<P1(t)p(i ) }*

L—1

arg min {— DA InP O pGi [ 0)) — DThDInP(DpG | D) | =

0<Tr<<L

arg min

0<Zt<<L—1

[oX) (f)
P, ()

This explanation demonstrates that the mini-

arg min {1 + ZPO(z‘,)ln<

0<t<<L—1

mum error threshold method is, in nature, the
gray-scale normal distribution template matching

method.

2 Information Entropy and Energy

In the
X :{1‘1 s Lg 9"

that corresponds to an event A is named as P =

finite universe of discourse

,x,} » the probability distribution

(p1spzs+sp,) and satisfies Zp,- =1 and 0 <
i=1

p <1 (G=1,2,--,n). The expression of the

information entropy that describes the random

uncertainty degrees of probability distribution

proposed by Shannon in 1948 is as follows

n

H(P) =— > pilnp, (8

i=1
The information entropy has the following
typical properties:
(L HUHVY:ie (1,2,

information entropy H(P) reaches the maximum

,n} and p, =1/n, the

value In(n) ;
() If 3ie (1,2,

formation entropy H(P) reaches the minimum

«+,n} and p; =1, the in-

value 0.
In addition to the logarithmic-type expression

of the information entropy, there is a parametric-

[16]

type Tsallis expression™'® of information entropy

given as follows
Dipi—1

Ha(P>:H17 (9)
—Qa

In(2en) + ZPO(t)ln(

)+ P, (t)ln(

i=rt+1

%HZR@M(M) }z

P, ()

o1 (Z)
P )

Eq. (9) is related to parametrical « divergence

d,(P,Q) as follows

H,(P) —n' [1 L —ad, (P E} ) }

where [LJ: (l,i,,%) is the discrete uni-

n n n

) } —arg_min J(D %)

form probability distribution.
The parametric-type expression of informa-
tion entropy has the following properties:
(1) If the parameter ¢ — 1, then
limH,(P) =H(P) (10)

a—>1

(2) If the parameter « =2, then

H,(P)=1— > p? (1D
i=1

(3) If the probability distributions of any
two independent events A and B are P, and P,
then
H., (P, +P,)=H,(P,)+ H,(P;) +
(1—a)H, (P)OH,(Py) 12>
In 1966, Onicescut'™ proposed his informa-
tion energy that describes the probability distri-

bution certainty degree, whose expression is

E(P) Zzp,z. The information energy has the
i=1

following typical properties;:

(L HVY:ie {1,2,-,n) and p, =1/n, the
information energy E(P) reaches the minimum
value 1/n ;

2) I Fie {1.2,-

formation energy E(P) reaches the maximum

,n} and p, =1, the in-

value 1.
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From the above definitions, one can see that
the information entropy and the information ener-
gy are in pairs. In particular, H,(P) and E(P)
satisfy the validity of H,(P) =1— E(P), so that
related to divergence

information energy is

d,(P,Q) as follows
EXP>:1+~l[1+2d4P,EL})}
n

n
This expression provides the possibility of
combining information energy with the minimum

error threshold criteria.

3 Regularized Minimum Error Th-
reshold Method Based on Informa-

tional Divergence

Since the threshold segmentation method is a
special type of clustering segmentation method
which, however, has uncertainty, the regulariza-
tion theory has been applied to the study of clus-

tering algorithm®1%

so as to enhance its per-
formance. The informational divergence theory
has also been extensively studied in the construc-
tion of the clustering algorithm™"”, whose gener-
alized clustering model has been established. The
regularization theory has been applied to the im-
provement of the Otsu threshold method, thus
obtaining the improved global threshold segmen-
tation method for fused image gray-scale con-
trast'? and the regularized parameter selection
method. Saha et al. " proposed the regulariza-
tion variance minimum and maximum local
threshold segmentation method and worked out
the method for adaptively selecting regularization
parameters. To segment an image, one develops
the regularized minimum error threshold method
based on informational divergence by combining
the information energy of object and background
of the image with the informational divergence

that corresponds to the template matching meth-

od.

3.1 Construction of regular items with informa-

tion energy

It is assumed that an image has the L gray

level G=1{0,1,2,--,L —1} and its histogram is

h(i) (i=0,1,+,L—1). Given that its segmen-
tation threshold is ¢t (0 <<t << L — 1) , one seg-
ments the image into object and background, each
of which corresponds to the following average

gray scales

t

L1
DI

__i= __i=utl
m, () = P m, (t) PO (13)

where P, (#) and P, (¢) are a posteriori probability

h(i)i

values that correspond to object and background
respectively.

With the weighted Otsu threshold coefficient
constructed in Ref. [237], one uses the segmenta-
tion threshold ¢ . the average gray-scale value of
the object m, (¢) and the average gray-scale value
of the background m, (¢) to construct the discrete
probability distribution as follows:

The discrete probability distribution P’

/

(p' P’y s where

r_ (t—my(1))*?
P (D) —m (D)
( o (14)
p/z t my (L

=m0+ = m (D)
The information energy possessed by the dis-

crete probability distribution P’ is
E(P) =>1(p')" =
i=1

(t—me ) 4 (t—m; (D!
((t—me (D) 4+ (t—my (£))*)?

The value of information energy increases

15

with increasing deviation between the segmenta-
tion threshold and the average gray-scale values of
the object and background respectively. On the
contrary, the value of information energy decrea-
ses with decreasing deviation between the seg-
mentation threshold and the average gray-scale
values of the object and background respectively.
3.2 Regularized informational divergence thresh-
old method based on information energy

Under the condition that the segmentation
threshold ¢ (0 <r<CL—1) is given, the probabili-
ty that corresponds to any gray scale: (i =0,1,
e, L—1)is h() (=0,1,--,L—1).

The minimization of the deviation between
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the probability and the joint normal probability
distribution of the object and background with the
assumed ideal normal distribution constitutes the
minimum error threshold criteria. One uses the
separate information energy between object and
background to construct the regularized informa-
tional divergence threshold method, namely

t” :argO/T/iPI{](Z)+AE(P/)} (16)

In Eq. (16), the selection of the regularized
factor A is of great importance for obtaining the
ideal segmentation threshold. The value of the
parameter A may be positive or negative, and its
symbol can be determined with the method to be
presented in Section 4.

The informational divergence for the regular-
ized threshold segmentation should be selected as
the logarithmic-type expression as proposed in
this paper. The parameters are ) and y , where
A=4y and |y|<C 3; the typical values of the pa-
rameter ¥ should be selected as 0,1,2,3. If the
parameter ¥ is 0, the regularized minimum error
threshold method degenerates the traditional min-
imum error threshold method, which, therefore,
is the special case of the regularized minimum er-

ror threshold method proposed by this paper.

4 Method for Selecting Symbol of

Regularized Parameter

If the object deviation and the background
deviation that correspond to a given segmentation
value t, areV, (¢, ) andV,(z; ) ; and if V(25 ) —
V,(t; ) is larger than 0, the parameter A is select-
ed as a positive symbol; if V, (¢; ) —V, (¢, ) is
smaller than 0, the parameter A is selected as a
negative symbol; if V, (¢, ) —V, (#, ) is equal to
0, the parameter A is selected as 0.

Vo () = DTh(i) (G —m, (1)*

=0

an

L—1

Vi) = D> hG) G —my (1)*

i=1tt1

where the criterion for selecting the parameter ¢,
is

t; =arg /rr}/ilnil{(Po(t))z+(P1(Z))2} (18)

5 Explanation on Rationality of
Regularized Minimum Error
Threshold Method

Assuming that the probability of the image's
histogram is a continuous function h(x) , one
constructs the objective function that corresponds
to the regularized minimum error threshold crite-
ria as follows
J(@)=1—2(P,(OInP, (1) + P, (D)InP, (1)) +

P, (D1net (1) + P, () Ingt (1) + AE(P")
a9y

t foo
where P, (1) :j h(oydes P (o) :J h(oyde
0

t

J'hm(.r () dx

2 _Jo
O'o(t) - P()(Z)
- ,
| J h(a) (e — my (1)) dx
ol (1) = P D
' oo
Jh(z‘)xdx J h(x)xdx
Ino<[) :W, 7’)’11(f> :T
(20)

Accordingly, one obtains the derivative of

J () with the segmentation threshold ¢ as follows

i P, () )
J' @0 ==2h (B )+ O InGh (0) +
P()(Z) dO'(Z)(z) o 2
20 di h(OIn(ot (1)) +
P, (¢) dot (1) dE(P")
ol (1) dt A b
where
dot (1) _ h (D)t —mo())* _ h(®) 2 ()
de P, (D) P, ()%
det () —hG—mo())* | h() ,
@ P, (D) Tp @
, (t—my ()" + (t—m ()"
E(P) = —
PO ((t—me ()" 4+t —my (1))?)?
dE(P") _
dr
4((Z*mo(l))3(l*m’o(t))+(Z*ml(l))3(l*m’l(l)))_
(G=my@)* + @ —m (1)*)*
4((1‘—)710(1‘))4+(1‘—)71](l))4)(z—7)1()(z))(1—m/o(l‘))7
(G=meN2+ (t—m (1))?)?
L= meN F U—m (O —m (D)L —m' (D)
(G=meN2+ t—m (1)?)?
o (1) = At mo (D)
0 P, P, (D
, _ —hwt  m DOh)
m (1) = P .0 -+ P, (D) (22)



360 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 32

If its derivative is J () =0, one can obtain
the iteration expression for acquiring the segmen-

tation threshold

_gl(t) E'(P)
t_gz(t> g, (1) %)
where
B P, () o1 (1)
g1 (1) —2h(t)1n<P1 (l‘))+h(t)1n<o‘g(t)>+
Cmi 2+ mi
ho (=205 7w )
‘ o m, (1) _mo(t)
‘;_’2([)—2}1(1)<0_%(t) O"é(r))
opry _ dECP) (2)
dr

where E'(P’) is the derivative of E(P’) to the pa-
rameter ¢ .

Since the probability distribution of the his-
togram of an actual image is discrete and its inte-
gral can be discretely and approximately summed
rather than calculated, the discrete iteration for-
mula that corresponds to the regularized mini-
mum error threshold method can be obtained,
whereas the discrete iteration formula that corre-
sponds to the traditional minimum error thresh-
old method is

wtn _ &1 @)
g:(tP)

Therefore, the regularized minimum error

t k:()ala"' (25)

threshold method, in nature, is to add the
threshold obtained with the traditional minimum
error threshold method to the allowance
E'(P")/g,(t™) controlled by the parameter A so
that the obtained segmentation threshold will be
more approximate to the ideal segmentation
threshold of the image itself, thus reducing the
image’s segmentation error rate.

The above analysis shows that the regular-
ized minimum error threshold method, in nature,
corrects the segmentation threshold obtained with
the traditional minimum error threshold method
and treats the latter as a special case of the for-

mer.

6 Experiments and Result Analysis

To verify the effectiveness of our regularized

minimum error threshold method based on infor-

mational divergence, one selects some typical
grey-scale images and carries out the test analysis
of the images obtained with our regularized mini-
mum error threshold method and the traditional

minimum error threshold method respectively.
6.1 Parameter selection and test

The regularized parameter A is important for
the regularized minimum error threshold method.
The selection of inappropriate parameters may
cause immeasurable loss to the subsequent image
processing. Therefore, one investigates the im-
pact of the regularized parameter selection on the
optimal segmentation threshold of the regularized
minimum error threshold method.

One uses the four standard gray-scale ima-
ges, i.e., Lena, cameraman, mug and the moon
(Fig. 1) to investigate the impact of the regular-
ized parameter A of the regularized minimum error
threshold method on its segmentation threshold.
The image segmentation results are presented in
Table 1. The regularized parameter is A = 4y,
whose symbol uses the object and background a
posteriori probability information energy mini-

mum determination method.

-

Fig.1 Raw images

Table 1 Image segmentation results on four images
Segmentation threshold

‘ 7‘ Lena Cameraman Mug The moon
0. 00 63 24 58 10
0.10 71 25 78 10
0.25 11 81 88 11
0. 50 113 84 91 11
0.75 114 86 93 11
1. 00 114 87 94 76
1. 25 115 87 94 79
1. 50 115 87 94 82
1.75 115 87 118 82
2.00 115 87 118 84
2.25 115 88 118 85
2.50 115 88 118 85
2.75 115 88 118 85
3.00 115 88 118 86
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The segmentation results on the four images
(Table 1) show that, if the absolute value of the
parametric ¥ in the regularized parameter A takes
0, the regularized minimum error thresholding 1=21, 7= 1.0
method proposed in this paper may function the
same as the classic minimum error thresholding
method, whose optimal threshold for segmenting
a gray image is the smallest. As the absolute val-

t=54,7=1.0
ue of the parametric y in the regularized parameter
A increases gradually, the optimal threshold of the
gray image segmented by the regularized mini-
mum error threshold method changes monoton-
, =100, 7=2.0
ously. When the parameter | y | is greater than 2,
the optimal threshold of gray image does not
change obviously. In general, if the absolute val-
ue of the parametric y in the regularized parameter
A in the majority of grey-scale images is less than IS, =l
or equals to 1, satisfactory segmentation results
are obtained. But if the ratio of mean value to
variation of gray image is greater than the con-
stant of 0. 05, the parametric absolute value ¥ in t=175,7=10
the regularized parameter A must be 2 in order to
obtain better segmentation quality.
6.2 Image segmentation result comparison

t=83,7=1.0
The gray-level image segmentation results,

given in Fig. 2, and their analysis show that the
regularized minimum error threshold method is

feasible and produces more satisfactory segmenta-
t=179, ¥=1.0

t=96, ¥=1.0 =121/ =110

=133/ =10

t=45,7=2.0
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t=116,7=1.0

=255 t=1 t=118,7=1.0

(a) Raw images (b) Minimum error  (c) Regularized minimum
threshold method  error threshold method

Fig. 3 Segmentation results on image of Lena with the

=85 t=1,7=-1.0 Gaussian noise mean value as 0

(a) Raw images  (b) Minimum error  (c) Regularized minimum
threshold method  error threshold method

Fig. 2 Result comparison between the regularized mini-
mum error threshold method and the minimum

error threshold method

tion results than the minimum error threshold

method.

6.3 Robutness test of the regularized minimum

error threshold method

To test robustness of the regularized mini-
mum error threshold method, one compares the
results of segmenting the standard images of Lena

and cameraman respectively. The segmentation :’:t—89 Y10

results are given in Figs. 3,4. The mean value of
the image with the Gaussian noise is 0, and its

standard deviations are 0, 8.0, 16.0, and 25.5,

respectively. Eri ‘
o=255 t=1 t=92,7=1.0

The image segmentation results, given in
) ) ) (a) Raw images (b) Minimum error  (c) Regularized minimum
Figs. 3,4, and their analysis show that, compared threshold method  error threshold method
with the traditional minimum error threshold Fig. 4 Segmentation results on image of a cameraman

. .. with the Gaussian noise mean value as 0
method, the regularized minimum error threshold e e
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method does not exert much impact on object ac-
quisition in case of the addition of a certain noise
to an image. However, the traditional minimum
error threshold method is quite sensitive to noise
and cannot acquire the precise information on its
object when the noise is large. Therefore, the

proposed method can meet the requirements for

extracting a real object in the noisy environment.

7 Conclusions

The uncertainty-reducing regularization theo-
ry is introduced into the study of the image seg-
mentation with the minimum error threshold
method and a new regularized minimum error
threshold method is proposed to solve the degree
of separation between the segmented object and
the segmented background, where the traditional
minimum error threshold method is not taken in-
to account. The new method treats the traditional
minimum error threshold method as its special
case and can enhance the segmentation perform-
ance of the latter. Besides, the regularized mini-
mum error threshold method can be extended to
the scenarios with multiple threshold values and
other various minimum error threshold methods
so long as the object and background in the image
obey the Poisson distribution or the Rayleigh dis-

tribution.
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